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Abstract

Dropouts distort gene expression and misclassify cell types in single-cell
transcriptome. Although imputation may improve gene expression and downstream
analysis to some degree, it also inevitably introduces false signals. We develop DISC,
a novel deep learning network with semi-supervised learning to infer gene structure
and expression obscured by dropouts. Compared with seven state-of-the-art
imputation approaches on ten real-world datasets, we show that DISC consistently
outperforms the other approaches. Its applicability, scalability, and reliability make
DISC a promising approach to recover gene expression, enhance gene and cell
structures, and improve cell type identification for sparse scRNA-seq data.

Keywords: Single cell, Transcriptome, Deep learning, Semi-supervised learning,
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Background
Single-cell RNA sequencing (scRNA-seq) measures transcriptomes at single-cell reso-

lution and is widely used to reveal cell heterogeneity and diversity. One of the major

challenges in analyzing scRNA-seq data is excess false zero expressions, named drop-

outs, which distort gene expression distribution and cause misclassification of cell

types [1]. The recent advances in droplet- or combinatorial indexing-based sequencing

technologies have dramatically increased the throughput from thousands to over a

million of cells in a single experiment, causing more severe dropout problems due to

shallow sequencing depth per cell [2–4].

Imputation is a common approach to recover dropout events. Most imputation

approaches are model-based that borrow information across cells to predict missing

expression values [5–7]. Another related approach is “smoothing” that removes the

high-frequency signals, including technical noise and dropouts [8]. More recently, deep

learning-based approaches have been developed to overcome the scalability issue by
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conventional approaches. For example, scVI, scScope, and DCA use deep autoencoder

(AE) to learn feature representation to recover dropouts and DeepImpute uses a deep

neural network to learn gene patterns [9–12].

Although many imputation approaches have been shown to improve the gene expres-

sion structure and downstream analysis to some degree, many challenges exist. (1) Reli-

ability: a recent benchmark study showed that most approaches increased sensitivity of

recovery of dropouts by scarifying specificity. Therefore, unexpected false signals or

other biases have been introduced by imputation [13]. (2) Applicability: factors such as

expression level and distribution, level of noises, and heterogeneity of cells affect the

performance of imputation. Approaches based on some specific expression or dropout

distribution may only work well on some specific datasets [14, 15]. (3) Scalability: con-

ventional model-based approaches cannot handle large datasets, which however have

been common in the field due to increasing throughput of scRNA-seq [16]. Thus, a re-

liable, applicable, and scalable imputation approach is urgently needed.

While more than 90% of genes in scRNA-seq data are zero-counts and the true and

dropout zeros are difficult to distinguish, genes in each cell with detected expression

(positive-count genes) are more reliable measurements compared to zeros (zero-count

genes). Semi-supervised learning (SSL) approach offers promise when a few labels are

available by allowing models to supplement their training with unlabeled data [17]. We

hypothesize that SSL can build a reliable imputation algorithm by learning information

from both positive- and zero-count genes, which can be treated as labeled and un-

labeled data, respectively.

Here, we developed DISC, a novel Deep learning Imputation model with semi-

supervised learning (SSL) for Single Cell transcriptomes. DISC integrates an AE and a

recurrent neural network (RNN) and uses SSL to train model parameters. SSL enables

DISC to learn the structure of genes and cells from sparse data efficiently. We com-

pared DISC to seven state-of-the-art imputation approaches, including four deep

learning-based approaches. DISC consistently outperformed the other approaches using

comprehensive performance metrics evaluating on ten real-world datasets from four

different single-cell platforms. DISC enhanced expression distribution and gene-gene/

cell-cell relationship validated by two independent FISH experiments. It accurately re-

covered dropout events and facilitated downstream analysis such as identification of

differentially expressed genes (DEGs) and cell types on all the datasets regardless of dif-

ferent platforms and dropout levels. Furthermore, DISC dealt with ultra-large datasets

containing millions of cells and required just a portion of computational cost and RAM

that other deep learning-based approaches need. Its reliability, efficiency, and scalability

make DISC a promising imputation approach for sparse scRNA-seq data. DISC was im-

plemented in Python and publicly available at https://github.com/xie-lab/DISC.
Results
Description of DISC

DISC has an integrative structure of an AE and an RNN (Fig. 1a). AE is a part of RNN

that performs dimension reduction while preserving the manifold of the original data.

For each step t, the encoder of AE projects the high dimensional cell expression profile

(xt) into a low dimensional latent representation (zt). The latent representation is used

https://github.com/xie-lab/DISC


Fig. 1 Overview of DISC. a DISC contains an autoencoder, a recursive predictor, an imputer to compute an
imputation expression profile, and a reconstructor to compute a reconstructed expression profile. b DISC is
trained in a semi-supervised manner: (1) the imputer learns the expression of positive-count genes, (2) the
reconstructor learns both the expression of positive-count genes and the pseudo expression of zero-count
genes assigned by the imputer, and (3) the predictors learn both the expression of positive-count genes
and the pseudo expression of zero-count genes assigned by the decoder of the same step. c Compression
module reduces the large latent representations of multiple steps into a much smaller dimension for
visualization and clustering. d T-distributed Stochastic Neighbor Embedding (T-SNE) visualization and
clustering using top 30 PCs generated by PCA transformation from the selected top 2000 highly variable
genes (HVGs) of the RETINA dataset (ACC = 0.950). e T-SNE visualization and clustering using 50 latent
features generated by the compressor of DISC from all 14,871 genes (without HVGs selection) of the RETINA
dataset (ACC = 0.944)
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to predict the cell expression profile through a predictor matrix and to explore the data

manifold through the reconstruction of the expression profile by the decoder of AE,

obtaining expression profiles from multiple steps either predicted by the predictor (yt)

or reconstructed by the decoder of AE (byt) (Additional file 1: Fig. S1). Expression profile

by the predictor is feed to the next step as the input. At the end, a soft attention frame-

work computes a weighted average of yt as the imputation result and weighted average

of byt as the reconstruction result to support SSL.
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Users do not need to specify parameters in the model. Parameters in the layers are

automatically learned from data through back-propagation using SSL (Fig. 1b and the

“Methods” section). Imputer learns from the positive-count genes using “noise-to-

noise” method [18]. Reconstructor learns using SSL from a combination of positive-

count genes and zero-count genes assigned a pseudo-count (pseudo-count genes) by

imputer to search the best latent representation to reconstruct the expression profile

after imputation. Predictor learns using SSL from a combination of positive-count

genes and pseudo-count genes assigned by a decoder to search for the best gene ex-

pression structure to preserve the manifold learned by AE. This AE-RNN structure en-

ables DISC to learn biological information not only from the small portion of positive-

count genes, but also the large portion of zero-count genes.

DISC also provides a solution to compress the latent representation into a lower di-

mension (50 by default), which retains the most informative information of the expres-

sion matrix (Fig. 1c). Ultra-large dataset is beyond the capability of many existing

analytical tools. Using the low dimensional representation of the large dataset, cluster-

ing and visualization can be performed using existing tools with little comprise in per-

formance. We compared the accuracy of cell-type classification based on the RETINA

scRNA-seq data using two dimension reduction methods (Methods), one is the top

2000 highly variable genes transformed to 30 principle components (PCs) by principle

component analysis (PCA) and the other is the compressed 50 latent features. The

overall classification rates were almost identical (ACCs of 0.950 and 0.944 for the 30

PCs and 50 latent features, respectively), demonstrating the usefulness of the latent rep-

resentation provided by DISC (Fig. 1d, e).
DISC is scalable to ultra-large datasets

For large datasets, loading a complete matrix takes a large memory. For example, mem-

ory usage is about 100 GB for a matrix with 1,000,000 cells and 10,000 genes. To cope

with the large datasets, we designed a novel data reading approach that leverages the

ultra-fast chunk reading speed in continuous storage (Methods). As a result, DISC

needs a constant initial memory before training, but the memory consumption is stable

in datasets with increasing data size.

