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Abstract

Background: Mapping of allele-specific DNA methylation (ASM) can be a post-GWAS
strategy for localizing regulatory sequence polymorphisms (rSNPs). The advantages
of this approach, and the mechanisms underlying ASM in normal and neoplastic
cells, remain to be clarified.

Results: We perform whole genome methyl-seq on diverse normal cells and tissues
and three cancer types. After excluding imprinting, the data pinpoint 15,112 high-
confidence ASM differentially methylated regions, of which 1838 contain SNPs in
strong linkage disequilibrium or coinciding with GWAS peaks. ASM frequencies are
increased in cancers versus matched normal tissues, due to widespread allele-specific
hypomethylation and focal allele-specific hypermethylation in poised chromatin.
Cancer cells show increased allele switching at ASM loci, but disruptive SNPs in
specific classes of CTCF and transcription factor binding motifs are similarly correlated
with ASM in cancer and non-cancer. Rare somatic mutations affecting these same motif
classes track with de novo ASM. Allele-specific transcription factor binding from ChIP-
seq is enriched among ASM loci, but most ASM differentially methylated regions lack
such annotations, and some are found in otherwise uninformative “chromatin deserts.”

Conclusions: ASM is increased in cancers but occurs by a shared mechanism involving
disruptive SNPs in CTCF and transcription factor binding sites in both normal and
neoplastic cells. Dense ASM mapping in normal plus cancer samples reveals candidate
rSNPs that are difficult to find by other approaches. Together with GWAS data, these
rSNPs can nominate specific transcriptional pathways in susceptibility to autoimmune,
cardiometabolic, neuropsychiatric, and neoplastic diseases.
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Background
Genome-wide association studies (GWAS) have implicated numerous DNA sequence var-

iants, mostly single nucleotide polymorphisms (SNPs) in non-coding regions, as candi-

dates for mediating inter-individual differences in disease susceptibility. However, to

promote GWAS statistical signals to biological true-positives, and to identify the func-

tional sequence variants that underlie these signals, several obstacles need to be overcome.

Multiple statistical comparisons demand stringent thresholds for significance, p < 5 × 10−8

for a GWAS, and this level can lead to the rejection of biological true-positives with sub-

threshold p values [1]. A more fundamental challenge is identifying the causal regulatory

SNPs (rSNPs) among the typically large number of variants that are in linkage disequilib-

rium (LD) with a GWAS peak SNP. Combined genetic-epigenetic mapping can address

these challenges. In particular, identification of non-imprinted allele-specific CpG methy-

lation dictated by cis-acting effects of local genotypes or haplotypes (sometimes abbrevi-

ated as hap-ASM but hereafter referred to simply as ASM) led us and others to suggest

that mapping this type of allelic asymmetry could prove useful as a “post-GWAS” method

for localizing rSNPs [2–12]. The premise is that the presence of an ASM DMR can indi-

cate a bona fide regulatory sequence variant (or regulatory haplotype) in that genomic re-

gion, which declares itself by conferring the physical asymmetry (i.e., ASM) between the

two alleles in heterozygotes. ASM mapping and related post-GWAS approaches such as

allele-specific chromatin immunoprecipitation-sequencing (ChIP-seq) [13, 14] can facili-

tate genome-wide screening for disease-linked rSNPs, which can then be prioritized for

functional studies. However, the unique advantages of ASM mapping, and its potential

non-redundancy with other post-GWAS mapping methods, remain to be clarified.

Genome-wide analysis of ASM by methylation sequencing (methyl-seq) is also yield-

ing insights to the fundamental mechanisms that shape DNA methylation patterns.

Our previous data using bisulfite sequence capture (Agilent SureSelect) revealed ASM

DMRs and methylation quantitative trait loci (mQTLs) in human brain cells and tis-

sues, and in T lymphocytes, and uncovered a role for polymorphic CTCF and transcrip-

tion factor (TF) binding sites in producing ASM [8]. Others have pursued similar

approaches with progressively greater genomic coverage [10, 11], with substantial

though partial overlap in the resulting lists of ASM DMRs [9], and with consistent con-

clusions regarding the importance of destructive SNPs in CTCF and TF binding sites

as a mechanism underlying ASM. However, since ASM is often tissue-specific and its

mapping requires heterozygotes at one or more “index SNPs” in the DMR, constraints

from the numbers of individuals and numbers of cell types have limited the harvest of

high-confidence ASM DMRs. These factors have in turn limited the assessment of spe-

cific classes of TF and CTCF binding sites for their involvement in ASM and limited

the yield of candidate rSNPs in disease-associated chromosomal regions. Further, while

some studies of cancer samples have been done using targeted methyl-seq [15–18], the

genome-wide features and mechanisms of ASM in human neoplasia have yet to be

clarified.

To address these issues, we have expanded our previous methyl-seq dataset and car-

ried out whole genome bisulfite sequencing (WGBS) on a new large series of human

samples spanning a range of normal tissues and cell types from multiple individuals,

plus three types of human cancers—multiple myeloma, B cell lymphoma, and glioblast-

oma. We identify high-confidence ASM DMRs using stringent criteria, perform
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extensive validations, apply a multi-step analytical pipeline to compare mechanisms of

ASM in normal and cancer cells, and assess the unique strengths of dense ASM map-

ping for finding mechanistically informative disease-associated rSNPs.

Results
Mapping of high-confidence ASM regions in normal and neoplastic human samples

The biological samples in this study are listed in Additional file 1: Table S1, and our ap-

proaches for identifying ASM DMRs, testing mechanisms, and nominating disease-

associated rSNPs are diagrammed in Additional file 2: Figure S1A, B. The sample set

included diverse tissues and purified cell types from multiple individuals, with an em-

phasis on immune system cells, brain, carcinoma precursor lineages, and several other

normal tissues and cell types, plus a set of primary cancers including multiple myeloma,

B cell lymphoma, and glioblastoma multiforme (GBM) (Additional file 1: Table S1 and

Additional file 2: Figure S2). Since placental trophoblast has epigenetic and biological

similarities to cancers [19–23], we also analyzed unfractionated placental tissue (chori-

onic plate) and purified placental trophoblast. Agilent SureSelect methyl-seq is a se-

quence capture-based method for genome-wide bisulfite sequencing that covers 3.7

million CpGs, located in all RefSeq genes and concentrated in promoter regions, CpG

islands, CpG island shores, shelves, and DNAse I hypersensitive sites. We previously

applied this method to 13 human samples [8], and for the current study, we added

samples so that the final SureSelect series includes 24 samples of normal tissues and

purified cell types, plus one lymphoblastoid cell line (LCL; GM12878). All samples were

from different individuals, except for a trio among the brain samples consisting of one

frontal cortex (Brodmann area BA9) and two temporal cortex samples (BA37 and

BA38) from the same autopsy brain (Additional file 1: Table S1).

To further increase the number of samples and cell types, to obtain complete gen-

omic coverage, and to include cancer samples, we performed WGBS on 81 human

samples. As listed in Additional file 1: Table S1 and Additional file 2: Figure S2, the

non-cancer tissues and cell types included a set of immune system cells (T cells, B cells,

monocyte/macrophages, whole blood and whole reactive lymph node) from multiple

individuals, whole and fractionated samples including purified villous cytotrophoblast

and extravillous trophoblast from a term placenta, several normal liver samples, pri-

mary bladder and mammary epithelial cells from multiple individuals, and whole and

fractionated (NeuN-positive neurons and NeuN-negative glia) samples from cerebral

cortex of multiple autopsy cases, plus the GM12878 LCL. The WGBS series included

16 primary human cancers, comprising 3 B cell lymphomas, 7 multiple myeloma cases

(CD138+ cells from bone marrow aspirates), and 6 cases of GBM. While the two series

were mostly distinct, 5 of the non-cancer samples were analyzed by both SureSelect

and WGBS (Additional file 1: Table S1).

Numbers of mapped reads and depth of sequencing are in Additional file 1: Table S1,

and numbers of informative (heterozygous) SNPs are in Additional file 2: Figure S2. As

a quality control, we performed Principle Component Analysis (PCA) using net methy-

lation values for CpGs informative in both SureSelect and WGBS. This procedure re-

vealed the expected segregation of samples according to cell and tissue type and cancer

vs non-cancer status. It also revealed some expected findings for cell lineages, for
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example highlighting both similarities and differences in methylation patterns in the

brain cells (whole cerebral cortex, glia, neurons) and the GBMs (Additional file 2: Fig-

ure S3A). As another aspect of the quality control, when the same biological samples

were analyzed on SureSelect and WGBS, the corresponding data points clustered

closely together by PCA (e.g., the GM12878 LCL; Additional file 2: Figure S3A).

Our analytical pipeline (Additional file 2: Figure S1A, B) includes steps to identify

and rank ASM DMRs for strength and confidence and utilize the resulting maps, to-

gether with public ENCODE and related data, for investigating mechanisms. For ASM

calling, we separated the SureSelect and WGBS reads by alleles using SNPs that were

not destroyed by the bisulfite conversion, and defined ASM DMRs by at least 3 CpGs

with significant allelic asymmetry in fractional methylation (Fisher’s exact test p < 0.05).

We further required at least 2 contiguous CpGs with ASM, an absolute difference in

fractional methylation of > 20% between alleles after averaging over all covered CpGs in

the DMR, and an overall difference in fractional methylation between alleles passing a

Benjamini-Hochberg (B-H) corrected Wilcoxon p value (false discovery rate, FDR) < .05

(Additional file 2: Figure S1A, B).

Using these cut-offs, we found a good yield of recurrent ASM regions (Additional file 2:

Figure S3B), but also many more loci with ASM seen in only one sample (Additional file 2:

Figure S4A). We utilized such rare or “private” ASM loci for analyzing per-sample ASM

frequencies, but for our downstream analyses focused on mechanisms and disease associ-

ations, we required ASM in at least two samples. Using these stringent criteria, in the

combined SureSelect and WGBS dataset, after removing known imprinted loci (see

below), we found 15,112 recurrent ASM DMRs, tagged by 17,931 index SNPs, represent-

ing 0.7% of all informative SNP-containing regions with adequate sequence coverage.

These data are tabulated using the ASM index SNPs as unique identifiers, and annotated

for strength of allelic methylation differences, presence or absence of ASM for each of the

various types of samples, chromatin states, TF binding motifs, LD of the ASM index SNPs

with GWAS peak SNPs, and other relevant parameters, in Additional file 3: Table S2, with

parameter definitions in Additional file 4: Table S3.

ASM in imprinted chromosomal regions

While this study focuses mainly on non-imprinted (genotype- or haplotype-dependent)

ASM, genomic imprinting also produces ASM, due to parent-of-origin dependent

DNA methylation affecting a small number of imprinted chromosomal domains (~ 150

genes). Therefore, we used the GeneImprint database ([24]; see “Availability of data

and materials” section) and manual annotations from the literature to flag imprinted

gene regions, many of which showed ASM in the SureSelect and WGBS data, thus

serving as positive internal controls for ASM detection (Additional file 5: Table S4).

Since a hallmark of parent-of-origin dependent ASM (i.e., imprinting) is 50/50 allele

switching between individuals, to test for possible novel imprinted loci, we assessed al-

lele switching frequencies for all loci that showed ASM in non-cancer samples from 10

or more different individuals, after excluding known imprinted regions ( “Materials and

methods” section). The number of ASM DMRs decreases steeply when they are re-

quired to be found in many individuals (Additional file 2: Figure S4) because identifying

such loci requires both a high number of informative individuals and highly recurrent
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ASM. Accordingly, among the non-cancer samples, 324 ASM DMRs (corresponding to

367 index SNPs) outside of known imprinted regions were identified as showing signifi-

cant ASM in more than 10 individuals. Only 11/324 (3%) of this group of DMRs

showed allele switching at a frequency of greater than or equal to 20% of individuals. In

comparison, among ASM DMRs identified in our dataset and located in or near known

imprinted genes, a large majority (26/29; 90%) showed high-frequency allele switching,

with an approximately 50:50 ratio, as expected for parental imprinting. These results

show that WGBS is a robust method for detecting imprinted chromosomal regions,

and at the same time indicate that most of the ASM loci identified by this genome-

wide approach reflect non-imprinted ASM. Interestingly, even among the small number

of highly recurrent ASM loci with frequent allele switching in normal cells and tissues

and located outside of validated imprinted domains, some have been reported as

imprinted in humans with inconsistent findings or variability (e.g., IGF2R, IGF1R). This

small group of loci (Additional file 6: Table S5) are not pursued further here but will be

of interest for future testing of parent-of-origin dependent behavior.

