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Abstract

Cytosine methylome data is commonly generated through next-generation
sequencing, with analyses averagingmethylation states of individual reads. We propose
an alternative method of analysing single-read methylome data. Using this method, we
identify patterns relating to the mechanism of two plant non-CG-methylating enzymes,
CMT2 and DRM2. CMT2-methylated regions show higher stochasticity, while
DRM2-methylated regions have higher variation among cells. Based on these patterns,
we develop a classifier that predicts enzyme activity in different species and tissues. To
facilitate further single-read analyses, we develop a genome browser, SRBrowse,
optimised for visualising and analysing sequencing data at single-read resolution.
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Background
DNA methylation is a conserved epigenetic mechanism that regulates genome stabil-
ity and expression in diverse eukaryotes [1–4]. This regulation is based on a dynamic
addition or removal of a methyl group to/from the fifth carbon of a cytosine residue.
DNA methylation appears in distinct genomic features, such as genes and transposable
elements (TEs), and in different chromatin states, such as heterochromatin and euchro-
matin [2, 5–9]. In plants, DNAmethylation occurs in three contexts: CG, CHG and CHH
(where H is any base except G). These contexts are differentially regulated by four DNA
methyltransferase (DNMT) families that share a conserved methyl-transferase domain
(MTD). METHYLTRANSFERASE1 (MET1) recognises hemi-methylated CG following
DNA replication and methylates the naked cytosine in the daughter strand [10, 11].
CHROMOMETHYLASEs (CMTs), which are plant-specific DNMTs, bind histone H3
lysine 9 (H3K9me2) heterochromatin via a chromodomain (CD) to methylate non-CG
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contexts [12]. In flowering plants, CMT3 methylates mostly CHG sites, whereas CMT2
methylates mostly CHH sites [13, 14]. The CHH methylation state is additionally reg-
ulated by plant DNMT3 orthologues or homologs, i.e. the DOMAINS REARRANGED
METHYLASEs (DRMs) [15, 16]. Similar to animal DNMT3, plant DNMT3 and DRMs
function as de novo methylases, establishing methylation on unmethylated sites.
The relationship between changes in DNA methylation patterns and gene expression

is not trivial, as it involves a non-linear, additive effect of multiple methylation contexts,
along with the effect of additional levels of epigenetic regulation, including chromatin
structure, and histone position and modifications [1, 17, 18]. Additionally, the most com-
mon method for studying DNA methylation (bisulfite sequencing, or BS-seq) does not
provide information on the methylation states of individual cells. BS-seq involves a chem-
ical reaction that converts unmethylated cytosines into uracil, which are subsequently
read as thymine when sequenced [19]. Sequencing data produced by BS-seq consists of
short DNA fragments originating from a random subset of cells in the sample tissue;
cytosines that have not been converted to thymine are assumed to represent methy-
lated cytosines in the source genome [20, 21]. Hypothetically, each read relates to the
methylation state of a single cell in the sample, and so the collection of reads will reflect
methylation heterogeneity present in the sample tissue. However, BS-seq methylome data
is most commonly averaged among reads overlapping the same region. Thus, the output
signal of BS-seq analysis pipelines combines populations that may have fundamentally
different methylation levels.
While there are alternative methods for generating methylomes that address this issue,

namely single-cell BS-seq, these methods are currently not feasible for all organisms and
tissues [22–25]. As a consequence, most currently available methylome data is not sin-
gle cell; analyses that can decode additional dimensions of information from this type
of data are of high potential value in producing more insights from new and existing
data. One such analysis was recently proposed to produce a heterogeneity signal from CG
methylation patterns among cells [26]. This tool calculates the Shannon entropy of reads
overlapping a set of CG sites and identifies unique patterns of methylation within this
subsample, as relating to heterogeneity within the sample population of cells. Similarly, a
method has been proposed for identifying subtypes of cells within heterogeneous BS-seq
samples, by observing differential regulation of CG methylation among reads [27].
We were interested in extracting additional information from BS-seq data, specifically

relating to CHH methylation, which could identify patterns of methylation associated
with specific genomic regions, chromatin structure or methylase activity. To this end, we
designed a single-read analysis pipeline that extrapolates multiple dimensions of methy-
lation variation, using NGS reads either from a single region (collection of CHH sites) or
from functionally similar sets of regions. This analysis revealed that DRM2 and CMT2
have distinctive methylation patterns at both single-cell and population levels. CMT2-
methylated reads and regions are more stochastically methylated than DRM2-methylated
reads. These findings make new predictions regarding the distinct mechanisms of CHH-
methylating enzymes. By characterising these patterns in Arabidopsis thaliana mutants
of these enzymes, we developed a classifier that can predict the identity of the enzyme
that methylates a particular region. Importantly, the classifier does not rely on a compari-
son tomutants of the same species or tissue. At a genome level, it can predict the presence
or absence of DRM2-like or CMT2-like activity. After validating the classifier, we used it
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to predict null DRM2 CHH methylation activity and to associate the CMT2 methylation
pattern to that of the DNMT3 methylation signal in early land plant species and human
cells.
Our analyses use BS-seq data at single-read resolution. To facilitate further analyses,

we developed a genome browser, “Single-Read Browser” (SRBrowse), that is optimised
for visualising and analysing NGS data at single-read resolution. The tool, which has a
unified user interface for browsing and analyses, can directly process local NGS data or
NCBI accessions into an optimised format for display in the genome browser.

