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Abstract

Background:At least 50% of patients with suspected Mendelian disorders remain
undiagnosed after whole-exome sequencing (WES), and the extent to which non-
coding variants that are not captured by WES contribute to this fraction is unclear.
Whole transcriptome sequencing is a promising supplement to WES, although
empirical data on the contribution of RNA analysis to the diagnosis of Mendelian
diseases on a large scale are scarce.

Results:Here, we describe our experience with transcript-deleterious variants (TDVs)
based on a cohort of 5647 families with suspected Mendelian diseases. We first
interrogate all families for which the respective Mendelian phenotype could be
mapped to a single locus to obtain an unbiased estimate of the contribution of TDVs
at 18.9%. We examine the entire cohort and find that TDVs account for 15% of all
“solved” cases. We compare the results of RT-PCR to in silico prediction. Definitive
results from RT-PCR are obtained from blood-derived RNA for the overwhelming
majority of variants (84.1%), and only a small minority (2.6%) fail analysis on all
available RNA sources (blood-, skin fibroblast-, and urine renal epithelial cells-derived),
which has important implications for the clinical application of RNA-seq. We also
show that RNA analysis can establish the diagnosis in 13.5% of 155 patients who had
received“negative” clinical WES reports. Finally, our data suggest a role for TDVs in
modulating penetrance even in otherwise highly penetrant Mendelian disorders.

Conclusions:Our results provide much needed empirical data for the impending
implementation of diagnostic RNA-seq in conjunction with genome sequencing.

Keywords:Negative WES, RNA-based diagnostics, Mapping, Mendelian,
Transcriptomics
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Introduction
Genome sequencing, enabled by the advent of next-generation sequencing (NGS) tech-

nologies, has changed the landscape of diagnostics in the Mendelian diseases space [1].
Whole-exome sequencing (WES) is the most popular NGS diagnostic application and

has achieved a diagnostic rate of 25–52% across the spectrum of Mendelian disorders,

although higher figures have been reported for certain phenotypic categories [2–5].
The minimal boost of diagnostic yield offered by whole-genome sequencing (WGS)

over WES suggests that the bottleneck is not in the capture/calling of the causal vari-
ants in the sequencing stage but rather in their interpretation [6, 7]. This notion is sup-

ported by studies showing the value of careful reinterpretation of“negative” WES and
how misinterpreting the causal variants in WES is a major challenge that cannot be cir-

cumvented by WGS [7, 8]. Therefore, there is a growing interest in exploring tran-

scriptomics to improve variant interpretation [9]. Indeed, published data suggest an
enrichment of “negative” WES cases for cryptic splice-altering variants that are not eas-

ily predicted in silico [10, 11].
Coding genomic variants modulate phenotypes through their effect on proteins while

non-coding variants (NCV) mediate their effects through RNA either directly (tran-

script-level) or indirectly (chromatin-level). In the context of Mendelian diseases, esti-
mates vary widely on the contribution of variants that affect splicing to the overall

mutation pool (15–60% of disease-causing variants) [12]. Two major challenges pre-
clude accurate estimation of this important class of disease-causing mutations. First,

many “coding” variants that are presumed to exert their pathogenicity at the protein

level are in fact splicing variants whose effect on splicing was never empirically deter-
mined. These not only include single base-pair substitutions that may or may not alter

the amino acid sequence (nonsynonymous and synonymous missense), but also include
protein-truncating variants [13]. Another major challenge is the clear reporting bias in

the literature where variants that impact consensus splicing codes are more likely to be
tested and reported. Deep intronic, UTR and promoter/enhancer variants are far less

likely to be uncovered by conventional Sanger or WES and, even when captured by

WGS, are very difficult to interpret using in silico tools despite their clear contribution
to Mendelian diseases [14–17].