Validations by cross-platform comparisons and targeted methyl-seq

Consistency in the methylation profiles of genomic regions covered by both SureSelect

and WGBS is shown in Additional file 2: Figure S3 series-wide and in Additional file 2:

Figure S5 for single DNA samples analyzed by both methods. In addition, tracks of net

methylation comparing both methods in the same biological sample revealed similar

patterns in regions that were covered by both methods (Additional file 2: Figure S6). In

the overall series, within the fraction of the genome that was adequately covered by

both methods and contained informative SNPs, we found 2005 (49.1%) shared ASM

“hits.” This substantial but partial overlap is expected, given that most ASM loci show

a significant allelic methylation bias in some but not all individuals (Additional file 3:

Table S2). In addition, some ASM DMRs passed our stringent criteria in SureSelect but

not in WGBS due to the greater sequencing depth of SureSelect in some regions. The

pairwise correlation of allelic methylation difference between the 5 samples assessed

both by SureSelect and WGBS showed that a majority (80%) of the 1203 “discordant”

but adequately covered ASM SNPs were suggestive but sub-threshold, showing either

less than 3 CpGs passing ASM criteria or a sub-threshold p value due to lack of depth

and spatial coverage, or an allelic methylation difference in the same direction with

magnitude > 10% but less than 20%.

To assess the true-positive rate for ASM calling, we selected 27 ASM DMRs, distrib-

uted through the range of ASM strength and confidence scores, for targeted bisulfite

sequencing (bis-seq). As summarized in Additional file 7: Table S6, this validation pro-

cedure confirmed the presence of ASM in two or more independent biological samples,

outside of those utilized for the genome-wide series, with no discordance in the ob-

served direction of the allelic methylation bias between the genome-wide methylation

sequencing data and the targeted bis-seq, in 22 of the 27 DMRs assayed (examples in

Additional file 2: Figure S7-S10). For 4 of the 5 remaining loci, the presence of ASM

was confirmed by targeted bis-seq using DNA from a sample (index case) that had

shown ASM in the primary SureSelect or WGBS series. The single non-validated ASM

DMR had a weak overall rank, but other examples in the lower tertile of ranks were
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validated (Additional file 7: Table S6). Since our calculation of overall rank incorporates

both the ASM strength and the percentage of heterozygotes showing ASM, rare indi-

viduals can show strong ASM even in loci with weak overall ranks (Additional file 2:

Figure S10). The high overall validation rate, 81% using biological samples outside the

primary genome-wide series, and 96% including independent technical validations on

index samples from the primary series, indicates a high true-positive rate of the

genome-wide data. Nonetheless, although the current dataset provides dense and reli-

able maps of ASM, it is still non-saturating; with inclusion of more individuals and

greater sequencing depth, more ASM DMRs will be identified—particularly those

tagged by rare SNPs or having a narrow cell type-specificity or low ASM magnitude.

ASM is increased in cancers due to widespread allele-specific CpG hypomethylation and

focal allele-specific CpG hypermethylation in regions of poised chromatin

As shown in Fig. 1a, when the numbers of ASM index SNPs per sample based on

WGBS were normalized to the numbers of informative SNPs and the samples classified

by normal vs cancer status, the number of ASM DMRs in the cancers overall was on

average 5-fold greater than in the overall group of non-neoplastic samples (Wilcoxon

p = 1.7 × 10−7). The differences in frequency of ASM between cancer and non-cancer

were greater when compared using cell lineage-matched samples, non-neoplastic B

cells for comparing to the B cell lymphomas and multiple myelomas, and non-

neoplastic glial cells for comparing to the GBMs. Compared to these lineage-matched

normal cell types, the average fold increase in ASM was 5-fold for multiple myeloma,

8.5-fold for the B cell lymphomas, and 9-fold for the GBMs.

Since placental trophoblast is unique in having a cancer-like epigenomic profile

[21–23], we also compared the per-sample ASM frequencies in cancers vs all

normal somatic cells and tissues, excluding placenta and trophoblast, which

revealed a 7-fold greater frequency of ASM in the cancers (Wilcoxon p = 1.4 ×

10−9), The EBV-transformed lymphoblastoid line (GM12878), which we had

included to allow a direct reference to ENCODE data, showed a frequency of ASM

in the mid-neoplasia range (Fig. 1a), which is important since much existing allele-

specific mapping data, including expression and methylation quantitative trait loci

(eQTLs, meQTLs) and allele-specific TF and CTCF binding by ChIP-seq (ASB) are

from LCLs.

Given the well-known trend toward lower genome-wide (“global”) DNA methyla-

tion in human neoplasia [25, 26], to valuate mechanisms that could account for

the gain of ASM in the cancers, we asked whether there might be an inverse cor-

relation between global methylation levels and frequencies of ASM. Global genomic

hypomethylation was found in the GM12878 LCL and in the three types of pri-

mary cancers in our series (Fig. 1a and Additional file 2: Figure S10). As expected

from prior studies by us and others [8, 21, 23], the placental tissue and purified

trophoblast also showed global hypomethylation. Kernel density plots showed dif-

fuse hypomethylation with nearly complete loss of the high methylation peak (frac-

tional methylation > 0.8) in lymphoma and myeloma compared to B cells, and a

less dramatic but still significant hypomethylation in the GBMs compared to nor-

mal glia (Additional file 2: Figure S11).
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Across the entire series of cancer and non-cancer samples, we found a strongly sig-

nificant anti-correlation (i.e., inverse correlation) between per-sample ASM frequencies

and global CpG methylation levels (Spearman’s rho = − 0.6; p = 2.1 × 10−9). Importantly

from a technical standpoint, this fundamental result was confirmed when we restricted

our analysis to the WGBS data from a single sequencing facility using a single library

preparation protocol (Additional file 2: Figure S12A). Arguing for global hypomethyla-

tion, not the malignant phenotype per se, as a main driving factor for increased ASM,

the EBV-immortalized but euploid GM12878 LCL showed global hypomethylation and

a high frequency of ASM, and among the non-neoplastic and non-immortalized sam-

ples, those that were relatively hypomethylated, namely the placental trophoblast and,

to a lesser degree, the bladder epithelial cells that had been expanded in tissue culture,

showed relatively higher per-sample frequencies of ASM (Fig. 1b).

To investigate how global hypomethylation could lead to increased ASM in can-

cers, we assessed the absolute and relative methylation levels of each of the two

Fig. 1 ASM is increased in cancers and correlates with global DNA hypomethylation. a Relationship between global
DNA methylation and the percentage of SNPs that reveal ASM in each sample, showing a strong inverse correlation
between per sample ASM frequencies and global methylation levels. Cancer samples (color-coded in red scale) have
higher ASM frequencies than nearly all the non-cancer samples (color-coded in blue scale), except for partial overlap
of the GBM ASM frequencies with those of normal placental trophoblast and cultured bladder epithelial cells. When
compared to lineage-matched normal cell types, there is a 5- to 9-fold higher frequency of ASM in the cancers. The
EBV-immortalized but euploid GM12878 LCL shows global hypomethylation and a high frequency of ASM. b
Zoomed-in graph showing an inverse correlation of ASM frequencies with global methylation, even when focusing
on the non-cancer samples. p values are from Wilcoxon tests. *EBV-immortalized GM12878 LCL is grouped with the
cancers. **Mammary epithelial cell lines (N=3) and epithelium-rich normal breast tissue (N=2). ***Includes purified T
cells, B cells, and monocytes/macrophages (Additional file 1: Table S1)

Do et al. Genome Biology          (2020) 21:153 Page 7 of 39



alleles across instances of ASM in the cancer samples, comparing myelomas and

lymphomas to non-neoplastic B cells, and GBMs to normal glial cells. For each

comparison, only the ASM-tagging index SNPs that were informative (heterozy-

gous) in both cell types were considered, and we focused on loci showing ASM in

the cancers but not in the cell lineage-matched non-neoplastic samples. We

assessed the relative methylation levels of the low and high methylated alleles of

these instances using a mixed linear model to estimate the average methylation

level of each allele in each cell type taking into account the ASM magnitude in

each cell type and the difference in ASM magnitude between cell types. As shown

in Fig. 2 and Additional file 2: Figure S13, this approach revealed that the average

configuration was a relative loss of methylation (LOM) on one allele in the can-

cers. In 72% of cancer-only ASM occurrences in myelomas, 76% in lymphomas,

and 49% in GBMs, a strongly “hypermethylated/hypermethylated” configuration of

the two alleles (“black/black”) in non-cancer became a “hypomethylated/hyper-

methylated” (“white-gray/black”) configuration in cancer (Fig. 2). The terminology

here is a practical shorthand: “LOM” does not mean to imply that the normal cell

types evolve into cancers; it simply indicates the direction of the change in com-

paring the allelic methylation levels in the cancer vs cell lineage-matched non-

cancer samples. Similarly, “cancer-only ASM” does not mean to imply that ASM at

a given locus will never be detected in any non-cancer sample in future studies; it

simply refers to the loci that have ASM in one or more cancer samples and in

none of the non-cancer samples in the current dataset.

While the inverse correlation between per-sample ASM frequencies and global

methylation is unequivocal, a multivariate regression analysis suggested that add-

itional mechanisms might also be at play. This analysis showed that the anti-

correlation between global methylation and per-sample ASM frequencies is partly

independent of neoplastic status (p = 9.4 × 10−5 after controlling for neoplastic sta-

tus), and conversely, that the higher ASM frequencies in the cancers are only

partly explained by global methylation levels (p = 2.5 × 10−4 after controlling for

methylation levels). In fact, while most of the cancer-only ASM loci conformed to

the allele-specific LOM model, we found smaller but still substantial sets of loci

(16% to 25% in the three cancer types) in which ASM in the cancers reflected

allele-specific gains of methylation (GOM), relative to a biallelic low methylation

configuration of the same regions in the lineage-paired normal samples (Fig. 3 and

Additional file 2: Figure S14).

To further characterize this interesting set of loci with allele-specific GOM in the

cancers, we compared the genomic and regulatory features among these loci to the

background features of all informative loci using logistic regressions. As a comparison,

we performed the same analyses for ASM loci that showed allele-specific losses of

methylation in the cancers. This procedure revealed very strong over-representation of

the poised “bivalent” promoter state among the ASM DMRs with allele-specific GOM

in the cancers, compared both to ASM loci overall (OR = 1.7; p = 4.1 × 10−26) and to

ASM loci with allele-specific LOM in the cancers (OR = 40; p < 10−999); Fig. 3. Poised

promoters, as annotated by ENCODE chromatin state, are marked by the simultaneous

presence of active histone marks, H3K4me3 and H3K4me2, and the repressive mark

H3K27me3. Such regions are known to sometimes exist in a poised state in non-
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Fig. 2 Gains of ASM in cancers due to widespread allele-specific LOM. a Schematic showing the average
configurations for allelic methylation levels in non-cancer and cancer samples at loci where ASM was observed
only in cancer. Cancer samples are compared to lineage-matched non-cancer cell types. Average fractional
methylation was estimated using a linear mixed model with random intercept and random slope (the “Materials
and methods” section). For each sample type, the squares represent the model estimate of the average fractional
methylation in the low and high methylated alleles. b Examples showing primary WGBS data. For the three types
of cancers, the most frequent situation is an allele-specific LOM occurring in the cancers at loci that are highly
methylated in the lineage-matched normal cell types. Methyl-seq reads separated by REF and ALT allele.
Methylated CpGs are black and unmethylated CpGs are white. c Distribution of net methylation levels in normal B
cells (left) and glia (right) grouped into 3 classes (low, intermediate and high methylation) at all informative CpGs
(random expectation) and at CpGs where ASM was observed in the cancers but not in the matched non-cancer
samples. While allele-specific LOM in cancer accounts for most instances of cancer-only ASM (black bars; high
methylation in the normal samples), relative to the background of global hypomethylation in the cancers, it occurs
less often than random expectation. In contrast, the smaller group of loci that have GOM leading to cancer-only
ASM (white bars; low methylation in the normal samples) show a significant enrichment over random expectation,
given the globally hypomethylated genomic background of the cancers
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neoplastic stem cells [27] and can transition to a CpG-hypermethylated repressed state

in cancer cells that acquire de-differentiated or stem cell-like phenotypes [28].

For completeness, using a similar statistical approach and mixed model for the

set of ASM occurrences that were shared by cancer and non-cancer samples, we

asked whether ASM might be not only more frequent in cancers, but also stronger.

We found no significant differences in average ASM magnitude between cancer

and non-cancer ASM loci (Additional file 2: Figure S15).

