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Abstract

Despite the success and fast adaptation of deep learning models in biomedical
domains, their lack of interpretability remains an issue. Here, we introduce Enhanced
Integrated Gradients (EIG), a method to identify significant features associated with a
specific prediction task. Using RNA splicing prediction as well as digit classification as
case studies, we demonstrate that EIG improves upon the original Integrated Gradients
method and produces sets of informative features. We then apply EIG to identify A1CF
as a key regulator of liver-specific alternative splicing, supporting this finding with
subsequent analysis of relevant A1CF functional (RNA-seq) and binding data (PAR-CLIP).
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Background
The high accuracy of deep neural networks (DNN) in areas such as computer vision, natu-
ral language processing, and robotics has led to the fast adaptation of DNN in biomedical
research. In genomics, deep learning models have outperformed previous state-of-the-art
methods on tasks such as predicting protein binding sites [1] or mRNA alternative splic-
ing from genomic sequence features [2]. However, the interpretation of these complex
models remains a challenge [3, 4]. Approaches to model interpretation include approxi-
mation with simpler models [5], identifying the most influential samples [6], or finding
the most relevant features for a specific sample or a task by a variety of metrics [7]. Here,
we focus on the last approach, which is naturally appealing for biomedical tasks. In this
context, interpretability is defined as attributing the prediction of a DNN to its input fea-
tures. We focus on the recently developed method called Integrated Gradients (IG) [8].
Both IG and DeepLIFT, which was recently used for protein DNA binding sites [9], iden-
tify features associated with a model’s prediction for a sample with respect to a baseline.
The usage of a baseline is appealing as it serves as the model’s proxy to human counter-
factual intuition. This implies that humans assign blame for difference in two entities on
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attributes that are present in one entity but absent in the other. IG computes feature attri-
bution by aggregating gradients along a linear path between the sample and the baseline.
Compared to other interpretation methods, IG offers two desirable theoretical guaran-
tees motivating its usage. The first is sensitivity, which states that for every input and
baseline that differ in one feature but have different predictions, the method will give a
non-zero attribution for that differing feature. The second is implementation invariance,
which states that regardless of network architecture, if two models are functionally equiv-
alent (same output given any input), then their feature attributions will also be equivalent
(see more details in [8]).
While IG has been shown to excel on object recognition problems, it still has several

limitations. First, IG only provides feature attributions for individual features with respect
to a specific sample. There is no formal mechanism for identifying significant features
for a class of interest. Second, IG takes a linear path between the baseline and the sam-
ple. The authors speculate that paths visiting points far-removed from actual points seen
in training could lead to attribution artifacts. This concern could also happen for linear
paths, particularly in high-dimensional datasets where observed data may lie close to a
hidden lower-dimensional nonlinear structure in the original feature space (i.e., the man-
ifold hypothesis). In such a case, a nonlinear path taken close to the observed training
data might be preferable. Finally, IG attributions are based on features that distinguish
a given sample from an all-zero, or no signal, baseline point. This creates two poten-
tial issues for the genomics domain. First, in many genomics applications, it is unclear
what inputs actually reflect no signal and a zero might not be an appropriate reference
point. For example, an exon length of 0 is not biologically meaningful. Second, following
the counterfactual argument above, features that distinguish two classes of samples are
arguablymore useful than a no signal baseline. Such features can elucidate biological clues
that make two classes of samples different. For example, features associated with RNA
binding proteins that distinguish differentially included cassette exons in the brain from
constitutively spliced exons can help shed light on brain-specific RNA splicing regulation.
Here, we systematically address these limitations of IG in a framework we term

Enhanced IG (EIG). Specifically, we propose a statistical test to assess significant feature
attributions, explore several possible definitions of informed reference points in either the
original space or a learned embedding of the samples, and combine these reference points
with nonlinear paths to the sample of interest. We first introduce these new additions
using models for the handwritten digit recognition task [10] to demonstrate the applica-
bility of our ideas in an easy to visualize domain. We then move to systematically assess
EIG using RNA alternative splicing (AS) code models as the main usage case [2].
Predicting RNA splicing outcome from genomic sequence has been the subject of

numerous works, originally focused on distinguishing alternative from constitutive exons
[11]. In the context of splicing codes discussed here, the task is to predict tissue-specific
splicing of exons. Specifically, given a triplet of exons in the pre-mRNA, the middle exon
(cassette exon) can be either included or skipped in the mature mRNA, giving rise to
different isoforms. The splicing code model predicts the middle exon’s inclusion levels
(� ∈[ 0, 1]) and differential inclusion (�� ∈[−1, 1]) between different conditions (e.g.,
brain vs. liver) as a function of a 1357-dimensional feature vector (see Additional file 1:
Table S1-S3 and Additional file 1: Fig. S1 for details about the architecture of this splicing
code model). These features are parsed from genomic regions containing the exon triplet
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and flanking introns. They include sequence conservation scores, nucleosome position-
ing, k-mer frequencies, splice site strength, and cis-acting regulatory motifs. Cis-acting
regulatory motifs can serve to recruit trans-acting RNA binding proteins (RBPs) to pro-
mote or inhibit inclusion of an exon in a transcript. RBPs are known to regulate alternative
splicing through direct binding to their target or indirect regulation through other RBPs.
For example, Rbfox and Nova are RBPs that have been shown to bind proximal to alter-
native exons and promote their inclusion or exclusion in adult brain and in neurogenesis
[12]. Nova has been shown to bind clusters of short YCAYmotifs [13] while Rbfox binding
site is commonly defined by the [U]GCAUG consensus motif. However, Rbfox has also
been shown to operate as part of the LASR complex without requiring the above bind-
ing motif [14], and recent work also points to secondary motifs by which Rbfox may exert
its function[15], illustrating some of the complexities involved in deciphering a predictive
splicing code in silico.
The splicing quantification (� ,��) used here to train and test the models were derived

from RNA-seq experiments involving six mouse tissues (hippocampus, heart, liver, lung,
spleen, and thymus) [16] and quantified using MAJIQ [17]. Specifically, for the results
described below, we use a group of cassette exons that are differentially included in the
hippocampus as the set of interest. These alternative exons should be enriched in fea-
tures informative for differential inclusion in the hippocampus. We select constitutively
spliced exons that are always included in all tissues as the baseline class. Constitutive
exons are chosen as the baseline since these events differ from alternative events in both
core splicing features and brain-specific splicing features.
Models for the splicing prediction task described above have several desirable char-

acteristics for analyzing DNN interpretation. First, the features are an identifiable set
representing prior biological knowledge about putative regulatory elements such as
known sequence motifs and RNA conservation scores. Moreover, a myriad of models
have already been applied to this task, including a mixture of decision trees, Bayesian
neural networks, naive Bayes, and logistic regression [18, 19]. Second, the splicing
code model includes embedding in a lower dimension space, a common component
in genomic models, allowing us to test the usage of feature embedding for prediction
attribution.
Using splicing codes as a test case, we assess different configurations of EIG, simple