Results
Designing a single-read analysis pipeline for CHHmethylation

Single-read analyses can be usefully applied to any NGS data where short reads vary in a
way that reflects biological variation. With BS-seq data, the importance of analyses at this
resolution is that methylation varies between cells meaningfully, with each read hypo-
thetically reflecting the state of a single cell. We chose to focus on CHH methylation for
a number of reasons: (i) CHH sites are 2–3 times more common than CG/CHG sites.
Given that site density dictates the amount of information that can be deduced from a
single read, contexts with a higher density allow more data to be retrieved from individ-
ual samples with low coverage. (ii) As opposed to CG sites, the methylation of which is
mostly binary, CHH sites are mostly partially methylated [20, 21, 28] (sites that are either
unmethylated or fully methylated have low or zero variation among reads). (iii) CHH
methylation is known to vary between tissues [29]; in itself, the fact that CHH sites are
partially methylated suggests that most CHH sites are differentially methylated between
cells of the sample tissue [20, 21]. (iv) CHH sites are methylated by two types of DNMTs,
DRM and CMT, the activity of which is regulated by distinct molecular mechanisms,
RdDM- and DDM1-dependent respectively [13, 14]. Thus, focusing on CHH sites might
expose the potential variation between regions of the same sample due to the different
mechanisms involved.
There are a number of factors that limit the maximal region size used to compare reads,

mainly (1) the average read length and coverage of the sequencing library and (2) the
frequency of the specific methylated context. The expected number of reads per region
for a given library can be calculated as:

expected reads per region = coverage ·
(
1 − region size

read length

)

This relationship is illustrated in Additional file 1: Figure S1a. The frequency of the
methylation context is also important to consider, as selecting regions rich in a particular
context can limit analyses to a small subset of the data and thus bias the results of the
analysis (Additional file 1: Fig. S1b). Different types of analyses can utilise different filter
options (e.g. depending on the characteristics of the region of interest). For all analyses
except where noted otherwise, regions were selected with 5 CHH sites, up to 30 bp length.
In a wild type A. thaliana sample [14], this includes 58% of regions from TEs containing
5 CHH sites with ≥ 5% methylation (Additional file 1: Fig. S1c).
In order to study individual- and population-level variation of methylation, the pipeline

segments the genome into short regions of a limited length of similar functional elements
or annotations, e.g. TEs, genes, exons, histone marks and chromatin structure. Due to the
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Fig. 1 Pipeline for analysing variation of single-read data regarding CHH-methylated regions. a Schematic
representation of pipeline: regions of up to a set length in base pairs with set number of CHH sites are
selected; reads overlapping these sites are then quantified by the number of methylated CHH sites. b
Schematic representation of different types of variation within methylated regions: (i) among-site variation,
relating to differences in methylation average between adjacent CHH sites; (ii) read methylation variation,
relating to differences in methylation level among reads overlapping the same region, taken to represent the
sample population of cells; and (iii) stochasticity, relating to differences between adjacent CHH sites within
each read

asymmetry of CHH sites, these regions are defined per strand. Here we used regions span-
ning a maximum of 30 base pairs with 5 CHH sites (Fig. 1a). Reads overlapping all 5 CHH
sites are then scored according to the methylation state of these sites, within the read
(Fig. 1a). We defined three features of methylation variation: (1) the standard deviation of
CHH site methylation, (2) the standard deviation of readmethylation and (3) stochasticity
(Fig. 1b). These features are potentially related to functional differences betweenmethyla-
tion patterns: (1) higher variation among sites can reflect fluctuations in the methylation
signal and/or CHH subcontext specificity of the enzyme; (2) higher variation among reads
can reflect differential regulation of methylation among cells composing the sample; and
(3) higher stochasticity could reflect subcontext specificity.

Read-level CMT2 CHHmethylation activity is more stochastic than that of DRM2

To compare CMT2 and DRM2 methylation patterns, we used BS-seq data of mutants
defective in the respective enzymes [14]. The mutants included cmt2 (three mutated alle-
les) and drd1 and drm2 (which both affect DRM2 activity [14, 30]). The assumption was
that, given the complementary activity of these enzymes, the remaining CHH methyla-
tion in cmt2 should consist of DRM2-methylated reads, whereas methylation in drd1 or
drm2 should consist of CMT2-methylated reads [13, 14]. As the methylation pattern in
the three cmt2mutants was similar, we combined the methylation data of these samples.
Initially, we tested whether the methylation level of individual reads differs between the

mutants on a genomic scale. To do this, reads were collected from regions conforming
to the standard parameters of our analysis (30-bp max region span, 5 CHH sites). Reads
were scored based on the methylation of the CHH sites from 0 to 5.
Figure 2a shows the distribution of read methylation level resulting from the above

analysis in each of the mutants, selected from regions methylated at three different min-
imal levels (5%, 20% and 40%). Methylated reads from drd1 and drm2 show a different
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Fig. 2 Single-read analysis of CHH methylation in CHH methylase and demethylase mutants. aMethylation
states of reads from CHH methylation mutants. Binned methylation states of all reads overlapping regions
matching the criteria (5 CHH sites, maximum 30 bp length) are plotted, demonstrating differences in
methylation intensity between cmt2, drd1 and drm2. Each panel presents regions filtered according to the
averaged region methylation level, as indicated above each panel. The methylation state is defined, as in
Fig. 1, as the number of CHH sites in the region that are methylated in each read. b Analysis of methylation
patterns within reads. Reads were selected from regions containing 5, 10 and 15 CHH sites (as indicated
above the panels) and with a maximum length of 100 bp and binned according to read methylation and
methylation stochasticity (as defined in Fig. 1b). White areas indicate no data. c, d Comparison of
demethylase mutant read methylation and respective wild type samples: c sites methylated in the drd1
mutant (i.e. CMT2-methylated sites) that are hypermethylated in the demethylase mutants; d sites
methylated in the cmt2mutant (i.e. DRM2-methylated sites) that are hypermethylated in the demethylase
mutants. To select CMT2- and DRM2-methylated sites in the ros1-4 and rddmutants, the drd1 and cmt2
mutants from [14] were used, respectively. For dme, drm1/2 and cmt2mutants from [31] were used