Fig. 3 Gains of ASM in cancers due to allele-specific GOM at loci in poised chromatin. a Graph showing
enrichment in the poised promoter state as defined using ENCODE chromatin state segmentation by HMM.
Although enrichment in poised promoter state is observed among ASM regions in general, this enrichment
is dramatically increased among the subset of loci that show allele-specific GOM in cancers compared to
cell lineage-matched normal samples. b Map of the FOXB1 locus showing an example of allele-specific
GOM in multiple myeloma overlapping a CpG-island region with a poised promoter chromatin state (color
coded purple). Methylation differences between alleles (index SNP rs62013139) are shown as a genome
browser track and as WGBS reads for CD138+ multiple myeloma cells from a bone marrow aspirate, which
show strong ASM with hypermethylation of the REF allele, and a paired peripheral blood non-neoplastic B
cell sample from the same patient, which shows very weak ASM with slight hypermethylation of the
ALT allele
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Enrichment for chromatin states suggests mechanistic similarities between cancer and

non-cancer ASM

Different chromatin states, and different classes of binding sites for TFs and CTCF, can

be associated with specific patterns of CpG methylation [29–33]. Among the ASM

DMRs found in the non-cancer samples, enrichment of active and poised promoter re-

gions and enrichment of the poised/bivalent enhancer state are strong, the active tran-

scription state is slightly enriched, and quiescent chromatin is depleted, relative to the

background of adequately covered genomic regions (Table 1). This over-representation

of promoter/enhancer elements among ASM DMRs suggests that ASM may contribute

to inter-individual differences in gene expression—a conclusion that is supported by

our observation of enrichment for eQTLs in ASM DMRs (Table 1). Using chromatin

state data from the Roadmap Epigenomics project [34], which is available for T cells

CD3, T cells CD4, T cells CD8, B cells, monocytes, cerebral cortex, and the GM12878

cell line, we tested chromatin state enrichment among ASM index SNPs separately in

each of these tissues and cell types and found that each of the major enrichments is

shared across these tissues and cell types. This finding suggests that while ASM maps

are partly tissue-specific (see below) the ASM is produced by shared underlying

mechanisms.

To assess similarities and differences in the characteristics of ASM in cancer vs non-

cancer, we took two approaches: first, we tested for enrichment of chromatin states

among ASM loci that were detected only in cancers (“cancer-only” ASM; observed in

at least 2 cancer samples but in none of the non-neoplastic samples) and ASM loci de-

tected in non-cancer samples (“normal ASM”; present in at least one non-cancer sam-

ple, but allowing ASM in cancers as well), separately using bivariate logistic regression

and second, testing the differential enrichment between the two groups using multivari-

ate regressions including the interaction term between ASM and cancer status. Both

approaches showed that ASM DMRs in cancer and non-cancer show a parallel enrich-

ment in all the strongly enriched chromatin states, albeit with some differences among

the less strongly enriched features (Table 1). These findings suggest that the basic

mechanisms leading to ASM are similar in non-neoplastic and neoplastic cells—a con-

clusion that is further supported by analysis of correlations of ASM with SNPs in CTCF

and TF binding sites, described below.

ASM correlates with allele-specific binding affinities of specific CTCF and TF recognition

motifs in both cancer and normal samples

The hypothesis that allele-specific TF binding site occupancy (ASB) due to sequence

variants in regulatory elements could be a mechanism leading to ASM has been sup-

ported by previous data from us and others [8, 10, 11]. To test this hypothesis using

denser maps, and to ask whether this mechanism might underlie ASM in both normal

and neoplastic cells, we analyzed the set of ASM loci for enrichment of sequence motifs

recognized by classical TFs, and motifs recognized by CTCF, which defines the insula-

tor chromatin state and regulates chromatin looping [35–37]. Previously, we showed

that ASM DMRs can overlap with strong CTCF ChIP-seq peaks and polymorphic

CTCF binding sites [8, 38]. In our expanded dataset, we used atSNP to identify CTCF

motif occurrences where the ASM index SNP not only overlaps a CTCF motif but also
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significantly affects the predicted binding affinity, as reflected in the Position Weight

Matrix (PWM) score. For this analysis, we required a significant difference in binding

likelihood between the two alleles (FDR < 0.05) and a significant binding likelihood

(p < 0.005) for at least one of the alleles (reflecting potential CTCF occupancy of at least

one allele). We identified 3.075 ASM SNPs (17%) that significantly disrupted at least

one of the canonical or ENCODE-discovery CTCF motifs [36] (http://compbio.mit.edu/

encode-motifs/). To estimate the random expectation of polymorphic CTCF motif oc-

currences in the genome (the background frequency), we ran atSNP on a random sam-

ple of 40,000 non-ASM informative SNPs (1:3 ASM vs non-ASM SNP ratio) and found

that 8.4% of these non-ASM informative SNPs significantly disrupted a CTCF motif,

corresponding to a substantial enrichment for disrupted CTCF motifs among ASM

SNPs (OR = 2.3; p value = 10−218).

Table 1 Enrichment analysis for mechanistically relevant features reveals similarities between
normal and cancer ASM

Parameter Normal ASMa

(N = 13,069)
OR
(p value)

Cancer ASMb

(N = 4361)
OR (p value)

Same direction in
cancer vs normal
ASM?

Enrichment strength
in cancer vs. normal
OR (p value)

ASM SNP is an ASB SNP 14.5 (< 1 × 10−999) 5 (3.1 × 10−32) Yes: enriched 0.3 (2.8 × 10− 13)

Poised promoter 5.1 (< 1 × 10− 999) 5.6 (< 1 × 10− 999) Yes: enriched 1.1 (0.069)

Polymorphic TFBS motifc 4.9 (2 × 10− 184) 2 (3.7 × 10− 34) Yes: enriched 0.4 (6.4 × 10−28)

Weak promoter 4.4 (< 1 × 10− 999) 3.5 (3 × 10− 290) Yes: enriched 0.8 (5.9 × 10−10)

Active promoter 4.1 (< 1 × 10− 999) 3.9 (2 × 10− 238) Yes: enriched 1 (0.44)

Correlated polymorphic
TF binding motifc

3.7 (< 1 × 10−999) 0.8 (0.3 × 10−4) NO 0.2 (3 × 10− 106)

Weak/poised enhancer 2.7 (< 1 × 10−999) 1.5 (8.9 × 10− 45) Yes: enriched 0.6 (1.4 × 10− 58)

Repetitive sequences 2.2 (3.8 × 10− 76) 1.9 (9.6 × 10− 16) Yes: enriched 0.9 (0.083)

ASM SNP is eqtl SNP 2.2 (1.2 × 10−92) 1.9 (4.7 × 10−21) Yes: enriched 0.9 (0.11)

Strong enhancer 2.2 (< 1 × 10−999) 1.3 (1.1 × 10−14) Yes: enriched 0.6 (6.1 × 10−34)

ASM SNP is GWAS peak SNP 2 (2.2 × 10−32) 2 (9.1 × 10−12) Yes: enriched 1 (0.97)

Insulator element 2 (5 × 10−214) 1.5 (9 × 10−19) Yes: enriched 0.7 (5.11 × 10−11)

Polycomb repressed 2 (< 1 × 10−999) 1.9 (2 × 10−103) Yes: enriched 1 (0.22)

ASM SNP in stringent block
with GWAS peak SNP
(autoimmune/inflammatory)

1.5 (1.7 × 10−17) 1.3 (0.0043) Yes: enriched 0.9 (0.13)

ASM SNP in stringent block
with GWAS peak SNP (cancers)

1.5 (3.8−15) 1.6 (9.5 × 10−9) Yes: enriched 1.1 (0.39)

ASM SNP is GWAS peak or LD
Rsq > =0.8

1.5 (3.7 × 10−40) 1.4 (2.1 × 10−9) Yes: enriched 0.9 (0.2)

Active transcriptional
state (txn)

1.3 (9.1 × 10−47) 1 (0.18) No 0.7 (1.1 × 10−17)

ASM SNP in stringent block
with GWAS peak SNP
(all diseases/phenotype)

1.2 (1.7 × 10−13) 1.1 (0.0019) Weak 1 (0.34)

Quiescent chromatind 0.3 (3 × 10− 274) 0.6 (9.5 × 10−35) Yes: depleted 1.9 (2.1 × 10−30)

Chromatin deserte 0.2 (< 1 × 10−999) 0.5 (3.3 × 10−82) Yes: depleted 3.1 (4 × 10−124)
a“Normal ASM” is ASM in at least one non-cancer sample, allowing ASM in cancer samples
b“Cancer ASM” is ASM present in cancer samples (including GM12878 LCL), but not in any normal sample
cEnriched and correlated motifs determined on the complete set of ASM SNPs
dHeterochromatin in at least one cell lines and no other states observed in the other cells
eChromatin desert defined in the “Materials and methods” section

Do et al. Genome Biology          (2020) 21:153 Page 12 of 39



As noted in our previous smaller study [8], in the enlarged dataset, this overall en-

richment of CTCF motif-disrupting SNPs among ASM loci persists, albeit slightly

weaker, when considering only non-CpG-containing polymorphic CTCF motif in-

stances (OR = 1.8; p = 6.3 × 10−34). When testing enrichment separately for each of the

14 distinct ENCODE/JASPAR-defined CTCF motifs, we found significant enrichment

for 13 of them (Additional file 8: Table S7). Moreover, as shown in Fig. 4, Additional

file 2: Figure S16, and Additional file 9: Table S8, the difference in binding affinity score

between alleles is significantly anti-correlated (i.e., inversely correlated) with the differ-

ence in methylation for three of these motifs, and these correlations persist after adjust-

ment for the presence or absence of CpGs in the motif occurrences in a multivariate

model. Thus, consistent with our previous conclusions in the smaller dataset, which re-

quired motif pooling [8], these results from individual motif classes show that the pres-

ence of a methylatable CpG in the CTCF binding motif is not required; rather, the

essential feature is allele-specific binding site occupancy.

Like CTCF, classical TFs could account for instances of ASM via ASB. When we

scanned each ASM SNP for all ENCODE/JASPAR defined TF motifs [39], we found 17,

022 (95%) recurrent ASM SNPs disrupting at least one TF binding site occurrence,

representing a significant enrichment compared to the 32,790 (82%) such disruptions

in the 40,000 SNP randomized non-ASM background set. Of these ASM SNPs, 12,853

overlapped at least one ENCODE DNase I hypersensitive site and 3044 at least one EN-

CODE cognate ChIP-seq TF peak. From a panel of 2263 TF motifs with at least 10 oc-

currences, we found 856 motifs with a specific enrichment (OR > 2 and FDR corrected

q value < 0.05, compared to the random sample of 40,000 non-ASM informative SNPs)

among ASM DMRs (Additional file 8: Table S7). Next, using linear regression of allele-

specific binding affinity (PWM) score differences on allele-specific CpG methylation

differences, we found 177 TF binding motifs, corresponding to 115 cognate TFs, where

DNA methylation appears to be shaped by binding site occupancies (Fig. 4, Additional

file 2: Figure S12 and S16, Additional file 9: Table S8, and Additional file 10: Table S9).

Among these motifs, 144 also showed significant enrichment among ASM loci (Add-

itional file 10: Table S9). Regarding the motif classes that are significantly enriched

among ASM index SNPs but do not show significant correlations of PWM scores with

ASM magnitude, it is likely that some simply have too few ASM occurrences in the

current dataset to achieve significance in the correlation analysis.

Using stringent statistical criteria (FDR < 0.05 and R2 ≥ 0.4), all but two of the TF mo-

tifs that were correlated with ASM show inversely correlated behavior, such that a rela-

tively higher binding likelihood (stronger PWM score) correlates with CpG

hypomethylation (Additional file 9: Table S8, examples in Fig. 4 and Additional file 2:

Figure S12 and S16). Multivariate linear regression of the 158 (out of 177) significantly

correlated motifs with at least three CpG-containing and three non-CpG-containing

occurrences revealed that these inverse correlations between binding affinity scores and

methylation levels persist after adjustment for the presence or absence of CpGs in the

motifs. Like the findings for CTCF sites, these results suggest that ASM regions form

around polymorphic TF binding sites because of allele-specific differences in binding

site occupancy (ASB), not requiring a methylatable CpG in the binding motif.