We compared scalability of DISC with the other imputation approaches on speed

and memory usage. We used the 1.3 million (m) mouse brain dataset (BRIAN_1.3 M)

as well as datasets with 50 thousand (k), 100 k and 500 k down-sampling cells. We also

duplicated 1.3 m cells to 2.6 m cells. All the datasets contained the top 1000 highly vari-

able genes (Methods). As expected, the deep learning-based approaches were much fas-

ter and used much less memory (Fig. 2a, b). For the datasets with 10 k, 50 k, and 100 k

cells, all the approaches had similar performance except scImpute had much higher

memory usage on 10 k dataset and failed on 50 k dataset due to out of memory.

MAGIC and VIPER were able to complete the 500 k dataset but took 58 GB memory

while five deep learning approaches took less than 25 GB memory. On the 2.6 m data-

set, only deep learning approaches could finish the job, where DISC (1.02 h) took less

than 1/3 of time took by DeepImpute, DCA, and scScope (3.49, 3.65, and 3.71 h), and

1/13 of scVI (13.44 h). The memory usage of DISC was also considerably less than

other approaches. DISC (8.89 GB) took less than 1/7 of memory that scVI needed



Fig. 2 Evaluation of computation usage. a Running time and b peak RAM usage for datasets with different
cell numbers
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(65.74 GB) and less than 1/12 that scScope, DeepImpute, and DCA needed (108.47,

118.38, and 120.25 GB).

A previous study showed that the use of less genes inevitably lost information and in-

creased in gene depth to 10,000 genes improved cell-type identification [10]. We tested

the imputation performance based on the top 10,000 highly variable genes. DISC was

the only approach that can process 1.3 m cells, with 3.2 h and less than 10 GB RAM,

and all the approaches encountered “out-of-memory error.” Overall, DISC offers a

highly scalable solution for imputation.
DISC improves gene expression structures validated by FISH

Dropouts severely obscure expression distribution and gene-gene relationship which

hinder the downstream analysis [8]. Compared to scRNA-seq, single-cell RNA fluores-

cence in situ hybridization (FISH) detects a small number of RNA transcripts in single

cells and suffers less from dropouts, which is considered a reliable way to validate ex-

pression distribution and gene-gene relationship in single-cell levels [6, 12]. To system-

atically assess DISC’s performance to recover lost gene expression structures by

dropouts, we compared imputed expression matrix from scRNA-seq to FISH by three

measurements, gene expression distribution measured by root mean square error

(RMSE) of Gini coefficient, correlation of gene-gene distributions measured by Fasano

and Franceschini’s statistics (FF score), and distance of correlation matrix of gene co-

expression measured by correlation matrix distance (CMD). Two independent datasets

containing both FISH and scRNA-seq measurements were tested, where the MELAN-

OMA and SSCORTEX datasets have 19 and 33 overlapped genes with FISH, respect-

ively (see the “Methods” section for the description of the datasets).

DISC recovered distributions of gene expression across cells on the MELANOMA

dataset that resembled the FISH distribution much closer than the raw scRNA-seq data

(Additional file 1: Fig. S2, two genes are shown with different dropout levels). For all

the 19 genes that had both FISH and scRNA-seq measurements, DISC efficiently im-

proved Gini coefficient (RMSE = 0.14) than the raw scRNA-seq (RMSE = 0.34) and all

the other approaches (RMSEs range from 0.24 to 0.33) (Fig. 3a). In addition, DISC



Fig. 3 Evaluation of imputation performance by FISH. a and b were based on the MELANOMA dataset. a
Scatter plots of Gini coefficients of 19 overlapped genes between FISH and RAW/the imputation, RMSE
scores are shown. Two genes with different dropout levels are also shown, WNT5A and SOX10, with
dropout levels of 99.85 and 85.18%, respectively. b Scatter plot of WNT5A and SOX10 expression levels
between FISH and the imputation/RAW. FF scores were calculated across 13,564 cells in FISH and 8498 cells
in the other plots. c RMSE of Gini coefficients of the RAW/the imputation against FISH in MELANOMA (19
genes) and SSCORTEX (33 genes). d FF scores of gene-gene distributions of the RAW/the imputation
against FISH in MELANOMA (81 gene pairs) and SSCORTEX (528 gene pairs). e CMD of gene co-expression
of the RAW/the imputation against FISH in MELANOMA (81 gene pairs) and SSCORTEX (528 gene pairs)
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recovered the correlation of gene-gene distributions (FF score = 0.134 to FISH) which

was lost in the raw data (FF = 0.848) (Fig. 3b, two genes are shown). Indeed, DISC sig-

nificantly reduced the FF scores for 75 out of the 81 gene pairs (Additional file 1: Fig.

S3, p < 2.2e−16, one-tailed paired t test).

We next compared all the imputation approaches on both the MELANOMA and

SSCORTEX datasets. Expression distributions recovered by DISC more closely matched
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to the FISH compared to the other approaches on MELANOMA and ranked the sec-

ond on SSCORTEX (Fig. 3c). scVI worked well on one dataset but not well on another.

VIPER, scImpute, and DeepImpute did not improve expression distribution compared

to the raw data and occasionally even worse (DeepImpute on SSCORTEX). We further

evaluated correlations of gene-gene distributions of imputed data to FISH and found

that DISC and scVI had the best overall performance on the two datasets (Fig. 3d).

VIPER, scImpute, and DeepImpute did not yield improvement compared to the raw

data. We also tested how the correlation of gene co-expression in FISH data to the im-

puted and raw data (Fig. 3e). DISC, scImpute, and VIPER performed well on both data-

sets while MAGIC and DCA induced substantial false gene co-expression relationship.

Altogether, DISC consistently achieved top performance on all measurements of gene

expression structure validated by two independent FISH experiments, showing its ro-

bust capability to recover gene expression structure obscured by dropouts.
DISC accurately recovers dropout events

As the true expression of dropouts in scRNA-seq is not possible to obtain, we con-

ducted down-sampling experiments on four datasets (Methods). To test the robustness

of imputation performance, we used datasets generated from three different scRNA-seq

platforms (Additional file 1: Table S1). Expression matrix before down-sampling (“ref-

erence”), after down-sampling (“observed”), and imputation based on the observed were

compared.

We first measured the accuracy of true gene expression recovery using mean absolute

error (MAE) of the imputation to the reference data (Fig. 4a). Notably, DISC achieved

the top performance compared to the other approaches on all the datasets. Compared

to the observed datasets, DISC significantly recovered gene expression (all the p values

< 2.2e−16, one-tailed paired t test). On the other hand, MAGIC and scScope always

performed the worst on all the datasets. We next measured recovery of expression

structure using Pearson’s correlation of gene-gene relationship and cell-cell relationship

of the imputation to the reference (Fig. 4b, c). For the gene correlation and cell correl-

ation, DISC had the highest correlation coefficients compared to the other seven ap-

proaches on all the datasets. It is notable that, for the gene correlation, DISC was the

only approach that had improved correlations compared to the observed dataset on all

the four datasets while no other approaches had improvement on any dataset, illustrat-

ing DISC’s ability to enhance gene-gene relationship. Interestingly, VIPER had almost

identical coefficients of cell correlation and gene correlation as the observed data on all

the datasets, indicating its strategy to keep the gene structure of the observed data un-

changed. DCA and scVI worked well on cell correlation but considerably reduced gene

correlation while scImpute performed well on gene correlation but not on cell correl-

ation. MAGIC and scScope significantly reduced both gene correlation and cell correl-

ation compared to the other approaches. In addition, MAGIC and scScope also

generated large variations of cell correlation, indicating unstable performance.

We also measured recovery of gene co-expression using CMD of correlation coeffi-

cients to assess gene co-expression (Additional file 1: Fig. S4). DISC, scImpute, and

VIPER most matched that of the reference, while MAGIC, DCA, DeepImpute, scScope,

and scVI generated large false co-expressed relationship for almost all the datasets. This



Fig. 4 Evaluation of recovery of dropouts in the down-sampling experiments. a MAE between the
reference and the observed/the imputation. b Gene correlation between the reference and the observed/
the imputation. c Cell correlation between the reference and the observed/the imputation. Box plots show
the median (center line), interquartile range (hinges), and 1.5 times the interquartile range (whiskers)
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result was consistent with our previous findings using FISH as a validation (Fig. 3e).