distribution from the combined cmt2 data: while cmt2 retains a proportion of fully
methylated reads, drd1 and drm2 retain mainly partially methylated reads, with a low
proportion of fully methylated reads. This pattern is present even in regions with high
(≥ 40%) average methylation (Fig. 2a, rightmost panel). The difference between lowly and
highly methylated drd1 or drm2 regions is explained exclusively by the methylation state
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of partially methylated reads (Additional file 1: Fig. S2a-b). In comparison, the propor-
tion of partially methylated reads between lowly and highly methylated regions in cmt2 is
similar, while methylation is correlated to the proportion of fully methylated reads (Addi-
tional file 1: Fig. S2a). Due to the relatively low coverage of the drm2 mutant, we used
drd1 for the subsequent analyses, but validated the patterns identified in drd1 using the
drm2mutant and drm2mutants from other studies.
Figure 2a demonstrates that reads from drd1 and cmt2 have different methylation

levels. An additional dimension of variation among reads is the stochasticity of methy-
lation. We defined this as the distribution of methylation within reads and quantified it
by counting the number of changes in methylation within the read (e.g. a methylated
CHH site adjacent to an unmethylated CHH site on the same strand) out of the total
possible number of changes (illustrated in Fig. 1b). Figure 2b demonstrates the separa-
tion between reads from the respective mutants according to their methylation level and
stochasticity: while drd1 has reads with lower methylation and higher stochasticity, cmt2
has reads with higher methylation and lower stochasticity. This correlation persists in
regions with different CHH content, as shown, 5–15 sites per region (Fig. 2b), suggest-
ing that this pattern does not depend on the density of CHH sites. This result is also
consistent for the mutant alleles composing the cmt2 sample (i.e. cmt2-4, cmt2-5 and
cmt2-6) and drm2 (Additional file 1: Fig. S2c). Overall, these results suggest that CMT2 is
associated with a CHH methylation pattern that is more stochastic than that associated
with DRM2.

CMT2 and DRM2 CHHmethylation patterns are not dependent on demethylase activity

A. thaliana DNA demethylases regulate DNA methylation levels through direct removal
of methylated cytosine bases from all cytosine sequence contexts [20, 32–34]. Therefore,
distinct patterns of CHHmethylation in the DNMTmutants could result from demethy-
lase activity. To test this hypothetical scenario, we analysed three different demethylase
mutants: single mutants repressor of silencing (ros1-4), demeter (dme-2) and the triple
mutant ros1-3, demeter-like protein 2 (dml2-1) and dml3-1 (rdd). Regions methylated in
either drd1 or cmt2were analysed as representing regions methylated by the complemen-
tary enzyme; the distribution of read methylation at these regions for each of the wild
type/demethylase mutant pairs was plotted.
Figure 2c and d summarises this comparison. Figure 2c presents data from CMT2-

methylated regions (methylated in drd1), while Fig. 2d presents reads from DRM2-
methylated regions (methylated in cmt2). For dme, drm2 and cmt2mutants of vegetative
nucleus tissue from [31] were used. For each demethylase, regions were also selected
according to hypermethylation (> 10% increase in methylation) relative to the respective
wild type sample. The enzyme-associated pattern is present in the demethylase mutants
and its respective wild type sample (Fig. 2c, d): in CMT2 regions, both the mutant and
wild type have a low proportion of fully methylated reads, with hypermethylation in
the mutant correlating to the increase in partially methylated reads (Additional file 1:
Fig. S3a-c, left panels); in DRM2 regions, both the mutant and wild type have fully
methylated reads, with hypermethylation in the mutant correlating to the increase in
fully methylated reads (Additional file 1: Fig. S3a-c, right panels). This suggests that the
patterns identified in the CHH methylation mutants are present prior to demethylase
activity.
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Variation of CHHmethylation among adjacent sites and overlapping reads distinguishes

between CMT2 and DRM2 target regions

Analyses of individual reads can reflect the activity of different CHH-methylating
enzymes, but the predictive confidence in distinguishing between methylated reads is
limited, given that most reads are lowly methylated with a limited range of stochastic-
ity (Additional file 1: Fig. S2c). Hence, to characterise region methylation, we produced
methylation features per-region from the single-read data (Fig. 1b). The separation of
all methylated regions (≥ 10% average methylation) from the mutant samples is shown
in Fig. 3a–c. Paired with the distributions of features of the actual data (solid lines) are
features of read datasets generated using a Poisson model of single-C sites, where the
chance of methylation per-site, per-read is equal to the mean region methylation (dashed
lines). The similarity between the actual and generated data can demonstrate the degree
to which the feature distributions of each mutant are explained by stochastic variation at
the level of individual CHH sites in reads.