Lastly and importantly, we tested for enrichment of TF and CTCF binding motifs

and correlations of ASM with predicted binding affinities separately in the sets of ASM
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loci that were detected only in the cancers (including the GM12878 LCL) vs those

found in the total group of non-cancer samples. We also analyzed the full set of ASM

loci using a multivariate mixed model to test for interactions of normal vs cancer status

with the TF binding site affinity to ASM strength correlations. The results showed that

ASM loci in cancer and non-cancer samples have similar directions of the correlations

of ASM with destructive SNPs in the top-ranked classes of polymorphic TF binding

motifs (Fig. 4 and Additional file 2: Figure S16), which indicates sharing of this

Fig. 4 ASM is driven by allele-specific CTCF and TF binding in both normal and neoplastic cells. a X-Y plots
showing examples of TF motifs with strong correlations between predicted allele-specific binding site
affinities (PWM scores) and methylation differences across all occurrences showing ASM. These examples
are among 179 significantly correlated motifs (Additional file 9: Table S8). Each data point represents one
occurrence of the motif overlapping an ASM index SNP in cancer (orange) or non-cancer samples (blue).
For occurrences showing ASM in multiple samples, allelic methylation differences were averaged across
samples by sample type. R2 and B-H corrected p values (FDR) were calculated using linear regression. b
Most of the polymorphic motifs with significant correlations between allelic methylation and predicted
binding affinities are also enriched among ASM regions (Additional file 10: Table S9). The heatmap shows
the enrichment or depletion, in log2(OR), for the top 10 enriched TF binding motifs among cancer or non-
cancer ASM loci in regions defined as chromatin desert or non-desert (the “Materials and methods”
section). c Significant correlations between allelic TF binding affinity scores and ASM in each of the 4
classes of ASM loci. The graph shows the fitted ASM difference on PWM score using a multivariate mixed
model. The fitted line and its 95-confidence intervals (area) are shown for each ASM class; slopes were
calculated by the marginal effects of the interaction term between PWM score and ASM class and were
significantly different from zero. The correlations are similar in cancer ASM (in both non-desert and desert)
compared to non-cancer ASM, with only small differences in the slopes for each class
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fundamental mechanism of ASM in normal and cancer cells. This key result was con-

firmed when we restricted our analyses to the data from a single sequencing facility

using a single library construction method (Additional file 2: Figure S12B, C). However,

the correlations between predicted TF binding site affinities and ASM amplitude were

slightly weaker on average (shallower slope in the X-Y plot) among the cancer-only

ASM loci (Fig. 4 and Additional file 2: Figure S16), and ASM-correlated motifs were

not enriched among these loci (Table 1). These findings are explained by the presence

of a subgroup of cancer-only ASM loci that show allele-switching (see below).

Direct testing of the TF binding site occupancy mechanism of ASM

As a crucial validation, using our GM12878 SureSelect and WGBS data and the

large number of ENCODE ChIP-seq experiments available for this cell line, we

could directly ask whether ASM regions with or without polymorphic CTCF and

classical TF binding sites exhibit allele-specific binding of the cognate factors.

Among the 2102 high-confidence ASM index SNPs from our GM12878 data, 787

overlapped at least one ChIP-seq peak in this cell line and had enough ChIP-seq

reads (> 10×) to assess allele-specific binding of at least one ENCODE-queried TF.

We found that 16.6% (131) of these ASM index SNPs showed ASB for at least one

TF that could be assessed using available ENCODE data. As predicted from the

binding site occupancy hypothesis for ASM, at 100 (76%) of these sites, considering

both CTCF and TF motifs, the hypomethylated allele showed significantly greater

occupancy. This percentage far exceeds random expectation (exact binomial test,

p = 1.2e10−9). Confirming this pooled analysis, among 9 TFs with more than 10

ASB occurrences associated with ASM, 7 examples, including the ELF1 (ETS-fam-

ily) motif and others, showed a significant enrichment in ASM occurrences with an

inverse correlation of predicted binding affinity with allelic CpG methylation (ASB-

ASM instances with inverse correlation: 90–100%, FDR < 0.05).

Somatic mutations in TF binding sites can produce ASM in human cancers

To more completely understand the features of ASM in cancers, and to further

test the hypothesis that destructive SNPs in TF binding motifs give rise to ASM,

we searched for somatic mutations in the 4 multiple myeloma cases that were

paired with non-neoplastic peripheral blood B cells from the same patients (ana-

lyzed using the same WGBS library protocol to ensure similar regional coverage

depth) which served as germline reference sequences. We found somatic mutations

at frequencies of 499 to 1023 per case, and among these mutations from 6 to 17%

were associated with gains of ASM (referred to here as “de novo ASM,” examples

in Fig. 5). We next filtered out mutations situated within 1 kb of known ASM

index SNPs that had already been seen in other samples, since such instances

might simply be uncovering normal ASM by conferring heterozygosity in regions

that were non-informative in the patient’s germline sequence. Using the filtered list

of 410 de novo ASM occurrences, we asked whether the somatic mutations associ-

ated with de novo ASM might be disrupting TF binding motifs at a frequency

greater than random expectation. We found a significant enrichment (OR > 2 and

p < 0.05) for 54 TF binding motifs among the de novo ASM occurrences, compared
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to the representation of these motifs among all the somatic mutations that were

not associated with ASM. Even more convincingly, we found that a majority (71%)

of the TF binding site motif classes that were enriched among instances of de novo

ASM belonged to the same motif classes that were enriched among the much lar-

ger set of ASM loci that were tagged by germline SNPs (OR = 3.6, p value = 6.3 ×

10−4; examples in Fig. 5). Thus, while mutation-associated de novo ASM does not

make a large numerical contribution to the overall gains of ASM in cancer vs non-

cancer, this special phenomenon is informative in emphasizing the shared under-

lying mechanism, namely TF binding motif disruption or creation, for ASM in can-

cer and normal cells.

ASM DMRs are found both in active chromatin and in quiescent “chromatin deserts”

For post-GWAS mapping of rSNPs, much attention has been appropriately focused on

cataloging SNPs that are expression quantitative trait loci (eQTLs) and/or lie within re-

gions of ASB. Such efforts are aided by databases such as AlleleDB for allele-specific

marks [40–42], and RegulomeDB [43, 44], which highlights potential rSNPs in non-

coding regions by assigning a score to each SNP based on criteria including location in

regions of DNAase hypersensitivity, binding sites for TFs, and promoter/enhancer re-

gions that regulate transcription. Our cross-tabulations indicate that, despite a strong

enrichment in ASB SNPs among ASM index SNPs (Table 1), most of the ASM index

SNPs (> 95%) in our expanded dataset currently lack ASB annotations (Additional file 3:

Table S2). In addition, index SNPs for strong ASM DMRs sometimes have weak Regu-

lomeDB scores (Additional file 3: Table S2). Thus, from a practical standpoint with

existing public databases, ASM mapping for identifying rSNPs appears to be largely

non-redundant with other post-GWAS modalities.

To further assess the unique value of ASM mapping, we defined “chromatin des-

ert” ASM regions as 1 kb genomic windows, centered on ASM index SNPs, that

contained no DNAse peaks or only one DNAse peak among the 122 ENCODE cell

lines and tissues, and no strong active promoter/enhancer, poised, or insulator

chromatin state in any ENCODE sample. Less than 55% of such regions have SNPs

listed in RegulomeDB, and when they are in that database, they almost always

(93%) have weak scores equal to or greater than 5 (Additional file 3: Table S2).

While most ASM loci map to active chromatin and are depleted in desert regions

overall (Table 1), we find that 8% of ASM index SNPs in normal cells and 22% of

cancer-only ASM SNPs are in chromatin deserts (Table 1 and Additional file 3:

Table S2). Although deserts lack evidence of TF and CTCF binding in available da-

tabases, ASM DMRs found in these regions might be informative for localizing

bona fide rSNPs if some desert regions contain cryptic binding motifs that were

active (occupied) at an earlier point in the history of the cell.

To address this possibility, we asked whether correlations of ASM with destructive

SNPs in TF binding motifs might also pertain to ASM in desert regions. We analyzed

the full set of ASM loci using a multivariate mixed model to test for interactions of

normal vs cancer status and desert vs non-desert location (i.e., 4 classes of ASM loci)

with the TF binding site affinity to ASM strength correlations. Some motifs, such as

CTCF binding sites, were highly depleted in deserts and therefore excluded from the

Do et al. Genome Biology          (2020) 21:153 Page 16 of 39



analysis, which was performed on the subset of 74 TF motifs that had at least three oc-

currences per ASM class. The correlations, when significant (FDR < 0.05), were in the

same direction (inverse correlation of predicted binding affinity with allelic methyla-

tion) in all ASM classes. As expected from the findings above, we observed a slightly

weaker correlation for cancer-only ASM loci compared to ASM loci in non-cancer

samples. However, no differences in the strength of the correlations were found when

comparing ASM occurrences in desert versus non-desert locations, both for normal

and cancer-associated ASM loci. The simplest hypothesis to explain these results is that

ASM DMRs in desert regions are footprints left by rSNPs that disrupt cryptic TF bind-

ing sites that were active at some stage of normal or neoplastic cell differentiation (or

de-differentiation) but are no longer active in available cells or tissue types. Additional

file 2: Figure S17 shows examples of ASM DMRs in desert regions that contain disrup-

tive SNPs in ASM-correlated ETS- and ERG-family TF binding motifs.

Fig. 5 Examples of de novo ASM associated with somatic mutations in cancers. a Map of the de novo ASM
region tagged by a somatic mutation at chr2:128663542 in case SUB006. The mutation is intergenic
between AMMECR1L and SAP130. It overlaps a poised chromatin region and creates a de novo binding
motif for the MAF TF, with a higher binding affinity on the mutated allele than on the reference (germline)
allele. The graphical representation of the WGBS data shows strong ASM with less methylation on the
mutated allele. The reference allele shows similar methylation (high) in both the myeloma and paired B
cells. b Map of the de novo ASM region tagged by the somatic mutation at chr11:12692969, also in case
SUB006. The mutation is intergenic downstream of PARVA and upstream of TEAD1. It overlaps an active
enhancer chromatin region and creates a de novo binding motif for HOXA4 with a higher binding affinity
on the mutated allele than on the reference (germline) allele. The graphical representation of the WGBS
data shows strong ASM with lower methylation on the mutated allele. The reference allele showed a similar
methylation (high) in both the myeloma and paired B cells. For these two motifs, the occurrences map to
the negative strand and are oriented 3′ to 5′ per atSNP convention
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Allele-switching at ASM loci is infrequent in normal samples but increased in cancers

Most of the ASM DMRs passed statistical cutoffs for ASM in less than half of the in-

formative samples (Additional file 3: Table S2), with variability not only between cell

types and cancer status but also within a single cell type. Given the connection between

TF binding site occupancies and ASM, one hypothesis to explain this variability invokes

differences in intracellular levels of TFs (Additional file 2: Figure S18A). Alternatively,

genetic differences (i.e., haplotype effects due to the influence of other SNPs near the

ASM index SNP) could also play a role (e.g., Additional file 2: Figure S18B). A more ex-

treme form of variation was observed at some ASM loci, namely “allele switching” [8],

in which some individuals have relative hypermethylation of Allele A while others show

hypermethylation of Allele B, when assessed using a single index SNP. Some instances

of allele switching reflect haplotype effects [8] or parental imprinting, but other occur-

rences might have other explanations. In this regard, a striking finding in the current

dataset is that the frequency of allele switching among ASM loci in normal samples is

low (14%), while the rate of allele switching is strikingly higher (43%) among cancer-

only ASM loci (Fig. 6). This finding suggests that biological states, here neoplastic vs

non-neoplastic, can influence the stability of ASM, with greater epigenetic variability or

instability in the cancers.

To investigate this variability, we compared the features of ASM DMRs that showed

allele switching versus those that did not. As shown in Fig. 6c, the sets of ASM index

SNPs for two classes of loci differed significantly in the relative representation of spe-

cific CTCF and TF binding motifs, such that the CTCF_1 motif and nearly all of the

most strongly ASM-correlated classical TF binding motifs were markedly under-

represented among the switching loci. Reinforcing this finding, ASM loci that were

highly recurrent across multiple normal cell types and individuals showed a low fre-

quency of switching, even when these loci had ASM in some cancers (Additional file 2:

Figure S19).

These results suggest a working model that posits two classes of binding motif occur-

rences. One group of motif occurrences stably bind their cognate TFs when the motif

sequence is optimal but are sensitive to the effects of destructive SNPs in the motif.

These motif occurrences therefore show strong unidirectional correlations of PWM

scores with ASM, independently of the neoplastic cellular phenotype. Another group of

motifs is postulated to have more labile binding of their cognate TFs, are sensitive to

changes in the intracellular levels of their cognate factors, and can participate in ASM

allele switching, via “TF competition.” According to this model (Additional file 2: Fig-

ure S18C), in situations with adequate chromatin accessibility, there can be replace-

ment of one TF by another more highly expressed one that recognizes a nearby or

overlapping DNA sequence motif. The credibility of this hypothesis is supported by the

well-known over-expression of various oncogenic TFs in cancer cells, and by data indi-

cating that global DNA hypomethylation in transformed cells is associated with in-

creased chromatin accessibility at regulatory elements [34, 45].