Collectively, our data showed that DISC consistently and accurately recovered gene ex-

pression of dropouts and improved gene structure distorted by dropouts.
DISC consistently improves cell-type identification

Having demonstrated DISC’s ability to reliably recover dropout events, we next evalu-

ated whether imputation improved cell-type identification. We used three datasets gen-

erated from different single-cell platforms, 10X Genomics, Drop-seq, and SPLiT-seq

(Methods). We down-sampled the datasets to 30% of the original reads. The average

cell library size, reflecting the sequence depth, before and after down-sampling are

shown in Additional file 1: Table S1. Percentage of cells correctly assigned (ACC) was

used to assess the accuracy of cell-type classification using the marker genes shown in

Additional file 1: Table S2 - S4.

For the PMBC dataset, DISC (ACC = 0.91) and scImpute (ACC = 0.91) were the only

approaches that have improved accuracy compared to the observed (ACC = 0.83). DISC
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had significantly better improvements compared to the other approaches except for

scImpute (Fig. 5a). MAGIC and all the other four deep learning approaches, DeepIm-

pute, DCA, scScope, and scVI, significantly dropped the classification accuracy com-

pared to the observed (p value < 2.2e−16, one-tailed paired t test). Zooming into eight

cell types, DISC achieved the top accuracy for all the cell types among all the ap-

proaches (Additional file 1: Fig. S5A). MAGIC failed identifying cell types using known

marker genes due to the loss of marker genes for almost all the cell types.

For the RETINA dataset, DISC had the top performance and improved ACC from

0.83 (the observed) to 0.95 (Fig. 5b). Some rare cell populations, such as RGC, Muller

glia, and VE, completely missed in the observed data due to dropouts, were recovered

by DISC (Additional file 1: Fig. S5B). DISC performed significantly better than all the

other approaches (p values shown in Fig. 5b). Although DCA improved the overall ac-

curacy (ACC = 0.87), it mostly improved the identification of the major population,

Rods, that counts for 66% of the total cell populations and completely missed identifi-

cation of six other cell types. scScope only identified Rods and almost failed to identify

all the other cell types while DeepImpute and VIPER completely missed identifying
Fig. 5 Evaluation of cell type identification. Y-axis showed the difference of ACC between the imputed and
the observed datasets. ACCs of each observed dataset are shown. p values were calculated using one-tailed
paired t test. NS indicates “not significant.” a PCMB dataset, b RETINA dataset, c neurons of BRAIN_SPLiT,
and d non-neurons of BRAIN_SPLiT. The following approaches failed due to “out-of-memory” error:
scImpute on RETINA, VIPER, and scImpute on BRAIN_SPLiT. Box plots show the median (center line),
interquartile range (hinges), and 1.5 times the interquartile range (whiskers)
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Rods. DISC had the top accuracy for 10 out of 11 cell types among all the approaches

(Additional file 1: Fig. S5B).

The BRAIN_SPLiT dataset has 156,049 cells and we analyzed the cell types in neu-

rons and non-neurons separately [3]. Because this dataset was sparse, with just 1329

mRNA counts per cell on average, and contained complex cell types, ACC score of

neurons dropped from 0.48 to 0.2, and that of non-neurons dropped from 0.64 to 0.17

after down-sampling to 30%. Impressively, DISC improved ACCs to 0.46 and 0.58 for

neurons and non-neurons after imputation (Fig. 5c, d). Four cell types in neurons and

six cell types in non-neurons, including major cell types such as astrocyte and rare cell

types such as Epend, missed due to dropouts after down-sampling, were recovered by

DISC. DeepImpute and scScope almost completely failed to identify any cell types

(Additional file 1: Fig. S5C and S5D).

We also compared all the approaches after down-sampling to 50% of the original

datasets. The performance of DISC was consistent with the above analysis, indicating

that DISC was robust to different dropout levels (Additional file 1: Fig. S6). In addition

to ACC, adjusted rand index (ARI) was also used to evaluate the accuracy of cell-type

classification. DISC also had the best accuracy for all the datasets (Additional file 1: Fig.

S7). To sum up, DISC was the only approach consistently and significantly improved

the accuracy of cell-type identification for all the datasets. DISC not only improved

identification for both major and rare cell types, but also had robust performance on

datasets generated from different single-cell platforms.
DISC improves downstream analysis

We evaluated whether better gene expression structures translate to better results of

downstream analysis. We evaluated similarities (1) between imputed scRNA-seq data

and bulk RNA-seq data and (2) between DEGs identified by scRNA-seq data and bulk

RNA-seq data, and (3) between pseudo-temporal order inferred by trajectory analysis

and known cell differentiation order. Here, we used three datasets from 10X Genomics

platform for this comparison (Methods).

Firstly, we calculated Spearman’s correlation coefficient (SCC) between the imputed

scRNA-seq profiles and the bulk RNA-seq profiles for the same cell line and for the ex-

pression difference between two cell lines. All the imputation methods preserved the

correlation between scRNA-seq profiles and bulk RNA-seq profiles (Additional file 1:

Fig. S8A). But, only four methods preserved the correlation between the expression dif-

ference across the two cell lines of scRNA-seq profile and that of bulk RNA-seq profile,

while DISC had the greatest improvement, improving 0.584 of RAW to 0.611 (Add-

itional file 1: Fig. S8B) indicating the ability of DISC to capture the expression differ-

ence between cell types.

We next evaluated DEG identification after imputation using DEGs identified by bulk

RNA-seq data [19]. We used two methods, namely MAST [20] and Wilcoxon rank-

sum test [21] (abbreviated as Wilcoxon), to identify DEGs for single-cell data. To evalu-

ate the overall performance of DEG identification, we used two metrics, (1) the overlap

of DEGs identified from the two cell types between the bulk data and scRNA-seq data

and (2) the number of false detected DEGs using cells from a homogeneous population.

DEGs identified by DISC using MAST had the first and second highest overlap to bulk
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for the two datasets, demonstrating the ability of DISC to improve DEG identification

over RAW (Fig. 6a, b). Using Wilcoxon, DISC performed best for both datasets (Add-

itional file 1: Fig. S9). At the same time, DISC was able to considerably decrease the

number of false DEGs compared to the RAW dataset (Fig. 6a, b and Additional file 1:

Fig. S9). Overall, DISC achieved a balance between sensitivity and specificity for DEG

identification.

We then evaluated the impact of the magnitude of expression difference by fold-

change (FC) [15]. For a pair of cell types in the 10X_5CL dataset, genes were ordered

by their FC and then grouped into ten equal length intervals (each has 1815 genes).

DISC showed improvement of the DEG overlaps between scRNA-seq data and bulk

RNA-seq data for 7 out of 10 intervals while the overlaps retained or slightly decreased
Fig. 6 Evaluation of DEG identification. DEG was identified using MAST for a the JURKAT_293T dataset and
b the 10X_5CL dataset, where x-axis shows the false number of DEGs identified from a homogeneous
population (293T and A549 cell lines were used, respectively) and y-axis shows the averaged overlaps of
DEGs identified by scRNA-seq data to that of bulk RNA-seq for all the combination of cell lines in the
dataset. c For a pair of cell lines in the 10X_5CL dataset, genes were grouped into 10 intervals ranked by
their FC values. For example, interval 1 is top 10% genes ranked by FC. The overlap between bulk and
single-cell DEGs identified using MAST were calculated for 10 combinations of cell lines for each interval.
Box plots show the median (center line), interquartile range (hinges), and 1.5 times the interquartile range
(whiskers) for the 10 overlap values
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for the other 3 intervals, indicating a consistent improvement of DEG identification by

DISC over RAW for different FCs (Fig. 6c). Comparing all methods, DISC performed

well for the middle to the high FC intervals and performed moderately in low FC inter-

vals, using both MAST (Additional file 1: Fig. S10A) and Wilcoxon (Additional file 1:

Fig. S10B).