Fig. 3 Separation of CHH-methylated sites according to methylation variation. a–c K-density estimate plots
of each type of variation in CHH methylation mutants. Distribution of sample data is shown in solid lines,
dashed lines show the methylation features of a random Poisson model based on the average methylation of
each sample. d Separation of whole transposable elements (TEs) according to among-site and read
methylation variation in CHH methylation mutants (no minimal methylation level for regions or TEs). Linear
regressions for each mutant are drawn as solid lines matching the color of the scatter plot, along with
squared correlation coefficients. p value < 1 × 10−10 for both regressions. e Differences between CWA and
non-CWA subcontexts (CCH/CHY, where Y is C or T) in CHH methylation mutants. Lines represent the
average read methylation sd. of a region for a given methylation level. f Resulting separation of regions from
CHH methylation mutants based on the pattern score feature. g Distribution of whole TEs according to
pattern score in CHH methylation mutants (cmt2 separated into its composing samples). As opposed to
d, in f and g, a minimal region methylation of 10% was used to filter regions. h Classifier receiver operating
characteristic curve demonstrating separation between regions of CHH methylation mutants as shown in f
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CMT2-methylated regions have higher variation among sites, lower variation of read
methylation level and higher average stochasticity (as suggested by Fig. 2b). Read methy-
lation variation and average read stochasticity from CMT2-methylated regions overlap
with the distributions of generated data (Fig. 3a–c), suggesting that, in the drd1 sample,
variation of CMT2-mediated CHHmethylation activity among reads is mainly stochastic.
By contrast, DRM2-methylated regions have lower variation among sites, higher variation
among reads and lower stochasticity (Fig. 3a–c). Variation among reads in DRM2-
methylated regions is not stochastic, suggesting that DRM2-mediated CHH methylation
in these regions is differentially regulated. Of these factors, variation among reads best
predicts the methylating enzyme of the region (Additional file 1: Table S1).
To understand the relationship between these methylation features in the mutant sam-

ples, features were analysed at the level of whole functional elements (in this case, TEs), by
averaging the features of individual regions contained within each element. This reduces
noise caused by low coverage of individual regions. Only TEs with at least two regions
with the required minimal coverage and methylation (≥ 10%) are plotted. Read methyla-
tion variation and among-site variation are plotted for all TEs (Fig. 3d) and for specific TE
superfamilies (Additional file 1: Fig. S4a). In the drd1mutant, these features are correlated
with a slope of 1, with among-site variation increasing linearly with readmethylation vari-
ation (Fig. 3d). On the other hand, in the cmt2mutant, the two features are correlated with
a smaller slope (0.21), with most TEs having a low average among-site variation (Fig. 3d).
This was consistent across different TE superfamilies (Additional file 1: Fig. S4a).
CMT2 shows specificity for the CHH subcontext CWA (i.e. CTA or CAA) [20, 21, 35].

As this could contribute to higher variation when analysing all CHH subcontexts, CWA
and non-CWA subcontexts were analysed separately. For this comparison, a larger region
size of 50 bp was used, given the lower density of CWA sites (4–5 times lower than that
of CHH). CWA contexts had higher variation among reads in drd1, whereas in cmt2
these levels are comparable to all CHH subcontexts (Fig. 3e, Additional file 1: Fig. S4a).
Among-site variation remains similar. The increase in read methylation variation can
be explained by the higher methylation of CWA-methylated regions. In addition, CWA-
methylated regions in drd1 have higher read methylation variation relative to regions
methylated at the same level in drd1, but still lower than in cmt2 (Additional file 1: Fig.
S4b). In non-CWA and all CHH-sites drd1 read methylation variation is similar to that of
a stochastic model. Methylated reads from CWA-methylated regions show a similar pat-
tern in terms of methylation level and stochasticity, as opposed to non-CWA-methylated
regions (Additional file 1: Fig. S4c-d). This suggests that the CMT2 methylation pattern
observed in CHH-methylated sites in drd1 is composed of two distinct patterns; however,
even when including only sites for which CMT2 shows specificity, the drd1mutant shows
higher stochasticity compared to cmt2 (Additional file 1: Fig. S4b, left panel).
Based on ANOVA of the methylation features in the CHH methylation mutants, we

designed a classifier to score regions and whole functional elements in terms of the CHH
methylation pattern. The results of the model are presented in Additional file 1: Table S1.
The separation of the mutants used to define the classifier based on the pattern score fea-
ture is presented in Fig. 3f (regions) and Fig. 3e (whole elements), along with the receiver
operating characteristic (ROC) curve of region prediction (Fig. 3h). The pattern score
feature ranges from 0 to 1, with lower values indicating patterns associated with DRM2
methylation, and higher values indicating patterns associated with CMT2 methylation.
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Eachmutant shows a single peak of pattern score, and these peaks are aligned for mutants
affecting the same enzyme (Fig. 3g). The separation of the mutant samples in Fig. 3g and
the ROC curve of the classifier demonstrate the potential of using the classifier to pre-
dict enzyme identity. A. thaliana cmt2 mutants from previous studies and drm2-related
mutants frommultiple species show similar distributions of pattern score, suggesting that
this distribution is not specific to the mutant samples used to construct the classifier
(Additional file 1: Fig. S4b-c).

DRM2 and CMT2methylation patterns are distinct from chromatin structure-dependent

patterns

DRM2 and CMT2 function at distinct chromatin environments; DRM2 via RdDM is tar-
geted mainly to euchromatic TEs, whereas CMT2 via H3K9me2 is targeted preferentially
to heterochromatic TEs [13, 14, 30]. Accordingly, it is possible that the distinct CHH
methylation activities of DRM2 and CMT2 are influenced by the genomic chromatin
environment rather by their intrinsic enzymatic activity. In order to test the role of the
genomic environment on DRM2 and CMT2 methylation patterns, we correlated pattern
score with GC content (a prominent indicator for chromatin structure [14, 18, 36]), for
individual CHH-methylated regions in drd1 and cmt2 mutants (Fig. 4a). While regions
methylated in drd1 show on average higher GC content than regions methylated in cmt2,
no correlation was found betweenGC content and pattern score in eithermutant (Fig. 4a).
We also correlated pattern score in cmt2, drd1 and drm2 with the following hetero- and
eu-chromatic histone marks, H3K9me2 and H3K4me3, respectively [37]. As with GC
content, the mutants are separated by both histone marks and pattern score, but there is
no correlation between histone marks and pattern score within each mutant (Fig. 4b, c).
These results suggest that the methylation patterns associated with DRM2 and CMT2 are
not derived from differences between chromatin environments.

