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Abstract

Identifying and removing multiplets are essential to improving the scalability and the
reliability of single cell RNA sequencing (scRNA-seq). Multiplets create artificial cell
types in the dataset. We propose a Gaussian mixture model-based multiplet
identification method, GMM-Demux. GMM-Demux accurately identifies and removes
multiplets through sample barcoding, including cell hashing and MULTI-seq.
GMM-Demux uses a droplet formation model to authenticate putative cell types
discovered from a scRNA-seq dataset. We generate two in-house cell-hashing datasets
and compared GMM-Demux against three state-of-the-art sample barcoding classifiers.
We show that GMM-Demux is stable and highly accurate and recognizes 9
multiplet-induced fake cell types in a PBMC dataset.
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Background
Droplet-based single cell RNA sequencing (scRNA-seq) [13, 18, 48] has provided many
valuable insights into complex biological systems, such as rare cell-type identification
[26, 32, 39, 41], differential expression analysis at the single cell level [2, 5, 9], and cell lin-
eage studies [9, 15, 24, 30]. While the per-cell cost of library preparation has decreased
over the years, the scalability of droplet-based scRNA-seq remains limited, mostly due
to rapidly increasing, yet hard to anticipate, multiplet rates as more cells are loaded dur-
ing single sequencing cell library preparation [17]. Multiplets significantly confound the
analysis of single cell experiments and can lead to false discoveries [10, 17], such as false
lineages in cell lineage tracing [14, 20, 29], incorrect categorizations in cell-type classifica-
tion [27, 43, 49], or false findings in rare cell-type discovery [22, 44]. Large cell populations
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are especially required for rare cell-type discovery, but loading large cell populations dur-
ing scRNA-seq library preparation leads to high multiplet rates. As a result, researchers
are challengedwith identifying real rare-type cells in amultiplet-filled scRNA-seq dataset.
Overall, the scalability of scRNA-seq can be significantly improved, greatly reducing the
per-cell library preparation cost, if multiplets can be identified and removed from down-
stream analysis. To achieve greater adoption of single cell sequencing technology, it is
crucial to (1) identify and remove multiplets from downstream analysis, (2) anticipate the
multiplet rate prior to conducting an experiment, and (3) verify whether rare cell types
identified from a single cell dataset are authentic and are not multiplets.
Recently, emerging sample barcoding technologies, such as cell hashing [36] orMULTI-

seq [21], enable identification of multiplets arising from more than one uniquely labeled
sample and facilitate their subsequent removal from downstream analysis. Both meth-
ods use oligonucleotide-labeled reagents that conjugate on the cell surface to produce
sample-specific markings on cells: cell hashing, an extension of the cellular indexing of
transcriptomes and epitopes by sequencing (CITE-seq) technology [35], uses barcoded
oligo-conjugated antibodies that target ubiquitously expressed surface markers, such as
CD298 and beta2-microglobulin, while MULTI-seq uses lipid- and cholesterol-modified
oligonucleotides that attach to the cell surface membrane and the cell nuclei membrane.
For simplicity, we refer to the oligonucleotide-labeled reagents used in both methods as
sample-hashtag oligonucleotides (HTOs). Sample barcoding involves labeling cells from
each sample with sample-specific HTO conjugates and then pooling the HTO-labeled
cells from different samples for droplet-based scRNA-seq sequencing library prepara-
tion. During library preparation, the pooled cell assay is driven through a microfluidic
chip to form cell-assay droplets. A fraction of cell-assay droplets are combined with
barcode-enclosing gel beads and form Gel Beads in Emulsion, or GEMs. Inside each
GEM, HTO barcodes are combined with GEM barcodes. Subsequent sequencing simul-
taneously recovers the HTO barcode(s) and the GEM barcode for each GEM. An abstract
workflow of a 3-sample sample barcoding experiment is provided in Additional file 1:
Fig. S2. Finally, the count of the HTO unique molecular identifiers (UMIs) for each sam-
ple, which translates to the number of cell-attached, sample-specific HTO antibodies of
each GEM, is summarized in a matrix, called the HTOmatrix. Table 1 depicts an example
3-sample HTO matrix.
There are three types of droplets in a sample barcoding scRNA-seq dataset: (1) multi-

sample multiplets (MSMs), droplets that contain more than one cell from more than one
HTO sample; (2) single-sample multiplets (SSMs), droplets that contain more than one
cell from a single HTO sample; and (3) singlets, droplets that contain a single cell. We
combine singlets and SSMs into a single category called single-sample droplets (SSDs) to

Table 1 An example HTO matrix. Each row is a GEM with its unique GEM barcode as index. Each
column is a HTO sample ID. The ith row and jth column of the matrix store the number of HTO
antibodies (in the form of UMI counts) of the jth HTO sample (HTO-j) attached to cells in the ith GEM

GEM barcode HTO 1 HTO 2 HTO 3

ACTAGGACCA 20 45 723

TCGGACTCGG 561 23 15

GCAGTAGGCA 742 593 14

CCAGACATGA 31 747 39

CCTAGACTTA 21 15 33



Xin et al. Genome Biology          (2020) 21:188 Page 3 of 35

differentiate them fromMSMs. The relationship between MSM, SSM, singlet, and SSD is
summarized in Fig. 1. MSMs can be distinguished from SSDs in the HTO matrix: MSMs
typically have high HTO UMI counts from more than one HTO barcode, while SSDs
typically have high UMI counts from a single HTO barcode and low HTO UMI counts
from all other HTO barcodes. However, sample barcoding cannot separate singlets from
SSMs, as these two droplet types are indistinguishable in the HTO matrix. As a result,
SSMs cannot be removed by sample barcoding and will remain in the dataset as noise.
GEMs can also be classified based on the number of cell types enclosed in them. GEMs

that contain a single cell type are named pure-type GEMs whereas GEMs that contain
multiple cell types are named phony-type GEMs. An illustration of phony-type GEMs and
pure-type GEMs is provided in Fig. 2a. Pure-type GEMs are not necessarily singlets—a
pure-type GEM can still be a multiplet, but contains cells of exactly the same cell type.
Hence, a pure-type GEM could be a singlet, a MSM, or a SSM. Phony-type GEMs, on the
other hand, are all multiplets. Hence, they must be either MSMs or SSMs.
Phony-type GEMs can be misclassified as novel rare cell types. Figure 2b depicts

the gating results of a 16K-GEM PBMC cell-hashing and CITE-seq dataset. The CD3-
CD19 scatter plot shows GEMs comprised of CD19+ B cells, CD3+ T cells, and also a
CD3+CD19+ double-positive T-B cell GEM cluster. Similarly, in the CD4-CD8 scatter plot
of all CD3+ T cells, besides the CD4+ helper T cells and CD8+ cytotoxic T cells, there also
exists a CD4+CD8+ helper-cytotoxic T cell GEM cluster. Both clusters are highlighted
in red circles. Existence of such PBMC types at the observed frequencies is unlikely, as
CD3+CD19+ cells and CD4+CD8+ T cells are believed to be extremely rare [1, 33]. In
fact, as revealed by cell hashing, both cell types, along with many other alleged novel
rare cell types discovered in this dataset, are all phony cell types. Most, if not all, GEMs
in these phony-cell-type clusters are phony GEMs: instead of containing real T-B cell(s),
each CD3+CD19+ GEM is a multiplet that contains individual CD3+ T and CD19+ B
cell(s). When compared against true cell types, such as CD19+ B cells or CD4+ helper T
cells, phony-type GEMs are most likely to be MSMs. Figure 2c displays the MSM ratios
of the CD19+ B cell, the CD4+ helper T cell, and the CD8+ cytotoxic T cell true-cell-type
GEM clusters (also referred to as pure-type GEM clusters), as well as the MSM ratios of
the CD3+CD19+ and the CD4+CD8+ phony-cell-type GEM clusters (or simply phony-
type GEM clusters). From the figure, we observe that phony-cell-type GEM clusters have
much higher MSM ratios than true-cell-type GEM clusters (∼ 75% vs. < 14%).
Existing MSM classifiers, including the heuristic classifier from Seurat [4, 36], the

heuristic classifier from MULTI-seq [23], and the model-based classifier demuxEM [8],

Fig. 1 Relationship between MSM, SSM, SSD, and singlet. SSD and MSM are differentiated based on whether
the droplet contains cells from multiple HTO samples. SSM and singlet are further differentiated by the
number of cells in the droplet
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Fig. 2 Examples of pure-type and phony-type GEMs in scRNA-seq data. a Example compositions of
pure-type and phony-type GEMs in a cell-hashing dataset. Note that phony-type GEMs cannot be singlets. b
The gating results of a 4-sample cell-hashing CITE-seq PBMC dataset. Notice the unconventional cell types in
b (highlighted in red bounding boxes). c The MSM ratio of each cell type in b. The alleged novel cell types in
B are all phony-type cells, highlighted by their high MSM ratios

suffer from one or multiple shortcomings, including low classification accuracy, non-
deterministic output, unreliable heuristics, and inaccurate model assumptions. Addition-
ally, existing classifiers do notmodel SSM. Therefore, they cannot estimate the percentage
of singlets and SSMs in the dataset and they cannot predict the percentages of MSMs,
singlets, and SSMs of the conceived output of a planned sample barcoding experiment.
Most importantly, without a droplet formation model, they cannot determine whether an
alleged novel cell type-defining GEM cluster consists of mainly pure-type GEMs. Hence,
they are not able to (and are not designed to) use the sample barcoding information to
authenticate the legitimacy of putative novel cell types in a scRNA-seq dataset.
In this work, we propose amodel-based Bayesian framework, GMM-Demux, for sample

barcoding data processing. GMM-Demux consistently and accurately separates MSMs
from SSDs; estimates the percentage of SSMs and singlets among SSDs; anticipates the
MSM, SSM, and singlet rates of planned future sample barcoding experiments; and
verifies the legitimacy of putative novel cell types discovered in sample-barcoded scRNA-
seq datasets. Specifically, GMM-Demux independently fits the HTO UMI counts of
each sample into a Gaussian mixture model [34]. From each Gaussian mixture model,
GMM-Demux computes the posterior probability of a GEM containing cells from the
corresponding sample. From the posterior probabilities, GMM-Demux computes the
probabilities of a GEM being aMSM or a SSD. Among SSDs, GMM-Demux estimates the
proportion of SSMs and singlets in each sample using an augmented binomial probabilis-
tic model. Using the probabilistic model, GMM-Demux checks if a proposed putative cell
type-defining GEM cluster is a pure-type GEM cluster or a phony-type GEM cluster, and
based on the classification of the GEM cluster, GMM-Demux proves or rejects the novel
cell-type proposition.
To benchmark the performance of GMM-Demux, we conducted two in-house cell-

hashing and CITE-seq experiments; collected a public cell-hashing dataset; and simulated
9 in silico cell-hashing datasets. We compare GMM-Demux against three existing, state-
of-the-art MSM classifiers and show that GMM-Demux is highly accurate and has the
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most consistent performance among the batch. From the cell-hashing and CITE-seq
PBMC dataset, we extracted 9 putative novel type GEM clusters through in silico gat-
ing, Further analysis by GMM-Demux shows that all 9 putative novel-type GEM clusters
are phony-type GEM clusters and are removed from the dataset. Out of the 15.8K GEMs
of the PBMC dataset, GMM-Demux identifies and removes 2.8K multiplets, reducing
the multiplet rate from 23.9 to 6.45%. After removing all phony-type GEM clusters,
GMM-Demux further reduces the multiplet rate to 3.29%.