Finally, we evaluated the trajectory analysis. Different from the evaluation of DEG

identification, cells in BONE_MARROW dataset were unsorted. Hence, we firstly iden-

tified cell types by mapping each cell in BONE_MARROW to a bulk cell type with the

highest Spearman correlation [15]. Then, Monocle 2 were used to construct pseudo-

temporal order for cells in BONE_MARROW dataset. Using the known differentiation

order as the reference, the percentage of correctly ordered cell-pairs was used as the

metrics for comparison. Consistent with the previous study [15], DCA, scVI, and

MAGIC showed significant improvement of the inferred trajectory compared to RAW

and DISC ranked third which is very close to the second scVI (Additional file 1: Fig.

S11). In addition, the average distance between the mis-ordered cell-pairs was reduced

by DISC to 1.65 from 2.31 of RAW (DISC was ranked the second and close to the best

score of DCA (1.61). To sum up, DISC consistently improved the downstream analysis

compared to the unimputed dataset and provided more biological meaningful

information.
DISC reliably identifies cell populations in the 1.3 million mouse brain dataset

We finally analyzed the BRAIN_1.3 M dataset which was generated from multiple

brain regions, including the cortex, hippocampus, and subventricular zone. In total,

DISC identified 61 cell clusters (Fig. 7a and Additional file 1: Fig. S12). We

assigned each cluster to one of three major cell groups, Glutamatergic neurons,

GABAergic neurons and non-neuronal cells, using the known marker genes from

the Allen Brain Atlas (Methods, Additional file 1: Table S5), which was also used

by scScope and PARC [10, 22]. Approximately 1.1 million cells from 49 clusters

were assigned to known cell types. The proportions of three main cell types are

64% for the Glutamatergic, 18% for the GABAergic, and 18% for the non-neuronal,

which more closely agree with the composition reported by PARC (65, 18, and

17%) than scScope (63, 17, and 20%) (Fig. 7b). We assigned cells into 10 major

neuronal (Fig. 7c) and 6 major non-neuronal cell populations (Fig. 7d); the marker

gene used for cell types is shown in Additional file 1: Table S6. The smallest cell

population is Microglia (5774 cells), which had unique cell markers of C1qb and

Tgfbr1, counting for 0.44% cells of the dataset (Fig. 7c). These cell populations can

be further categorized into sub-cell populations. For example, migrating interneu-

rons (MI) can be further sub-grouped into three sub-populations based on distin-

guishing sub-cell markers (Fig. 7e).

Compared to the cell types identified by DISC and scScope, we found a large discrep-

ancy from MI. DISC identified 184,203 MI cells (14.36%) belonging to GABAergic neu-

rons (Fig. 7d), while scScope identified 543,779 MI cells (42.40%) belonging to

glutamatergic neurons. By visualizing two MI markers, Dlx1 and Dlx6os1, our analysis

clearly showed that MI belonged to GABAergic groups (Fig. 7f). To confirm our result,

we used a commonly used cell-type identification tool, Seurat. Because Seurat was not



Fig. 7 Analysis of BRAIN_1.3 M. a uMAP visualization using 50 compressed dimensions for 61 clusters
identified by DISC. Clusters are split into three main cell types: glutamatergic neurons (Gluta), GABAergic
neurons (Gaba), and non-neuronal cells. b The proportions of three main cell types identified by DISC,
PARC, and scScope. c, d Cell types and marker genes for the non-neuronal cells (c) and the neuronal cells
(d), the number of cells in each cell type is shown on the right. e Three sub-cell types and marker genes for
MI. f, g Visualization of Gaba and MI marker genes, Dlx1 and Dlx6ox1, identified by DISC (f) and identified
by Seurat (g) on 100,000 down-sampling cells
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able to handle such a large dataset, we down-sampled 100,000 out of 1.3 million cells.

Consistent with our analysis, the analysis by Seurat also showed a clear signal that MI

belonged to GABAergic neurons, accounting for 14% in 100,000 cells (Fig. 7g). These

results demonstrate DISC’s ability to efficiently and accurately explore the major and

rare cell populations in ultra-large heterogeneous single-cell datasets.
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Discussion
Many factors such as expression level and distribution, level of noises, and heterogen-

eity of cells affect the performance of imputation. DISC assumes no specific distribu-

tion of expression and dropouts. Semi-supervised deep learning framework allows

DISC to learn a complex structure of genes and cells from sparse data. Unlike the other

imputation approaches, DISC does not down-sample genes for the model input there-

fore preserves the more information from the data. As a result, DISC showed robust

performance to datasets with different sizes, different dropout levels, and from different

platforms. We expect that DISC will continue working well as the noise distribution

changes with the emerging novel platforms of scRNA-seq.

Although DISC and scScope have similar network structures, they are trained by different

strategies. DISC employs semi-supervised learning and its loss function is computed on

both positive-count genes (real labels) and zero-count genes (pseudo labels), while scScope

is trained in a supervised-manner and its loss function is computed only on positive-count

genes [10]. When positive-count genes are limited, training based only on positive-count

genes is likely to miss the distinguishing features between technical and biological dropouts

where both belong to zero-count genes, thus leading to a latent representation that best in-

terprets positive-count genes without properly encodes distinguishing features for dropouts.

Semi-supervised learning supplements the training with zero-count genes to build a more

reasonable latent representation which also best interprets zero-count genes structurally

similarly to positive-count genes as a technical dropout. As a consequence, DISC distin-

guishes the technical zero generated by down-sampling (Additional file 1: Fig. S13A and

S14A) and scScope was only able to distinguish technical zero generated by down-sampling

in RETINA and BRAIN_SPLiT datasets (Additional file 1: Fig. S13B and S14B), which con-

tain a large number of cells and positive-count genes. Hence, DISC works well when the in-

formation provided by positive-count genes is limited.

Some recent studies concerned biases introduced by imputation [13, 14]. In our study, we

also found that several imputation approaches not only considerably changed genetic and

cellular structures of scRNA-seq data, but also significantly decreased the accuracy of down-

stream analysis, such as identification of DEGs and cell types, after imputation. In contrast,

we demonstrated that DISC not only recovered gene expression and enhanced gene struc-

tures, but also significantly improved the accuracy of downstream analysis. Compared to

the other seven approaches, DISC consistently achieved top performance on ten real-world

datasets using various evaluation metrics, illustrating its robust and stable performance.

In the last few years, advances in scRNA-seq technology have enabled us to obtain a few

thousands to over a million of cells in just one study. Moreover, the integration of datasets

from different studies could provide much more biological insights than the single study does

[23, 24]. It is therefore an urgent task to establish an analytic method capable of handling

ultra-large datasets. We showed that DISC could readily handle over several million of cells

using just a small portion of computational cost that other deep learning-based approaches

used. Unlike other imputation approaches, DISC processed large datasets with tens of thou-

sands of genes, which minimizes information lost due to gene or cell down-sampling.

Conclusions
In conclusion, our results demonstrated that DISC should be used for imputation, par-

ticularly for datasets with sparse expressed genes. Making no assumption to data
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distribution, DISC provides a general solution for analyzing single-cell omics data. It

outputs both expression matrix and low dimensional representations, which can be

used for clustering and visualization by other analytical tools that have no capability to

deal with ultra-large datasets. We expect that DISC will be of immediate interest to the

fast-growing single-cell research community.

Methods
Description of DISC

Normalization

The cell expression profile of cell c with M genes in mRNA counts Cc ∈ ℤ
M is firstly

normalized by cell library size with log transformation

fCc ¼ ln sf
Cc

lsc
þ 1

� �
;

where lsc is the library size of cell c, and sf (scale factor) is a constant, defined below.

Outlier detection

We use a scale factor of 1 million for normalization and calculate Z scores for the nor-

malized counts over all cells. Genes with Z scores greater than three are treated as out-

liers. DISC does not impute outliers so that outliers stay unchanged in the imputed

expression matrix. During training, DISC masks outliers and uses semi-supervised

learning framework to assign pseudo-counts for the outliers for training.