Transcriptomics, therefore, holds a promising role in delineating Mendelian pheno-
types that are caused by variants that are deleterious at the transcript level [18]. These

include variants that reduce the abundance of the transcript, e.g., nonsense-mediated

decay (NMD), as well as those that create aberrant splicing. Early experience with
RNA-Seq (massively parallel sequencing of RNA) suggests its potential to reveal vari-

ants that have been missed at the sequencing stage as well as those that have been
missed at the interpretation stage [10, 11, 19–21]. It is also clear from these studies,

however, that there are unique computational challenges to this technology, and al-

though several computational tools have been developed, there is a growing need for a
deeper understanding of the nature of transcript-deleterious variants to inform better

tools. We have previously shown in a pilot study the power of positional mapping as a
tool that is agnostic to the underlying class of mutation to provide unbiased estimate of

NCVs [8]. In this study, we provide based on comprehensive positional mapping of

5647 families with suspected Mendelian phenotypes a detailed overview of transcript-
level deleterious variants and their contribution to Mendelian phenotypes in humans.
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We then interrogate the translational potential of that knowledge by exploring the role
of RNA-based approaches in patients with“negative” clinical WES results.

Materials and methods
Human subjects

Subjects described in this study represent combined cohorts recruited under individual
IRB-approved research protocols (KFSHRC RAC# 2121053, 2080006 and 2070023). In

each of these protocols, we selectively recruited individuals with at least one of the fol-
lowing features: (a) positive family history consistent with a Mendelian inheritance of

the disorder and (b) phenotypic presentation consistent with a previously published

Mendelian disease. Informed consent was obtained from all subjects prior to their en-
rollment. Phenotypic data were collected from all subjects. Blood was collected in

EDTA tubes for DNA extraction and in sodium heparin tubes for the establishment of
lymphoblastoid cell lines (LCL). Occasionally, blood collected in PAXGene tubes was

the only source of RNA. In a subset of cases, cultured skin-derived fibroblasts and

urine-derived renal epithelial cells were also obtained as an additional source of RNA.

Positional mapping, WES, and variant identification

The method of combining positional mapping and variant identification using WES has
been described elsewhere [1, 22]. Briefly, all samples were genotyped on an Axiom SNP

platform, and the regions of homozygosity (ROH) were determined to guide the search
for the likely causal variant whenever the phenotype and family history are compatible

with autosomal recessive inheritance. WES was performed as described before, and the

resulting variants were filtered by the autozygome coordinates [3, 23]. Variants were fil-
tered using gnomAD and a local population database (2379 exomes) for allele fre-

quency of < 0.001 and were interpreted by following the ACMG guidelines [24] to
determine the likely causal variants. Although protein-truncating variants may exert

their pathogenic effect at the level of the final transcript via NMD, we have chosen to
exclude them because it is very difficult to disentangle their effect on protein from that

on RNA. Variants were highlighted as candidate transcript-deleterious variants (TDVs)

if they were compatible with pathogenicity potential in terms of frequency and segrega-
tion, and involved one of the following six categories: (a) canonical splice donor or ac-

ceptor sites (the first and last 2 bp of each intron), (b) the first or last base pair of an
exon, (c) non-canonical splice site intronic variants, i.e., other than the first and last 2

bp of an intron, (d) coding exons other than the first or last base pair (regardless of

whether the resulting missense is synonymous or nonsynonymous), (e) UTR (5� and
3� ), and (f) promoter/enhancer elements. Variants in categories c, d, e, and f were only

considered if no alternate candidate variants were identified. A small subset of cases for
which no candidate variants were identified, were subjected to RNA-Seq (see below).

RTPCR

Variants suspected to be deleterious at the transcript level were interrogated by RTPCR

using cDNA-specific primers and RNA from blood (LCL or PAXgene) and/or skin fi-

broblasts. When the index who is homozygous for variant was unavailable, we
attempted to test the obligate heterozygous parents. RTPCR followed a standard
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number of 35 cycles and 2000 ng of RNA as a template. If this standard protocol re-
sulted in a visible band on a gel, the gene was considered“expressed.” If additional cy-

cles or higher amount of RNA were needed, the gene was considered“poorly
expressed,” otherwise, the gene was labeled as“not expressed.” The products were ana-

lyzed by Sanger sequencing directly and if there was evidence of multiple products,

cloning was pursued followed by Sanger sequencing. In cases where no evidence of ab-
errant splicing was identified, we attempted quantifying the transcript using q-RTPCR.