Results
Datasets

Real datasets

We benchmark GMM-Demux on three separate HTO datasets from three independent
sources. In addition to a public dataset from Stoeckius et al. [36] (PBMC-2), we con-
ducted two additional in-house cell-hashing experiments independently in two separate
labs (PBMC-1, Memory T). A summary of the three datasets is provided in Table 2.
Cells in the PBMC-1 dataset are drawn from a healthy donor following the same pro-

tocol described in a previous study [38]. These cells are divided into four samples. Each
sample is subjected to the Totalseq-A and cell-hashing protocol [36], targeting a recovery
of ∼ 5000 cells per sample. All HTO-tagged cells are pooled together and are prepared
using the 10X Genomics platform with Gel Bead Kit V2. The prepared assay is subse-
quently sequenced on an Illumina Hiseq platform with a depth of 50K reads per cell. In
addition to cell hashing, cells in this dataset are simultaneously measured for their surface
marker abundance through CITE-seq [35]. Eight surface markers are measured for every
cell: CD3, CD4, CD8, CD11, CD14, CD16, CD19, and CD56.
Cells in the CD4+ Memory T dataset were enriched from the peripheral blood of a

healthy adult human volunteer using theMACSxpress®Whole Blood CD4Memory TCell
Isolation Kit, human (Miltenyi Biotec). The cells were then incubated for 12 h at 37 ◦C,
5% CO2, and at a concentration of 1 × 106 cells/mL in serum-free, X-VIVO-20 medium
(Lonza BioWhittaker) with T cell activation beads coated with anti-CD2/CD3/CD28 anti-
bodies (Miltenyi Biotec) alone or in combination with four different sets of recombinant
human inflammatory mediators (i.e., five different culture conditions). The cells were
then harvested from the culture medium for cell-hashing [36] and CITE-seq [35] single
cell sequencing library preparation following the CITE-seq and hashing protocol avail-
able at https://cite-seq.com. The mRNA-, HTO-, and ADT-derived libraries were then
pooled at approximately 85%, 5%, and 10% proportions, respectively, and the pool of
these sequencing libraries was sent for 150-bp paired-end sequencing in two lanes of an
Illumina HiSeq sequencer (MedGenome, Inc.).
All subjects were given informed consent, and the study is approved by the University

of Pittsburgh IRB.

Table 2 Summary of cell-hashing datasets

Name Est. no. of cells No. of GEMs No. of samples Tissue Source

PBMC-1 35,685 15,841 4 PBMC In-house

Memory T 25,000 9715 5 CD4+ Memory T cells In-house

PBMC-2 28,000 15,455 8 PBMC Stoeckius et al. [36]

https://cite-seq.com
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Simulation dataset

We also generated a simulated dataset by augmenting the PBMC-1 dataset. Specifically,
we classify GEMs in the PBMC-1 dataset using both GMM-Demux and the heuristic
classifier of Seurat. Then, we extract GEMs that are classified as SSDs by both classifiers.
We recovered SSDs from all four samples. We assume these GEMs are SSDs in truth. A
summary of SSDs from the four samples is provided in Table 3. Notice that the mean of
the sample-labeling HTO count of sample 1 (HTO 1) is significantly larger than the other
three samples (HTO 2 in sample 2, HTO 3 in sample 3, and HTO 4 in sample 4). This
shows that the sample barcoding could be susceptible to experimental inconsistencies and
may include inconsistent levels of HTO counts among samples.
We used the extracted SSDs to generate a batch of simulated datasets covering a wide

range of possible sample barcoding scenarios, including varying number of samples for
barcoding, varying MSM percentages, and varying degrees of population imbalances
between samples. For each dataset, we randomly distribute the SSDs into droplets. If a
droplet is assigned with a single SSD, then it inherits the HTO counts of that SSD. If a
droplet is assigned with more than one SSD, then the new HTO counts of the droplet are
computed by adding the HTO counts of its assigned SSDs together. Let j denote a simu-
lated multi-SSD droplet and SSDj denote the set of SSDs assigned to j, we compute the
new HTO counts of j as x̄j = ∑

i∈SSDj wi · xi, where wi is a random weight generated from
N (μ = 1, σ 2 = 0.04) and xi is the HTO count vector of SSD i. Simulated multi-SSD
droplets that contain SSDs from multiple samples are marked as MSMs in ground truth.
We generated three sets of simulated datasets. In the first set, we generated datasets

using different numbers of samples (2, 3, and 4 samples) while maintaining a fixed MSM
percentage at 10% and equal SSD populations among samples. In the second set, we used
all four samples with equal populations and generated simulated datasets with different
MSM percentages (5%, 10%, and 15%). In the third set, we selected three samples (sample
1, sample 2, and sample 3), fixed the MSM percentage at 10%, and downsized sample
populations into geometric sequences. We generated three datasets with common ratios
of 1, 1

2 , and
1
3 , respectively. A summary of all nine simulation datasets is provided in

Table 4.

Multi-sample multiplet classification results

For each cell-hashing dataset, we compare the MSM classification results of five MSM
classifiers: the GMM-Demux classifier, the heuristic classifier of Seurat, the heuristic
classifier of MULTI-seq, the model-based classifier demuxEM, and a human-supervised

Table 3 Per-sample HTO antibody means and standard deviations of SSDs in the PBMC-1 dataset

HTO 1 HTO 2 HTO 3 HTO 4

Sample 1
Mean 2789.10 20.94 38.99 17.34

Std 1637.15 11.85 18.33 9.94

Sample 2
Mean 76.91 831.75 36.06 15.86

Std 43.92 680.13 17.56 10.09

Sample 3
Mean 77.66 19.92 1117.05 16.12

Std 43.16 12.04 783.55 10.23

Sample 4
Mean 75.56 19.33 36.25 717.48

Std 43.34 11.66 18.22 457.40
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Table 4 Simulation configurations

Dataset names MSM percentage (%) Input SSD samples Sample cell ratio

2 samples 10 Sample 1, sample 2 1:1

3 samples 10 Sample 1, sample 2, sample 3 1:1:1

4 samples 10 Sample 1, sample 2, sample 3, sample 4 1:1:1:1

5% MSM 5 Sample 1, sample 2, sample 3, sample 4 1:1:1:1

10% MSM 10 Sample 1, sample 2, sample 3, sample 4 1:1:1:1

15% MSM 15 Sample 1, sample 2, sample 3, sample 4 1:1:1:1

1× scale 10 Sample 1, sample 2, sample 3 1:1:1

2× 10 Sample 1, sample 2, sample 3 4:2:1

3× 10 Sample 1, sample 2, sample 3 9:3:1

classifier. For the human-supervised classifier, a trained laboratory technician classifies
GEMs based on the CLR-transformed HTO matrix.
The classification results are visualized in 2D tSNE plots [16]. The tSNE plots are gener-

ated directly from theHTOmatrix. Note that the tSNE transformation is probabilistic and
non-deterministic: GEMs with similar HTO UMI count profiles are likely to be grouped
together, but there is no guarantee [42]. Sometimes, a small fraction of GEMs are incor-
rectly clustered with dissimilar neighbors, due to inaccuracies of the tSNE transformation.
We use tSNE plots only for visualization and do not expect it to 100% reflect the truth.

Classification results on real datasets

The classification results of the PBMC-1 dataset are shown in Fig. 3. Shown in the
top panel are the GMM-Demux classification result, the human-supervised classifica-
tion result, the Seurat classification result, the MULTI-seq classification result, and the
demuxEM classification result, and a set of HTO UMI count heat maps of individual
samples in the bottom panel. In each heat map, GEMs with higher HTO UMI counts
of the sample have darker colors. For simplicity, we lump all MSMs together as a single
class—the MSM class, while maintaining SSDs of different samples as separate classes.
Additional classification results for the PBMC-2 and the Memory T datasets are pro-
vided in Additional file 1: Fig. S3. If needed, GMM-Demux is able to subdivide MSMs
into sub-classes where each sample combination is given a distinct class. Distinct MSM
classification results are provided in Additional file 1: Fig. S4.
Figure 3 shows that the classification results from all five classifiers are mostly con-

sistent. We compare the classification results against the HTO UMI count heat maps: a
correct SSD classification should have a dark color in a single heat map and light colors in
the rest of the heat maps; a correct MSM classification should have dark colors in more
than one heat map. As evident in Fig. 3, the heat maps reinforce the MSM classifications
by GMM-Demux.
Even though Seurat generates classification results similar to those produced with the

GMM-Demux classifier, it is heuristic-based and unstable. Figure 4 illustrates the heuris-
tic and unstable nature of the Seurat classifier. Results in this figure are generated from
the PBMC-1 dataset. Since the heuristic classifier relies on the HTOUMI count threshold
for classification, which is indirectly controlled by tl, it generates different classification
results with different tl values, as shown in Fig. 4a–d. From the figures, we observe that
while a smaller tl produces fewer negative classifications, it generates more MSM classi-
fications. This is expected as a smaller tl reduces the HTO UMI count threshold, which
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Fig. 3 Classification results of the PBMC-1 dataset. Each dot represents a cell. The upper panels present
classification results produced by the five classifiers. The lower panel stores the heat maps of HTO UMI counts
of individual samples

in turn increases the number of cell-enclosing GEMs in each sample. Without ground
truth, however, it is not obvious which tl provides the most accurate classification result.
Such high variations in the classification results, as well as the heavy reliance on heuristic
parameters, reduce the reliability of the Seurat classifier. In practice, it is difficult to select
the appropriate tl for the best accuracy.
On top of its heuristic nature, because it uses the non-deterministic K-medoid clus-

tering algorithm, the Seurat classifier generates different results between two runs even
with the same heuristic parameter. This is visualized by comparing Fig. 4a against e.
Both figures are generated under tl = 0.99. Differences between them (highlighted in
red-dotted circles) stem solely from the non-determinism of the K-medoid algorithm.
Finally, the Seurat classifier is highly sensitive to changes in the dataset. In Fig. 4f, we

randomly sub-sample GEMs from samples 3 and 4 (by 10% and 50%, respectively). When
compared against Fig. 4a, we observe substantial changes in the classification result, high-
lighted in red-dotted circles. This is because as the sample composition changes, the
HTO count threshold of each sample also changes, even without updating tl. As a result,
previously classified MSMs now become SSDs and vice versa.
The GMM-Demux classifier, on the other hand, is model-based, stable, and far more

deterministic. The GMM-Demux classifier does not require heuristic parameters for
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Fig. 4 Stability test results. The Seurat classifier produces different classification results with regard to varying
Seurat parameters, tl . It also generates inconsistent classification results during repetitive executions and is
susceptible to data augmentation (sub-sampling). Classification differences of the Seurat classifier are
highlighted in red-dotted circles. GMM-Demux, on the contrary, generates consistent classification results