ASM index SNPs in LD or precisely coinciding with GWAS peak SNPs

For assessing ASM as a signpost for rSNPs in disease-associated chromosomal regions,

we defined lenient and stringent haplotype blocks by applying the algorithm of Gabriel
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et al. [46], using 1000 Genomes data and employing D-prime (D′) values, both with

standard settings utilizing high D′ and R-squared (R2) values to define “stringent”

blocks (median size 5 kb) and with relaxed R2 criteria to define larger “lenient” blocks

with a median size of 46 kb (Additional file 2: Figure S20 and S21). We also calculated

R2 between each ASM index SNP and GWAS peak SNP to identify SNPs in the same

Fig. 6 Increased allele switching at ASM loci in cancers. aMap of the ASM region tagged by SNP rs11864188 in the
PKD1L3 gene. The ASM shows allele switching, with the ALT allele being hyper-methylated in the FL but with an
opposite direction of the allelic methylation bias in the DLBCL. No ASM was detected in 23 non-cancer heterozygous
samples. The rs11864188 SNP disrupts multiple TF motifs, some of which have opposite allele-specific predicted
affinity differences, including MYC and ABF1 motifs with a higher affinity on the ALT allele and RXRA and NR4A2
motifs with a higher affinity on the REF allele. The MYC motif maps to the negative strand and is oriented 3′ to 5′.
b Frequency of switching, scored for ASM index SNPs that were heterozygous in > 2 samples, is increased among
cancer-only ASM loci (43%) compared to ASM loci found in normal samples (10%). As a control, ASM index SNPs
mapping to imprinted regions showed 46% switching, approximating the expected 50% based on parent-of-origin
dependent ASM. c Enrichment analyses of CTCF and TF binding motifs among switching vs non-switching ASM loci:
in the left panel, polymorphic motifs with strong correlations between ASM magnitude and affinity score differences
are found to be depleted among switching compared to non-switching ASM loci. In the right panel, polymorphic TF
motifs enriched among ASM but with little or no correlations of predicted binding affinity with ASM magnitude
showed little or no depletion among switching ASM loci. The solid vertical lines represent zero (no enrichment or
depletion), and the dotted lines show the average values for depletion for each set of motifs
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haplotype block and with high R2, plus SNPs in strong LD located in genomic regions

that lacked a haplotype block structure. We took this two-fold approach because (i) R2

can fail to identify SNPs in perfect LD when rare mutations have occurred over time

on pre-existing common alleles in the population—a situation that can have a high D′,

and (ii) for some loci, the combined effect of multiple regulatory SNPs, some with weak

R2 values but high D′, might be responsible for net effects on disease susceptibility.

Using our complete list of ASM DMRs and GWAS data from NHGRI-EBI, including

both supra-threshold and suggestive peaks (p < 10− 6), we identified 1842 ASM SNPs in

strong LD (R2 > 0.8) or precisely coinciding with GWAS peak SNPs (Additional file 3:

Table S2). Highlighting mechanistic information from these ASM loci, among the ASM

index SNPs in strong LD or precisely coinciding with GWAS peak SNPs, 1450 dis-

rupted ASM-enriched classes of CTCF or TF binding motifs and 310 disrupted signifi-

cantly ASM-correlated CTCF or TF binding motifs.

ASM index SNPs in LD with GWAS peaks for autoimmune/inflammatory diseases

We found 275 ASM DMRs containing 305 index SNPs in strong LD (R2 > .8) with

GWAS peak SNPs for autoimmune and inflammatory diseases, or related traits such as

leukocyte counts (Additional file 11: Table S10) which corresponds to a moderate but

significant enrichment (OR = 1.5, p = 1.2 × 10−18). Of these 305 index SNPs, 8 were in

HLA genes and the remainder were in non-HLA loci. About half of these regions

showed ASM in immune system cell types and/or B cell tumors (Additional file 11:

Table S10). Among these ASM index SNPs, 66 precisely coincided with GWAS peak

SNPs, supporting the candidacy of these statistically identified SNPs as functional

rSNPs. Moreover, 61 of the 305 ASM index SNPs altered strongly ASM-correlated

CTCF or TF binding motifs, and 237 disrupted enriched classes of binding sites, thus

providing mechanistic leads to disease-associated transcriptional pathways. Interesting

ASM index SNPs for this disease category, some precisely coinciding with GWAS peak

SNPs and others in strong LD with these peaks include rs2145623, precisely coinciding

with a GWAS peak SNP for ulcerative colitis, sclerosing cholangitis, ankylosing spon-

dylitis, psoriasis and Crohn’s disease (nearest genes PSMA6, NFKBIA), rs840015 in

strong LD with GWAS peak SNPs for celiac disease, rheumatoid arthritis, and

hypothyroidism (nearest genes POU2F1 and CD247), rs10411630 linked to multiple

sclerosis (MS) via LD with GWAS peak SNP rs2303759 (nearest genes TEAD2, DKKL1,

and CCDC155; Additional file 2: Figure S7), rs2272697 linked to MS via LD with

GWAS peak SNP rs7665090 (nearest genes NFKB1, MANBA), rs2664280 linked to in-

flammatory bowel disease, systemic lupus erythematosus (SLE) and psoriasis via GWAS

SNPs rs2675662 and rs2633310 (nearest genes CAMK2G, PLAU, C10orf55; Fig. 7), and

rs6603785 which precisely coincides with a GWAS peak for SLE and hypothyroidism

(nearest genes TFNRSF4, SDF4, B3GALT6, FAM132A, UBE2J2; Additional file 2: Figure

S22). Each of these ASM index SNPs disrupts one or more strongly ASM-enriched or

ASM-correlated TF binding motifs (Additional file 11: Table S10).

ASM index SNPs in LD with GWAS peaks for cancer susceptibility

We found 247 ASM DMRs containing 268 index SNPs in strong LD (R2 > .8) with

GWAS peak SNPs for cancer susceptibility or response to treatment (Additional file 12:
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Fig. 7 (See legend on next page.)
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Table S11), which represents a moderate but significant enrichment (OR = 1.5, p =

3.2 × 10−22). Among these loci, a large majority showed ASM in cancers or cell types

that approximate cancer precursor cells (e.g., B cells for lymphoma and multiple mye-

loma, glia for GBM, mammary or bladder epithelial cells for carcinomas, normal liver

for hepatocellular carcinoma) and/or in T cells, which are relevant to cancer via im-

mune surveillance. In these DMRs, 60 of the ASM index SNPs precisely coincided with

the GWAS peak SNPs, supporting the candidacy of these statistically identified SNPs as

functional rSNPs. Among the 268 ASM index SNPs, overlapping groups of 40 and 207

index SNPs altered ASM-correlated or enriched TF binding motifs, respectively, pro-

viding mechanistic leads to disease-associated transcriptional pathways (Add-

itional file 12: Table S11). Interesting ASM index SNPs for this disease category include

rs398206 associated with cutaneous melanoma and nevus counts via strong LD with

GWAS SNPs rs416981 and rs45430 (nearest genes FAM3B, MX2, MX1), rs4487645

precisely coinciding with a GWAS peak SNP for multiple myeloma and immunoglobu-

lin light chain amyloidosis (nearest genes SP4, DNAH11, CDCA7L; Fig. 7), rs3806624

precisely coinciding with a GWAS peak SNP for B cell lymphomas and multiple mye-

loma (nearest gene EOMES; Additional file 2: Figure S23), rs2853677 linked to lung

cancer and other malignancies, as well as benign prostatic hyperplasia, via strong LD

with several GWAS peak SNPs (genes SLC6A18, TERT, MIR4457, CLPTM1L; Fig. 7),

and rs61837215 linked to breast cancer via LD with GWAS peak SNP rs2754412 (near-

est genes HSD17B7P2, SEPT7P9, LINC00999; Additional file 2: Figure S23). Potentially

informative examples in lenient blocks include rs2427290 linked to colorectal cancer

(See figure on previous page.)
Fig. 7 Examples of ASM index SNPs in strong LD or precisely coinciding with GWAS peaks. a Map of the
ASM DMR tagged by index SNP rs4487645, coinciding with a GWAS peak SNP for multiple myeloma (p =
3.0 × 10−14; OR = 1.38) and AL amyloidosis (p = 2.0 × 10−9; OR = 1.35). The ASM index SNP is in an enhancer
region (yellow-coded chromatin state; GM12878 track) of the DNAH11 gene on chromosome 7. This SNP
disrupts a PAX5_disc3 TF binding motif on the ALT allele. The REF allele, with intact high-affinity motif, is
relatively hypomethylated. Additional motifs are in Additional file 3: Table S2. b Map of the ASM region
tagged by index SNP rs2664280, in strong LD with GWAS peak SNPs rs2675662 for psoriasis (p = 3.0 × 10−8;
OR = 1.14) and rs2633310 for T2D (p = 2.0 × 10−8; beta = − 0.044). The ASM index SNP is in an enhancer
region (yellow-coded; GM12878) in the CAMK2G gene on chromosome 10. This SNP disrupts AP1 binding
motifs (JUNB shown) on the ALT allele, with higher binding affinity on the REF allele, which is relatively
hypomethylated. The motif maps to the negative strand and is reported 3′ to 5′. Additional motifs are in
Additional file 3: Table S2. c Map of the ASM regions tagged by rs2853677 and rs6420020 index SNPs in the
TERT gene on chromosome 5. The DMRs are in quiescent/repressed chromatin in most ENCODE samples
(light and dark gray; K562 track), but this region is transcribed in undifferentiated H1-hESC. ASM for these
DMRs was found only in GBMs. The index SNP rs2853677 is a GWAS peak SNP for non-small cell lung
cancer and benign prostatic hyperplasia (p < 10−999; OR = 1.41 and p = 2.0 × 10−22; OR = 1.12, respectively).
The other ASM index SNP, rs6420020 is in LD with GWAS peak SNPs for GBM (p = 6.0 × 10−24; OR = 1.68),
breast carcinoma (p = 3.0 × 10−8; OR = 1.07), and chronic lymphocytic leukemia (p = 6.0 × 10−10; OR = 1.18).
ASM allele switching is seen at rs6420020; polymorphic TF binding motifs are in Additional file 3: Table S2.
d ASM DMR tagged by multiple SNPs (rs114627468, rs9357065, rs1225618, and rs1150668) in the promoter
region of the ZNF192P1 pseudogene, flanked by coding genes in the ZSCAN family, on chromosome 6. ASM
index SNP rs1150668 is a GWAS peak SNP for body height (p = 2.0 × 10−7; beta = − 0.060), smoking status
(p = 6.0 × 10−15; beta = − 0.0086), smoking behavior (p = 3.0 × 10−8; beta = + 0.011), myopia (p = 1.0 × 10−11;
beta = + 0 6.78), and schizophrenia with autism spectrum disorder (p = 8.0 × 10−11; OR = 1.07). In addition,
the 4 ASM index SNPs are in a stringently defined haplotype block containing GWAS peak SNP rs62620225,
for psychiatric phenotypes including well-being spectrum (p = 6 × 10− 12; beta = 0.023). ASM in this DMR
was observed in multiple tissues, including brain. The ASM index SNP rs1225618 is as an ASB SNP for TAF1;
other ASM-correlated motifs disrupted by the index SNPs are in Additional file 13: Table S12. Further
examples of disease-linked ASM loci are in Additional files 11: Table S10, Additional files 12: Table S11-
Additional files 13: Table S12, and Additional file 2: Figure S7-S9, S22, and S23.
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via GWAS peak SNP rs4925386 (nearest genes OSBPL2, ADRM1, MIR4758, LAMA5,

RPS21, CABLES2; Additional file 2: Figure S8) and rs2283639 linked to non-small cell

lung cancer via GWAS peak SNP rs1209950 (nearest genes LINC00114, ETS2,

LOC101928398; Additional file 2: Figure S9). Each of these index SNPs disrupts one or

more strongly ASM-enriched and/or correlated TF binding motifs (Additional file 12:

Table S11).