gradients, and IG. We also include SHAP, a recent method that offers a generalization
over several previous interpretation methods using the framework of Shapley values [20].
Specifically, DeepLIFT and SHAP have been combined into Deep SHAP, an approximate
algorithm for computing SHAP values for deep learning models. For these methods, we
assess the number of significant features and their relative enrichment in known regula-
tory features. We then assess the effect of the number of selected features on prediction
accuracy.
Finally, we use EIG to study liver-specific splicing regulation. EIG identifies A1CF as a

possible liver-specific splicing factor. We employ several downstream analyses to support
this finding. These include splicing quantification from a recent A1cf knockout mouse
model, motif maps showing positional bias and enrichment of the A1CF binding motif
around liver regulated exons, and PAR-CLIP peakmapping to support direct liver-specific
regulation by A1CF.
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Results
Nonlinear paths, meaningful baselines, and feature significance framework improve

interpretation of digit recognition

IG is based on approximating the integral over the gradient, per feature, between two
points: the sample of interest and a reference point. In the original IG formulation by [8],
only linear paths between these two points were used. In this work, we evaluate several
alternative path formulations. As seen in Fig. 1a, these paths are as follows: (1) linear path
in original feature space (O-L-IG, black line) as in the original IG, (2) k-nearest neighbors
path in the original feature space (O-N-IG, blue line), (3) linear path in the hidden feature
space (H-L-IG, gray line), and (4) k-nearest neighbors path in the hidden feature space
(H-N-IG, green line). Here, hidden feature space refers to the encoded representation
produced by encoder of an autoencoder model. For H-L-IG and H-N-IG paths, a trained
autoencoder is required for encoding features from original to hidden feature space and
decoding features from hidden to original feature space. Using the latent embedding
from the trained autoencoder as input, we train the downstream supervised learning task
(handwritten digit recognition and splicing prediction). Then, we combine the encoder

Fig. 1 EIG enhancements to identify relevant features per sample or task. a Top: Different linear and
nonlinear paths for EIG. (1) Linear path in original feature space (O-L-IG, black line), (2) neighbors path in the
original feature space (O-N-IG, blue line), (3) linear path in the hidden feature space (H-L-IG, gray line), and (4)
neighbors path in the hidden feature space (H-N-IG, green line). Bottom: visualization of such paths for a
specific sample using splicing data from [16] and PC1, PC2 of the feature space (see Additional file 1: Section
S1). b Different group-agnostic (zero and encoded-zero) and group-specific (k-means, median, close,
random) baselines. Encoded-zero baseline is generated by decoding a zero vector in the latent space. A close
baseline is created by taking a baseline point which is close to the sample in euclidean distance (see the
“Methods” section). c Framework to identify significant features that distinguish sample 5 from baseline 3.
The digit images show mean of 300 examples of sample digit 5 and median of 300 examples of baseline digit
3. The distribution plots are illustrative only. They show difference between distribution of attributions of two
sets of samples for a significant and a not significant feature
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from the autoencoder along with the downstream network. The combined encoder and
downstream network architecture enables us to design paths in the original and hidden
space.
We also assess several approaches to define a reference point, or groups of those, for the

different linear and nonlinear paths. First, we consider a group-agnostic reference which
does not require any prior biological information to define it. Specifically, an encoded-
zero baseline (encoded-zero O-L-IG, Fig. 1b top panel) is generated by decoding the zero
vector in the hidden space of our autoencoder. We also evaluate several approaches to
define a group-specific baseline using different methods for selecting reference points (k-
means, median, close, and random) as shown in Fig. 1b, bottom panel. In principle, these
baseline points can be chosen either in the original or hidden feature space, but here, we
chose to define these baseline points in the original feature space.
Finally, we include a significance test procedure to identify significant features asso-

ciated with a prediction task. This procedure first computes the relative ranking of a
feature’s attribution across samples belonging to a class of interest. Then, these rankings
for a similarly sized random set of samples are computed. The two sets of relative rank-
ing are then compared using a one-sided t test with Bonferroni correction for multiple
testing (an illustration is shown in Fig. 1c) to identify the set of significant features.
We illustrate the usefulness of our prediction attribution framework using the visually

intuitive task of handwritten digit recognition [10]. Using the MNIST dataset, we first
create a joint model from a variational autoencoder and a feed-forward network. The digit
model predicts the identity of a handwritten digit between 0 and 9 from a 28 × 28 pixel
image (see Additional file 1: Table S4-S6 and Additional file 1: Fig. S2 for details about
the architecture). Using this network, we generate attributions for the sample digit 5 from
the baseline digit 3. Figure 2a left panel shows mean attributions across 300 examples of
5 from median baseline 3 using the linear path in the hidden space. We can see that to
distinguish the digit 5 from the baseline 3, median H-L-IG identifies that the pixels on the
bottom left and the top right should be absent (red) while the top left should be present
(green). When combined with the significant feature selection procedure, these results
become more pronounced, while other weaker attributions are removed (Fig. 2a, right
panel).
While we make use of a variational autoencoder to generate embeddings for H-L-IG

paths in the example described, other components of EIG, e.g., baselines, linear, and
neighbors path, in the original feature space (O-L-IG and O-N-IG) and the significance
framework can be run on any deep neural network without need of an autoencoder. To
show this along with application of EIG to convolutional neural networks (CNNs), we
train two convolutional neural networks on the task of handwritten digit recognition. For
both of these, since the CNN scans patches (3×3 pixels) in the image, we assess signifi-
cant patches rather than individual pixels. First, Fig. 2b shows the significant features for
distinguishing the sample digit 5 from the baseline digit 3 using a CNNwith no additional
requirement of an autoencoder. The computed paths here are from a median baseline
using linear paths in the original feature space (O-L-IG). Similar to the result from Fig. 2a,
right panel, we observe pixels that should be absent (red) and present (green) in regions
of a digit 5, though these seem to stand out less. Next, we train a convolutional varia-
tional autoencoder (CVAE) to reconstruct the handwritten digit images. Then, using the
latent embedding from this CVAE as the first layer, we train a feed-forward network for
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Fig. 2 EIG framework with handwritten digit data. a On the left, mean attributions generated from 300
examples of digit 5 and median baseline digit 3 using median H-L-IG approach on a feed-forward neural
network. On the right, the subset of statistically significant features for the same set (one-sided t test,
Bonferroni adjusted p value ≤ 0.05). Pixels belonging to the digit 5 are blue, positive attribution shown in
green, and negative attribution shown in red. b Statistically significant features for distinguishing digit 5 from
baseline 3 using median O-L-IG approach on a convolutional neural network (CNN). For generating the
attributions, linear path was computed in the original feature space (O-L-IG) from a median baseline. c
Statistically significant features for distinguishing digit 5 from baseline 3 using median H-L-IG approach on a
CNN with a convolutional variational autoencoder (C-VAE). For generating the attributions, linear path was
computed in the latent space (H-L-IG) using the C-VAE. d Performance of models trained to distinguish
sample from the baseline digits using all features or only the significant features identified using our approach
(0.00 to 1.44% loss in accuracy while using 8 to 20% of all pixels). The top panel enlarges the y-axis (0.98 to 1.00)
to highlight the differences in performance. These models solve the binary classification task of distinguishing
the sample digit from the baseline digit and thus require fewer pixels than the original multi-class
classification problem of classifying each image in as one of ten possible digits. e Test set accuracy of models
trained to distinguish digit 5 from baseline 3 with increasing subsets of significant features (pink) or random
features (blue). x-axis shows increasing subsets of features, and y-axis shows the accuracy on the test set