MSM classification and generates consistent classification results across repetitive runs.
Despite of uncertainties introduced by the EM algorithm, because GMM-Demux is
model-based and the HTO UMI count distributions possess obvious features of a 2-
component Gaussianmixture, the EM algorithm always converges. Hence, GMM-Demux
generates consistent results. Figure 4g and 4h show the classification results of two
repetitive runs of GMM-Demux. There exist little differences between the two figures.
Similarly, the GMM-Demux classifier is much less susceptible to sub-sampling, as shown
in Fig. 4i, where we sub-sampled GEMs from samples 3 and 4, as we did in Fig. 4f.
By comparing Fig. 4i against g, we observe minimal changes in GEM classifications. A
more detailed stability analysis across all four sample barcoding classifiers is included in
Additional file 1: Fig. S5.
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Not all GEMs can be confidently classified by GMM-Demux. Some GEMs have low
HTO UMI counts across all samples, while other GEMs have similar probabilities
between multiple classes (such as between a l1 SSD and a l1 ∩ l2 MSM). Neither type of
GEMs can be well classified: the former are classified as negative GEMs, which should
be experimental errors, while the latter are classified as unclear GEMs, which are too
ambiguous to be included in the final result. GMM-Demux lets the user specify the con-
fidence threshold, c, such that the user can customize the removal of unclear GEMs: a
low confidence threshold salvages more unclear GEMs in the final result at the expense of
decreased MSM classification quality. Across all three cell-hashing datasets, over 99% of
GEMs have confidence scores above 0.8. Therefore, we set the default confidence thresh-
old of GMM-Demux at 0.8 (c = 0.8). Detailed distributions of confidence scores are
provided in Additional file 1: Fig. S14.

Classification results on the simulation datasets

We benchmark the accuracy of GMM-Demux against the other three classifiers (Seurat,
MULTI-seq, and demuxEM) by applying all four methods to the 9 simulation datasets
and compare their classification results against the ground truth. All classifiers are bench-
marked with their default parameters and are repeated 20 times for each dataset. An
example set of classification results of the 4-sample simulation dataset is visualized in
Fig. 5.
For each classification, we compute the Adjusted Mutual Information (AMI) score

between itself and the ground truth. The AMI score comparison across all simulation
datasets is provided in Fig. 6a. As shown in the figure, GMM-Demux achieves high clas-
sification accuracies across all scenarios, whereas other sample barcoding classifiers have
faltered accuracy under low sample numbers (2 samples) or high sample imbalances (2×

Fig. 5 Classification results of the 4-sample simulated dataset. GMM-Demux and MULTI-seq produce
classifications results that are most in accordance with the ground truth
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Fig. 6 Comparison of MSM classifiers on simulated datasets

scale and 3× scale). In particular, MULTI-seq failed to derive a stable quantile HTO count
cutoff for the 2-sample dataset and cannot converge to a stable classification solution. A
detailed explanation of why MULTI-seq fails is provided in the “Related works” section.
Figure 6a proves that GMM-Demux is highly accurate and is the most stable sample
barcoding classifier.
Figure 6b records the execution time of each classifier over all simulated datasets. As

shown in the figure, GMM-Demux is significantly faster than other sample barcoding
classifiers.

Same-sample multiplet rate estimation results

We prove the correctness of the SSM estimator indirectly by validating the GEM forma-
tion model. Even though the SSM rate truth is not directly observable, if the underlying
probabilistic model is accurate, then the SSM rates derived from the model should also
be trustworthy. For this purpose, we compare the model-derived MSM rates against the
GMM-Demux classifier-observed MSM rates. If the numbers match, then we claim the
GEM formation model must accurately characterize the GEM formation process.
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For comprehensiveness, we compare not only the overall MSM rates of a dataset, but
also the MSM rates of individual sample combinations. For each sample combination, we
compare the model-derived MSM UMI count against the MSM classifier-observed UMI
count. The comparison results are summarized into Venn diagrams, which illustrate the
number of SSDs of each sample as well as the number of MSMs of each sample combina-
tion. We compare the model-derived Venn diagram against the MSM classifier-observed
Venn diagram. Figure 7 includes the Venn diagram comparisons of the PBMC-1 and the
CD4+ Memory T datasets. Comparison of the PBMC-2 dataset is included in the table of
Additional file 2 (its per-sample combination classification result cannot be visualized in
a Venn diagram due to a large number of sample combinations).
From Fig. 7, we observe that the model-derived MSM counts are consistent with the

observed values from the MSM classifier. Therefore, we prove that the droplet formation
model is accurate.

Fig. 7 Comparison of model-derived Venn diagrams against GMM-Demux-observed Venn diagrams. Values
in the model-derived Venn diagrams are consistent with values in the GMM-Demux-observed Venn
diagrams, thus proving the correctness of the GEM formation model
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The estimated number of droplets (X) and the model-estimated singlet, MSM (Est.
MSM), SSM, and relative SSM (RSSM) rates of each sample are summarized in Table 5.
Also included in Table 5 are the GMM-Demux classifier-observed MSM rates (Obs.
MSM) and the proportions of unclear GEMs (GEMs with confidence scores below c =
0.8) and negative GEMs in each dataset. Except the number of droplets (X), all rates are
presented as percentiles (%). As shown in the table, the model-derived MSM rates are
generally consistent with the classifier-observed MSM rates.
A detailed introduction of the droplet formation model-based online experiment plan-

ner is provided in Additional file 1: Section S8. A suite of profiling results produced by the
online experiment planner under varying experimental settings is provided in Additional
file 1: Section S9.

Cell-type authentication results

Cell-type authentication via joint analysis with surfacemarker data

GEMs in the PBMC-1 dataset are manually assigned into 17 distinctive clusters following
the gating strategy detailed in Maecker et al. [19], which is visualized in Fig. 8. Among
the 17 GEM clusters, 8 of them represent well-characterized cell types found in PBMCs
(highlighted in green bounding boxes); 9 of them are rarely observed in PBMCs and are
labeled as putative novel cell-type candidates (highlighted in orange bounding boxes). All
GEM clusters, annotated by their defining surface markers and their inferred cell types, if
available, are summarized in Table 6.
For each GEM cluster, GMM-Demux computes the MSM percentage of the cluster and

compares it against the anticipated pure-type MSM percentage as well as the anticipated
phony-type MSM percentage of the cluster. The anticipated pure-type MSM percentage
of the cluster is a hypothetical value derived from the GEM formation model by assuming
that the GEM cluster represents a real cell type. Similarly, the anticipated phony-type
GEM percentage is computed by assuming the GEM cluster is a phony-type GEM cluster.
Based on the observed and anticipated MSM percentages, GMM-Demux performs pure-
type and phony-type hypothesis testings and classifies the GEM cluster according to the
p values of both tests. The classification results, as well as the intermediate results in
classifying each GEM cluster, are also included in Table 6. As summarized in Table 6,
the PBMC-1 dataset contains 9 cell types rarely observed in PBMCs. Named after their
defining surface markers, these are as follows:

• CD14+CD56+
• CD3+CD4+CD14+
• CD3+CD4+CD19+
• CD3+CD4+CD56+
• CD3+CD4+CD8+
• CD3+CD8+CD14+

Table 5 Summary of classification results across all datasets. All values except the number of
droplets (X) are presented in percentages (%)

Dataset No of droplets (X) rcap Singlet Est. MSM Obs. MSM SSM RSSM Negative Unclear

PBMC-1 68,480 56 76.11 18.64 18.05 5.25 6.45 0.47 2.71

Memory T 78,413 44 86.17 10.89 10.57 2.93 3.29 0.67 2.31

PBMC-2 77,663 63.5 82.96 15.11 14.55 1.93 2.28 0.79 2.88
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Fig. 8 The manual gating strategy applied for cell-type annotation in PBMC-1, using its surface marker
expression data. In general, we follow the gating strategy outlined in Maecker et al. [19]. We first gate GEMs
on CD3 and CD19. CD3+ GEMs are further gated over CD4 and CD8. CD3−CD19− GEMs are further gated over
CD14 and CD56. For GEM clusters gated from the CD14-CD56 penal, the CD14+ and CD56+ GEMs are further
gated over CD16. The CD14−CD56− GEMs are gated over CD11c to extract CD11c+ DC GEMs. The 8 cell types
commonly observed in PBMCs are highlighted in green bounding boxes. Some GEM clusters, such as the
CD3+CD4+ GEM cluster, go through additional gating, in order to reveal non-conventional sub-clusters in
PBMCs (which are later classified as phony-type GEM clusters), such as the CD3+CD4+CD14+ GEM cluster or
the CD3+CD4+CD56+ GEM cluster. Non-conventional GEM clusters are highlighted in orange bounding boxes

• CD3+CD8+CD19+
• CD3+CD8+CD56+
• CD3+CD4+CD14+CD56+

Upon further investigation, we observe that all 9 putative novel-cell-type-defining GEM
clusters have very high MSM percentages, approaching and exceeding their anticipated
phony-type MSM percentages. When tested with pure-type hypothesis, all 9 clusters
have extremely small p values; and large p values from phony-type hypothesis tests.
Consequently, GMM-Demux designates all 9 GEM clusters as phony-type clusters.
Such result suggests that all 9 GEM clusters contain multiplets of different cell types.