Input preparation

We use a scale factor of median cell library size for normalization and scale each gene

m (1 ≤m ≤M) by its normalized max (excluding outliers) over all cells to 0–1.

x0c;m ¼ Cc;m
e

Cmax;m
e ;

where fx0c∈ℝMj0≤x0c;m≤1g is the first step input and RNN will repeats for T steps.

Encoder

The encoder layer fE(⋅) projects input of step t xtc into a low-dimensional, latent repre-

sentation ztc∈ℝ
S; S < M. The encoder layer is given by

ztc ¼ f E xtc
� � ¼ tanh wEx

t
c

� �
;

where wE is a learnable parameter.

Decode

In contrast to the encoder layer, decoder layers fD(⋅) reverses the latent representation

back into a reconstructed normalized expression profile
nbytc∈ℝMj0≤dytc;m≤1

o
, given by

bytc ¼ f D ztc
� � ¼ sigmoid 2 φþ 1ð Þ∘ wE

Tztc þ bD
� �� �

;

where wE
T is the transpose of wE and φ ∈ℝM, bD are learnable parameters.
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Prediction matrix

The prediction matrix contains M channels, each channel fP, m(⋅) predicts the expres-

sion of a single gene 0≤ytc;m≤1 from the latent representation ztc as

ytc;m ¼ f P;m ztc
� �

:

A channel has three layers, given by
� 1st hidden layer: h1tc;m ¼ ðφm þ 1Þðwh1;mztc þ bh1;mÞ,
� 2nd hidden layer: h2tc;m ¼ ðφm þ 1Þðwh2;m � tanhðh1tc;mÞ þ bh2;mÞ,

� Output layer: ytc;m ¼ sigmodð2ðφm þ 1Þ ψt
c;mðwp1;m tanhðh2tc;mÞ þ bp1;mÞ

þð1‐ψt
c;mÞðwp2;m tanhðht2;mÞ þ bp2;mÞ

� �
Þ,

ψt
c;m ¼ sigmoidðSELUðwψ;mh2tc;mÞÞ,

where wh1, m, wh2, m, wp1, m, wp2, m, wψ, m, bh1, m, bh2, m, bp1, m, and bp2, m are learnable

parameters for gene m. The output layer is a weighted average over two channels using

ψt
c as weight factor. We assumed that a given gene followed the same expression distri-

bution across most of cells and defined this as “major expression distribution”. Before

sigmoid activation, scaled exponential linear unit [25] (SELU) activation is used to

make the channel selection biased the first channel, where the first channel represents

the major expression distribution.

Filter

Input for the next step, xtþ1
c , is prepared by filtering of ytc to keep the positive-counts as

xtþ1
c;m ¼ x0c;m; x0c;m > 0

ytc;m; x
0
c;m ¼ 0

(

Imputer and reconstructor

A soft attention assigns a weight vector atc to the decoding ytc and prediction ytc output

from each recurrence. atc is given by

atc;m ¼ softmax wa;mSELU h1tc;m
� �� �

;

where wa, m is a learnable parameter. After weighted average, fbyc∈ℝMj0≤dyc;m≤1g and

{yc ∈ℝ
M| 0 ≤ yc, m ≤ 1} are given bybyc ¼X

t

atc∘bytc and yc ¼
X
t

atc∘y
t
c.

Compressor

The latent representations over all steps, zc ∈ℝ
S × T, are compressed further to a lower

dimension W≪ S ⋅ T. Compressor is an autoencoder whose encoder is given by

cpc ¼ tanh wzzc þ bz1ð Þ;

And the reverse decoder is given by
zc ¼ tanh wz
Tcpc þ bz2

� �
;

where wz, bz1, and bz2 are learnable parameters, cpc is the compressed cell feature
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where cpc ∈ℝ
W. Autoencoder and compressor modules together form a stacked auto-

encoder. To evaluate the performance of the compressor, the cell expression profile eyc
is reversed from ezc∈ℝS�T , given by

eyc ¼X
t

atc∘eytc;
where at is the shared soft attention weight for the imputer and reconstructor modules

and eytc is reversed from eztc using the decoder module.

Training of DISC

The parameters of DISC are optimized from the data in an end-to-end manner accord-

ing to a combination of five loss functions, including imputation loss (LI), reconstruc-

tion loss (LR), prediction loss (LP), latent representation loss (LLR), and constraint (LC).

Imputation loss

LI is formulated based on the idea of “noise to noise” for image imputation [18]. A

noise input nx0c for the first step is prepared by assigning an uniform multiplicative

noise: UM
c ð0:9; 1:1Þ∘x0c and nx0c replaces x0c for filtering of predicted expression profile

to produce inputs for the later steps, nxtc . In addition, a dropout operation is applied to

nxtc on zero-count genes in raw data [26]. At the end, a noise imputation output nyc is

produced and LI is formulated as

LI ¼ 1
N

X
c

α1c∘ nyc−nyc
0

� ���� ���
1
;

where nyc
' is a noise target given by UM

c ð0:9; 1:1Þ∘x0c and N is the number of cells for

training. LI is computed on the positive-counts restricted by α1, given by

α1c;m ¼ 1; x0c;m > 0
0; x0c;m ¼ 0

(

Reconstruction loss

LR is formulated using semi-supervised learning (SSL) to learn a concordant latent rep-

resentation which encodes both positive-counts and pseudo-counts assigned by the

imputer as

LR ¼ 1
N

X
c

α2c∘ byc−cyc 0� ���� ���2;
where α2c;m ¼ αR; x0c;m > 0

1; x0c;m ¼ 0

	
, αR balances the biased portions towards zero-counts,

the reconstruction target is dyc;m 0 ¼ x0c;m; x0c;m > 0
yc;m; x0c;m ¼ 0

	
.

Prediction loss

LP uses SSL to search an expression profile structure which underlying both positive-

counts and pseudo-counts assigned by the decoder, given by
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LP ¼ 1
N

X
t

X
c

α3c∘ ytc−y
t
c

0� ���� ���2;
where α3c;m ¼ αP1; x0c;m > 0

αP2; x0c;m ¼ 0

	
and the prediction target is ytc;m

0 ¼ x0c;m; x0c;m > 0dytc;m; x0c;m ¼ 0

(
.

Latent representation loss

Prediction of expression profile made by each step is a function of the corresponding

latent representation. LLR minimizes the difference between successive latent represen-

tations, given by

LLR ¼ 1
N � T

XTþ1

t¼1

X
c

xtcwE−x
t−1
c wE

�� ��2:
Constraint

LC limits the total capacity of imputation counts assuming most zero-counts are either

low expressed or unexpressed. LC is given by

LC ¼
X
t

X
c

α4c∘ f de ytc
� ��� ��2;

where α4c;m ¼ 0; x0c;m > 0
1; x0c;m ¼ 0

	
and fde(⋅) is a function reverses the normalized counts

back to counts.

Regularization

We assumed that some genes contribute more (strong connection) to each neuron of

the latent representation. However, conventional sparse regularizers, i.e., L1 regularizer

and Log regularizer, are unable to restrict the number of genes having strong connec-

tions to the neurons. We developed a new regularizer, fre, to restrict the genes as

f re wð Þ ¼
XNNw

i

X
j∈wi

j2
 !2

;

where NNw is the number of output-nodes, wi is the collection of weights connecting

with ith output-node. j2 removes weights that are very small.

The overall loss function is

L ¼ β1LI þ β2LR þ β3LP þ β4LLR þ β5LC
þ β6 f re wEð Þ þ f re wh1ð Þð Þ
þ β7

X
w∈wh2;wp1 ;wp2

w2 þ β8
X
w∈wa

w2 þ β9
X
w∈φ

w2:

DISC was trained using Adam [27] with learning rate 0.001. Gradient clipping of 5

was used to avoid exploding gradient.