Plant and human DNMT3s show similar CHHmethylation patterns to that of angiosperm

CMT2

By identifying methylation patterns associated with either DRM2 or CMT2, the classi-
fier can predict the presence or absence of the activity of either enzyme in samples from

Fig. 4 DRM2 and CMT2 CHHmethylation patterns are distinct from chromatin structure-dependent patterns.
Correlation between chromatin features and pattern score, in CHH-methylated regions from cmt2, drd1 and
drm2: a GC content and pattern score (cmt2 r2 < 1 × 102, p value < 1 × 10−10; drd1 r2 < 1 × 10−3,
p value < 1 × 1010; drm2 r2 < 1 × 10−2, p value < 1 × 1010). Due to the requirement of 5 CHH sites, GC
content is above a minimal value (> 0.133); b H3K4me3 log fold difference and pattern score (cmt2
r2 < 1 × 10−2, p value < 1 × 10−8; drd1 r2 < 1 × 10−2, p value = 0.15; drm2 r2 < 1 × 10−2,
p value < 1 × 10−5); c H3K9me2 log fold difference and pattern score (cmt2 r2 = 0.02, p value < 1 × 10−10;
drd1 r2 < 1 × 10−2, p value < 1 × 10−3; drm2 r2 < 1 × 10−2, p value < 1 × 10−8)
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different tissues and species. Currently, in the absence of mutants showing partially
reduced CHHmethylation, it is unclear whether the total methylation pattern present in a
given sample is derived from one ormore CHH-methylating enzymes, and this distinction
cannot be made based on average methylation alone.
Mutants that possess only one active CHH-methylating enzyme present a simplified

case for the classifier, given that there is only one pattern. To assess the ability of the
classifier to identify distinct patterns in more diverse samples, the classifier was applied
to wild type samples of multiple species (Fig. 5a). Of the species analysed, A. thaliana,
Oryza sativa and Solanum lycopersicum had two peaks, while Physcomitrella patens and
Marchantia polymorpha had only one peak. In A. thaliana, the two peaks associate with
either of the CHH methylation mutants shown in Fig. 3g. S. lycopersicum and O. sativa
have two peaks, similarly to A. thaliana, which are also aligned to the A. thaliana CHH
methylation mutants; however, the ratio between the peaks is different. This ratio relates
to the frequency of TEs regulated by either CMT2 or DRM2. For example, rice is known
for its exceptional number of MITEs (130k) targeted by RNA-directed DNA methylation
(RdDM) and DRMs [38].
Both P. patens and M. polymorpha have a single peak that is associated with the pat-

tern score of the A. thaliana drd1 mutant (Fig. 5a). In addition, reads from these species
have high stochasticity, similar to that of the drd1 mutant (Additional file 1: Fig. S6). P.
patens has one dominant CHH methylation enzyme, DNMT3, with trivial methylation
activity by DRMs [16]. Finding a single pattern distribution in P. patens that is similar to
that of CMT2 substantiates the trivial CHH methylation by PpDRMs and suggests that
the CHH methylation activity of DNMT3 is comparable to that of CMT2. Similarly to
P. patens, M. poylmorpha contains DRM and DNMT3 and is missing CMT2 [40]. The
classifier identified a single enzyme peak in theM. polymorpha methylome that overlaps
that of PpDNMT3 and CMT2 (Fig. 5a), predicting that, similarly to P. patens, DNMT3
rather than DRMs are its main CHH methylases. Figure 5b suggests that P. patens and
M. polymorpha read methylation variation is higher than that of A. thaliana drd1, but
lower than that of A. thaliana cmt2. In addition, both P. patens and M. polymorpha have
higher among-site variation compared to A. thaliana cmt2 (Fig. 5b). However, this differ-
ence relates partly to differences in methylation level of these samples: when comparing
region features for a given region methylation level, P. patens, M. polymorpha and A.
thaliana drd1 showmore minor differences in among-site and read methylation variation
(Fig. 5c, d).
While CG is the predominant methylation context in animals, non-CGmethylation can

be enhanced in particular tissues, such as the brain [3, 41]. Non-CGmethylation in mam-
mals (also called CH methylation) is mediated by DNMT3s. In human, two DNMT3s,
DNMT3a and DNMT3b, were found to mediate CH methylation [3]. Thus, to test how
many CH methylation patterns exist in human data and their relationship to those found
in plants, we next ran our single-read method on human methylomes derived from brain
tissue. Applied to human CH data using the same parameters as for CHH analyses, our
classifier detected a single peak of pattern score that overlaps that of plant DNMT3 and
CMT2 enzymes (Fig. 5e). Distributions of variations of among-site and read methylation
also show only a single peak of activity (Fig. 5f ). These results suggest that CH methyla-
tion in neurons has a single dominant pattern that is similar to that of plant DNMT3 and
CMT2.
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Fig. 5 Identification of methylation patterns associated with CMT2 and DRM2 in multiple species. a
Distribution of TEs in multiple species according to pattern score. Single peaks indicate the identification of
only one pattern signal; two peaks indicate the presence of two pattern signals. b TE methylation variation
features in P. patens andM. polymorpha that lack a peak aligned with DRM2-associated patterns, alongside
CHH methylation mutants from A. thaliana (denoted “At”). c, d Differences of region among-site sd. and read
methylation sd. amongM. polymorpha, P. patens and CHH methylation mutants of A. thaliana (denoted "At"),
with respect to region methylation: lines represent the average among-site sd. c or read methylation sd. d of
a region for a given methylation level. All regions are plotted (i.e. without a minimal methylation level). e
Analysis of the pattern score of exon CH methylation in human samples from the frontal cortex [39]. f
Methylation variation features of individual exons in human samples from e

Conclusively, these results demonstrate the use of the pattern classifier in predicting the
presence or absence of CMT2- or DRM2-like methylating activity at a genomic scale.