ASM index SNPs in LD with GWAS peaks for neuropsychiatric traits and disorders and

neurodegenerative diseases

We found 210 ASM DMRs containing 225 index SNPs in strong LD (R2 > 0.8) with

GWAS peak SNPs for neurodegenerative, neuropsychiatric, or behavioral phenotypes

(Additional file 13: Table S12). Among these ASM DMRs, about 15% showed ASM in

brain cells and tissues (cerebral gray matter, neurons, glia), and a larger percentage

showed ASM in immune system cell types. Both can be disease relevant, since studies

have linked brain disorders not only to neuronal and glial cell processes but also to the

immune system [47]. In addition, many loci in this list showed ASM in GBMs, which

have partial glial and neuronal differentiation and may be revealing genetic variants that

can affect early neuronal proliferation and differentiation. In these DMRs, 52 of the

ASM index SNPs precisely coincided with the GWAS peak SNPs, supporting a func-

tional regulatory role for these genetic variants, and overlapping groups of 36 and 183

index SNPs altered ASM-correlated or enriched binding motifs, respectively, providing

mechanistic leads to disease-associated transcriptional pathways. Some interesting ex-

amples in strong LD with GWAS peaks for this general disease category (Add-

itional file 13: Table S12) include rs1150668 linked to risk tolerance/smoking behavior

and well-being spectrum via GWAS peak SNPs rs1150668 (coinciding with the ASM

index SNP) and rs62620225 (nearest genes ZSCAN16, ZKSCAN8, ZNF192P1, TOB2P1,

ZSCAN9; Fig. 7); rs2710323 that coincides with a GWAS peak SNP for schizoaffective

disorder, anxiety behavior, bipolar disorder, and others (nearest genes NEK4, ITIH1,

ITIH3, ITIH4, MUSTN1, MIR8064, TMEM110; Additional file 2: Figure S22);

rs4976977 linked to intelligence measurement, anxiety measurement, schizophrenia,

and unipolar depression via strong LD with GWAS peak SNP rs4976976 (nearest genes

MIR4472-1, LINC00051, TSNARE1); and rs667897 linked to Alzheimer’s disease via

GWAS peak SNP rs610932 (nearest genes MS4A2, MS4A6A) and rs13294100, which

coincides with a GWAS peak SNP for Parkinson’s disease (nearest gene SH3GL2). Each

of these index SNPs disrupts one or more strongly ASM-enriched and/or correlated TF

binding motifs (Additional file 13: Table S12).

Visualization of the ASM mapping data as annotated genome browser tracks

In addition to the three major disease categories detailed above, we found several hun-

dred high confidence ASM index SNPs in strong LD with GWAS peaks for pharmaco-

genetic phenotypes or for cardiometabolic diseases and traits (e.g., rs2664280 linked to

type 2 diabetes mellitus via GWAS SNP rs2633310, Fig. 7). The final set of high-

confidence recurrent ASM loci averaged 5 ASM DMRs per Mb of DNA genome wide.

We provide the data both in tabular format (Additional file 3: Table S2) and as anno-

tated genome browser tracks that include the most useful and mechanistically relevant
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parameters for each ASM index SNP. These parameters include ASM confidence and

strength ranks, cell and tissue types with ASM, cancer vs normal status of the samples

with ASM, and presence or absence of enriched CTCF or TF binding motifs and/or

motifs with significant correlations of ASM strength with allele-specific differences in

predicted binding affinity scores. An example of a 500-kb region of chromosome 19

containing 5 ASM DMRs, with ranks ranging from strong to weak and the strongest

one encompassing a CTCF-bound insulator element, is in Additional file 2: Figure S24.

These tracks (see the “Availability of data and materials” section) can be displayed, to-

gether with other relevant tracks, including chromatin structure for mechanistic studies

and the GWAS catalog track for potential disease associations, in UCSC Genome

Browser sessions [48].

Discussion
These data from dense mapping of ASM in normal human cell types and tissues, plus a

group of cancers, identify 17,931 index SNPs in 15,112 DMRs that show strong and re-

current non-imprinted ASM, of which a substantial subset map within haplotype blocks

that contain GWAS peaks for common diseases and related traits. In this study, we fo-

cused on finding strong and high-confidence ASM DMRs, each containing multiple

CpGs passing ASM criteria, and each detected in at least two independent samples.

Thus, we sought to maximize true-positive findings, which were borne out by a high

validation rate using targeted bis-seq. In addition to the value of these data for disease-

focused post-GWAS studies, this high yield of stringently defined ASM DMRs, and in-

clusion of both cancer and normal cell types and tissues, allowed us to test mechanistic

hypotheses for the creation of allele-specific CpG methylation patterns in ways that

have not been feasible with prior datasets.

A recent study by Onuchic et al. using Human Epigenome Project (HEP) data pro-

vided a map of ASM SNPs based on 49 WGBS from 11 donors (non-cancer tissues)

and 2 cell lines [11]. Using their publicly accessible processed data, we identified a set

of strong ASM SNPs that pass similar effect size and p value criteria as in our analysis

(> 20% methylation difference and corrected p value < 0.05). For harvesting these candi-

date ASM loci from their dataset, we did not require multiple CpGs in each sequence

contig to show ASM, since although in our criteria this is a requirement, it was not uti-

lized as a criterion by Onuchic et al. Overall, 50% of our informative SNPs were also in-

formative in the HEP dataset and 31% of our ASM index SNPs passed the above

criteria for ASM in the HEP WGBS data. Given the differences in analytical methods

and the differences in numbers and tissue types of the individuals analyzed, this is an

encouraging convergence of findings. At the same time, this comparison indicates that

our dataset adds substantial new information. With even greater numbers of individuals

(informative heterozygotes at more SNPs), additional cell and tissue types, and greater

depth of WGBS, additional loci with ASM will be identified. Our data already reveal a

large component of rare or “private” ASM with a substantial subset showing a strong

ASM magnitude. Indeed, some of the ASM loci identified and validated by targeted

bis-seq in our previous smaller study [8] are not included in our current list of recur-

rent ASM DMRs because they passed ASM criteria in only one individual. Conversely,

as expected based on the requirement for multiple individuals when using a
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methylation QTL (mQTL) approach to detect ASM, the current ASM dataset now en-

compasses a larger percentage of the set of mQTLs identified in that prior study.

Allele-specific binding of TFs and CTCF has been detected at up to 5% of assessed

genomic sites [41], and the data provided here bolster and refine previous results from

us and others [8, 9, 11, 30, 32, 33, 49] implicating a major role for binding site occu-

pancies in shaping both net and allele-specific DNA methylation patterns in human

cells. The harvest of large numbers of strong and high-confidence ASM occurrences in

this study facilitated our analysis of individual (not pooled) binding motifs, thereby pro-

ducing a statistically robust list of specific ASM-correlated CTCF and TF binding mo-

tifs, nearly all of which show anti-correlated (i.e., inversely correlated) behavior in

which greater predicted binding site affinity and site occupancy tracks with less methy-

lation of CpGs on that allele—which can be heuristically understood as protection of

the occupied binding site from methylation.

The set of CTCF and TF binding motifs that we find to be strongly correlated with

ASM when they contain disruptive SNPs overlaps only partly with the ASM-correlated

motifs identified in the HEP study [11]. Encouragingly, certain classes of motifs emerge

as significantly correlated in both studies. However, in addition to some differences in

the identities of the most strongly correlated and enriched motifs or motif classes, a

general difference between the conclusions of the two studies concerns the numbers of

motifs showing positive vs negative directions of the correlations. The HEP investiga-

tors reported a substantial minority subset (approximately 30%) of motifs for which

higher predicted binding affinity was found to correlate with greater CpG methylation

(i.e., positively or directly correlated behavior). In our dataset, using our ASM criteria

and analytical pipeline, we find a nearly complete absence of such occurrences. All but

1 of the 144 motifs that are both enriched and significantly ASM-correlated (Add-

itional file 10: Table S9) show an inversely correlated direction of the relationship, such

that higher predicted binding affinity (greater predicted binding site occupancy) tracks

with relative CpG hypomethylation. When we only require ASM correlation, without

enrichment as a criterion (Additional file 9: Table S8), we find 175 motifs with this in-

versely correlated behavior, but only two motifs with positively correlated behavior in

which greater predicted binding site occupancy tracks with CpG hypermethylation.

Our combined ASM and ASB analysis, using ENCODE ChIP-seq data in the GM12878

LCL, also showed a strong enrichment of inverse correlations between binding and

methylation levels. Interestingly, however, in our small set of two positively correlated

motifs, we find the YY1 binding motif, which was also found by the HEP investigators

in their positively correlated subset. This finding makes biological sense since the YY1

TF, acting as a component of the PRC2 polycomb repressive complex, can attract CpG

methylation, at least partly through recruitment of DNA methyltransferases [50].

An advance in the current study is our ability to test and compare mechanisms of

ASM in normal and neoplastic cells. We observed a dramatic increase in per sample

ASM frequencies, on average, in the primary cancers compared to cell lineage-matched

normal cells and to non-cancer samples overall. This increase was paralleled by a more

modest but still significant increase in ASM frequency in whole placental tissue and in

purified trophoblast, which, as shown here and in other studies [8, 21, 23], have global

CpG hypomethylation similar to cancers. Special aspects of ASM detected in the

cancers included allele-specific hypomethylation genome-wide and allele-specific
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hypermethylation at loci in poised chromatin, as well as relatively increased ASM in

chromatin desert regions and increased allele-switching at ASM loci. Despite these dif-

ferences, our findings from testing for enrichment of TF and CTCF binding motifs and

correlations of ASM with destructive SNPs in these motifs clearly indicate that the

same binding site occupancy mechanism pertains in both normal and cancer-associated

ASM. A striking additional result that supports this shared mechanism, and which may

have important implications for cancer biology, is our finding of de novo ASM affecting

CpGs clustered around somatic point mutations in cancer cells. The key mechanistic-

ally informative feature of this de novo ASM is that it preferentially occurs around mu-

tations that disrupt the same classes of TF binding motifs that are linked to ASM in

normal cells. While this topic will need future work, we can speculate that some of

these non-coding mutations, which are declaring their functionality by producing the

observed de novo ASM, might play roles in cancer biology through effects on gene ex-

pression. A possible example is the TEAD1 gene, which is known to be over-expressed

in aggressive and treatment-refractory cases of multiple myeloma [51] and which

showed de novo ASM in its upstream enhancer region in a multiple myeloma case in

our series, via gain of a new TF binding motif on the mutated allele (Fig. 5).

Based on the shared general mechanism of ASM in cancer and normal cells, an im-

portant practical conclusion is that analyzing combined series of cancer cases plus non-

cancer samples increases the power of ASM mapping for finding mechanistically in-

formative rSNPs. In conjunction with GWAS data, these rSNPs can point to genetically

regulated transcriptional pathways that underlie inter-individual differences in suscepti-

bility not only to cancers but also to nearly all common human non-neoplastic diseases.

Due to the LD structure of the genome, GWAS peaks by themselves can only point to

disease-associated haplotype blocks, with all SNPs in strong LD with the causal SNP(s)

showing similar correlations to the phenotype. Therefore, additional types of evidence

are needed before causal roles can be attributed to GWAS peak SNPs or to other SNPs

in strong LD with them. ASM mapping can pinpoint candidate rSNPs that declare their

presence by conferring the observed physical asymmetry in CpG methylation between

the two alleles. The key finding that supports such mapping for biologically meaningful

rSNP discovery is the one above, namely that ASM is caused by disruptive SNPs in TF

and CTCF binding sites.

This situation is highlighted by our findings for ASM index SNP rs4487645 (Fig. 7),

which coincides with a GWAS peak for AL amyloidosis and multiple myeloma and dis-

rupts an ENCODE PAX5 discovery motif (PAX5_disc3) that is significantly enriched

among ASM loci. Since the PAX5 TF is a master regulator of B cell development [52],

these ASM mapping data are post-GWAS evidence suggesting involvement of a rele-

vant biological pathway in susceptibility to multiple myeloma, a B cell malignancy. That

the ASM at this locus was specifically found in a sample of DLBCL (another type of B

cell cancer) highlights the usefulness of including primary tumor samples in ASM map-

ping. Another example is the ASM index SNP rs2283639 is linked to lung cancer

GWAS peak SNP rs1209950. This ASM index SNP is situated in the promoter/enhan-

cer region of the ETS2 gene, where it disrupts an ASM-enriched ETS1_3 TF binding

motif (Additional file 2: Figure S9). A promising example in a non-neoplastic disease is

provided by ASM index SNP rs2664280, which disrupts multiple ASM-enriched and

ASM-correlated JUNB and AP1 binding motifs (all with greater predicted binding
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affinity on the REF allele) and is in strong LD with a GWAS peak SNP for psoriasis

(Fig. 7). For this example, the ASM was found in T cells, which are relevant for psoria-

sis, and the candidacy of the JUNB motif disruption as a biological explanation for the

disease association is supported by other evidence for involvement of AP1-dependent

transcriptional changes in this disease [53]. These situations can be tested further by

functional experiments such as CRISPR/Cas9-mediated DNA deletions in ASM DMRs

and mutations of ASM index SNPs in appropriate cell types.

Lastly, regarding the non-redundancy of ASM mapping as a post-GWAS approach,

while SNPs with experimental evidence for ASB are strongly enriched among the ASM

loci reported here, more than 90% of the ASM index SNPs harvested in this study lack

currently available ASB annotations. Thus, maps of ASM, which are readily generated

from large archival collections of DNA samples, can provide information about rSNPs

that has not emerged from other types of mapping data, such as ChIP-seq for ASB,

which require whole cells or tissue samples and are more technically difficult to obtain.