Stop of training

Predictor of DISC is a function of the latent representation, zt. When the difference of

zt across multiple steps becomes smaller, DISC is convergent to a stable point. There-

fore, DISC uses latent representation loss to evaluate the similarity of zt across multiple

steps and to determine the best stop point based on the variance of this loss over
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multiple batches (10,000 batches by default). We chose 5 million cells as an initial point

because DISC generally reached optimal points after learning information from ap-

proximately 5 million cells in many datasets with a variety of gene and cell numbers.

This property makes DISC a stable running time for datasets of various sizes. The pro-

cedure is as follows.

1. DISC is first trained for 5 million cells (128 cells per training batch on default) and

calculates the standard deviation (STD) of LLR for the last 10,000 batches. This

STD is set as the minimum STD, and this STD remains as the minimum STD for

1 round (minimum round where a training round is 50,000 cells).

2. DISC is trained for another 50,000 cells and calculates a new STD of LLR for the

last 10,000 batches.

3. If the new STD is greater than the minimum STD, minimum round is increased by 1.

Otherwise, minimum STD is set as the new STD, and minimum round is reset to 1.

4. If minimum round is less than 5, repeat step 2. Otherwise, training is stopped.
Hyperparameter optimization

Hyperparameters for the model architecture, including layer neuron numbers, number

of steps and learning rate, are pre-defined (Additional file 1: Fig. S1), and the other

ones were sampled using Latin hypercube sampling [28]. We provided a set of hyper-

parameters as the default so that users can easily use DISC without to undergo the

time-consuming optimization process. We tested the default hyperparameter set for

many high-throughput single cell datasets with different cell numbers (thousands to

millions), different platforms, and different cell compositions, and the performance was

robust. The following hyperparameters are set as the default value:

αR = 5, αP1 = 1.5, αP2 = 0.35, β1 = 1, β2 = 1, β3 = 1, β4 = 1.65 ×M × 1e−5, β5 = 6.3 × 1e−5,

β6 = 1e−6, β7 = 1e−6, β8 = 1e−5, and β9 = 1e−4. Users are also able to change them via

command line interface.
Generating training batches

To randomize cell orders in an expression matrix, a common practice is to load a

complete expression matrix into memory and random sample cell batches. However,

loading large expression matrix usually causes out-of-memory errors (OOM). A previ-

ous method split the expression matrix into several parts and saved onto hard disk

[10]. During training, parts were loaded separately to generate random cell batches.

However, by this approach, random sampling was performed locally within the parts

and pre-processing required extra work. Here, we developed a novel method to gener-

ate globally random cell batches.

1. Cells are indexed by chunks of arbitrary size (32 cells by default).

2. Multiple chunks are loaded randomly (64 chunks by default) into a sub-queue in

the memory and cells in the sub-queue are shuffled. Once shuffled, cells are trans-

ferred into a main queue in the main thread.

3. Cells are loaded parallelly via parallel sub-queues to reduce the loading delay and

cells from different sub-queues are transferred randomly into the main queue.
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4. At the end, cell batches are withdrawn from the main queue based on first-in-first-

out rule.
Cell-type identification

Small and large datasets

For smaller datasets, including PBMC, RETINA, neuronal cells (129 K cells), and non-

neuronal cells (27 K cells) of BRAIN_SPLiT datasets, Seurat V3.0 [29] was used to per-

form normalization, feature selection, scaling, PCA, clustering, and t-SNE/u-MAP

visualization. Resolution and PCA-dimension parameters for clustering were selected to

produce the best accuracy against cell-type labels. Specifically, resolution of 0.5–1.4 (0.5

for PBMC, 1.4 for RETINA, 1.4 for BRAIN_SPLiT) and top 10–50 principal com-

ponents of PCA (10 for PBMC, 30 for RETINA, 50 for BRAIN_SPLiT) were used

and clustering was based on the graph-based shared nearest neighbor method

(SNN). Differential expression analysis was used to identify cluster-specific marker

genes where all the clusters are pairwise compared using the Wilcoxon method.

Each identified marker gene was expressed in a minimum of 25% of cells and at a

minimum log fold change threshold of 0.25. When the cluster-specific marker

genes contain the reference cell type, we defined the cluster as the reference cell

type. However, if multiple reference marker genes for different cell types or no ref-

erence marker genes appeared in the cluster-specific marker genes, we defined

these clusters as unknown cell types.
Ultra-large dataset

For the BRAIN_1.3M dataset with 1.3 million cells, traditional methods are unable to

cluster cells using the whole expression matrix. Compressed features of 50 dimensions

from DISC were used for clustering by Seurat, where the resolution was set to 1.4. Dif-

ferential expression analysis was described above.
Evaluation of imputation performance

Gene selection

Genes match the following conditions were removed:

1. Expressed in less than 1/1000 of total cells or less than 10 cells, whichever is

greater.

2. Maximum mRNA count is 1.
Comparison of scRNA-seq and FISH

Genes overlapped between scRNA-seq (≥ 10 positive-count cells) and FISH were se-

lected. To compare the expression distributions of scRNA-seq and FISH, each selected

gene was normalized by an efficient factor [6], where efficient factor was defined as the

ratio of its FISH mean to its scRNA-seq (raw or imputation) mean.
Down-sampling

We randomly sampled transcript reads from scRNA-seq dataset followed a previous re-

search [5]. Transcripts were sampled either 30 or 50% of the original cell library size.
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Gini coefficient

We used “reldist” package in R to calculate Gini coefficient to quantify gene expression

distribution [30]. The difference of Gini coefficients between scRNA-seq (raw and im-

putation) and FISH was calculated by rooted mean square error (RMSE), given as

Gini RMSEmethod ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

GiniFISH;i−Ginimethod;i
� �2

n

vuuut
;

where n is the number of overlapped genes, i is the index of the genes.

Fasano and Franceschini’s test

Kolmogorov-Smirnov (K-S) distance [31] is a nonparametric estimation of the distance

between two one-dimensional probability distributions, based on their cumulative dis-

tributions. Fasano and Franceschini’s (FF) distance [32] is a multi-dimensional version

of K-S distance. Using FISH data as the reference, we used a script (https://github.com/

syrte/ndtest/blob/master/ndtest.py) to calculate FF distance as a measurement for the

similarity of the gene-gene co-expression distribution between scRNA-seq (raw and im-

putation) and FISH.

Correlation matrix distance (CMD)

CMD is a measure of the distance between two correlation matrices [33]. The CMD

for two correlation matrices R1, R2 is defined as

d R1;R2ð Þ ¼ 1−
tr R1;R2ð Þ
R1k k f R2k k f

:

For comparison with FISH, Pearson’s correlation was calculated for gene pairs in R1
(FISH) and R2 (raw or imputation) using all the overlapped genes. For comparison in

down-sampling dataset, Pearson’s correlation was calculated for gene pairs in R1 (refer-

ence) and R2 (observed or imputation) using the top 300 variable feature genes selected

by Seurat’s “vst” function [23, 29].

Mean absolute error (MAE)

MAE measures the difference of gene expressions of the observed or imputation data

to the reference data, given by

MAEc ¼

Xn
i¼Dc

Cds
c;i � sf c−C

reference
c;i

��� ���
card Dcð Þ ;

where Dc is the set of positive-count genes in cell c from the reference data, card(Dc) is

the size of set Dc, C
ds is the observed/imputed mRNA counts, Creference is the mRNA

counts before down-sampling, and sf c ¼ lsreferencec =lsdsc , where lsreference and lsds are the

cell library size vectors for the corresponding datasets.

https://github.com/syrte/ndtest/blob/master/ndtest.py
https://github.com/syrte/ndtest/blob/master/ndtest.py
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Gene-gene and cell-cell correlation

Pearson’s correlation was calculated at the gene or cell levels before and after down-

sampling. At the gene level, genes were included if they express in at least 10% of cells.

At the cell level, cells were included if they have at least 10% of gene expressed.

Evaluation of cell-type annotation accuracy

To evaluate cell-type accuracy, three evaluation metrics are used. Accuracy (ACC) and

adjusted rand index (ARI) are used to assess the properties of the overall clustering re-

sults and Jaccard index is used to calculate the accuracy of each cell type.