Tissue-specific samples have different proportions of CMT2/DRM2-methylated regions

The pattern classifier relies on methylation features the range of which may be biased by
sample composition. For example, read methylation may vary less within homogeneous
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samples, if methylation patterns are similar between cells. Given that read methylation
variation is the strongest predictor of enzyme identity (r2 = 0.589), the effectiveness of
the classifier may be limited in such samples.
In order to assess the ability of the classifier to function in tissue-specific samples,

we used datasets from two studies that produced methylomes of sperm and vegetative
nucleus cells [31], and root tissue subsamples [29]. Given that, in each of these studies,
altered regulation of CMT2/DRM2 activity was observed in one or more of the samples,
this analysis also provided a means of validating the predictions of the classifier.
Figure 6a and b demonstrate the differences in CHH methylation regulation among

tissue-specific samples ofA. thaliana: all samples contain two peaks; however, in some tis-
sues, enzyme activity shifts, with both sperm and root tip havingmore DRM2-methylated
TEs. A. thaliana drm1/2 and cmt2 mutants from the same study [31] were also anal-
ysed, and both vegetative nucleus and sperm mutants are distinguishable based on the
pattern score analysis (Fig. 6c, d). As noted above, the wild type sperm sample has
less CMT2 activity compared to the vegetative nucleus and other wild type A. thaliana
samples analysed, confirming previous findings showing reduced CHH methylation in
heterochromatic TEs targeted by CMT2 [31].
Individual TEs and regions that are methylated in both sperm and vegetative nucleus

are on average more similar to DRM2-methylated regions (Additional file 1: Fig. S7a-b).
In addition, relative to other DRM2-related mutants, the pattern score peak of the sperm
drm1/2mutant is more DRM2-like (Fig. 6d). Interestingly, sperm drm1/2 has higher read
methylation variation, but lower among-site variation (Fig. 6b). This reflects the signal
in the wild type sperm sample, in which overall among-site variation is low compared to
other A. thaliana wild type tissues (Fig. 6b).
Compared to wild type sperm, drm1/2 sperm TEs are more regulated by CMT2

(Fig. 6f ). This change is partly due to the loss of DRM2-methylated regions from TEs,
rather than CMT2methylating previously DRM2-methylated regions. However, the same
change is observed also when comparing individual regions: regions retaining methyla-
tion in drm1/2 sperm, in particular regions that are defined by the classifier as regulated
by DRM2 in the wild type sample, are shifted towards a CMT2-like signal (Additional
file 1: Fig. S7c, left panel). In the vegetative nucleus, the same shift is observed (Fig. 6f;
Additional file 1: Fig. S7d, left panel). In the cmt2 mutant, in both sperm and vegetative
nucleus, no change is observed at the level of individual regions (Additional file 1: Fig.
S7c-d, right panels).
We also analysed three root samples that differed in their pattern score distributions

for whole TEs: root tip (RT), columella root cap (CRC) and lower columella (LC) [29].
The RT sample contains both CRC and LC, but is in itself different from other wild type
tissues analysed (Fig. 6a). Similarly to sperm, it has a lower average among-site variation.
In terms of pattern score, all three samples have two peaks (Additional file 1: Fig. S7e), but
the distributions do not overlap. A comparison of pattern score of individual TEs between
samples shows that in the LC sample, all TEs are shifted towards a DRM2-like signal
(Additional file 1: Fig. S7f ); TEs with intermediate signals (e.g. regulated by both enzymes)
are more shifted than those with more defined DRM2/CMT2 signals (e.g. regulated by
one enzyme). The same shift is present also in the CRC sample relative to RT (Additional
file 1: Fig. S7g). Overall, these results demonstrate the ability of the classifier to predict
changes in the activity level of DRM2 and CMT2 in different tissues.
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Fig. 6 Analysis of tissue-specific methylation patterns. a Distribution of TEs according to pattern score in A.
thaliana samples from seedling and specific tissues. b Separation of TEs in A. thaliana wild type tissues
according to read and among-site CHH methylation variation. c, d Distribution of TEs according to pattern
score in A. thaliana vegetative nucleus (c) and sperm (d) wild type samples, alongside drm1/2 and cmt2
mutants of the respective tissues. e, f Correlation between pattern score of individual TEs in wild type
compared to mutant tissues. Only elements that were methylated in both wild type and respective mutant
were selected. Each dot represents a single TE, with the distance from dashed line (f (x) = x) indicating a shift
in pattern score between samples (i.e. change in the average CHH enzyme methylating the element).
g Schematic representation of the methylation patterns of CMT2 and DRM2 identified in this study:
CMT2-mediated methylation has higher stochasticity, possibly reflecting lower processivity, and a unimodal
distribution among cells; DRM2-mediated methylation has lower stochasticity, possibly reflecting higher
processivity, and has a bimodal distribution among cells

SRBrowse, a tool for visualising and analysing BS-seq data at single-read resolution

The most popular genome browsers, including UCSC genome browser and Integrative
Genomics Viewer (IGV) [42], are limited in their ability to load high-resolution data on-
the-fly without creating a large memory footprint, significantly increasing the load times
of browser displays or requiring pre-processing of data. In order to visualise single read
data, it is necessary to convert aligned read data (e.g. SAM/BAM files) into track files
(such as GFF) or compressed indexed files (BED, TDF, etc.) suitable for fast retrieval.
In order to make browsing and analysing BS-seq data at single-read resolution more

accessible, we developed a genome browser specifically designed for visualising BS-seq
data at a single-read level, which we called SRBrowse. SRBrowse is web browser-based
and can run on a local computer or server with minimal software requirements (see the
repository README file on installation). Importantly, SRBrowse allows users to load data
into the browser view andmonitor its alignment progress from the same interface. Typical
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steps for loading and displaying data appear in Additional file 1: Figure S8. All data loaded
through SRBrowse is aligned using bowtie2 and stored in indexed files allowing optimised
access to the read data.