RNA-Seq and computational analysis

RNA samples of the subjects were prepared at KFSHRC and sent to the KAUST core
lab for RNA sequencing. The quality of each RNA sample was determined based on its

RNA Integrity Number (RIN) using Agilent 2100 BioAnalyzer. Those samples that
scored RIN < 6.0 were not considered further. The sequencing libraries were prepared

using Illumina TruSeq Stranded mRNA. Paired-end 150 bp reads were generated on
Illumina NovaSeq6000. GTEx RNA-Seq samples [25] for blood and skin tissue types

were downloaded from the Database of Genotypes and Phenotypes (dbGaP) and trans-

formed into the fastq format using SRA Toolkit (https://www.ncbi.nlm.nih.gov/sra/
docs/toolkitsoft/). Samples with RIN < 8.0 were not included in our GTEx controls.

RNA-Seq reads from both patients and GTEx were also aligned to hg38 (GENCODE
25) using STAR 2.6 [26] with the two-pass option. Only reads mapped to chromosomes

1–22 and X were considered. SAMtools [27] and BEDTools [28] were applied to the

BAM files to quantify the occurrence of annotated and unannotated splicing junctions,
as well as to count nonsplit reads mapped to intronic regions. Splicing junctions with

< 5 read supports were filtered out. To quantify the transcript abundance levels, RNA-
Seq reads were also mapped to the reference transcript sequences for hg38 (GENCODE

25) using Kallisto [29]. Using the generated BAM files and transcript abundance levels,

error-free normal transcript abundance levels were estimated with the omega quantifi-
cation [30]. Briefly, omega computes an adjusted count per million (CPM) value for

each coding geneg, ω g, as follows:

ωg ¼
X

t� Tg

wtxt

whereTg is the set of mRNA transcripts for geneg, wt is the rate to express anno-

tated, normal transcriptt based on the RNA splicing data, andxt is the CPM level of

transcript t. Thus, low values ofωg can indicate low abundance outliers or splicing out-
liers that escaped NMD.

From the GTEx data, RNA-Seq datasets of the "Cells - EBV-transformed lympho-
cytes" and "Cells - Cultured fibroblasts" tissue types were selected as the control for

cases derived from blood and skin tissue types, respectively. To ensure the use of an ap-

propriate set of samples in control for each patient, we measured the median of theωg

values of each coding gene for all the blood and skin tissue types in the GTEx datasets

and confirmed that the selected tissue type gave the highest level of correlation with
the patient data.

Based on the second percentile of theωg values in the corresponding control, two

scores,αg and βg, were measured to analyze the severity of transcriptional aberrations
in geneg for each patient. Letωg (i) and ωg (ki) represent the value ofωg for patient i
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and for the second percentile value of the corresponding controlki, respectively. Then,
scoreαg(i) was computed as follows:

αg ið Þ ¼ ωg kið Þ
ωg ið Þ þ ε

whereε is a small factor set to 0.001 to avoid division by zero. Theα score measures

the significance of genes as the low abundance outliers or splicing outliers. The other

score,βg, was derived by first computing the fraction of normal transcripts,ρg which is

defined to be the ratio ofωg to
X

t� Tg

xt : Given this definition, scoreβg(i) for patient i can

be expressed as:

βgðiÞ ¼ ρgðkiÞ
ρgðiÞ þ ε

Thus, the β score measures the significance of likeliness to express transcripts with

splicing error. A high alpha score means that the abundance level of normal transcripts
of a given gene is lower compared with a lower-end abundance of the same gene in the

control set. Similarly, a high beta score means that the fraction of the normal tran-

scripts of a given gene is lower compared with a lower end of the same gene in the con-
trol set. With these scores, each coding geneg was selected as a causative candidate for

each patienti if all of the following criteria are met:

1. Either αg(i) ≥ 3.0 or βg(i) ≥ 3.0.

2. For all the other patients j with RNA samples being the same cell type, αg(i) < αg(j).

Note that criterion 2 is based on 11 RNA-Seq datasets from RNA samples with RIN >
8.5 (4 from fibroblasts and 7 from LCL) and that this criterion was set specifically for

comparison based on a small number of patients. To visualize splicing events, BAM
files were first converted into the hg19 coordinate using CrossMap [31] and Integrative

Genomic Viewer [32] was used. We have also attempted to compare our method to

previously published methods as explained in Additional file1: Supplemental file 1.