That ASM data are largely non-redundant with other post-GWAS modalities (ASB,

chromatin states and chromatin accessibility, eQTLs) is further highlighted by our ob-

servation of ASM DMRs in chromatin deserts. Our finding of similar correlations of

ASM with destructive SNPs in specific TF binding motifs in both non-desert and desert

regions suggests that mapping ASM in deserts can pinpoint candidate rSNPs in cryptic

TF binding sites, which were presumably active at earlier stages of cell differentiation

and have left “methylation footprints” that can be detected as ASM but cannot be

found using other mapping methods.

Conclusions
We mapped ASM genome-wide in DNA samples including diverse normal tissues and

cell types from multiple individuals, plus three types of cancers. The data reveal 15,115

high-confidence ASM regions, of which 1842 contain SNPs in strong LD or precisely

coinciding with GWAS peaks for human diseases and traits. We find that ASM is in-

creased in cancers, due to widespread allele-specific hypomethylation and focal allele-

specific hypermethylation in regions of poised chromatin, with cancer-associated epi-

genetic variability manifesting as increased allele switching. We also report rare but in-

formative de novo ASM due to somatic mutations in TF binding sites in cancers.

Despite these cancer-specific phenomena, enrichment and correlation analyses indicate

that destructive SNPs in specific classes of CTCF and TF binding motifs are a shared

mechanism of ASM in normal and cancer cells and that this mechanism also underlies

ASM in “chromatin deserts,” where other post-GWAS mapping methods have not been

informative. We provide our dense ASM maps as genome browser tracks and show ex-

amples of ASM index SNPs that are in LD with GWAS peaks and disrupt TF binding

motifs, thereby nominating specific transcriptional pathways in the pathogenesis of

autoimmune and cardiometabolic diseases, neuropsychiatric disorders, and cancers.

Materials and methods
Human cells and tissues

Human tissues and cell types analyzed in this study are listed in Additional file 1: Table

S1. The Agilent SureSelect series included 9 brain (cerebral cortex), 6 T cell (CD3+), 3
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whole peripheral blood leukocyte (PBL), 2 adult liver, 1 term placenta, 2 fetal heart, 1

fetal lung, and one ENCODE lymphoblastoid cell line (LCL; GM12878). All samples

were from different individuals, except for a trio among the brain samples consisting of

one frontal cortex (Brodmann area BA9) and two temporal cortex samples (BA37 and

BA38) from the same autopsy brain. We performed WGBS on 16 normal T cell prepa-

rations (10 CD3+, 4 CD4+, and 2 CD8+), 10 B cell samples (CD19+), 7 monocyte

(CD14+) and 2 monocyte-derived macrophage samples, 2 PBL, 1 reactive lymph node,

4 fractionated samples from a term placenta (whole tissue from the chorionic plate,

purified villous cytotrophoblast from chorionic plate and basal plate, and extravillous

trophoblast from basal plate), 3 adult liver, 2 primary bladder epithelial cell cultures, 2

epithelium-rich non-cancer tissue samples from breast biopsies, 3 primary mammary

epithelial cell cultures, 3 frontal cerebral cortex gray matter samples, 6 NeuN+ FANS-

purified cerebral cortex neuron preparations, 4 NeuN− FANS-purified cerebral cortex

glial cell preparations, 1 LCL (GM12878), 3 B cell lymphomas (1 follicular and 2 diffuse

large B cell type), 7 multiple myeloma cases (CD138+ cells from bone marrow aspi-

rates), and 6 cases of glioblastoma multiforme (GBM). The glia samples were paired

with neuron preparations from the same autopsy brains, and several of the B cell, PBL,

monocyte/macrophage, and T cell samples were from the same individuals (Additional

file 1: Table S1). In the combined series, 5 samples were assessed by both SureSelect

and WGBS (Additional file 1: Table S1). Peripheral blood samples were obtained with

informed consent, and CD3+ T lymphocytes, CD19+ B lymphocytes, and CD14+

monocytes were isolated by negative selection using RosetteSep kits (Sigma). Macro-

phages were produced from monocytes by culturing in RPMI with 20% fetal calf serum

with 50 ng/ml M-CSF for 1 week as described [54]. Fractionation of villous cytotropho-

blast and extra-villous trophoblast from a term placenta was carried out as previously

described [55]. All other non-neoplastic primary human tissues were obtained from

autopsies. Neuronal and glial cell nuclei were prepared from autopsy brains using tissue

homogenization, sucrose gradient centrifugation, and fluorescence-activated nuclear

sorting (FANS) with a monoclonal anti-NeuN antibody [56] and documented for purity

of cell types by immunostaining of cytospin slides, as shown previously [57]. Biopsy

samples of human lymphomas and GBMs, and CD138+ multiple myeloma cells isolated

from bone marrow biopsies by positive selection on antibody-conjugated magnetic

beads (Miltenyi Biotec), were obtained with I.R.B. approval in a de-identified manner

from the Tissue Biorepository of the John Theurer Cancer Center. Absence of circulat-

ing myeloma cells in the paired B cell samples was verified by cytopathology and by the

absence of DNA copy number aberrations that were seen in the multiple myeloma

cells. Among the 6 GBMs, we did not detect cases with a strong CpG island hyper-

methylator phenotype (CIMP) as defined by Noushmehr et al. [58], which is expected

given that CIMP is more frequent in low-grade gliomas than in high-grade GBMs. In

surgical specimens, GBM cells are mixed with non-neoplastic glial and vascular cells,

but the presence of malignant cells in each GBM sample was confirmed by histopath-

ology on sections of the tissue blocks and was verified by assessing DNA copy number

using normalized WGBS read counts [57], which revealed characteristic GBM-

associated chromosomal gains and losses. The GM12878 lymphoblastoid cell line DNA

was purchased from Coriell, which performs cell line authentication using STR assays,

primary cultures of non-neoplastic human urinary bladder epithelial cells (cytokeratin
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18+ and TE-7−) were purchased from A.T.C.C. and Cell Applications, Inc., and primary

cultures of non-neoplastic human mammary epithelial cells (cytokeratin 18+) were pur-

chased from Cell Applications, Inc. and ScienCell Research Laboratories.

Agilent SureSelect methyl-seq and WGBS

We used the Agilent SureSelect methyl-seq DNA hybrid capture kit according to the

manufacturer’s protocol to analyze methylomes in a total of 27 non-neoplastic cell and

tissue samples (Additional file 1: Table S1). In this protocol, targeted regions (total of

3.7M CpGs) including RefGenes, promoter regions, CpG islands, CpG island shores,

shelves, and DNAse I hypersensitive sites are sequenced to high depth. DNA was

sheared to an average size of 200 bp and bisulfite converted with the EZ DNA methyla-

tion kit (Zymo). Paired-end reads (100, 150, or 250 bp) were generated at the Genomics

Shared Resource of the Herbert Irving Comprehensive Cancer Center of Columbia

University, with an Illumina HiSeq2500 sequencer.

For analyzing complete methylomes in the normal and tumor samples, plus the

GM12878 LCL, WGBS was performed at the New York Genome Center (NYGC),

MNG Genetics (MNG), and the Genomics Shared Resource of the Roswell Park Cancer

Institute (RPCI), as indicated in Additional file 1: Table S1. The NYGC used a modified

Nextera transposase-based library approach. Briefly, genomic DNA was first tagmented

using Nextera XT transposome and end repair was performed using 5mC. After bisul-

fite conversion, Illumina adapters and custom bisulfite converted adapters are attached

by limited cycle PCR. Two separate libraries were prepared and pooled for each sample

to limit the duplication rate and sequenced using Illumina X system (150 bp paired-

end). WGBS performed at MNG used the Illumina TruSeq DNA Methylation Kit for li-

brary construction according to the manufacturer’s instructions and generated 150 bp

paired-end reads on an Illumina NovaSeq machine. WGBS performed at RPCI utilized

the ACCEL-NGS Methyl-Seq DNA Library kit for library construction (Swift Biosci-

ences) and generated 150 bp paired-end reads on an Illumina NovaSeq.

Read mapping, SNP calling, and identification of ASM DMRs

Our analytical pipeline is diagrammed in Additional file 2: Figure S1. Compared with

our previous study [8], updates included improvements in sequence processing, up-

dated database utilization and increased stringency for SNP quality control, assignment

of both strength and confidence scores to ASM index SNPs, use of updated ENCODE

and JASPAR databases (http://compbio.mit.edu/encode-motifs/, [60]) for scoring the ef-

fects of the ASM index SNPs on predicted TF binding affinities, and utilization of

haplotype blocks and LD criteria, instead of simple distance criteria around GWAS

peaks for nominating disease-associated rSNPs in ASM DMRs. After trimming for low-

quality bases (Phred score < 30) and reads with a length < 40 bp with TrimGalore, the

reads were aligned to the human genome (GRCh37) using Bismark [59] with paired-

end mode and default setting allowing about 3 mismatches in a 150 bp read. For the

SureSelect methyl-seq samples, unpaired reads after trimming were aligned separately

using single end-mode and the same settings. Duplicate reads were removed using Pic-

ard tools [60] and reads with more than 10% unconverted CHG or CHH cytosines

(interquartile range: 0.1–2.2% of mapped reads; median 0.14%) were filtered out. Depth
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of sequencing for each sample in Additional file 1: Table S1, with metrics calculated

using Picard tools. SNP calling was performed with BisSNP [61] using default settings,

except for the maximum coverage filter set at 200 to encompass deep sequencing while

avoiding highly repetitive sequences, and quality score recalibration. SNP calling was

carried out using human genome GRCh37 and dbSNP147 as references (ADD PMID:

21478889 and PMID: 11125122). For ASM calling, only heterozygous SNPs are inform-

ative. We filtered out heterozygous SNPs with less than 5 reads per allele. In addition,

SNP with multiple mapping positions were filtered out, as well as SNPs with more than

one minor allele with allele frequency > 0.05. Informative SNPs were defined as hetero-

zygous, bi-allelic, and uniquely mapped SNPs that did not deviate significantly from

Hardy-Weinberg equilibrium based on exact tests corrected for multiple tests (FDR <

0.05 by HardyWeinberg R package) and were covered by more than 5 reads per allele.

In addition, we filtered out any informative regions mapping ENCODE defined “black-

listed” regions [62]. Informative regions were defined as regions with overlapping reads

covering at least one informative SNP. Bisulfite sequencing converts unmethylated C

residues to T, while methylated C residues are not converted. Therefore, for C/T and

G/A SNPs, the distinction between the alternate allele and bisulfite conversion is pos-

sible only on the non-C/T strand. For SureSelect methyl-seq, since only negative-

stranded DNA fragments are captured, G/A SNPs were filtered out; for WGBS, C/T

and G/A SNPs were assessed after filtering out reads mapping to the C/T strand.

ASM calling was performed after separating the SNP-containing reads by allele. For

each heterozygous SNP, all reads overlapping the 2 kb window centered on the SNP

were extracted using Samtools. Given the median insert size of our libraries (~ 200 bp),

the use of a 2 kb window instead of the SNP coordinate allows extraction, in most

cases, of both paired ends even if the SNP is only covered at one of the ends. SNP call-

ing is performed on each paired read and read IDs are separated into two files as refer-

ence (REF) and alternate (ALT) alleles using R. After Bismark methylation extractor is

applied, CpG methylation calls by allele are retrieved using allele tagged read IDs.

Paired reads with ambiguous SNP calling (i.e., called as REF allele on one paired end

and ALT allele on the other) were discarded. For Nextera WGBS, due to the fill-in re-

action using 5mC following DNA tagmentation which affects the 10 first base pairs

(bp) on 5′ of read 2, methylation calling for Cs mapping to these bp was not consid-

ered. In addition, a slight methylation bias due to random priming and specific to each

library kit was observed within the last 2 bp on 3′ of both paired ends for Nextera

WGBS, within the first 10 bp on 5′ of both paired ends and the last 2 bp on 3′ of read

2 for TruSeq WGBS, and within the first 10 bp on 5′ of read 2 for ACCEL-NGS

WGBS. Therefore, methylation calls in these windows were ignored.

To further increase the stringency and accuracy of ASM calling, only regions with at

least 3 CpGs covered by more than 5 reads per allele were considered. ASM CpGs were

then defined as CpGs with Fisher’s exact test p value < 0.05 and ASM DMRs were de-

fined as regions with > 20% methylation difference after averaging all CpGs covered be-

tween the first and last CpGs showing ASM in the region, a Wilcoxon p value

corrected for multiple testing by the B-H method < 0.05 (FDR at 5%), and more than 3

ASM CpGs including at least 2 consecutive ASM CpGs. CpGs destroyed by common

SNPs (maf > 0.05) were filtered out from both CpG and DMR level analyses. Very close

or overlapping DMRs (< 250 intervening bp) were merged into one unique DMR.
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We ranked the ASM SNPs using two approaches, one based on confidence/recur-

rence criteria and the other on percent difference in methylation of the two alleles

(ASM strength). For the confidence rank, we used the geometric mean of the average

coverage of each allele, the number of samples showing ASM, and the percentage of

these samples among all heterozygous (informative) samples. For the strength rank, we

used the geometric mean of the methylation difference, number of ASM CpGs, and

percentage of ASM CpGs among all covered CpGs. An overall rank was calculated

using the geometric mean of these two ranks. ASM DMRs dictated by multiple index

SNPs were ranked by the top-scoring SNP. ASM calling and ranking were performed

using R and Stata 15. We used the GeneImprint database to flag and exclude from

downstream analyses all ASM DMRs that mapped within 150 Kb windows centered on

the transcription starting site of all known high confidence imprinted genes, including

in this list the VTRNA2-1 gene, which we have previously shown to be subject to par-

ental imprinting in trio samples [38] and which showed frequent allele switching in

normal samples in the current dataset, consistent with imprinting (Additional file 5:

Table S4).