Discussion
We presented a novel analysis pipeline for extracting additional layers of information
from NGS BS-seq data. The pipeline uses data of individual read methylation states
and the distribution of DNA methylation within reads to identify patterns that aug-
ment information regarding the averaged methylation signal. Using this pipeline, we were
able to define characteristic features of reads and regions methylated by two non-CG-
methylating enzymes, CMT2 and DRM2, in A. thaliana. Specifically, we found that A.
thaliana mutants of CMT2 and DRM2 present stereotypical CHH methylation patterns
that are robust to background methylation and consistent among different mutated alle-
les and species (Fig. 5, Additional file 1: Fig. S4b-c). These patterns are also independent
of demethylase activity: in the absence of demethylase activity, the same distinct patterns
are observed in regions regulated by each enzyme (Fig. 2c, d, Additional file 1: Fig. S3). On
the one hand, cmt2mutants have mainly highly methylated reads, andmethylation is con-
centrated within specific regions; on the other hand, drm2 and drd1mutants have mainly
lowly methylated reads, and methylation is distributed stochastically within and among
reads. In other words, our analysis suggests that, compared to DRM2, CMT2-methylated
regions presents more stochastic variation of methylation level among cells. In contrast,
DRM2-methylated regions present distinct subpopulations of methylation states, with
less stochastic variation (Fig. 6g).
By analysing methylation patterns at single-read resolution, where each read bears the

characteristics of the methylation mechanism in a single genome (i.e. of the same DNA
molecule), our data can make predictions regarding the enzymatic activity of methylases.
The assumption that the identified patterns relate to enzyme activity is strengthened by
our results, which suggest that the distinct methylation patterns of DRM2 and CMT2 are
not influenced by demethylation activity (Fig. 2), nor correlated to chromatin structure
(Fig. 4). Accordingly, we predict that differences in methylation stochasticity reflect a dis-
tinction in the processivity of the methylases, specifically, that DRM2 has higher CHH
methylation processivity than CMT2.
Variation in DRM2 and CMT2 methylation characteristics could relate to the dis-

tinct genomic targets of these enzymes. DRM2 methylates mostly short euchromatic-TE
sequences located next to genes and CMT2 methylates mainly long heterochromatic-TE
sequences [13, 14]. Thus, the bimodal distribution of DRM2-methylated read subpopu-
lations, in terms of methylation level, could relate to the ability of DRM2 methylation to
regulate genes within particular cell types or under certain conditions (Fig. 6g), such as in
the formation of lateral root development [43]. In contrast, the CMT2 methylation pat-
tern, which is low but uniform, correlates with constant need to silence heterochromatic
TEs (Fig. 6g).
Based on the variation of these patterns between CHH-methylating mutants, we

designed a classifier that scores short regions of 30 base pairs and collections of regions
within functional elements (such as genes, exons or TEs). This score provides an arbitrary
scale to differentiate between DRM2-like and CMT2-like CHHmethylation patterns. The
comparison among species highlights the ability of the classifier to predict the presence
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or absence of CMT2/DRM2 in species for which mutants have not yet been developed,
such as M. polymorpha. The classifier is robust to differences in sample heterogeneity,
and is able to differentiate betweenmethylation patterns even within highly specific tissue
samples (Fig. 6).
While DRM2 in plants as well as humanDNMT3 aremonophyletic and distantly related

to CMT2, DRM2 is the only enzyme that has a rearranged catalytic domain [16]. There-
fore, our findings that DNMT3 and CMT2 have similar CHHmethylation characteristics
suggest that different DNMTs can have similar methylation mechanisms, and substanti-
ates the hypothesis that DNMT3 CHH methylation activity in early land plants has been
replaced by CMT2 in angiosperm [16]. Moreover, the unique, highly processive methy-
lation activity we predicted for DRM2 could be associated to its exclusive rearranged
catalytic domain rather than to its general homology to DNMT3 enzymes.

Conclusion
Overall, the analyses of methylation profiles we present here demonstrate the potential of
studying patterns of variation in BS-seq data through single-read analyses, which provide
new biological insights on the writing, erasing, and readout mechanisms of CHH methy-
lation. The tool we developed can facilitate further studies of methylomes at single-read
resolution.

Methods
BS-seq alignment

All code used for the read analysis pipeline is deposited in a public software repository
(https://github.com/zemachlab/srbrowse) under a CC-BY-4.0 License. For aligning reads
from BS-seq data, we used bowtie2 with a Node.js-based wrapper. The method we used
for aligning BS-seq data is based on a previously described pipeline [14]. The wrapper
converts the reference assembly to C-to-T and G-to-A sequences before bowtie2 index-
ing; each strand is convertedmanually so that each genome index consists both of forward
and reverse strand versions of each scaffold. BS-seq reads are converted either C-to-T
or G-to-A depending on whether the read is a left or right mate (in the case of paired
ends reads), with the original read data stored for collecting methylation information
after alignment. Bowtie2 was run with the end-to-end search algorithm. For all datasets,
a minimum score of 0 was used (i.e. no mismatches or gaps). Reads that mapped to more
than one position were discarded. Aligned reads were then sorted and exact duplicates
removed.