handwritten digit prediction. Finally, we combine the encoder from CVAE and the feed-
forward network to produce the final network. For this task, we produced significant
features using again a median baseline but the linear path is in the hidden space. Com-
paring the result for this network (Fig. 2c) to those in Fig. 2b, we can see that the pixels
that should be absent (red) are arguably better captured by this combined CVAE and
feed-forward network but neither of those appear better than the results for a DNN with
H-L-IG (Fig. 2a).

Identified significant features have better predictive power for handwritten digit

recognition

More generally, to test whether our framework identifies significant features that can dis-
tinguish the sample class from the baseline class, we train networks using only significant
pixels (8 to 20% of all pixels) as features on the task of distinguishing the sample digit 5
with each remaining digit serving as baseline in a different network. Figure 2d shows that
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the accuracy of this model on the test set is almost as good (0.0 to 1.44% loss in accuracy)
as a network trained with all 784 pixels as features.
Finally, we wish to evaluate the predictive power of significant features found using EIG

(significant features generated with median baseline 3, sample digit 5 using linear path
in latent space on the feed-forward network with variational autoencoder). Therefore,
in Fig. 2e, we plot the predictive performance of a feed-forward network on the binary
classification task for digits 5 and 3 with increasing subset of significant pixels (pink)
or random pixels (blue). As can be expected, the pink curve using significant pixels has
higher accuracy and saturates earlier than the blue curve using random pixels, indicating
that the identified significant pixels have better predictive power.

Establishing a robust framework for identifying significant splicing code features

As described in the introduction, training the splicing codemodels involves the training of
an autoencoder or variational autoencoder as the first step. Thus, any downstream analy-
sis should first address the stability of these nonlinear embeddings in a lower-dimensional
space. Given our interest in paths between points and the advantages demonstrated in
other domains for assessing similarities based on local structures [21–23], we test stability
of the embeddings via neighborhood similarity. Specifically, we evaluate several autoen-
coder and variational autoencoder architectures to conclude the embeddings do not vary
much, with an observed Spearman rank correlation typically in the range of 0.70–0.95
when varying architectures, bootstrapping samples, and initializations (see the “Methods”
section and Additional file 1: Fig. S3).
Using the latent embedding from the trained autoencoder as input, we train a feed-

forward network with similar architecture as [2] (see Additional file 1: Fig. S1 for details
about the architecture). The combined encoder and feed-forward network is then used
to predict the splicing outcome. This combined architecture enables us to run attribution
in the original and hidden space. We also address a potential stability issue of the inte-
gral approximation performed by IG. Based on this analysis, we select 250 points for the
experiments described below (see Additional file 1: Section S2 and Additional file 1: Fig.
S4 for details on path interpolation).
To identify significant features for any group of splicing samples, we first group highly

correlated features (e.g., different versions of the Rbfox splicing factor binding motif ) into
meta-features in order to avoid spreading attributions associated with the same entity
(Rbfox binding in this example). This results in the 1357 splicing features grouped into
781 meta-features. The significance test procedure described above is then applied at the
level of these meta-features to the sum of associated features attribution to avoid inflating
the significance of large meta-features.

Monitoring p value distribution for EIG feature attribution, combined with prediction

accuracy curves, offers insights on the informative features set

To ensure that our p values are well calibrated, we compared two similar sized random
group of events. It produced well-calibrated p values with no feature passing a p value
of 0.05 after multiple hypothesis correction (Additional file 1: Fig. S5). It is instructive to
compare this distribution to the p value empirical distribution on real data. In the case of
the digit recognition task (Additional file 1: Fig. S6, left), the empirical p value distribution
is clearly skewed by a small set of highly informative features (p ∼ 0) and a set of “dead”
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pixels (p ∼ 0.5). Removing those along with the dead pixels set results in a much closer
to uniform distribution (Additional file 1: Fig. S6, right).
Another observation to be made here is that although the identified significant pixels

are only a small fraction of the total number of features, the early saturation of the pink
curve in Fig. 2e is likely to be the result of the high correlation between many of the pix-
els. This correlation, and subsequent redundancy in terms of predictive capacity, can be
gleaned from the regions of green and red patches in Fig. 2a–c. Thus, while the identified
pixels may indeed be informative for the task at hand and represent a sparse solution in
feature space, they are not intended or optimized to provide a minimal feature set, as is
the focus of some other recent work [24].
In summary, we found that monitoring that p value distribution for EIG feature attri-

bution, combined with prediction accuracy curves, can offer insights on the informative
features set detected by EIG. We next turn to focus on the splicing code models as a case
study.

EIG with nonlinear paths identify significant features missed using linear paths or simple

gradients

Using our significance framework, we first evaluate the effect of different nonlinear paths.
Figure 3a shows that simple gradients and the original IG as proposed in [8], linear path
in original feature space with zero baseline (O-L-IG), fail to identify any known regula-
tory features as significant. In contrast, nonlinear paths, O-N-IG, H-L-IG, and H-N-IG,
identify 488, 85, and 24 meta-features as significant, respectively.
It is admittedly hard to assess levels of false-positive features for such a real-life predic-

tion task or to argue that identifying more features (e.g., 488 vs. 24 as above) is strictly
better. Nonetheless, the lack of significant features when using simple gradients or IG is
striking. Furthermore, previous modeling efforts reported hundreds of those features as
relevant and these features include many known regulatory features such as conservation
scores and known binding motifs of brain-specific RNA binding proteins that we expect
to find [18].