For instance, the CD14+CD56+ GEM cluster contains multiplets that include both mono-
cyte cells (CD14+) and NK cells (CD56+). Among the 9 phony-type GEM clusters, the
CD3+CD4+CD14+CD56+ GEM cluster has the largest MSM percentage, significantly
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Table 6 Summary of the 17 GEM clusters manually gated from PBMC-1. Given the cell-hashing
configuration, the minimumMSM percentage of a phony-type GEM cluster in PBMC-1 is 74.98%.
Pure-type GEM clusters have variate MSM rates depending on their size. Among the 17 manually
gated GEM clusters, 9 have MSM percentages approaching and exceeding 74.98% and are classified
as phony-type GEM clusters, 6 have MSM percentages of pure-type GEM clusters and are classified as
pure-type GEM clusters, and 2 have MSM percentages of neither pure-type nor phony-type GEM
clusters and are classified as mixture clusters

Cell type MSM % MSM % MSM % p value p value Cluster

(observed) (phony) (pure) (phony) (pure) classification

CD19+ (B cells) 6.47 74.98 5.93 0 0.29 Pure

CD3+CD4+ (helper T cells) 11.38 74.98 11.36 0 0.49 Pure

CD3+CD8+ (cytotoxic T cells) 7.33 74.98 7.52 0 0.68 Pure

CD14+CD16− (classical monocytes) 7.00 74.98 7.49 0 0.88 Pure

CD14+CD16+ (non-classical monocytes) 14.91 74.98 5.82 1.75e−175 2.26e−13 Mixture

CD56+CD16− (CD16− NK cells) 6.20 74.98 6.41 8.70e−113 0.64 Pure

CD56+CD16+ (CD16+ NK cells) 9.62 74.98 6.72 0 1.00e−07 Mixture

CD11+CD14−CD16− (DCs) 7.30 74.98 5.86 1.01e−149 0.20 Pure

CD14+CD56+ 76.56 74.98 6.90 0.62 5.24e−77 Phony

CD3+CD4+CD14+ 74.67 74.98 6.22 0.42 0 Phony

CD3+CD4+CD19+ 74.04 74.98 6.88 0.41 3.44e−119 Phony

CD3+CD4+CD56+ 73.38 74.98 5.73 0.21 0 Phony

CD3+CD4+CD8+ 75.55 74.98 6.02 0.66 0 Phony

CD3+CD8+CD14+ 73.24 74.98 6.23 0.27 1.18e−165 Phony

CD3+CD8+CD19+ 73.81 74.98 9.21 0.44 1.64e−41 Phony

CD3+CD8+CD56+ 75.47 74.98 8.33 0.54 6.64e−57 Phony

CD3+CD4+CD14+CD56+ 84.62 74.98 13.04 0.86 8.13e−14 Phony

larger than the rest. With further examination of its defining surface markers, we con-
clude that it contains triple-type GEMs—GEMs that include CD3+CD4+ T cells, CD14+

monocytes, and CD56+ NK cells. According to the GEM formation model for phony-type
hypothesis testing, detailed in Additional file 1: Section S3, triple-type phony GEM clus-
ters have higher MSM percentages than double-type phony GEM clusters. This explains
the larger MSM percentage of the CD3+CD4+CD14+CD56+ GEM cluster.
For the remaining 8 GEM clusters, which represent well-characterized cell types in

PBMCs, 6 of them are classified as pure-type GEM clusters, with the exception of the
CD14+CD16+ non-classical monocyte GEM cluster and the CD56+CD16+ NK GEM
cluster. Both clusters are classified as mixture GEM clusters, suggesting that they con-
tain both pure-type and phony-type GEMs. This classification result is reasonable,
as both GEM clusters contain fractions of indistinguishable multiplets. For instance,
inside the CD14+CD16+ GEM cluster, there could be a small fraction of CD14+CD16+-
and-CD14+CD16- phony-type GEMs. These phony-type GEMs are CD14+CD16+-
and-CD14+CD16- the CD14+CD16+ pure-type GEMs in gating. In gating, boundaries
between cell types are drawn in a log-transformed surface marker space. After log trans-
formation, the surface marker expression profile of a CD14+CD16+-and-CD14+CD16-

phony-type GEM is almost identical to a CD14+CD16+ pure-type GEM, even if they
contain the same CD14+CD16+ non-classical monocyte cell. The only difference: the
CD14+CD16+-and-CD14+CD16- phony-type GEM is likely to have a slightly larger
log-transformed CD14 expression value. Such subtle differences do not warrant the
separation of CD14+CD16+-and-CD14+CD16- phony-type GEMs from CD14+CD16+
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pure-type GEMs. Due to intrinsic variations in surface marker expression levels, the two
types of GEMs intermix with each other into a single, indivisible GEM cluster. Simi-
larly, CD56+CD16+-and-CD56+CD16- phony-type GEMs are also indistinguishable from
CD56+CD16+ pure-type GEMs. This explains the slightly-higher-than-expected MSM
percentages in the CD14+CD16+ monocyte GEM cluster and the CD56+CD16+ NKGEM
cluster, which resulted in designating them as mixture GEM clusters. Nonetheless, these
should be the only phony-type GEMs they contain. Therefore, the MSM percentages
of both clusters are only moderately above their corresponding pure-type MSM per-
centages, remaining significantly smaller than their corresponding phony-type-qualifying
MSM percentage thresholds, reflecting that both clusters still have a pure-type GEM
majority. Overall, we conclude that the 8 GEM clusters with low MSM percentages rep-
resent real cell types in PBMC, in concordance with previous knowledge on PBMCs
[19].
To validate the classification results of GMM-Demux, we conducted an additional

CITE-seq sequencing experiment over a PBMC sample from the same donor of PBMC-
1. The additional CITE-seq experiment measures the same set of surface markers as in
PBMC-1. To control the percentage of multiplets, we loaded only 3.2K cells while harvest-
ing ∼ 1.6K GEMs. The online experiment planner estimated percentage of multiplets of
this dataset is 1.9%, compared to 23.9% in PBMC-1. We sorted GEMs following the same
gating strategy illustrated in Fig. 8. Table 7 records the percentages of the 17 manually
gated cell types in both PBMC-1 and the validation dataset. We observe that all 9 phony-
type GEM clusters identified in PBMC-1 have much-reduced, close-to-zero presence in
the validation dataset, while the 8 pure-type GEM clusters have similar footprints. This
confirms the classification results of GMM-Demux.
Table 7 proves that removing MSMs alone does not eliminate all multiplets. None of

the phony GEM clusters has a MSM percentage of 100%. All phony GEM clusters have

Table 7 Percentages of the 17 cell types in both PBMC-1 and the validation dataset. All phony-type
GEM clusters identified in PBMC-1 have close-to-zero presence in the validation dataset, suggesting
that these cell types do not really exist and are artifacts of multiplets

Cell type PBMC-1 (%) Validation PBMC (%)

CD19+ (B cells) 2.72 5.31

CD3+CD4+ (helper T cells) 37.84 40.03

CD3+CD8+ (cytotoxic T cells) 12.81 16.22

CD14+CD16− (classical monocytes) 12.85 8.79

CD14+CD16+ (non-classical monocytes) 1.79 0.76

CD56+CD16− (CD16− NK cells) 0.84 1.06

CD56+CD16+ (CD16+ NK cells) 8.41 14.60

CD11+CD14−CD16− (DCs) 1.16 1.06

CD14+CD56+ 0.42 0.08

CD3+CD4+CD14+ 2.93 0.00

CD3+CD4+CD19+ 0.68 0.08

CD3+CD4+CD56+ 1.81 0.00

CD3+CD4+CD8+ 2.99 0.42

CD3+CD8+CD14+ 0.93 0.15

CD3+CD8+CD19+ 0.27 0.12

CD3+CD8+CD56+ 0.35 0.08

CD3+CD4+CD14+CD56+ 0.08 0.00
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non-negligible fractions of SSMs, which cannot be revealed or removed through sample
barcoding alone. After removing all phony-type GEM clusters, we estimate the RSSM rate
of PBMC-1 is further reduced to 3.29%, from 6.45%.

Gating refinement and joint cell-type authentication with transcriptomic data

The selection of the CD14+CD16+ non-classical monocyte cell and the CD56+CD16+ NK
cells can be further refined with transcriptomic data. Figure 9a and 9b depict the previous
surface marker-based classifications of monocyte and NK cells visualized in RNA UMAP
plots, respectively. In both figures, we observe fractions of CD16+ cells disperse into the
CD16- cell groups. Following the assumption that phony-type GEMs inherit RNA profiles
from both member cell types, we refine the selection of both CD16+ GEM groups by
manually removing GEMs that disperse into the CD16- GEM cluster. The refined cell
selections are highlighted in Fig. 9c and 9d. After refinement, the MSM percentages of
CD14+CD16+ and CD56+CD16+ GEM clusters reduce to 9.32% and 6.77%, respectively.
We also applied DoubletFinder and Scrublet to the PBMC-1 dataset. Figure 10 dis-

plays the GMM-Demux MSM classification result, the distribution of phony-type GEMs
in Table 7, and the cross-cell-type multiplet identification results of DoubletFinder and
Scrublet. Comparing the four plots, we observe that phony-type GEM clusters (Fig. 10b)
have higher MSM concentrations (Fig. 10a) and house the majority of the cross-cell-type
multiplets identified by DoubletFinder and Scrublet (Fig. 10c, d).
The DoubletFinder and Scrublet cross-cell-type multiplet identification results rein-

force the putative cell-type authentication result of GMM-Demux. A detailed comparison
of the MSM percentages and the DoubletFinder-identified doublet percentages of indi-
vidual putative cell types is provided in Table 8. Putative cell types that have high
MSM percentages also have high DoubletFinder-identified cross-cell-type multiplet per-
centages and vice versa. The concordance between the GMM-Demux authentication

Fig. 9 Refinement of the selection of CD16+ NK and monocyte GEMs using RNA expression data
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Fig. 10 Comparison among the MSM distribution, the phony-type GEM distribution, and the doublet
distributions identified by DoubletFinder and Scrublet, in surface marker-based tSNE plots

result and the RNA-based cross-cell-type multiplet identification results provides sup-
port for the correctness of GMM-Demux. Parameter selections for both DoubletFinder
and Scrublet are included in Additional file 1: Section S12.
Additional analysis on the impact of phony-type GEMs in downstream scRNA-seq

analysis is provided in Additional file 1: Section S13. We show that phony-type GEMs
can confound downstream analysis and degrade RNA clustering accuracy, as well as
generating low-quality clusters with high MSM concentrations.