Analyses of BS-seq data

Analyses consist of three stages: (1) identifying short regions according to the region
selection parameters (see the “Designing a single-read analysis pipeline for CHHmethyla-
tion” section), (2) extracting reads overlapping with each region from the selected samples
and (3) averaging read data. Region selection parameters were optimised to ensure suffi-
cient data for low coverage samples (Additional file 1: Fig. S1a-c). Functional elements are
first selected according to an annotation provided in GFF format. Next, sites of specific
methylation contexts are identified based on the reference sequence of the element (e.g.
CHH sites), per strand. Separation to strands is important for asymmetrical contexts such
as CHH. Regions are defined by iterating through sites until the the number of required

https://github.com/zemachlab/srbrowse
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CHH sites within the defined region size is reached. Reads from aligned BS-seq samples
are retrieved from indexed lists of reads and stored as binary arrays where each CHH site
is represented as either unmethylated (0) or methylated (1).
The read methylation data of a specific region were analysed to produce methyla-

tion features (Fig. 1b) of individual reads and their associated regions. For individual
reads, these features are (1) read methylation, the mean methylation of CHH sites within
the read, and (2) read stochasticity, the number of changes between methylation states
between adjacent sites (for illustration, see Fig. 1b). Importantly, features of individual
reads do not refer to the overall methylation of the read, but only to methylation at the
sites included in the specific region. For regions, the methylation features are (1) mean
read methylation, (2) standard deviation of read methylation, (3) mean read stochasticity
and (4) standard deviation of site methylation. The last feature is not based on single-read
data but rather the averaged methylation signal at each site.
The output data of this analysis can be either at the level of individual reads, individual

regions or whole functional elements. For reads data, the output is an array of reads for
each sample from all regions matching the selection parameters. For regions, the output
is an array of regions with features derived from averaged read data as explained above.
The regions also have positional data relating to their parent element, length, and any
other genomic features of interest (e.g. GC content). For whole functional elements, the
output is an array of elements such as exons or transposable elements, where methylation
features relate to the average of all regions identified with in the functional element. The
exclusion of regions based onmethylation or coverage, prior to averaging whole elements,
is important to reduce background of unmethylated regions. Unless stated otherwise,
regions were selected with a minimum of 10% methylation average and 4 overlapping
reads. Functional elements that contained at least two such regions were selected. While
increasing the minimum regions per element improves coverage per element, it can bias
the analysis to longer elements.

Statistical analyses

All statistical analyses we performed on either read, region or element data resulting
from the above pipeline, using Python 3.6 along with the following libraries: matplotlib,
numpy, scipy, statsmodels, pandas and seaborn. K-density plots were produced using
seaborn.distplot (which uses statsmodels.nonparametric.kde.KDEUnivariate) with Gaus-
sian kernel shape and Scott’s Rule of Thumb bandwidth. For ANOVA of methylation
features, we used methylated regions from the CHHmethylation mutants drd1 and cmt2
(composed of data from cmt2-4, cmt2-5 and cmt2-6mutant alleles). Methylation features
of the regions were provided as independent variables, and sample source (0 for drd1, 1
for cmt2) as the dependent variable. The results of the ordinary least squares model are
presented in Additional file 1: Table S1. For the classifier, the resulting coefficients of the
independent variables were scaled so that pattern score is defined between 0 and 1. Linear
regression for scatter plots were conducted using scipy.stats.linregress.

Data sources

The following assemblies were used for aligning reads: GCF_000001735.4 (A. thaliana),
GCF_000002425.4 (P. patens), O. sativa v7.0, GCF_000188115.4 (S. lycopersicum), M.
polymorpha v3.0, GCF_000001405.39 (Homo sapiens). The following annotations were
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used for genes and TEs: Araport 11 TE annotation from TAIR [44] for A. thaliana; P.
patens TE annotation was downloaded from CoGe, and information from a P. patens
Repeatmasked assembly (v3.3) was downloaded from Phytozome to increase the resolu-
tion of LTR-TEs families; TEs were annotated de novo for M. polymorpha using REPET
v3.0 [45, 46]; Repeatmasked assemblies were downloaded from Phytozome for O. sativa
(323) [47] and S. lycopersicum (ITAG 3.2) [48]; GCA_000001405.28 gene annotation [49]
was used for H. sapiens.
Whole genome BS-seq data from the following studies was used (for a full list of

accessions see Additional file 2): GSE41302 for A. thaliana cmt2, drm2, drd1 mutants
[14], GSE64569 for A. thaliana ros1 mutants [50], GSE33071 for A. thaliana rdd triple
mutant [51], GSE38935 for A. thaliana dme mutants [52], GSE87170 for A. thaliana
sperm and vegetative nucleus wild type and cmt2 and drm1/2 mutants [31], GSE79746
for A. thaliana drm2 and cmt2 mutants [53], GSE39901 for A. thaliana cmt2 mutant
[30], GSE43857 for A. thaliana ecotypes Gro-3, Kz-9 and Neo-6 [54], PRJNA350766 and
GSE118153 for P. patens wild type samples [16, 55], SRP101412 for M. polymorpha wild
type (thallus) samples [40], GSE81436 for O. sativa wild type sample [38], GSE108527 for
O. sativa drm2 ddm1 mutant [56], SRP008329 for S. lycopersicum wild type sample [57],
SRP081115 for S. lycopersicum slnrpd1mutant [35], and GSE47966 for H. sapiens frontal
cortex samples [39].
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