Group-agnostic and group-specific baselines identify significant features missed by a zero

baseline

Next, we evaluate several approaches to define a reference point, or groups of those,
for the different linear and nonlinear paths. For group-agnostic reference, encoded-zero
baseline identifies 73 significant meta-features, a marked improvement over the original
zero O-L-IG which failed to identify any brain-specific features. When the encoded-zero
baseline is combined with nonlinear paths, a higher number of significant features are
identified (354–534) as shown in Fig. 3c.
The group-specific baselines for the splicing prediction task described here are

designed to find significant features that distinguish differential inclusion in the brain
from constitutive splicing events. This means that the identified features should make a
specific splicing event both an alternative exon (e.g., weak splice sites) and differentially
included in the brain (e.g., Nova motif clusters). This refined definition of the baseline
results in a larger number of significant meta-features being identified compared to those
found by the group-agnostic baseline, with median O-L-IG identifying the highest num-
ber of significant meta-features (621, Fig. 3b). Notably, we found that median baseline
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Fig. 3 Performance evaluation of IG, EIG, and Deep SHAP on splicing data. a Number of significant
meta-features identified by different methods: simple gradients, original IG (O-L-IG), and EIG nonlinear paths
(see main text) with a zero baseline. b Number of significant meta-features identified by different EIG
baselines (explained in text) with a linear path in the original feature space. c Number of significant
meta-features identified by different EIG paths with an encoded-zero baseline. d Number of significant
meta-features identified by different EIG paths with three median-constitutive baseline points. e Enrichment
of known brain regulatory features in significant features identified by the best two EIG paths each from
encoded-zero and median-constitutive baselines and Deep SHAP. f Splicing prediction for differential
inclusion in the brain with increasing subsets of significant meta-features identified by EIG with latent-linear
path (H-L-IG) and median baseline from constitutive splicing events (orange line) or randommeta-features
(gray line). The x-axis shows the number of meta-features. The y-axis shows the AUC-ROC for differential
inclusion on the test set. Significant features passing one-sided t test, Bonferroni adjusted p value ≤ 0.05. g
Splicing prediction for differential inclusion in the brain using features found to be significantly generated by
different combinations of paths (O-L-IG, O-N-IG, H-L-IG, H-N-IG) and baselines (zero, encoded-zero, median,
k-means, close, random) and simple gradients. x-axis shows the different interpretation methods, and y-axis
shows the AUC-ROC for differential inclusion in the brain on the test set

finds a similar number of significant features across all linear and nonlinear paths (Fig. 3d,
see Additional file 1: Fig. S7 to see performance of other baselines). In addition, when we
tested for the overlap of the features reported as significant by the various path and refer-
ence point definitions, we found extensive overlap indicating robustness (Additional file 1:
Fig. S8). For example, models that used a group-agnostic baseline of encoded-zero only
had 4/534 shared features which were not reported by the models using a group-specific
baseline.
While we tested for identified feature p value calibration in order to control for

false positives (Additional file 1: Fig. S9), reporting more informative features is not
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necessarily an indication of improved quality of a method. Since different EIG paths and
baselines produce different number of significant features, we need to assess the quality
of these features. Therefore, we perform two evaluations to test the quality of features
found by EIG paths and baselines: enrichment of known biological features in the set of
found features and the predictive performance using the chosen significant features. We
describe each of these criteria in the next two sections.

EIG shows higher enrichment of known biological features than deep SHAP

To get a quantitative assessment of the biological relevance of the reported features, we
tested them for enrichment of known splicing features and brain-specific regulatory fea-
tures that are different from constitutive splicing events (see the “Methods” section). To
assess such enrichment, we computed a hypergeometric p value for the overlap between
this pre-defined feature set and the any subset of eachmethod’s reported features, ordered
by their relative attribution. Figure 3e shows that significant meta-features identified by
constitutive baselines with linear (median O-L-IG) and nonlinear (median H-L-IG) paths
have higher enrichment of these known regulatory features than Deep SHAP. On the
other hand, the group-agnostic baseline (encoded-zero O-L-IG and encoded-zero H-N-
IG) has a similar level of enrichment for these features as Deep SHAP (performance of
other EIG methods is summarized in Additional file 1: Fig. S10). We conclude that when
compared to the recent Deep SHAP, EIG achieves higher or similar level of enrichment
of known regulatory features while reporting similar or fewer features overall.

Identified significant features improve splicing prediction

As a second criteria to evaluate the quality of reported meta-features, we evaluated their
contribution to accurately predicting splicing changes (��) on the set of exons which are
differentially spliced in the brain. These significant meta-features were generated using
median baseline constitutive splicing events, against samples from differentially included
events in the brain using linear path in latent space on the feed-forward network with an
autoencoder (Fig. 3d, third bar). Therefore, in Fig. 3f, we plot the predictive performance
of a feed-forward network on this splicing prediction task with increasing subset of sig-
nificant meta-features (orange) or random meta-features (gray). We find that the orange
curve using significant meta-features has higher predictive power and saturates earlier
than the gray curve using randommeta-features, indicating that the identified significant
meta-features have better predictive power. The prediction improvement for the differ-
entially included exons in the test set saturates around 70–100 meta-features. This early
saturation has been reported in previous works [18] and is to be expected for several rea-
sons. First, the splicing code feature set is based on putative regulatory features collected
from the literature. As such, it is highly enriched for informative features (see also Addi-
tional file 1: Fig. S10). Second, there is built-in redundancy between the meta-features
in terms of predictive capacity, as discussed above regarding the saturation observed in
Fig. 2c for the digit task. For example, high upstream intron conservation is likely to be
accompanied by high conservation of the downstream intron. In addition, the selected
splicing code features carry information relevant to additional tasks such as identifying
alternative exons and distinguishing low-inclusion and high-inclusion exons that are not
needed for this task. Overall, this result indicates that 70–100 meta-features are sufficient
for peak predictive performance on this task. We notice the same trend when we plot
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the predictive performance of all EIG methods (paths: O-L-IG, H-L-IG, O-N-IG, and H-
N-IG, and baselines: zero, encoded-zero, median, k-means, close, random) on the same
splicing task of differential inclusion of splicing events in the brain.We find that all flavors
of EIG that find more than 70–100 meta-features show similar predictive performance
(Fig. 3g). Exceptions are simple gradients (3 meta-features), zero baseline with O-L-IG (0
meta-features), and H-N-IG (24 meta-features) paths.