Results
Quantifying the contribution of transcript-deleterious variants

Our cohort included 5647 families with suspected Mendelian phenotypes (Fig.1). The vast
majority (94% and 91%) are consanguineous and multiplex, i.e., > 1 affected member, re-

spectively. A likely causal variant was identified in 2438 of these families (n = 1807 non-
redundant variants), 272 (15%) of which represent TDVs (TDVs are listed in Additional file2:

Table S1, and their population frequencies are summarized in Additional file3: Table S2).

One limitation of this estimate is the potential for bias against the identification of more
challenging classes of transcript-deleteriousvariants. Therefore, we decided to exploit the

agnostic nature of positional mapping to derive unbiased estimate of transcript-deleterious
variants. We singled out all families in whichwe were able to map their recessive Mendelian

phenotype to a single locus (n = 157) since these lend themselves more readily to focused

and thorough investigations to reveal the underlying variant including the most challenging
ones. Indeed, each of these loci was thoroughly interrogated and this resulted in the
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identification of a likely causal variant (n = 148, two variants were observed in four cases) in

95.5% of cases (150 out of 157, Fig.2 and Additional file 4: Table S3). The breakdown of
variant classes within these loci shows that TDVs accounted for 18.9% of variants (28 out of

148), which suggests that the above figure of 15% may indeed represent an underestimate
based on bias against more challenging transcript-deleterious variants. Interestingly, only

2% of the 18.9% are variants not expected to be captured by WES (> 50 bp from the nearest
exon), which suggests that, at least in the case of recessive phenotypes in consanguineous

families, the overwhelming majority of causal variants are captured by WES pipelines.

RNA as a tool to solve“negative” WES cases

In order to investigate the contribution of RNA analysis to solving“negative” WES cases,

we recruited 155 cases for which clinical WES did not reveal a likely causal variant (Fig.3,

Table1 and Additional file5: Table S4). A likely causal variant was subsequently identified
in 60.6% (88 unique variants in 94 out of 155 cases). Additional file5: Table S4 shows that

many of these cases harbored a likely deleterious variant in a gene that was novel at the
time of clinical reporting, i.e., cases unlikely to have benefited from RNA analysis. TDVs

accounted for 22.7% of all identified variants (20 out 88 unique variants). As expected,

class (a) variants (those affecting the canonical splice sites) were under-represented (21%
vs. 64% in the original cohort, see below) since these would have been readily flagged at

the time of reporting. On the other hand, the more challenging classes were over-
represented (79% vs. 36% in the original cohort, see below). These include a very deep (+

335) variant inABCB4 causing cholestatic disease in all available affected members of an

extended family (see Additional file6: Figure S1). Thus, the hypothetical diagnostic yield
of RNA-Seq in the setting of a“negative” WES is 13.5% (21 out 155 cases), at least in the

Fig. 1 A flow chart of the entire study with its different components
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setting of recessive phenotypes. To test this empirically, we set out to investigate the six cases

(no RNA was available from the seventh case) whose autosomal recessive Mendelian pheno-
types map to single loci, and have“negative” WES, using RNASeq. First, we aimed to establish

the sensitivity of our RNA-Seq pipeline and comparing it to previously published pipelines by

testing five cases with established transcript-deleterious variants and found that 100% were
correctly called, i.e., the mutated gene was chosen among the top or only candidate gene for

each of the five cases (Additional file6: Figure S2 and Additional file7: Table S5) as follows:

� 10DG0840 (a case of Troyer syndrome and a class (d) variant in SPG20, see

Additional file 2: Table S1): The RNA-Seq-based prediction generated 167 candi-

dates. Among them, SPG20 was ranked 157th on the alpha score and 25th on the

beta score. With the autozygome coordinate-based filtering, SPG20 was found to be

the only candidate.

� 11DG0165 (a case of congenital muscular dystrophy and a class (c) variant in

POMT2, see Additional file 2: Table S1): The RNA-Seq-based prediction generated

195 candidates. Among them, POMT2 was ranked 2nd on the alpha score and 13th

on the beta score. With the autozygome coordinate-based filtering, POMT2 was

found to be the top among the 14 final candidates.

� 15DG2154 (a case of microcephalic primordial dwarfism and a class (c) variant in

DONSON, see Additional file 2: Table S1): The RNA-Seq-based prediction gener-

ated 324 candidates. Among them, DONSON was ranked 200th on the alpha score

Fig. 2 Unbiased estimate of the contribution of TDVs to recessive Mendelian mutations based on 157
families that map to a single locus each
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