ACC is calculated as

ACC ¼

Xn
i¼1

δ ri; sið Þ

n

where n is the cell number, ri and si are the cell type label and classified cell type, re-

spectively, for ith cell, and

δ x; yð Þ ¼ 1 if x ¼ y
0 otherwise

	
The overlap between the cell type labels and classified cell type can be summarized
in a contingency table, in which each entry denotes the number of objects in common

between the two sets.

ARI is calculated as

ARI ¼

XΚj j

i¼1

XΚj j

j¼1

ni; j
2

� �
−
XΚj j

i¼1

ai
2

� �XΚj j

j¼1

bj

2

� �" #
=

n
2

� �
1
2

XΚj j

i¼1

ai
2

� �XΚj j

j¼1

bj

2

� �" #
−
XΚj j

i¼1

ai
2

� �XΚj j

j¼1

bj

2

� �" #
=

n
2

� � ;

where K is the set of unique cell type labels, ni, j are values from the contingency table,

ai is the sum of the ith row of the contingency table, bj is the sum of the jth column of

the contingency table, and ( ) denotes a binomial coefficient and
n
2

� �
means nðn−1Þ

2 .

Jaccard index is calculated as

J c; d; kð Þ ¼ c∩dj j
cj j þ dj j− c∩dj j ;

respectively, where c is the set of cells with type labels k, d is the set of cells with classi-

fied cell type, and k ∈Κ.

Ranking differentially expressed genes (DEGs)

For the bulk RNA-seq samples, DEGs were identified using the limma R/Bioconductor

package. We corrected p values for multiple testing using the Benjamini-Hochberg

(BH) method (p.adjust function in the stats R package) to derive false discovery rate

(FDR). Genes with FDR smaller than α = 0.05 and log fold change greater than 1.5 were

identified as DEG and used as the “gold standard” in the following comparison. The

number of DEGs identified is shown in Additional file 1: Table S7. For the scRNA-seq
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data, DEGs were identified using MAST and (2) Wilcoxon rank-sum test, where we

used Seurat FindMarkers function to perform the two methods, and set min.pct = 0.1,

logfc.threshold = 0 to get the difference of all genes. The single-cell DEGs were ranked

by p_val_adj or the log-scaled expression fold change if there was a tie for p_val_adj.

For i from 1 to k, we calculated the proportion of top 10 * i single-cell DEGs that over-

lap with bulk DEGs while the average of these k proportions served as the performance

metric. For comparing DEG identification from all genes, k was set at 100, and for com-

paring DEG identification in 10 intervals sorted by FC, k was set at 10.
Null differential analysis

There are no DEGs in a homogeneous population of cells, such as 293T cells from the

JURKAT_293T dataset (N = 2885 cells) and A549 cells from the 10X_5CL dataset (N =

1256 cells). Therefore, for each dataset, we randomly sampled cells into two groups

with group sizes ranging from N = 10 to 500 [15]. We conducted DEG analysis for 10

conditions with different cell numbers (10 vs. 10, 10 vs. 50, 10 vs. 100, 10 vs.500, 50 vs.

50, 50 vs.100, 50 vs. 500, 100 vs. 100, 100 vs. 500, 500 vs. 500). We identified DEGs

using MAST and Wilcoxon rank-sum test. Genes with p value < 0.01 and logfc > 0.25

were identified as DEG.
Trajectory analysis

Following a previous study [15], the bulk-sequencing data from 13 hematopoietic cell

types of 3 cell lineages, lymphoid, erythroid, and myeloid (GSE74246) were used to

identify hematopoietic cells profiled by 10X Genomics single-cell platform (BONE_

MARROW). Briefly, each cell in BONE_MARROW was marked as one of the 13

hematopoietic cell types whose bulk RNA-seq profile has the highest Spearman’s cor-

relation with the cell’s scRNA-seq profile. Then, the scRNA-seq expression matrices

were input into Monocle2 to construct pseudo-temporal trajectories using DDRTree al-

gorithm. The known differentiation levels (HSC: level 1; MPP: level 2; LMPP and CMP:

level 3; CLP, GMP, and MEP: level 4; B cell, CD4 T cell, CD8 T cell, NK cell, Mono-

cyte, and Erythroid: level 5) served as the reference to compare the correctness of the

order inferred between cell-pair from two different differentiation level cell types which

are both appeared in at least one of the lymphoid, erythroid, and myeloid lineages. If a

cell has a higher differentiation level in the pair, then the cell must have a higher

pseudo-time to define the pair in a correct order. For example, for a pair of cells, a

HSC and a Monocyte, the order of the pair is inferred correctly if the Monocyte is

marked a higher pseudo-time than the HSC since the Monocyte has a higher differenti-

ation level than the HSC. Since the root state can be any of the leaves of the con-

structed trajectories tree and the root state determines the pseudo-time for all the cells

(root state is the pseudo-time 0). Hence, the overall percentage of correctly inferred cell

pairs for all the possible cell pairs was calculated for all possible root state and the

highest percentage was used for comparison.
Comparison of imputation approaches

The imputation approaches were run on a Linux CentOS 7 server with 2 Intel® Xeon®

E5–2650 v4 CPUs, 128GB RAM and 1 NVIDIA® Tesla® V100 GPU. Unless otherwise
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noted, software packages were used with their default settings after gene selection. For

all deep learning methods (DISC, DCA, scVI and scScope), GPU were used for training

and imputation. The running scripts can be found at https://github.com/xie-lab/DISC/

tree/master/reproducibility/source/Running%20Scripts%20for%20Other%20Methods.

Speed and memory comparison

Speed and memory usage were compared using BRAIN_1.3M dataset. Cells express

less than 500 or greater than 5000 genes were removed (approximately 1.3 million cells

left). The top 1000 or 10,000 highly variable genes were selected using “vst” (variance

stabilizing transformation) of Seurat. We then randomly sampled 3 subsets in different

cell numbers (50 k, 100 k and 500 k cells). We duplicated 1.3M datasets into a 2.6M

cell dataset. For each imputation method compared, we ran each dataset 3 times and

calculated the average computation time and memory usage.

Methods comparisons

Magic We used the Python package of magic-impute v1.5.5. Following its tutorial

(https://nbviewer.jupyter.org/github/KrishnaswamyLab/MAGIC/blob/master/python/

tutorial_notebooks/emt_tutorial.ipynb), we performed library size normalization and

square root transformation before imputation. We then squared and denormalized its

output gene expressions after imputation.

scImpute We used the R package of scImpute v0.0.9.

VIPER We used the R package of VIPER (GitHub commit 0170c27). Following its

README (https://github.com/ChenMengjie/VIPER/blob/master/README.md), we

used its gene-based imputation.

DCA We used the Python package of DCA v0.2.2.

scScope We used the Python package of scScope v0.1.5. Following its demo script

(https://github.com/AltschulerWu-Lab/scScope/blob/master/demo.py), we normalized

each cell to have the same library size, set the feature dimension as 50 and then im-

puted dropout values after training with the default setting.

scVI We used the Python package of scVI v0.3.0, followed the reproducibility script

(https://github.com/YosefLab/scVI/blob/aa614bdaf2ff57fbb661394e53a9a2454b950882/

tests/notebooks/scVI_reproducibility.ipynb).

DeepImpute We used the Python package of deepImpute v1.0.0.