Identification of A1CF as a regulator of a liver splicing program

Finally, we wished to use EIG to uncover biological insight into tissue-specific splicing
regulation. Early studies noted that certain tissues, like the brain and the liver, exhibited
extensive alternative splicing, relative to other tissues [25]. While the brain has since been
well studied for regulators of neural splicing patterns (reviewed in [26]), the liver has
relatively few characterized splicing regulators to date (reviewed in [27]) with none having
liver-restricted expression.
To identify putative regulators of the liver splicing program, we applied EIG to sets of

exons that were differentially spliced in the liver versus the other five tissues. Our anal-
ysis for enrichment of known biological features showed highest enrichment for median
baseline followed by encoded-zero baseline. Therefore, we ran interpretation for the dif-
ferential inclusion/exclusion in the liver using encoded-zero and median baselines for all
four paths (O-L-IG, O-N-IG, H-L-IG, and H-N-IG). We then used Tomtom [28] to align
the PSSM of a significant meta-feature identified through this procedure with the in vitro
determined motifs of a compendium of RNA binding proteins from RNACompete [29].
This analysis found a significant match to a motif recognized by APOBEC1 complemen-
tation factor (A1CF) (Fig. 4a). A1CF is most well characterized as an RNA binding partner
of APOBEC1 that contributes to C-to-U RNA editing levels in specific tissues [30]. How-
ever, A1CF is part of the hnRNP family of RNA binding proteins that play roles in various
aspects of RNA processing [31]. We therefore hypothesized A1CF may have a role in a
liver splicing regulatory program, resulting in the associated features identified by our
EIG framework. In support of a role for A1CF in splicing regulation, a study published
while this manuscript was being prepared reported splicing changes for approximately
80 genes in the liver of a A1cf knockout mouse model [32]. We then used the datasets
produced in this study to further assess the hypothesis of an A1CF liver-specific splicing
program suggested by our initial EIG analysis.
In line with known expression patterns, we observed liver-restricted expression of

A1cf in the mouse tissues analyzed here (Fig. 4b). Because splicing regulators typically
act in position-specific manners to alter spliceosome assembly in regions proximal to
alternative exons [33], we next wished to examine the A/U-rich motif frequency (the
known binding site for A1CF [29, 34]) around different sets of regulated exons. We com-
pared exons that were differentially included or excluded in the liver to alternative exons
for which inclusion does not change in the liver. This comparison identified regions of
enriched A1CF motif occurrence proximal to the alternative exon (Fig. 4c top panel,
grayscale boxes indicate regions of significant differences based on Fisher’s exact test, see
the “Methods” section for details). To focus only on the cassette exons which had differ-
ential inclusion between tissues, we also examined A1CFmotif occurrence around the set
of exons that were differentially included between other tissues but not in the liver, and
still observed regions of enriched motif occurrence in the liver-specific set (Additional
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Fig. 4 Identification of A1CF as a regulator of the liver splicing program. a Tomtom [28] alignment of PSSMs
for the in vitro determined binding site of the RNA binding protein A1CF ([29] top) and a significant
meta-feature identified in multiple liver versus other tissue comparisons (bottom). b Boxplots showing the
expression level of A1cf in transcripts per million (TPM) in the indicated tissues across the six mouse
replicates. cMotif maps showing the frequency of 3-mers known to bind A1CF (AAU, UAA, or AUU [29, 34])
around the 3’ and 5’ splice sites of cassette exon sets indicated in the legends. Frequencies were smoothed
using a running mean of 20 nucleotides (nts). Grayscale boxes indicate significant differences in motif
occurrence (− log10(p)) between the regulated versus non-regulated exon sets (p < 0.05, Fisher’s exact test
assessed at sliding windows of 20 nts). d Bar chart showing the fraction of exons in the indicated sets that
contained evidence of A1CF binding proximal to the cassette exon (within 300 nucleotides upstream, within
the cassette exon, and/or within 300 nucleotides downstream). Significance was assessed using a two-tailed
Fisher’s exact test. e Venn diagram showing the overlap of cassette exons that were alternatively spliced in
the liver versus other tissues and those regulated by A1CF, given they were quantified in both experiments.
Significance was assessed using a two-tailed Fisher’s exact test

file 1: Fig. S11a, compare orange and blue). This suggests A1CF binding is not common
to all alternative exons, but specifically enriched around exons regulated in the liver.
To see if this liver-specific motif enrichment was consistent with A1CF splicing regu-

lation, we analyzed RNA-seq data from the livers of wild-type and A1cf knockout mice
[32].We defined the exons which were regulated and non-responsive to A1CF and plotted
motif occurrence around these exons. Although little was previously known about how
proximal A1CF binding influences splicing outcomes, we were able to detect regions of
enriched A1CFmotif occurrence around the A1CF-regulated versus non-regulated exons
(Fig. 4c, bottom). Most notably, this included a region around 200 nucleotides down-
stream of alternative exons that was also enriched in the set differentially included in the
liver (Fig. 4c bottom, compare orange and cyan with grayscale boxes at the bottom indi-
cating statistical significance of motif enrichment). Next, we stratified these exon sets into
those with high inclusion in the liver and compared them to exons enhanced by A1CF
or exons excluded in the liver and compared them to exons repressed by A1CF, with
the expectation that these sets should exhibit similar motif enrichment patterns. While
subsetting these exons sets introduced some additional noise, there were still matching
regions of enriched motif occurrence around 200 nucleotides downstream of the regu-
lated exons (Additional file 1: Fig. S11b,c). The lack of strong position-dependent effects
of the A1CF motifs around the exons it enhances versus represses (e.g., upstream vs.
downstream binding) may suggest additional contextual requirements in determining
splicing outcomes for A1CF target exons (e.g., additional binding partners, altered or
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extended binding motif requirements in vivo, splice site strength), and further study is
necessary in this regard.
While the above analysis is suggestive, motif occurrence does not guarantee RNA bind-

ing and the in vitro determined motifs identified for A1CF may not reflect binding motifs
in vivo. To address these concerns, we analyzed A1CF PAR-CLIP data from the mouse
liver [32] using the CLIP Tool Kit [35].We focused our analysis on positions with multiple
unique tags containing T-to-C cDNA transitions which are indicative of nucleotide-
resolution RNA binding [36]. We saw local enrichment of the in vitro determined A1CF
motifs at these cross-linked sites (Additional file 1: Fig. S12a), suggesting A1CF can bind
these same motifs in vivo. Moreover, we saw a higher average number unique T>C PAR-
CLIP tags at positions consistent with the motif maps for the liver and A1CF exon sets,
most strikingly in the region around 200 nucleotides downstream of the regulated exons
(Additional file 1: Fig. S12b, Fig. 4c). Additionally, A1CF bound proximally to a significant
fraction of both liver- and A1CF-regulated exons compared to relevant non-changing
and differentially included in other tissue sets (Fig. 4d). As with the motif analysis, we
subsetted regulated exon sets into liver-specific increased or decreased inclusion and
compared those to A1CF enhanced and repressed exons to examine position-specific
binding effects. While all four regulated exon sets had enriched A1CF PAR-CLIP binding
downstream alternative exon when compared to non-responsive exons, this enrichment
was more striking downstream of the liver included and A1CF enhanced exon sets, sim-
ilar to the motif analysis (Additional file 1: Fig. S12c, red). A1CF repressed exons, on the
other hand, were also enriched for intronic binding upstream of the alternative exon to
a similar degree as the liver repressed exons (Additional file 1: Fig. S12c, blue). How-
ever, we note that this upstream intronic binding was also observed in the liver enhanced
exons. Finally, we found a significant overlap in the exons regulated by A1CF and the liver
alternative exon set (Fig. 4e).
In summary, these results suggest that some additional features may dictate whether

A1CF enhances or represses particular exons in the liver. Nonetheless, all lines of enquiry
we employed based on motif enrichment, A1CF knockdown, and CLIP data suggest our
models correctly identified A1CF as a key, direct regulator of the liver alternative splicing
program.

