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Abstract
Advances in high-throughput profiling of RNA-binding proteins (RBPs) have resulted in
CLIP-seq datasets coupled with transcriptome profiling by RNA-seq. However, analysis
methods that integrate both types of data are lacking. We describe SURF, Statistical
Utility for RBP Functions, for integrative analysis of large collections of CLIP-seq and
RNA-seq data. We demonstrate SURF’s ability to accurately detect differential
alternative transcriptional regulation events and associate them to local protein-RNA
interactions. We apply SURF to ENCODE RBP compendium and carry out downstream
analysis with additional reference datasets. The results of this application are browsable
at http://www.statlab.wisc.edu/shiny/surf/.
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Background
RNA-binding proteins (RBPs) constitute a key class of regulators for post-transcriptional
processes such as splicing, polyadenylation, transportation, translation, and degradation
of RNA transcripts in eukaryotic organisms [1, 2]. They drive the diversity and complex-
ity of transcriptome and proteome through gene expression regulation at the RNA level
with alternative splicing (AS), alternative transcription initiation (ATI), and alternative
polyadenylation (APA) [3, 4]. High-throughput sequencing-based assays that quantify
protein-RNA interactions (e.g., ultraviolet cross-linking immunoprecipitation followed
by high-throughput sequencing (CLIP-seq)) have recently matured and revealed a rich
repertoire of RBP profiles in cell lines and tissues [5–7].When coupled with the analysis of
RNA-seq experiments across multiple conditions to elucidate alternative transcriptional
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regulation (ATR) events of classes AS, ATI, and APA, these studies can suggest specific
roles for RBPs in different types of events such as exon skipping (SE), alternative 3′ (A3SS)
or 5′ (A5SS) splicing, intron retention (RI) within the AS class, alternative first exon (AFE)
or alternative 5′UTR (A5U) within the ATI class, and intronic (IAP) or tandem (TAP)
alternative polyadenylation within the APA class [8] (Additional file 1: Fig. S1).
The ENCODE (ENCyclopedia of DNA elements) project [9, 10] recently generated

eCLIP-seq datasets for 120 and 104 RBPs in human cell lines K562 and HepG2. These
datasets were complemented with RNA-seq datasets of the same cell lines under con-
ditions of both wild-type and short hairpin RNA (shRNA) knockdown of the individual
RBPs to identify differentially regulated AS, ATI, and APA events (Fig. 1). The initial
analysis by the ENCODE project revealed a large set of genomic elements interacting
with RBPs and expanded the catalogue of biochemically active elements of the genome
[11, 12]. In this paper, we develop a statistical framework that augments the existing
analysis by specifically inferring global positioning principles of RBPs with respect to
the above eight types of ATR events. Our method, named SURF for Statistical Utility
for RBP Functions, consists of two analysis and a discovery modules. The first analysis
module identifies differential ATR events within AS, ATI, and APA classes by compar-
ing wild-type and shRNA knockdown RNA-seq data, with multiple replicates from each.
The second module associates the detected differential ATR events to position-specific

Fig. 1 A skipped exon (SE) event in the PARP6 gene upon AQR knockdown. a The 18th exon (red box) of
PARP6 gene model (GENCODE version 24), which resides in the minus strand. b The normalized read
coverage in two replicates of wild-type RNA-seq. c The normalized read coverage in two replicates of shRNA
AQR knockdown followed by RNA-seq. The 18th exon exhibits a decreased relative exon usage. d The
normalized read coverage in two replicates of AQR eCLIP-seq, with two peaks at the upstream intron
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eCLIP-seq signals, thereby dissecting global positioning principles of protein-RNA inter-
actions in different types of ATR events. The discovery module of SURF queries existing
reference transcriptome databases, i.e., the genotype-tissue expression (GTEx) project
[13] and the Cancer Genome Atlas (TCGA) program [14], to assess differential activity
of ATR-specific transcript targets of RBPs between normal tissue and the relevant tumor
samples.
A number of computational tools exist for detecting differential alternative splicing