Discussion
Related works

Currently, there are three analytical methods for processing sample barcoding data: the
heuristic classifier provided by Seurat (or simply Seurat), the heuristic classifier provided
by MULTI-seq (or simply MULTI-seq), and the model-based classifier demuxEM. Seurat
relies on the K-medoid clustering algorithm [11], a probabilistic method [31], to classify
MSMs. Assuming there are a total of M samples, for each sample, it clusters all GEMs
intoM groups using the K-medoid clustering algorithm. Then, it removes the group with
the highest mean, combines the remaining groups, fits the combined data with a negative

Table 8 GMM-Demux-identified MSM percentages and DoubletFinder-identified (DBF) doublet
percentages of GEM clusters in Table 7

GEM type MSM percentage (%) DBF doublet percentage (%)

CD3+CD4+ 11.39 4.67

CD3+CD8+ 7.33 2.44

CD19+ 6.47 0.00

CD14+CD16+ 14.91 0.00

CD14+CD16- 7.00 0.05

CD56+CD16+ 9.62 2.64

CD56+CD16- 6.20 0.00

CD11+CD14-CD16- 7.30 0.00

CD3+CD4+CD8+ 75.55 52.84

CD3+CD4+CD14+ 74.67 42.89

CD3+CD4+CD56+ 73.38 47.48

CD3+CD4+CD19+ 74.04 48.08

CD3+CD4+CD14+CD56+ 84.62 84.62

CD3+CD8+CD19+ 73.81 52.38

CD3+CD8+CD56+ 75.47 41.51

CD3+CD8+CD14+ 73.24 46.48

CD14+CD56+ 76.56 48.44

CD56+CD16+ refined 9.32 2.76

CD14+CD16+ refined 6.77 0.00
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binomial distribution, excludes the top 5% values as outliers, computes the q = tl quantile
(tl is set to 99% by default) of the fitted distribution, and finally tags GEMs with HTO
UMI values that are greater than q as sample-specific GEMs. If a GEM is classified as
cell-enclosing in multiple samples, then Seurat brands it as a MSM.
While Seurat has sufficiently demonstrated the benefit of sample barcoding, it is

heuristic-based and is unstable. It includes a number of arbitrary parameters. It does not
explain why it fits the data with a negative binomial distribution as opposed to other
distributions, nor does it explain why it removes the top 5% values as outliers or sets
tl = 99% as the default value. As we will see in the “Results” section, by setting tl differ-
ently, it generates conflicting results and it is not evident which tl provides the best result.
Furthermore, because it relies on the K-medoid clustering algorithm, which generates
inconsistent results over repetitive runs, Seurat also generates inconsistent classification
results over repetitive executions.
MULTI-seq uses simple quantile cutoffs to classify GEMs. It assumes that the HTO

antibody distributions across all samples have similar shapes. By design, MULTI-seq first
finds the two maximums that correspond to the two peaks of the two Gaussian compo-
nents in each HTO distribution (CLR-transformed), termed the on-target (Nhigh) and the
off-target (Nlow) maximums. It then sets a universal quantile HTO count cutoff between
the two maximums across all barcodes: GEMs with HTO counts of a sample that exceed
the quantile cutoff are classified as containing cells from that sample. GEMs which have
HTO counts from a single sample exceeding the quantile cutoff are SSDs, GEMs that
have HTO counts from multiple samples exceeding the quantile cutoff are MSMs, and
GEMs that do not have any HTO count exceeding the quantile cutoff are negative GEMs.
MULTI-seq sets the quantile cutoff in an iterative and heuristic manner: it finds a cut-
off that yields the highest count of SSDs across all samples. Then, it classifies all droplets
accordingly and removes all negative GEMs. It repeats the process until there is no neg-
ative droplet left. MULTI-seq performs a final, reclassification step which uses K-means
to update the classification of some of the previously classified negative GEMs into SSDs.
The implementation of MULTI-seq, however, depends on an unreliable heuristic.

Instead of finding the HTO values that correspond to the two peaks of the two Gaussian
components in each HTO distribution, MULTI-seq generates an array of local maxi-
mums in each distribution and designates the maxima with the largest HTO count as the
on-target maxima of the sample and the maxima that produces the highest peak in the
distribution as the off-target maxima of the sample. In doing so, MULTI-seq implicitly
assumes that there are always more off-target GEMs than on-target GEMs in each HTO
distribution. In reality, when there are only two samples in a sample barcoding experi-
ment, or when one sample has a larger population than the rest combined, then the above
assumption of MULTI-seq no longer holds. In those cases, MULTI-seq is not applicable
as we show in the “Results” section.
DemuxEM is similar to GMM-Demux in principle: it assumes that HTO antibodies

in a GEM come from two separate sources—antibodies from the background and anti-
bodies from sample staining. However, it differs from GMM-Demux in modeling the
background antibodies. GMM-Demuxmodels the background antibodies as free-floating
antibodies that re-bind to cells in pooling. demuxEM models the background antibod-
ies as free-floating antibodies that never bind to any cell but are encapsulated in the
GEM emulsion. As a result, demuxEM derives the background antibody distribution by
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examining empty droplets—droplets that do not contain any cell, instead of examining
the antibody distributions of the cell-enclosing droplets. Through our experiments, we
observe that this core assumption of demuxEM is flawed.Most empty droplets have close-
to-zero antibody counts in all samples while most cell-enclosing droplets (GEMs) have
decent antibody counts in all samples. As a result, demuxEM underestimates the back-
ground antibody distribution, which reduces its classification accuracy, as our simulation
shows. A more detailed analysis of background antibodies is provided in Additional file 1:
Section S11.
Finally, none of the above methods proposes a model for the GEM formation process

and none of them models SSMs. As a result, they are incapable of estimating the post-
MSM-removal multiplet percentages and they cannot authenticate putative cell types.
Prior to sample barcoding, multiplets can be identified experimentally by mixing sam-

ples of different donors. The most reliable method of finding multiplets involves mixing
cells of different species [6, 13, 18, 48]. Multiplets are identified as GEMs whose reads
are confidently mapped across multiple species. However, this method does not work
when mixing samples of the same species. Instead, when working with samples of the
same species, as long as the donors show sufficient amount of genetic variations, then
multiplets can be identified as GEMs which contain distinct genetic signatures frommul-
tiple donors [12]. Unfortunately, neither method works when samples come from a single
donor, which limits their applicability in scaling up single cell experiments. Sample bar-
coding, on the other hand, is capable of identifying multiplets even when samples are
drawn from the same donor.
Besides the aforementioned methods, it is also plausible to identify some doublets

through examining single cell expression profiles. When working with assays that con-
tain multiple cell types, under the assumption that cells of the same type have highly
similar expression profiles while cells of different cell types have drastically different
expression profiles, multiplets are identified as small GEM groups whose expression
profiles share similarities to multiple distinct large GEM groups or to multiple expres-
sion profiles of known distinct cell types [35, 48]. This idea can be further expanded
to artificially create synthetic doublets from a single cell dataset and detect doublets by
selecting GEMs whose expression profiles resemble synthetic doublets [22, 44]. While the
idea has shown promise, a major limitation of RNA-based doublet finding studies is the
lack of reliable evaluation mechanisms. The most reliable evaluation methods that are
employed in these studies are still cross-species validation, cross-donor validation, and
cross-cell-type validation. In cross-cell-type validations, cell types of distant expression
profiles are employed to secure reliable identifications of phony cell types. GMM-Demux
supplements RNA-based doublet finding studies by providing an additional means for
evaluating the efficacy of their doublet identification results.
Sample barcoding provides an additional domain to the above experimental methods

and has a wider applicability. Cross-species, cross-donor, and cross-cell-type multiplet
identification methods rely on biological features of their respective domains, while sam-
ple barcoding gives the end users the freedom to customize the experiment, fine-tune
the multiplet detection resolution, and bypass the reliance on biological features. For
instance, in our Memory T dataset, cells of all five samples come from the same donor
and consist of a single cell type. None of the traditional multiplet identificationmethods is
applicable to this experiment, as there is only a single species, a single donor and a single
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cell type. Sample barcoding-based multiplet detection methods, such as GMM-Demux,
demuxEM, and MULTI-seq, remain functional as they do not rely on a specific set of
biological features. GMM-Demux, specifically, is able to work in junction with multiplet
identification methods of other domains (when possible). It can use the sample barcod-
ing information to authenticate multiplet classifications predicted by methods of other
domains (when applicable).
There are only a few prior studies on modeling multiplet rates. Demuxlet [12], a genetic

variation-based multiplet identifier, models the singlet rate as (1 − d0)
Y
Y0 , where Y is the

planned number of cells and d0 is the observed doublet rate (obtained through a mixed-
species experiment) when loading Y0 cells in library preparation. By default, Demuxlet
assumes d0 = 0.01 with Y0 = 1K . Although not elaborated in the Demuxlet paper, we
notice that the singlet rate equation in Demuxlet bears a striking resemblance to the sin-
glet rate equation used by GMM-Demux. Specifically, within the range of Y ∈[ 1K , 40K],
(1 − 1

100 )
Y

1,000 � (1 − 1
(100,000) )

Y . This is because the curve f (x) = (1 − x
100,000 )

Y
x is

almost flat within x ∈[ 1, 10, 000]. Hence, the singlet formula used by Demuxlet under
d0 = 0.01 and Y0 = 1K can be approximately explained by GMM-Demux as randomly
partitioning Y cells among a total of X = 100K cell-assay droplets. Despite apparent
similarities between their formulas, GMM-Demux andDemuxlet employ different under-
lying statistical mechanics. Demuxlet uses a discriminative model, which uses regression
to subjectively model the multiplet rate as a parametrized curve. GMM-Demux, on the
other hand, uses a self-explanatory, generative model that directly simulates the GEM for-
mation process. The generative model allows GMM-Demux to estimate theMSM rates of
pure-type and phony-type GEM clusters in a sample barcoding dataset, while the discrim-
inative model of Demuxlet does not. The generative model also enables GMM-Demux to
accurately simulate multiplets, including both pure-type and phony-type GEMs; singlets;
SSMs; and MSMs, whereas Demuxlet cannot.
Alternatively, other works model the number of cells in a GEM with Poisson distribu-

tions [3, 7, 25]. A major downside of this branch of methods is the difficulty in estimating
the model parameters. A Poisson model uses the average number of cells in a GEM as
its parameter. However, this number changes when the number of loaded cells changes.
As a result, these models cannot be readily used for experiment planning. Interestingly,
Poisson distribution is a special case of the binomial distribution, where the number of
probabilistic experiments in the binomial process (X, in this case) approaches infinity
[28]. Poisson distribution is often used as a numerical approximation of binomial distri-
butions, especially when the number of droplets (X) is large and the average number of
cells in a droplet is small. Poisson distribution-based multiplet rate estimators in fact sup-
port the GEM formation model of GMM-Demux and can be considered as numerical
approximations of GMM-Demux.
Despite outperforming existing methods, the underlying assumptions of GMM-Demux