Discussion
While the usage of deep learning in genomics has grown exponentially in the recent
years [37], relatively little work in the genomics literature has addressed the need for
interpretation of these models. Here, we define model interpretation in terms of feature
attribution, i.e., finding features that are significant for a specific prediction task. We
present a framework to identify such features, building upon the method of Integrated
Gradients (IG) [8]. Our specific computational contributions are that we propose non-
linear paths, group-agnostic and group-specific baselines, and a statistical test to assess
significance of different features. We show these additions improve the feature detection
ability of IG for handwritten digit recognition and splicing prediction problems. Addi-
tionally, we ensure robustness of our results by assessing stability of data points in latent
spaces of different model architectures via neighbor similarity.
The lack of ground truth for many biological datasets is likely a major reason for the

scarcity of published work onmodel interpretability in genomics. Simulated data or image
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recognition data, where the ground truth is readily available, is often used to get around
this issue. For example, to assess DeepLIFT, the authors used MNIST digit recognition
data and simulated motif sequences [9]. However, such synthetic data are not necessarily
representative of a real-life task and particularly for splicing codes for which simulation
procedures are not obvious. Instead, we sidestepped this issue by focusing on a real-life
prediction task which involves identifiable features. Admittedly, the evaluation of sig-
nificant features for this real-life task does not offer direct assessment of false-positive
and false-negative features. In addition, our approach does not offer any theoretical
guarantees beyond those of sensitivity and implementation invariance discussed before.
Specifically, the usage of a reference sample has been shown to overcome issues of activa-
tion saturation [9], but we lack theoretical guarantees for identifying significant features
when they are highly correlated. Instead, we group highly correlated features (e.g., vari-
ants of a splice factor binding motif ) and compute the total absolute attribution assigned
to all features in that group (see the “Methods” section). More advanced approaches may
be applied to handle this issue, but in practice, we found that even comparing the contri-
bution of those redundant features to the null distribution allowed us to identify them as
individually significant, indicating robustness.
Despite the limitations discussed above, our approach gave robust and intuitive results

on the task of handwritten digit recognition. Furthermore, we were able to demonstrate
that our approach controls for false-positive features when compared to a randomly
selected reference group, that the identified features give high prediction accuracy when
used alone, and that by combining prediction accuracy curves (Figs. 2e and 3f) with
empirical p value distribution (Additional file 1: Fig. S6,S9), we can learn about both
sparsity and redundancy of the informative feature set. Importantly, we showed that the
enhancements we propose to IG enable it to identify many more biologically relevant
features. Specifically, we find simple gradient and IG with zero baseline perform poorly.
Instead, users in search of a group-agnostic baseline can use an encoded-zero baseline.
Of the nonlinear paths we offer, H-L-IG is the most robust across different baselines
while being computationally more efficient than theO-N-IG andH-N-IG paths. However,
connectivity in the latent space, as is observed in single cell data, may motivate neighbor-
based approaches in other applications. The performance of baseline selection methods
for the group-specific baseline depends on the underlying structure of the data, but using
the median points is computationally efficient and yields best results on the splicing data.
Finally, when compared to Deep SHAP, we find our approach finds higher enrichment of
biologically relevant features.
As a future direction for research, we believe that elaborate and detailed mapping of

where and why various interpretation methods succeed or fail will be highly valuable to
the machine learning community in general and researchers focused on biomedical tasks
in particular. For example, here, we demonstrate that IG did not performwell for the splic-
ing code prediction task, but in another recent work involving protein DNA binding site
predictions, IG and mutagenesis analysis performed similarly well [38]. Understanding
the effect of the type of features (e.g., binary vs. discrete vs. continuous), how the fea-
ture values are distributed, redundancy between features, or other characteristics of the
domain could be highly valuable for researchers to discern which model interpretation
method they should use for their specific task.



Jha et al. Genome Biology          (2020) 21:149 Page 15 of 22

While the above discussion is informative with respect to EIG as an interpretation
method, arguably, the ultimate utility of such a method is in its ability to generate high
confidence hypotheses for follow-up. Here, we were able to apply EIG to identify A1CF
as a regulator of the liver splicing program, then support this result using several lines
of experimental and computational evidence based on motif maps, RNA-seq from a A1cf
knockout in mouse, and PAR-CLIP binding assays.
Overall, this work offers a framework for researchers in genomics to interpret deep

learningmodels and propose specific hypotheses for downstream validation as in the case
of A1CF presented here. We hope this framework, along with the available code, will help
gain new insights from the deluge of deep models being developed for biomedical tasks.

Methods
Notation

We are interested in interpreting the prediction made by a deep learning model given an
input observation by assigning attributions to each feature of the observation. Here, we
assume that predictions are made from inputs x in a p-dimensional feature spaceX = R

p.
Predictions are obtained by a real-valued prediction function on feature space F : X → R.
The goal is to obtain a p-dimensional vector of attributions called attr ∈ R

p, with each
coordinate corresponding to the p dimensions of the feature space, for an input x that
indicates how each of the p features contributes to the prediction F(x).

Datasets

In this work, we use RNA-seq experiments processed by [16] from six mouse tissues
(hippocampus, heart, liver, lung, spleen, thymus) with average read coverage of 60 mil-
lion reads. We generated 1357 genomic features from 14,596 exon skipping events and
74,156 constitutive exon triplets using AVISPA [39]. � and �� quantification for the
exon skipping events were generated using MAJIQ [17]. In addition, we use the MNIST
handwritten digit dataset [10]. This dataset contains 70,000 images of handwritten digits
from 0 to 9. Each image contains 28 × 28 pixels.

Splicing codemodel

We first train an autoencoder to find a latent embedding for the 1357 splicing features
in a lower-dimensional space. Subsequently, we use this embedding along with a separate
input for two tissue types as the input to a feed-forward neural network. Predictions are
made for three targets:

T�e,c = E[�e,c]

T��inc,e,c,c′ = |max(ε,E[��e,c,c′ ] )|
T��exc,e,c,c′ = |min(ε,E[��e,c,c′ ] )|

T�e,c is the expected PSI value of the event e in condition c, T��inc,e,c,c′ captures the�� for
event e if it has increased inclusion between condition c and c′, and T��exc,e,c,c′ captures
the �� for event e if it has increased exclusion between condition c and c′. ε is a uni-
form random variable with values between 0.01 and 0.03. It is used to provide small ��

values for non-changing events. Our goal is to interpret predictions made by this model,
attributing which of the 1357 features contribute to T�e,c , T��inc,e,c,c′ , or T��exc,e,c,c′ for a
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given sequence. Thus, we combine the encoder from the autoencoder and the splicing
code feed-forward network to form a single network. The attributions are computed on
this combined network.