Lastly, although varying levels of non-CpG methylation (mCH) have been observed

in human and mouse tissues, and this non-canonical methylation appears to have

unique sub-chromosomal distributions and biological functions [63], for clarity, the

current report is focused only on ASM affecting classical CpG methylation. Nonethe-

less, giving confidence in our dataset, we found mCH to be higher in the purified cere-

bral cortical neurons, (2.4% +/− 0.9%, N = 16) than in the non-neuronal samples (0.47%

+/− 0.54%, N = 43), which is consistent with findings from another laboratory [64, 65].

Somatic mutation calling

Somatic mutation calling was performed on the 4 multiple myeloma samples for which

paired normal peripheral blood B cells from the same individuals had been bis-

sequenced using the same library preparation (ACCEL-NGS WGBS). We used BisSNP

(with the same setting as for SNPs but without providing reference SNP dataset) to call

all heterozygous variants for both myeloma and normal B cell samples. We then filtered

out any variants reported as germline SNPs by DbSNP147. Variants mapping to EN-

CODE blacklisted regions were removed, and we next filtered out any variants that

were present in the paired B cell samples. We used a sequencing coverage requirement

for candidate mutations in the myeloma cases of 10× per allele (wild-type, mutant).

Targeted bisulfite sequencing (bis-seq) for validations of ASM

Targeted bis-seq was utilized for validation of ASM regions. PCR primers were de-

signed in MethPrimer [60], and PCR products from bisulfite-converted DNA samples

were generated on a Fluidigm AccessArray system as described previously [8], followed

by sequencing on an Illumina MiSeq. PCRs were performed in triplicate and pooled to

ensure sequence complexity. ASM was assessed when the depth of coverage was at

least 100 reads per allele. While the absolute differences between methylation of the

two alleles are not exaggerated by deep sequencing, the p values for these differences

tend to zero as the number of reads increases. Therefore, to avoid artificially low p

values, we carried out bootstrapping (1000 random samplings, 50 reads per allele),
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followed by Wilcoxon tests for significance. Samplings and bootstrapping were per-

formed using R. The tested ASM loci and amplicon coordinates are in Additional file 7:

Table S6.

Annotation and enrichment analysis of ASM loci

To annotate ASM and informative SNPs, we defined small (1000 bp) and large (150 kb)

windows centered on each index SNP. The small windows were used to assess mechan-

istic hypotheses involving local sequence elements and chromatin states and the large

windows were used for functional annotation (genes and GWAS associated SNPs). We

used BedTools to intersect the genomic coordinates of ASM windows to the coordi-

nates of the annotation sets. From the UCSC Genome Browser (PMID: 12045153)

(GRCh37 assembly), we downloaded RefSeq annotations, DNase hypersensitive sites,

TF peaks by ChIP-seq, and chromatin state segmentation by HMM in ENCODE cell

lines (https://www.encodeproject.org/). Chromatin state segmentation for relevant hu-

man primary cells and tissues (T cells CD3, T cells CD4, T cells CD8, B cells, mono-

cytes, and cerebral cortex) were downloaded from the Roadmap Epigenomics project

(PMID: 25693563). We allowed multiple chromatin states at a single location when dif-

ferent states were present in different cell lines. Distances between ASM loci and genes

were calculated from the transcription start sites. Regulome scores were downloaded

from RegulomeDB [44]. For each relevant feature, enrichment among ASM index SNPs

compared to the genome-wide set of informative SNPs (SNPs that were adequately

covered and heterozygous in at least 2 samples) was tested using bivariate logistic

regressions. To compare characteristics of ASM observed only in cancer samples (“can-

cer-only ASM”) vs ASM observed in at least one non-cancer sample (“normal ASM”),

these analyses were stratified by cancer status. To assess enrichment for chromatin

states among ASM loci that were found only in cancers or only in non-cancer samples,

with the occurrences divided into subsets according to the direction of the change in

methylation in the cancers compared to cell lineage-matched normal samples, we used

the same approach but considering only the sets of heterozygous SNPs informative in

both myelomas and B cells, or lymphomas and B cells, or GBMs and glia. To compare

the regulatory features of ASM to those of other allele-specific marks, we performed

similar analyses for enrichment of ASM index SNPs in the sets of publicly available

eQTLs [66] and ASB SNPs [41, 67] that were informative in our dataset.

Tests for correlations of ASM with SNPs in TF and CTCF binding sites

To test for correlations of ASM with destructive SNPs in TF binding motifs, we used

position weight matrices (PWMs) of TF motifs from ENCODE ChIP-seq data [36],

(http://compbio.mit.edu/encode-motifs/), as well as PWMs from the JASPAR database

[39, 66]. We scored allele-specific binding affinity at each index SNP using the atSNP R

package [42], which computes the B-H corrected p values (i.e., q values) of the affinity

scores for each allele and q value of the affinity score differences between alleles. Motifs

that contained SNPs affecting allele-specific TF binding affinity were defined as motifs

with a significant difference in binding affinity scores of the two alleles (q value < 0.05)

and a significant binding affinity score in at least one allele (p value < 0.005). For each

TF occurrence, the binding scores per allele were estimated using PWM scores
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calculated as described in our earlier study [8]. In addition, among the ASM index

SNPs, we specifically annotated TF binding motifs that overlapped with cognate TF

ChIP-seq peaks based on ENCODE data (https://www.encodeproject.org/). For each

motif, we used data from Kheradpour and Kellis [36] (http://compbio.mit.edu/encode-

motifs/) to define the cognate TF peaks, required a 10-fold enrichment of the motif

among ASM loci compared to background, and filtered out TF peaks with less than 10

occurrences of the tested motif among ASM loci.

To test whether ASM index SNPs are enriched in variants that disrupt polymorphic TF

binding motifs, we used logistic regressions to calculate ORs for each disrupted poly-

morphic motif. Enrichment was defined as an OR > 1.5 and B-H corrected p value < 0.05.

Since computing resources required to run atSNP for > 2 million SNPs and > 2000 TF

motifs are extremely large, we random sampled 40,000 non-ASM informative SNPs (1,3

ASM vs non-ASM SNP ratio) to estimate the random expectation of each TF motif oc-

currence. To test whether the disruption of TF binding sites could be a mechanism of

ASM, we correlated the difference in PWM scores between alleles of each occurrence of a

given TF motif disrupted by an ASM index SNP to the differences in methylation levels

between the two alleles, using linear regression. Only TF motifs with more than 10 dis-

rupted occurrences in ASM regions were analyzed. For index SNPs showing ASM in mul-

tiple samples, we used the average methylation difference between the two alleles. For

each TF motif, a significant correlation of ASM with predicted TF binding affinity differ-

ences between the two alleles was defined as FDR < 0.05 and R2 > 0.4.

To ask whether the correlations between ASM and predicted TF binding affinity

differences between alleles might be similar for ASM loci found only in cancers

compared to ASM loci that were observed in at least one normal sample, and to

ask this same question for chromatin desert ASM vs non-desert ASM regions, we

used a multivariate mixed model with random slope and intercept, with pooling of

TF motifs to reach sufficient power (number of occurrences used for the regres-

sion). TF motifs with less than 10 occurrences total, or less than 3 occurrences in

any ASM class, were filtered out. TF motifs included in the final mixed models for

the four classes of ASM loci were pre-selected from the bivariate model (per-

formed without distinction of ASM class; requiring FDR < 0.05 and R2 > 0.4). To

not bias the analysis toward TF motifs without any ASM class effect (which might

be overrepresented in the set of significant TF motifs identified in the bivariate

analyses), we also screened each TF motif, including CTCF motifs, using separated

multivariate linear fixed models to include any motifs showing no correlation over-

all but a correlation trend only in one of the ASM classes (FDR < 0.05 for at least

one of the ASM classes, multivariate model adjusted R2 > 0.4).

We defined chromatin deserts as 1 kb genomic windows, centered on ASM index

SNPs, which contained no DNAse peaks or only one DNAse peak among the 122

ENCODE cell lines and tissues, and no strong active promoter/enhancer, poised, or

insulator chromatin state in any ENCODE sample. The multivariate mixed model

accounts for both intra- and inter-TF motif error terms and includes the predicted

TF binding affinity difference, either for two classes of ASM loci (non-cancer ASM

and cancer ASM) or 4 classes of ASM loci (non-cancer ASM in non-desert re-

gions, non-cancer ASM in desert regions, cancer ASM in non-desert regions, and

cancer ASM in desert regions), the interaction between ASM class and binding
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affinity as fixed explanatory covariates for the methylation difference, and the TF

motif as a random covariate. Marginal effects from predictions of the mixed model

and Bonferroni-corrected p values were then computed to compare the correlation

between ASM classes. The variation due to the TF motif was considered as a ran-

dom effect, under the assumption that each TF motif might have a different inter-

cept and slope. The interaction terms reflect the difference in the methylation to

binding affinity correlation between each ASM class compared to the reference

class, which we defined as non-cancer ASM for the 2-calss analysis and non-cancer

ASM in non-desert region for the 4-class analysis. Analysis after excluding ASM

loci that showed switching behavior gave similar results. TF motifs with significant

correlations of disruptive SNPs with ASM for at least one of the 2 or 4 ASM clas-

ses (FDR < 0.05 and R2 > 0.4) were then pooled to be tested in the final mixed

model, such that the model was run using a total of 178 TF motifs with 16,609

motif occurrences disrupted by 3394 ASM SNPs for the 2 ASM-class analysis and

a total of 62 TF motifs with 10,709 motif occurrences disrupted by 1967 ASM

SNPs for the 4 ASM-class analysis. To assess ASB in the GM12878 cell line, ChiP-

seq data for 154 TFs available for this cell line were downloaded from ENCODE

(PMID: 29126249). For each TF, SNP genotyping and allele-specific read count

were performed using the ChiP-seq alignment data for the set of high confidence

ASM SNPs found in our GM12878 data and compared to data from WGBS. ASB

SNPs were defined as SNPs showing homozygous genotype in the ChiP-seq data

(but heterozygous in WGBS) with a significant allele-specific occupancy bias (FDR

< 0.05, Fisher’s exact test). All analyses were performed using R and STATA statis-

tical software.

Associations of ASM with GWAS peaks

GWAS traits and associated supra and subthreshold SNPs (p < 10−6) were downloaded

from the NHGRI GWAS catalog [44, 68]. We defined haplotype blocks using 1000 Ge-

nomes phase 3 data [68] based on the method of Gabriel et al. for scoring linkage dis-

equilibrium (LD) with emphasis on D-prime values [46] in PLINK [69]. To identify

GWAS peaks in moderate LD with ASM index SNPs, we used relaxed criteria of D-

prime confidence intervals (0.60–0.84) and historical recombination (0.55) but set the

maximum haplotype block size at 200 kb to minimize large block calling in genomic re-

gions lacking haplotype block structure. The blocks so defined have a median size of

46 kb. To identify ASM SNPs in strong LD with GWAS peak SNPs, we utilized the de-

fault parameters of Gabriel et al. for haplotype block calling [46]. The blocks so defined

have a much smaller median size of 5 kb. Finally, we computed pairwise R2 between

our ASM SNPs and all GWAS SNPs within 200 kb. SNPs with high R2 represent a sub-

type of SNPs in high LD where not only a non-random association (high D′) is ob-

served but where these SNPs can essentially be considered as proxies of each other.

Statistical association between a GWAS SNP and trait can be directly imputed to any

SNPs with very high R2, so such SNPs are obvious candidates for post-GWAS analyses.

However, SNPs showing high D′ but low R2 with the GWAS SNP (which occurs when

a rare SNP is in high LD with a more frequent SNP) might also contribute biologically

to disease associations. We annotated each ASM index SNP for localization within
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these haplotype blocks, and for precise co-localization with a GWAS peak SNP or high

R2 (> 0.8), and tested for enrichment of ASM SNPs within these blocks, as well as

among GWAS peak SNPs, using the same approach as described above for other gen-

omic features.
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