impose a number of limitations. First, GMM-Demux assumes a wide gap in the HTO con-
centrations before and after sample pooling. HTO concentration gaps are key to defining
the two peaks in the bimodal distribution of HTOUMI counts. Although from our obser-
vation, the two peaks are always well defined and are always far apart from each other
in the HTO UMI count distributions, this is not 100% guaranteed, especially when the
sample number is low (e.g., M = 2). When pooling fewer samples together, the HTO
concentration reduction by pooling could diminish. However, this is more of a limitation
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of the sample barcoding technology, rather than a limitation of GMM-Demux. Based
on the premise of the sample barcoding technology, which strives to tag only sample-
specific cells with HTOs, we believe that the bimodal distribution assumption should
always hold. Second, the online experiment planner requires prior knowledge of the num-
ber of cell-assay droplets generated by the library preparation equipment. We suggest
users profile their library preparation equipment once with GMM-Demux for the cell-
assay droplet count and use the profiled number in future experiment planning. While
it is logical to assume that the same library preparation equipment generates the same
number of cell-assay droplets over repetitive runs, this is yet to be confirmed. In reality,
based on the total volume of the loaded cell assay, the total count of cell-assay droplets
could vary, even if the cell-assay pump operates at a constant frequency. Such variation,
however, does not affect the MSM classifier, the SSM rate estimator, or the putative cell-
type authenticator. It only affects the online experiment planner and can be potentially
alleviated by running the experiment planner with a suite of likely cell-assay droplet con-
figurations. Third, GMM-Demux cannot identify phony-type GEMs on its own. Rather,
GMM-Demux authenticates pre-clustered, potential cell type-defining GEM groups. The
efficacy of the cell-type authentication result depends on the quality of the clustering
input: GMM-Demux is able to accurately classify GEM groups into pure-type and phony-
type GEM clusters if the clustering input has high fidelity (GEMs of different cell types
are organized into individual clusters). Otherwise, given a low-quality clustering input,
GMM-Demux will label most clusters as mixture GEM clusters. By decoupling cluster-
ing from cell-type authentication, GMM-Demux provides the end users the freedom of
selecting and customizing the clustering algorithm that best fits their specific applica-
tions. Finally, GMM-Demux assumes cells are partitioned into droplets independently.
This model does not consider the volume taken up by each cell. A more realistic model
would assign diminishing likelihoods to having additional cells partitioned into a droplet
as more cells accumulate in the droplet. To that end, GMM-Demux does not take cell size
differences into consideration either. As cells differ in size, a more accurate model would
assign a smaller likelihood to having two large cells partitioned into the same droplet than
that of two small cells. Unfortunately, the cell size and droplet size information is not read-
ily available in sample barcoding data, which limits us from studying the effect of cell size
on multiplet rates. Nevertheless, given that the probability of a droplet containing more
than three cells is already close to zero according to our current droplet formation model,
and the fact that the cell-assay droplet size has to be large enough to accommodate the
largest possible cell in a tissue, we believe it is unnecessary to further complicate the GEM
formation model to include the cell size information.
We further benchmarked GMM-Demux with an additional 4-HTO colonoscopic

biopsy cell-hashing experiment from paired inflamed and uninflamed biopsies from a
patient with Crohn’s disease.We observed results that are in concordance with the PBMC
and the Memory T datasets in the “Results” section. The medical use-only colonoscopic
biopsy dataset is excluded from the main results because of privacy constraints.

Conclusion
In this paper, we proposed amodel-based Bayesian framework, GMM-Demux, for detect-
ing sample barcoding-detectable multiplets in a sample barcoding dataset, estimating
the percentage of sample barcoding-undetectable multiplets in the remaining dataset,
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predicting the multiplet rates of planned future sample barcoding experiments, and val-
idating the existence of putative cell types. At its core, GMM-Demux uses Gaussian
mixture models to identify GEMs that contain sample-specific cells and then uncov-
ers MSMs by selecting GEMs that contain cells from multiple samples. We showed that
GMM-Demux accurately and consistently classifies GEMs into SSDs and MSMs and
generates more accurate and more consistent results when compared against existing
methods. We further proposed a GEM formation model to estimate the SSM rate in
a sample barcoding dataset. The GEM formation model describes the GEM formation
process as an augmented binomial process. We showed that the GEM formation model
accurately characterizes the GEM formation process.We built an online experiment plan-
ner that estimates the multiplet rate of planned future sample barcoding (or an ordinary
single cell) experiments. Then, we used the online experiment planner to generate a series
of multiplet profiles under various experimental setups. Finally, we proposed putative cell
type authenticator that authenticates the existence of putative cell type-defining GEM
clusters, and showed that GMM-Demux correctly identifies phony-type GEM clusters in
single cell datasets.
GMM-Demux is the first work that is able to not only accurately and consis-

tently classify sample barcoding-detectable MSMs in a sample barcoding dataset,
but also estimate the undetectable SSM rates among the remaining SSDs. Further-
more, GMM-Demux is the first work attempting to model the GEM formation
process using a generative model. GMM-Demux incorporates its GEM formation
model into an online experiment planner that is capable of anticipating experimen-
tal outcomes of planned sample barcoding experiments, and it is a first in sys-
tematically verifying the legitimacy of putative cell types using sample barcoding
information.
In our future work, we intend to perform more sample barcoding experiments with

different tissues and investigate the underlying mechanisms that govern the number of
cell-assay droplets and the capture rate in a sample barcoding experiment. We seek to
expand the GEM formation model and use it to detect false lineage discoveries and false
cell-type discoveries in single cell data analysis.We also plan to investigate how to identify
SSMs within SSDs.

Methods
GMM-Demux is built around four goals: (1) separate MSMs from SSDs in a sample bar-
coding dataset; (2) estimate singlet and SSM rates of a sample barcoding dataset; (3) plan
future sample barcoding experiments—estimate the anticipated MSM, SSM, and singlet
rates of a planned future experiment; and (4) determine whether a homogeneous GEM
cluster is a pure-type GEM cluster. GMM-Demux has two separate components: (1) a
Gaussian mixture model-based MSM classifier and (2) a model-based SSM rate estima-
tor. The MSM classifier classifies GEMs into MSMs and SSDs using Gaussian mixture
models and computes the likelihood of each classification. The SSM rate estimator esti-
mates the SSM and the singlet rate of the dataset. The SSM rate estimator models the
GEM formation process as an augmented binomial process. It infers the latent parame-
ters of the model, such as the number of cells of each sample and the number of cell-assay
droplets formed during sequencing, from observed variables, including the number of
cell-enclosing GEMs of each sample and the number ofMSMs of each sample pair. Finally,
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the SSM rate estimator computes the estimated singlet and SSM rates of each sam-
ple with the inferred latent parameters. With the GEM formation model, GMM-Demux
determines whether a proposed homogeneous GEM cluster is a pure-type GEM cluster,
a phony-type GEM cluster, or a mixture cluster.
Based on the GEM formation model, we build an online sample barcoding experi-

ment planner that estimates the multiplet rates of future sample barcoding experiments.
Researchers can use the experiment planner to anticipate the outcome of a sample bar-
coding experiment without actually conducting the experiment. The online experiment
planner takes the number of cells planned for sequencing as well as the number of sam-
ples planned for sample barcoding as inputs and outputs of the estimated MSM, SSM,
and singlet rates of the anticipated outcome.

Multi-sample multiplet (MSM) classifier

The MSM classifier pre-processes the HTO matrix with centered-log-ratio (CLR) nor-
malization [35, 36]. CLR normalizes the HTO UMI counts of each GEM column-wise
(sample-wise) as follows:

xli = log
x̄li

(
∏n

j=1 x̄lj)
1
n

(1)

Here, xli denotes the CLR-normalized HTO UMI count of the lth sample in the ith GEM
(the ith row and the lth column of the HTO matrix); x̄li denotes the original HTO UMI
count of the lth sample in the ith GEM and n denotes the total number of GEMs.
The distributions of the CLR-transformed HTOUMI counts of a 4-sample cell-hashing

experiment are illustrated in Fig. 11. From this figure, we observe that for each sample,
the CLR-transformed HTO UMI counts follow a bimodal distribution which resembles a
mixture of two Gaussian distributions. GMM-Demux models the HTO UMI count dis-
tribution with an aggregated two-Gaussian distribution mixed model. We color the two
distributions as red and green, respectively, in Fig. 11. For a specific sample l̂ (l = l̂),
the Gaussian distribution with the smaller mean, N l̂

low(μl̂
low, (σ l̂

low)2) (in red), accounts
for GEMs that do not contain cells from l̂ (l̂-cell-free GEMs). The other distribution,
N l̂

high(μ
l̂
high, (σ l̂

high)
2) (in green), on the contrary, models GEMs that contain cells from

l̂ (l̂-cell-enclosing GEMs). It is worth noting that GEMs from N l̂
low(μl̂

low, (σ l̂
low)2) still

have positive HTO counts. In cell hashing, when cell assays of all samples are pooled
together, free-floating HTO antibodies that have not yet bound to any cell still exist in
the solution, as shown in Additional file 1: Figure S2. These residual free-floating HTO
antibodies bind randomly to all cells from all samples (the restaining step in Additional
file 1: Figure S2). However, as cell assays are pooled together, antibodies are diluted; hence,
N l̂

low(μl̂
low, (σ l̂

low)2) has a lower mean (μl̂
low < μl̂

high).

GEMs from N l̂
high(μ

l̂
high, (σ l̂

high)
2), on the other hand, bind with HTO antibodies prior

to pooling of samples. Before pooling, HTO antibodies have much higher concentrations.
As a result,N l̂

high(μ
l̂
high, (σ l̂

high)
2) has a higher mean.

For each sample, GMM-Demux uses its Gaussian mixture model to find GEMs that
contain cells from the sample. Given a GEM, i, and a sample l̂, GMM-Demux tests
whether xl̂i originates from the N l̂

high(μ
l̂
high, (σ l̂

high)
2) distribution of l̂: if xl̂i originates
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Fig. 11 Distributions of CLR-transformed HTO UMI counts from a 4-sample cell-hashing experiment. Each

distribution is decomposed into two Gaussian distributions,Nhigh(μ
l̂
high , (σ

l̂
high)

2) andNlow(μl̂
low , (σ

l̂
low)2).

Nhigh(μ
l̂
high , (σ

l̂
high)

2) represents the HTO UMI count distribution of cell-enclosing GEMs.

Nlow(μl̂
low , (σ

l̂
low)2) represents the HTO UMI count distribution of cell-free GEMs

fromN l̂
high(μ

l̂
high, (σ l̂

high)
2), then imust contain cells from l̂; otherwise, xl̂i must belong to

N l̂
low(μl̂

low, (σ l̂
low)2), which means GEM i does not contain cells from l̂.