Availability of data and materials

MELANOMA (GSE99330, 8498 melanoma cells by Drop-seq) with FISH

Eight thousand six hundred forty cells from the melanoma WM989 cell line were se-

quenced using Drop-seq [34], where 32,287 genes were detected. Eight thousand four

https://github.com/xie-lab/DISC/tree/master/reproducibility/source/Running%20Scripts%20for%20Other%20Methods
https://github.com/xie-lab/DISC/tree/master/reproducibility/source/Running%20Scripts%20for%20Other%20Methods
https://nbviewer.jupyter.org/github/KrishnaswamyLab/MAGIC/blob/master/python/tutorial_notebooks/emt_tutorial.ipynb
https://nbviewer.jupyter.org/github/KrishnaswamyLab/MAGIC/blob/master/python/tutorial_notebooks/emt_tutorial.ipynb
https://github.com/ChenMengjie/VIPER/blob/master/README.md
https://github.com/AltschulerWu-Lab/scScope/blob/master/demo.py
https://github.com/YosefLab/scVI/blob/aa614bdaf2ff57fbb661394e53a9a2454b950882/tests/notebooks/scVI_reproducibility.ipynb
https://github.com/YosefLab/scVI/blob/aa614bdaf2ff57fbb661394e53a9a2454b950882/tests/notebooks/scVI_reproducibility.ipynb
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hundred ninety-eight cells were extracted according to the previous pipeline [6] and 15,

204 genes were left after gene selection. In addition, RNA FISH experiment of across

7000–88,000 melanoma cells from the same cell line was conducted and 26 were de-

tected [35], in which 19 genes were overlapped with the 15,204 genes, including 9

housekeeping genes (BABAM1, GAPDH, LMNA, CCNA2, KDM5A, KDM5B, MITF,

SOX10, and VGF) and 10 drug-resistance markers (C1S, FGFR1, FOSL1, JUN, RUNX2,

TXNRD1, WNT5A, EGFR, PDGFC, and VCL). RNA-seq data can be found at

GSE99330. RNA FISH data can be found at https://www.dropbox.com/s/ia9x0iom6

dwueix/fishSubset.txt?dl=0.
SSCORTEX (SRP135960, 3447 and 3969 mouse somatosensory cortex cells in 2 replications

by 10X Genomics) with FISH

Mouse somatosensory cortex of CD-1 mice at age of p28 and p29 were profiled by 10X

where 7477 cells were detected in total [36]. Cells expressed less than 500 or greater

than 5000 genes were removed (7416 cells left) and 13,997 genes were left after gene

selection. osmFISH experiment of 4839 cells from the somatosensory cortex, hippo-

campus, and ventricle from a CD-1 mouse at age of p22 was conducted [37]. Four

thousand three hundred eighty-eight cells from somatosensory cortex were extracted

with 33 genes detected where all of the FISH genes were overlapped with the 13,997

genes, including GAD2, SLC32A1, CRHBP, CNR1, VIP, CPNE5, PTHLH, CRH, TBR1,

LAMP5, RORB, SYT6, KCNIP2, ALDOC, GFAP, SERPINF1, MFGE8, SOX10, PLP1,

PDGFRA, BMP4, ITPR2, TMEM2, CTPS, ANLN, MRC1, HEXB, TTR, FOXJ1, VTN,

FLT1, APLN, and ACTA2. RNA-seq data can be extracted from http://loom.linnarsson-

lab.org/clone/Mousebrain.org.level1/L1_Cortex2.loom. The FISH data can be found at

http://linnarssonlab.org/osmFISH/availability/.
PBMC (2638 freeze-thaw human PBMC cells by 10X Genomics)

Two thousand seven hundred freeze-thaw peripheral blood mononuclear cells (PBMC)

from a healthy donor were profiled by 10X, where 32,738 genes were detect [38]. Cells

expressed less than 200 or greater than 2500 genes or have > 5% mitochondrial counts

were removed (2638 cells left) and 8654 genes were left after gene selection. RNA-seq

data can be found at https://support.10xgenomics.com/single-cell-gene-expression/

datasets/1.1.0/frozen_pbmc_donor_a.
CBMC (GSE100866, 8005 human CBMC cells by CITE-seq)

Cord blood mononuclear cells were profiled by CITE-seq, where 8005 human cells

were detected in total. We used all detected human (20,400) genes (11,556 genes were

left after gene selection) for down-sampling [39]. RNA-seq data can be found at

GSE100866.
JURKAT_293T (3258 and 2885 human cells by 10X Genomics)

Jurkat and 293T were profiled by 10X separately. Cells expressed less than 500 genes

were removed and 3258 Jurkat and 2885 293 T cells were left [15]. After gene selection,

Jurkat, 293T, and their merged data left 11,293, 11,974, and 13,328 genes, respectively.

Single-cell RNA-seq data can be found at https://support.10xgenomics.com/single-cell-

https://www.dropbox.com/s/ia9x0iom6dwueix/fishSubset.txt?dl=0
https://www.dropbox.com/s/ia9x0iom6dwueix/fishSubset.txt?dl=0
http://loom.linnarssonlab.org/clone/Mousebrain.org.level1/L1_Cortex2.loom
http://loom.linnarssonlab.org/clone/Mousebrain.org.level1/L1_Cortex2.loom
http://linnarssonlab.org/osmFISH/availability/
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
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gene-expression/datasets/1.1.0/jurkat and https://support.10xgenomics.com/single-cell-

gene-expression/datasets/1.1.0/293t while the corresponding bulk RNA-seq data can be

found at GSE129240.
10X_5CL (GSE126906, 3918 cells from 5 cell lines by 10X Genomics)

Five thousand one cells from 5 human lung adenocarcinoma cell lines H2228, H1975,

A549, H838, and HCC827 were profiled by 10X, where 32,895 genes were detected.

Cells expressed less than 500 genes were removed (3918 cells left) and 18,296 genes

were left after gene selection [15]. Single-cell RNA-seq data can be found at

GSE126906 and the corresponding bulk RNA-seq data can be found at GSE86337.
BONE_MARROW (HCA, 6939 human bone marrow cells by 10X Genomics)

Six thousand nine hundred forty-one human bone marrow cells from sample MantonBM6

were profiled by 10X [15, 40], where 32,738 genes were detected. Cells expressed less than

500 genes were removed (6939 cells left) and 13,813 genes were left after gene selection.

The original single-cell RNA sequencing data provided by HCA was aligned to hg19 and

the expression matrix after cell filtering can be found at https://drive.google.com/file/d/1

euh8YB8ThSLHJNQMTCuuKp_nRiME1KzN/view?usp=drive_web. The corresponding

bulk RNA-seq used for cell identification can be found at GSE74246.
RERINA (GSE63473, 49,300 retina STAMPs by Drop-seq)

Retinas of mice at age of p14 were profiled in 7 different replicates by Drop-seq, where

6600, 9000, 6120, 7650, 7650, 8280, and 4000 STAMPs (single-cell transcriptomes at-

tached to micro-particles) were collected with 24,658 genes detected [2]. Cells were

merged and 14,871 genes were left after gene selection. 44,808 cells labeled STAMPs

were used for evaluation. RNA-seq data can be found at GSE63473.
BRAIN_SPLiT (GSE110823, 156,049 mouse brain and spinal cord nuclei by SPLiT-seq)

156,049 mice nuclei from developing brain and spinal cord at age of p2 or p11 mice

were profiled by SPLiT-seq, where 26,894 genes were detected [3], in which 15,025

genes were left after gene selection. RNA-seq data can be found at GSE110823.
BRAIN_1.3 M (1,282,594 mouse brain cells by 10X Genomics)

1,306,127 cells from combined cortex, hippocampus, and subventricular zone of 2 E18

C57BL/6 mice were profiled by 10X, where 27,998 genes were detected [38]. Cells

expressed less than 500 or greater than 5000 genes were removed and 15,080 genes

were left after gene selection, and 1,282,594 cells were kept for further analysis. RNA-

seq data can be found at https://support.10xgenomics.com/single-cell-gene-expression/

datasets/1.3.0/1M_neurons.
DISC

DISC is implemented in Python and builds on Google TensorFlow. It runs on both

CPUs and GPUs. The source code and the datasets are available at https://github.com/

xie-lab/DISC [41] and Zenodo [42] under Apache License 2.0.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://drive.google.com/file/d/1euh8YB8ThSLHJNQMTCuuKp_nRiME1KzN/view?usp=drive_web
https://drive.google.com/file/d/1euh8YB8ThSLHJNQMTCuuKp_nRiME1KzN/view?usp=drive_web
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://github.com/xie-lab/DISC
https://github.com/xie-lab/DISC
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