Handwritten digit model

We use a feed-forward neural network architecture for this task with a variational autoen-
coder for dimensionality reduction. The input to the feed-forward neural network is the
latent embedding from the variational autoencoder. Prediction is performed to identify
the class of the input image from 10 digit classes. Interpretation task involves attribut-
ing predictions made by this model to a subset of 28 × 28 (784) pixels. The attributions
are computed on the joint network combining the encoder from the variational autoen-
coder and the digits feed-forward network. Additionally, we trained convolutional neural
networks for handwritten digit recognition to demonstrate the usability of EIG on CNNs
with and without an autoencoder. We trained two different CNNs for this task. First, we
trained a standard CNN with convolutional, max-pooling layers followed by dense lay-
ers with ReLU activation function. Subsequently, we train a feed-forward neural network
with convolutional variational autoencoder for dimensionality reduction. The input to the
feed-forward neural network is the latent embedding from the convolutional variational
autoencoder. Details about the architecture of the convolutional neural network can be
found in Additional file 1: Table S7-S10.

Evaluation of latent space stability

As is common inmany genomic learning tasks, the splicing codes described above involve
an embedding of the original features in a lower-dimensional latent space. This embed-
ding leads to an extension of IG by using this latent space, but at the same time raises
the question of whether the embedding itself is robust. Lack of robustness in embed-
dings can lead to undesirable scenarios where different network architecture choices
lead to different interpretations. One way to ensure robustness of different embeddings
is to ensure similar relative distances between different data points in different embed-
dings. Thus, we compute the Spearman rank correlation of the pairwise distances among
training points in latent space between different autoencoders. We also evaluate corre-
lations to the pairwise distances in the original feature space for comparison. Additional
file 1: Fig. S3 shows that different autoencoder and variational autoencoder embed-
dings are stable (Spearman rank correlation between architectures ranges from 0.70
to 0.96).

EIG: Enhanced Integrated Gradients

Integrated Gradients [8] is a feature attribution method for explaining predictions from a
differentiable function F such as is obtained from deep learning models. The per-feature
attributions for a prediction are defined relative to a reference point x′ ∈ X and its predic-
tion F(x′). For an observation x ∈ X , Integrated Gradients obtains an attribution vector
attr(x) by integrating the gradient of F with respect to the feature space along a path
γ :[ 0, 1]→ X that starts at x′ and ends at x, i.e., γ (0) = x′ and γ (1) = x. If we write the
attribution vector coordinate-wise as:

attr(x) =[ attrγ1 (x), attrγ2 (x), . . . , attrγp (x)] , (1)
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then the attribution for the jth feature xj is:

attrγj (x) :=
∫ 1

α=0

∂F(γ (α))

∂γ j(α)

∂γ j(α)

∂α
dα (2)

Sundararajan et al. [8] focuses on the special case where the path γ is chosen to take the
straight-line path on R

p from x′ to x. Parameterized by α ∈[ 0, 1], the path is γ (α) =
x′ + α(x − x′) so that the attribution for the jth feature is:

attrj(x) := (xj − x′
j) ×

∫ 1

α=0

∂F(x′ + α × (x − x′))
∂xj

dα (3)

To address the possibility of artifactual attributions by Integrated Gradients from linear
paths crossing regions of Rp far from training points in feature space used to obtain F, we
evaluate nonlinear paths designed to stay close to the data. We evaluate two approaches
for generating such nonlinear paths: autoencoder networks on feature space and nearest
neighbor graphs of training data. In the first approach, nonlinear paths are created by
considering an autoencoder as the composition of an encoder E and decoder D to and
from some latent space L. We define z′ ≡ E(x′) and z ≡ E(x). We take the linear path
between z′ and z and use D to map it back to a nonlinear path on X . The final path
accounts for the reconstruction error in mapping the endpoints back to X by connecting
x′ and x to the start and end of the decoded path (i.e., linearly interpolating between the
endpoints and their auto-encoded counterparts).
In the second approach, nonlinear paths can be created in the original feature space X

or the latent space L. In X , we construct the k-nearest neighbor graph on training data
with respect to a distance metric on the X , weighting edges by distances between points.
The path between x′ and x is created by adding them to the nearest neighbors graph and
finding the shortest path between them using Dijkstra’s algorithm, interpolating linearly
between neighbors. InL, the procedure is similar except for two key differences. First, the
distances are computed in L. Second, the k-nearest neighbors path is computed between
z′ and z and the decoderD is used to map this path back to X .

Evaluation of IG-based methods for feature attribution

The original IG work by [8] only offered a method to compute the attribution per feature
but did not offer a measure to identify significant features associated with a specific task.
To address this need, we propose Algorithm 1. The input G contains attributions for all
features/meta-features for a set of events of interest (e.g., differentially included exons in
the brain), and R contains attributions for all features/meta-features for a random set of
events. SetG is a subset of R with absolute attribution for one feature/meta-feature for all
examples from a class. SetR is a subset ofGwith absolute attribution for one feature/meta-
feature for a random subset of examples from all classes. For each feature/meta-feature,
we perform a one-sided t test for the positive tail of the distribution on SetG and SetR.
The one-sided t test captures features where absolute attribution on SetG is higher than
SetR. To address the multiple-testing problem, we perform Bonferroni correction with
family-wise error rate (FWER) of 0.01. A possible limitation of the above approach is that
attribution may be dispersed between highly related features such as slight variations of
the same splice factor binding motif. To address this issue in the context of splicing codes,
we group highly correlated features into 781 meta-features, as done in previous works
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Algorithm 1 Find Significant Features
Input: G = [ attr(g1), attr(g2), . . . , attr(gm)],
R = [ attr(r1), attr(r2), . . . , attr(rl)],
size(G) =m × p,
size(R) = l × p
Output: Set of significant features F
for i = 1 to p do

SetG = abs([ attrγi (g1), attrγi (g2), . . . , attrγi (gm)] )
SetR = abs([ attrγi (r1), attrγi (r2), . . . , attrγi (rl)] )
p-valuei = one-sided t-test(SetG, SetR)
T[ i] = p-valuei

end for
T ′= Bonferroni-Correction(T, FWER=0.01)
for i = 1 to p do

if T ′[ i]≤ 0.05 then
F [ i]= 1

else
F [ i]= 0

end if
end for

[18, 39]. To compute the attribution for a meta-feature, we sum the attributions of all its
features. Then, we apply Algorithm 1 to find significant meta-features.