Let Zl̂
i = high denote the event that xl̂i originates from N l̂

high(μ
l̂
high, (σ l̂

high)
2) and Zl̂

i =
low denote the event that xl̂i originates from N l̂

low(μl̂
low, (σ l̂

low)2). Let P(Zl̂
i = high) and

P(Zl̂
i = low) denote the prior probability of GEM i originating fromN l̂

high(μ
l̂
high, (σ l̂

high)
2)

andN l̂
low(μl̂

low, (σ l̂
low)2), respectively. Then, the probability of observing HTO count value

xl̂i in GEM i equals to:

P(xl̂i) = P(xl̂i | Zl̂
i = high) · P(Zl̂

i = high) + P(xl̂i | Zl̂
i = low) · P(Zl̂

i = low) (2)

where P(xl̂i | Zl̂
i = high) ∼ N l̂

high(μ
l̂
high, (σ l̂

high)
2) and P(xl̂i | Zl̂

i = low) ∼
N l̂

low(μl̂
low, (σ l̂

low)2).
GMM-Demux computes the mean and the standard deviation of N l

high(μ
l̂
high, (σ l̂

high)
2)

and N l
low(μl̂

low, (σ l̂
low)2), as well as the prior probabilities P(Zl

i = high) and P(Zl
i = low)

of each sample l using the Expectation Maximization (EM) Technique [34].
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With all Gaussian mixture models computed across all samples, for each GEM i,
GMM-Demux computes the posterior probability of GEM i containing cells from sam-
ple l̂. Let P(Zl̂

i = high | xl̂i) denote the posterior probability of xl̂i originating from
N l̂

high(μ
l̂
high, (σ l̂

high)
2), and P(Zl̂

i = low | xl̂i) denote the probability of xl̂i originating from

N l̂
high(μ

l̂
high, (σ l̂

high)
2). Both posterior probabilities (P(Zl̂

i = high | xl̂i) and P(Zl̂
i = low | xl̂i))

are computed using Bayes’ rule:

P(Zl̂
i = high | xl̂i) = P(xl̂i|Zl̂

i=high)·P(Zl̂
i=high)

P(xl̂i)

P(Zl̂
i = low | xl̂i) = P(xl̂i|Zl̂

i=low)·P(Zl̂
i=low)

P(xl̂i)

(3)

The probability (P(i ∈ SSDl̂)) of i being a single-sample droplet (SSD) of sample l̂ (SSDl̂)
can be computed as:

P(i ∈ SSDl̂) = P(Zl̂
i = high | xl̂i) ·

∏

l �=l̂

P(Zl
i = low | xli) (4)

The probability of i being a multi-sample multiplet (MSM) can be computed as:

P(i ∈ MSM) = 1 −
∑

l
P(i ∈ SSDl) (5)

GMM-Demux classifies GEMs by ranking above probabilities: a GEM i is classified as a
SSD of l̂ if P(i = SSDl̂) is the largest among all, or as a MSM if P(i = MSM) is the largest
among all.
In fact, GMM-Demux is able to compute the probability of a GEM containing cells of

any specific multi-sample configuration. AssumeU is a set of samples (e.g., sample l1 and
sample l4). The probability of GEM i containing cells from U, MSMU , can be computed
by:

P(i ∈ MSMU) =
∏

l∈U
P(Zl

i = high | xli) ·
∏

l/∈U
P(Zl

i = low | xli) (6)

This allowsGMM-Demux to not only identify and count SSDs, but also identify and count
MSMs of specific sample combinations in a sample barcoding dataset. CountingMSMs of
specific sample combinations is key to verifying the correctness of the SSM rate estimator,
as we will show in later sections.
GMM-Demux lets the user specify a confidence cutoff c to filter out uncertain clas-

sifications. Sometimes, GEMs have HTO UMI counts that reside in the junction area
betweenN l

high(μ
l̂
high, (σ l̂

high)
2) andN l

low(μl̂
low, (σ l̂

low)2) on a HTO sample dimension. Such
GEMs produce ambiguous classification results: they have similar likelihoods between
multiple classifications, which typically are all below 0.5. Uncertain GEMs are pruned
by the confidence cutoff c: GEMs with maximum probabilities across all classifications
which are less than c are deemed uncertain GEMs and are removed from the population.
By tweaking c, GMM-Demux allows users to adjust the level of rigorousness in identifying
SSDs and MSMs.

Same-sample multiplet (SSM) rate estimator

As previously discussed, sample barcoding cannot distinguish SSMs from singlets. While
GMM-Demux does not seek to identify SSMs in SSDs, it estimates the percentage of
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SSMs and singlets in each sample using the SSM rate estimator. Estimating the SSM rate
in a dataset is critical for quality control. SSM rate represents the noise level of a sample.
Samples with high SSM rates have low quality and should be removed.
GMM-Demux estimates the percentage of SSMs among all GEMs using a probabilis-

tic model that models the entire GEM formation process in sample barcoding. The GEM
formation process occurs after pooling of samples and governs the subsequent random
distribution of cells into GEMs. GMM-Demux models the GEM formation process as an
augmented binomial process: it assumes that after pooling of samples, the entire cell assay
is divided into a finite number of droplets, called cell-assay droplets. Each cell is randomly
and independently partitioned into a cell-assay droplet. During the single cell barcoding
process, a fraction of all cell-assay droplets are combined with gel beads and form GEMs.
The rest of the cell-assay droplets do not form GEMs and will not be sequenced. We
use the term droplet capture rate to denote the probability that a cell-assay drop is com-
bined with a gel bead. GEMs, which contain both cell-enclosing cell-assay droplets and gel
beads, are recovered after sequencing and are summarized in a HTO matrix. A detailed
illustration of the GEM formation model is provided in Additional file 1: Section S1.
The rates of multiplets, including both SSM rates and MSM rates, are modeled as the

probability of having multiple cells (from the same or different samples) partitioned into
the same cell-assay droplet. A major challenge for this method is that key parameters,
namely the number of cells in each sample, the droplet capture rate, and the total number
of cell-assay droplets, are not directly observable. Instead, from the MSM classifier, we
observe the number of sample-specific GEMs as well as the number of MSMs of any
sample pair. Combined with the prior knowledge of the estimated total number of cells
loaded for sample barcoding, the SSM rate estimator derives the latent parameters of the
model and uses the complete model to estimate the multiplet rates of the dataset.

Modelingmultiplets

The SSM rate estimator models the GEM formation process as follows: Assume there
are a total of X cell-assay droplets. Also assume there are yl cells in a sample, l, with Y
denoting the overall population of all cells, or Y = ∑

l yl. The model assumes that each
cell is independently and randomly partitioned into a cell-assay droplet. Consequently, a
cell has a probability of 1/X to reside within a specific cell-assay droplet. Assuming that no
bias exists among cells from different samples, then the probability of a cell-assay droplet,
i, being a singlet, given that i is not empty, can be calculated as:

P(i ∈ singlet | i ∈ non-empty) ≈ E[ #singlets]
E[ #non-empty drops]

(7)

where E[ #singlets] is the expected number of singlets and E[ #non-emptydrops] is the
expected number of non-empty cell-assay droplets. For simplicity, in the rest of this paper,
we refer to cell-assay droplets simply as droplets.
Since cells are randomly partitioned into droplets, E[ #singlets] can be computed from

a binomial model. Specifically, we have E[ #singlets]= X · P(i ∈ singlet), where P(i ∈
singlet) denotes the probability of having one and only one cell, out of a total of Y cells,
residing in i. All other cells are partitioned into other droplets. Mathematically, we have:

E[ #singlets]= X ·
(
Y
1

)
1
X

(1 − 1
X

)Y−1 (8)
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Similarly, the expected number of non-empty droplets can be computed as
E[ #non-empty drops]= X · P(i ∈ non-empty drops). P(i ∈ non-empty drops) is the
probability of i being non-empty, and it equals to 1−P(i ∈ empty drops). According to
binomial distribution, P(i ∈ empty drops) equals to the probability of all cells residing
in droplets other than i. Overall, we have:

E[ #non-empty drops]= X · (1 − (1 − 1
X

)Y ) (9)

Equally, the probability of i being a MSM given i is not empty, P(i ∈ MSM), can be
computed as:

P(i ∈ MSM | i ∈ non-empty) = 1 − P(i ∈ SSD)

P(i ∈ non-empty)
(10)

with P(i ∈ SSD) denoting the probability of i being a SSD.
When more than one sample is labeled in sample barcoding, we have P(i ∈ SSD) =

∑
l P(i ∈ SSDl), where P(i ∈ SSDl) is the probability of i being a SSD of sample l. Let

set Dl represent all and only l-cell-enclosing droplets and set DC
l to represent all and only

l-cell-free droplets. The probability of i being a SSD of sample l̂ (SSDl̂) equals the prob-
ability of i being a cell-enclosing droplet in l̂ and a cell-free droplet in all other samples.
Based on binomial distribution, the probability of i belonging toDC

l̂
, P(i ∈ DC

l̂
), equals the

probability of all cells of l̂ residing in droplets other than i, which is (1 − 1
X )yl̂ . As Dl̂ and

DC
l̂
complement each other, we have P(i ∈ Dl̂) = 1 − P(i ∈ DC

l̂
). We expand P(i ∈ SSDl̂)

into the following:

P(i ∈ SSDl̂) = P(i ∈ Dl̂) ·
∏

l �=l̂

P(i ∈ DC
l ) (11)

where P(i ∈ Dl̂) and
∏

l �=l̂ P(i ∈ DC
l ) can be computed as:

P(i ∈ Dl̂) = 1 − P(i ∈ DC
l̂
) = 1 − (1 − 1

X )yl̂

∏
l �=l̂ P(i ∈ DC

l ) = (1 − 1
X )

∑
l �=l̂ yl

(12)

Finally, the probability of i being a SSM is simply the probability of i being neither a
MSM nor a singlet. Mathematically, we have:

P(i ∈ SSM) = 1 − P(i ∈ singlet) − P(i ∈ MSM) (13)

Alternatively, we can compute P(i ∈ SSM) as P(i ∈ SSM) = ∑
l P(i ∈ SSMl), with

P(i ∈ SSMl) denoting the probability of i being a SSM of sample l. Because a SSD of l
must be either a SSM of l or a singlet of l, therefore, event {i ∈ SSMl | i ∈ SSDl} and event
{i ∈ singletl | i ∈ SSDl)} must be collectively exhaustive events. Together, P(i ∈ SSMl)

can be computed as:

P(i ∈ SSMl) = P(i ∈ SSDl) · (1 − P(i ∈ singletl | i ∈ SSDl)) (14)
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Since all singlets of l are SSDs of l, we have:

P(i ∈ singletl | i ∈ SSDl) ≈ E[#singletsl ]
E[#SSDl ]

E[ #singletsl ]= X
(yl
1
) 1
X (1 − 1

X )Y−1

(15)

The two methods (Eqs. (13) and (14)) of calculating P(i ∈ SSM) are equivalent (details
are omitted to conserve space).
Overall, given X and yl for every sample l of a sample barcoding dataset, the SSM rate

estimator estimates the singlet rate (P(i ∈ singlet), Eq. (7)), the MSM rate (P(i ∈
MSM), Eq. (10)), and the SSM rate (P(i ∈ SSM), Eqs. (13) and (14)) of the dataset. Unlike
the SSM rate, which can only be inferred indirectly through the GEM formation model,
the MSM rate can be obtained both analytically through the GEM formation model and
numerically by interpreting the MSM classification result. As a result, we can validate the
correctness of the GEM formation model by comparing the MSM rates obtained through
both methods. In the “Results” section, we show that both methods provide consistent
MSM rates.
We perform simulations to verify the correctness of the above equations. The sim-

ulation results are included in Additional file 1: Section S2. Specifically, we repeatedly
simulate the GEM formation process. We show that the singlet, SSM, and MSM rates
measured from simulations asymptotically match the values analytically computed with
above equations.

Estimatingmodel parameters

GMM-Demux relies on X and yl of every sample l to compute the SSM rates. However,
neither X nor yl is directly observable in a sample barcoding dataset. Instead, from the
classification result, GMM-Demux observes zl, the number of GEMs in Dl.
Let rcap denote the droplet capture rate. From zl and a user-provided estimation of the

total cell count, Y, GMM-Demux computes both X, rcap, and yl. For a HTO sample l,
based on our multiplet model, we have P(i ∈ DC

l | X, yl) = (1 − 1
X )yl (X and yl serve as

parameters) and P(i ∈ Dl | X, yl) = 1 − P(i ∈ DC
l | X, yl). Let random variable Zl denote

the number of GEMs that enclose cells from l and let P(Zl = zl | X, rcap, yl) denote the
probability of observing zl l-cell-enclosing GEMs under the parameter set [X, rcap, yl].
According to the GEM formation model, which models partitioning of cells into droplets
with a binomial distribution, we have:

P(Zl = zl | X, rcap, yl) = ( X
zl

rcap

)
(P(i ∈ Dl | X, yl))

zl
rcap (P(i ∈ DC

l | X, yl))X− zl
rcap

P(Z1 = z1,Z2 = z2, . . . ,ZM = zM | X, rcap, y1, y2, . . . , yM) = ∏M
l=1 P(Zl = zl | X, rcap, yl)

(16)
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We derive the model parameters by computing:

arg max
X,rcap,y1,...,yM

P(Z1 = z1,Z2 = z2, . . . ,ZM = zM | X, rcap, y1, y2, . . . , yM),

subject to X > 0
M∑

l=1
yl = Y

yl > 0, l = 1, . . . ,M

rcap ∈[ 0, 1] ,

(17)

where Y is the user-provided total number of cells loaded for library preparation, which
can be obtained from the hemocytometer.

Online sample multiplexing experiment planner

The online sample barcoding experiment planner estimates the singlet, SSM, and MSM
rates of a planned sample barcoding experiment via the GEM formation model. Specifi-
cally, it takes the estimated number of cells (Y ), the planned number of samples for sample
barcoding (M), the estimated number of droplets (X), and the droplet capture rate (rcap)
in library preparation as inputs, and it computes the estimated multiplet rates. The online
experiment planner assumes cells are evenly distributed amongM samples.
The online experiment planner also estimates the relative single-sample multiplet

(RSSM) rate, defined as the estimated number of SSMs among SSDs. Mathematically, the
RSSM rate is defined as:

P(i ∈ SSM|i ∈ SSD) ≈ E[ #SSM]
E[ #SSD]

= E[ #SSM]
E[ #singlet]+E[ #SSM]

(18)

The RSSM rate marks the overall quality of a sample barcoding dataset. It represents
the percentage of irremovable multiplets among SSDs, after removing all MSMs in the
dataset. If the RSSM rate of the estimated outcome is too high, then the planned exper-
iment should be aborted, as the anticipated outcome will be too noisy for downstream
analysis. While dividing the cell assay into more samples drives down the RSSM rate, as
it reduces E[ #SSM], it increases both the cost and the complexity of the experiment. With
the multiplet rate estimator, researchers can determine the minimum number of HTO
samples to use in a sample barcoding experiment, to save cost while meeting the RSSM
rate target.
The online experiment planner computes the multiplet rates as follows:

P(i ∈ singlet) = Y (1− 1
X )Y−1

X(1−(1− 1
X )Y )

P(i ∈ MSM) = M(1−(1− 1
X )

Y
M )(1− 1

X )
Y (M−1)

M

X(1−(1− 1
X )Y )

P(i ∈ SSM) = 1 − P(i ∈ singlet) − P(i ∈ MSM)

P(i ∈ RSSM) = P(i∈SSM)
P(i∈SSD)

(19)

The above equations show that the number of samples, M, does not affect the singlet
rate. The singlet rate is solely determined by X and Y. However, a greater M reduces the
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SSM rate and increases the MSM rate. Therefore, we conclude that dividing a cell assay
intomore samples by sample barcoding transformsmore SSMs intoMSMs. Transforming
SSMs into MSMs improves the quality of the dataset. With fewer SSMs, the RSSM rate of
the dataset decreases. In comparison, having more MSMs does not affect the quality of
the dataset, as MSMs are removed by GMM-Demux.
Given rcap, the online experiment planner also computes the estimated number of cell-

enclosing GEMs in the final output, as well as the estimated number of SSDs after remov-
ing MSMs. The number of cell-enclosing GEMs, #non-empty GEM = #non-empty drops · rcap
(#non-empty drops is computed in Eq. (9)). The number of SSDs is computed as #SSD =
#non-empty GEM · (1 − P(i ∈ MSM)).
Among all four inputs, Y andM are user-controlled while X and rcap are largely dictated

by the library preparation equipment. However, based on our observations, we found that
X mostly varies between 65K and 80K . To account for the wide ranges of variability of the
inputs, the online experiment planner uses sliders for selecting X, Y, M, and rcap, which
have ranges of 60K–100K , 1K–80K , 1–20, and 0–1, respectively. The online experiment
planner supports dynamic updates. It computes the estimated multiplet rates in real time
as the user updates input parameters. In practice, we recommend that users profile their
library preparation equipment once for the total number of droplets (X) in a sequencing
run, by performing a small-scale sample barcoding experiment, and use the profiled X
(included in the GMM-Demux output) in planning future experiments.

Pure-type GEM verification

In novel cell-type identification, a cell-type classifier is used to group GEMs into clusters.
Each cluster is assumed to represent a unique cell type. Clusters with average expression
profiles that do not match any known cell types are identified as novel cell types [40].
After clustering, phony-type GEMs are grouped into distinct clusters. Phony-type GEM

clustersmay be incorrectly identified as novel cell types, as their expression profiles do not
match known cell types, generating false discoveries. GMM-Demux rectifies true novel
cell types by validating if the alleged novel cell-type GEM cluster contains mainly pure-
type GEMs. Based on the GEM composition in the cluster, GMM-Demux classifies GEM
clusters into three categories: pure-type GEM clusters, phony-type GEM clusters, and
mixture clusters. Phony-type GEM clusters contain mostly phony-type GEMs. Pure-type
GEM clusters contain mostly pure-type GEMs. Mixture clusters contain large quantities
of both pure-type and phony-type GEMs.
Let G represent a GEM cluster. GMM-Demux classifies G by examining the MSM ratio

of G. For simplicity, we assume cells are equally randomly divided into the M sample
barcoding samples. If G is a phony-type GEM cluster, the MSM ratio of G must be very
high. Elaborated in Additional file 1: Section S3, the expected MSM ratio of a phony-
type cluster approaches and exceeds 1 − 1

M . Otherwise, if G is a pure-type GEM cluster,
its MSM ratio should not be greater than the MSM ratio of the entire sample barcoding
dataset, which is much smaller than 1− 1

M . TheMSM ratio reflects the GEM composition
of G: in a phony-type GEM cluster, all GEMs are multiplets; hence, the MSM ratio of
G, rMSMG , equals to rMSMG = #MSMG

#SSMG+#MSMG
, where #MSMG and #SSMG denote the number of

MSMs and SSMs inG, respectively; in a pure-type GEM cluster, however, we have rMSMG =
#MSMG

#singletG+#SSMG+#MSMG
instead, where #singletG denotes the number of singlets in G. By

comparing the two ratios, we observe that pure-type GEM clusters include singlet counts
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in the denominator, whereas phony-type GEM clusters do not. As a result, the MSM ratio
is much higher in phony-type GEM clusters than in pure-type GEM clusters. Complex
situations where cells are not evenly distributed among sample barcoding samples are
discussed in Additional file 1: Section S3.
GMM-Demux uses hypothesis testing to measure the confidence of each classi-

fication. GMM-Demux prepares two hypotheses, the phony-type hypothesis and the
pure-type hypothesis, which assume G being a pure-type or a phony-type GEM cluster,
respectively. GMM-Demux tests both hypotheses with the binomial test and com-
putes a p value for each hypothesis. Based on the hypothesis testing results, GMM-
Demux classifies G as a pure-type GEM cluster, a phony-type GEM cluster, or a
mixture cluster. Details of the hypothesis tests are provided in Additional file 1:
Section S3.
Based on the classification result of G, GMM-Demux recommends different actions.

Being classified as a phony-type GEM cluster suggests that the proportion of pure-type
GEMs in G, if there exists any, is extremely small and most GEMs in G are phony-type
GEMs. GMM-Demux recommends excluding G from further analysis. Being classified as
a mixture cluster suggests that Gmixes pure-type GEMs and phony-type GEMs together
and has non-trivial numbers of GEMs in both categories. This is often a result of poor
clustering quality where G becomes a super-cluster over several pure-type and phony-
type GEM clusters. GMM-Demux recommends refinement over the clustering method
and subdividing G into pure-type GEM and phony-type GEM sub-clusters. Finally, being
classified as a pure-type GEM cluster suggests that it is plausible that G defines a real cell
type. Further analysis over G is recommended.

Compatibility

The GMM-Demux classifier is compatible with CellRanger-3.1.0 from 10X Genomics.
It takes the sample barcoding data of post-filtering, non-empty droplets, in the market
matrix (ṁtx) format, together with the estimated number of cells (Y ), as inputs, and it
outputs a double column table as the classification result. The row indices of the output
table are GEM barcodes. The two columns are the classification of each GEM and the
confidence score of each classification, respectively. WithM samples, GMM-Demux clas-
sifies GEMs into a maximum of 2M + 1 classes. Besides the uncertain class, the negative
class, and M SSD classes, there are

(M
2
)
bi-sample classes,

(M
3
)
tri-sample classes, . . . and

(M
M

) = 1M-sample class. Additionally, GMM-Demux produces a SSM rate summary file,
which includes the SSM rate and the RSSM rate of each sample, and a summary file that
includes the multiplet rates of the entire dataset. The summary file also includes the esti-
mated number of cell-assay droplets (X) and the estimated droplet capture rate (rcap) of
the library preparation equipment. Example outputs are provided in Additional file 1:
Section S4.
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