Baselines

In the original IG work [8], an all-zero baseline is used to represent the absence of sig-
nal. This may be an acceptable choice for an object recognition task where it represents
an all black image. However, in the genomics domain, an all-zero baseline may not be
meaningful. As a first alternative, we propose a generic alternative baseline which we call
encoded-zero. It requires an encoder/decoder to/from latent space such that we can use
an all-zero point in the latent space and pass it to through the decoder to generate our
baseline. The encoded-zero represents the mean of the data on which the autoencoder
was trained. Interpretation with this baseline captures features that deviate from themean
and thus contribute to a sample’s prediction.
The encoded-zero baseline described above finds features that are important for a spe-

cific sample in comparison to the mean. However, in genomics, we are often interested in
features that distinguish two classes of events. In order to distinguish the class of inter-
est from a reference class, we propose four approaches to select one or more baseline
points. Random baseline: in this approach, we randomly sample one or more points from
the baseline class. This serves as the naive method to evaluate the effectiveness of the
other methods of selecting baselines. k-means baseline: in this approach, we cluster the
points of the baseline class to k different clusters and then use cluster centroids as base-
line points. The number of clusters can be selected by cross-validation. For the splicing
data, we found 3–5 clusters were sufficient (data not shown). This method gives base-
line points that represent different subgroups that might be present in the baseline class.
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Median baseline: in this approach, we compute the euclidean distance of all the points of
the baseline class from themedian and select the points closest to the median. Points cho-
sen using this method protect the later interpretation against outliers in the baseline class.
Close baseline: in this approach, we compute the euclidean distance of all the points in the
baseline class from all the points in the class of interest and pick points from the baseline
class that are close to a sample from the class of interest as its baseline. These baseline
points are close to the sample and may thus help capture a minimal set of distinguishing
features between the baselines and the points of interest. When using this approach, we
discard the closest point from the baseline class to avoid extreme outlier points.

Defining the set of known biological features

As described in the main text, the set of splicing code features used in this work has
been previously curated from the literature and is therefore highly enriched in informa-
tive splicing regulatory features in general, and for regulation of splicing in the muscle
and brain in particular [18, 39]. To define a high-quality set of known biological meta-
features from these for our specific task of interest, we therefore ran a hypergeometric test
to compute p values for enrichment or depletion of a feature in the differentially included
splicing events in the brain compared to a negative set of constitutive splicing events. To
get a high-quality feature set, we used a highly conservative threshold of −log(p) > 20
which resulted in several hundred features from those initially selected for the splicing
code. Finally, we combined correlated features as meta-features and assigned the min-
imum p value assigned to a member of the meta-feature group as the p value for that
meta-feature.

Interpretation using Deep SHAP

Deep SHAP uses some points from a dataset as background. Given that we were compar-
ing Deep SHAP with EIG using median-constitutive baseline, we used 1000 constitutive
events as background. According to SHAP package that contains the Deep SHAPmethod,
1000 data points are sufficient for getting very good estimate of the expected values for
the background [20]. The set of interest was similar to EIG, differentially included cassette
AS events in mouse hippocampus in comparison to five other tissues.

Analysis of liver alternative events

To focus on high confidence, liver alternative cassette exons, we focused our analysis on
243 cassette exon events that were differentially included when comparing the liver with
two or more of the other five tissues. These exons include the set of exons with increased
inclusion in the liver or increased exclusion in the liver versus at least two other tissues.
The alternative in other tissue set was defined as the 382 cassette exons that were differen-
tially included in two or more pairwise comparisons among the five non-liver tissues that
also did not change in any liver comparisons. The non-changing in liver set was defined
as the 8426 events that were not changing in any of the comparisons of the liver with the
other five tissues.

Analysis of A1CF RNA-seq

We processed RNA-seq data from wild-type and A1cf knockout mouse livers [32] using
MAJIQ [17] to quantify splicing and identify significant changes in splicing between
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these groups (|��| ≥ 10%). We matched these significant changing junctions to the cas-
sette exons defined above and defined 171 A1CF-regulated exons to be all cassettes with
both an inclusive and exclusive junction with |��| ≥ 10%. This set of regulated exons
included A1CF enhanced exons (i.e., decreased inclusion upon A1cf knockout compared
to wild-type) and A1CF repressed exons (i.e., increased inclusion upon A1cf knockout).
A1CF non-regulated exons were defined as the 2748 events with all junctions in the cas-
sette exon or the broader local splicing variation (LSV) event as defined by MAJIQ [17]
changing with |��| < 5%.

Motif analysis around cassette exons

We extracted sequences for cassette exons and the splice site proximal intronic regions
upstream and downstream of the intron. For each subset of cassette exon events, we cal-
culated the frequency of A1CF motif occurrence at each position (defined to be AAU,
UAA, or AUU [29, 34]). For plotting, the frequencies were smoothed using a running
mean of 20 nucleotides. To find regions of significant difference between sets of cas-
sette exons, we searched for the motif over a sliding window of 20 nucleotides and
performed Fisher’s exact test comparing the number of events containing a motif in
the regulated (e.g., differentially included in the liver) compared to non-regulated (e.g.,
non-changing in the liver) exon sets at each window. We reported positions with a
two-tailed p value < 0.05 and displayed a − log10 transformation of the p values on
the plots.

A1CF PAR-CLIP analysis

We processed PAR-CLIP data from the mouse liver from [32] using the CLIP Tool Kit
(CTK) [35] using the recommended protocol for PAR-CLIP data. Briefly, reads were
assessed for quality, adapters were trimmed, and exact PCR duplicates were collapsed.
Trimmed and collapsed reads were aligned using BWA [40] with the options -t 4 -n
0.06 -q 20. After another round of PCR duplicate collapsing, CTK was used to iden-
tify unique tags containing the T-to-C transitions. Data from the duplicate experiments
were merged, and we retained the transition sites identified by two or more unique tags
for downstream analysis. We searched for the presence of such tags around the vari-
ous exon sets defined above either within the alternative exon, within 300 nucleotides
upstream of the alternative exon, within 300 nucleotides downstream of the alternative
exon, or within any of the three aforementioned regions. Significance between regulated
and non-regulated exon sets for A1CF binding was assessed using a two-tailed Fisher’s
exact test.

Path interpolation implementation

Paths are approximated discretely by a sequence of points on the path. Integration is per-
formed numerically using the trapezoidal rule as implemented in NumPy. Approximation
error of integration is estimated in two ways: (1) by comparing the sum of attribu-
tions to the difference between the predictions at the endpoints (as suggested by [8])
and (2) by halving the step size for numerical integration to evaluate relative agreement
between more refined approximations. Estimated integration error is used to determine
the number of points necessary in the discrete paths (see Additional file 1: Fig. S4).
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