from RNA-seq data across two conditions (e.g., MISO [15], MATS [16], DSGseq [17],
MAJIQ [18], and rMATS [19]). These methods circumvent the challenges of direct tran-
scriptome quantification imposed by the short read sequencing by evaluating differential
ATR for each unit consisting of a cassette exon and two flanking exons. They directly test
for differential ATR events of types SE, A3SS, A5SS, and RI, but not ATI and APA [20–22].
This is in contrast to methods such as Cufflinks [23], DiffSplice [24], SplicingCompass
[25], and rSeqDiff [26], which operate at the isoform level. While methods that operate on
isoforms test for combined effects of AS, ATI, and APA, the methods in the former cate-
gory are generally more suited for investigating effects of RBPs on individual ATR events.
A powerful alternative and a compromise between the two, as demonstrated by [27], is
detecting alternative exon usage, irrespective of the type of ATR event the exon speci-
fies (e.g., DEXSeq [28]). While usage-based method DEXSeq that focuses on “bins” [27]
works well in conjunction with many different “unit” definitions (e.g., exons, sub-exonic
bins, full length transcripts as “bins”), it does not delineate ATR event types and requires
laborious inspection to classify bins into specific event types. The first module of SURF
addresses this critical shortcoming by unifying differential ATR detection and generaliz-
ing DEXSeq to directly detect explicit types of AS, ATI, and APA events. Differential ATR
detection by SURF exhibited superior performance to simple ways of translating DEXSeq
usage inference into explicit types of AS, ATI, and APA events and rMATS, which is the
only existing method that accommodates replicates within conditions and directly tests
for differential ATR of AS events.
De novo sequence analysis of SURF-detected global positioning preferences of regions

where eCLIP-seq signals associated with differential ATR event classes AS, ATI, and APA
yielded sequencemotif multi-modalities of several RBPs in regulating different ATR event
types. Further evaluation of these regions revealed a significant enrichment of somatic
mutations from both the International Cancer Genome Consortium (ICGC) [29, 30] and
TCGA. In addition, analysis of SURF-identified target transcripts of RBPs for their tran-
scriptome activity in normal GTEx versus adult acute myeloid leukemia (LAML) samples
from TCGA detected a significant general shift in the activities of groups of transcripts
affected by RBP-specific ATR events. These RBPs included both components of spliceo-
some such as AQR and SF3B4, as well as more specific RBPs such as FXR1 and PUM1.
SURF is implemented in R [31] and is publicly available at https://github.com/keleslab/
surf [32]. The results of the ENCODE data analysis are available through a shiny app at
http://www.statlab.wisc.edu/shiny/surf/.

Results
SURF framework

SURF is designed for large-scale analysis of RBP CLIP-seq and RNA-seq data and includes
analyses and discovery modules (Fig. 2). A key input to SURF is genome annotation from

https://github.com/keleslab/surf
https://github.com/keleslab/surf
http://www.statlab.wisc.edu/shiny/surf/
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Fig. 2 Schematic overview of SURF pipeline. a In the analysis module 1, the first step parses alternative
transcriptional regulation (ATR) events from genome annotation. b SURF quantifies relative event/exon
usage (REU) using RNA-seq data following RBP knockdown (with wild-type control) and performs differential
REU analysis (DrSeq). As a result, it infers regulation effects of RBPs as phenotypical labels for each differential
ATR event. c In the analysis module 2, SURF extracts location features for each ATR event and generates the
feature signals using the complementary eCLIP-seq data. d Then, SURF models differential ATR labels by
associating them with the feature signals and infers global positional preferences of RBPs. e In the discovery
module, the inferred location features play a key role in downstream RBP-related discovery. The rank-based
analysis of RBP transcript targets using external transcriptome datasets (e.g., TCGA and GTEx) discovers
differential transcriptional activity through specific RBP and ATR event types

which SURF parses out all the eight types of ATR events, namely SE, RI, A3SS, A5SS, AFE,
A5U, IAP, and TAP (Fig. 2a and Additional file 1: Fig. S2). The parsing procedure utilizes
the notion of variable exons (or sub-exons) [33] defined as parts of an exon that are in
the gene model but are absent in one or more transcripts of the gene. Variable sub-exons
of a given transcript can be clustered into mutually exclusive units, as described in the
“Materials and methods” section (Additional file 1: Fig. S3), such that each is annotated
with a unique ATR event type through a “decision tree” (Additional file 1: Fig. S4). The
analysis modules operate on these events, which we also interchangeably refer to as event
body.

Analysis module 1: detecting differential ATR events

We extended the DEXSeq framework to detect differential ATR events of all the eight
types by “DrSeq” for differential regulation using RNA-seq. Specifically, DrSeq admin-
isters the relative exon usage (REU) to characterize any type of AS, ATI, and APA
events by detecting differences between the experimental conditions, i.e., wild-type ver-
sus knockdown RNA-seq data (Fig. 2b). The REU is defined as the ratio of count of reads
overlapping the event body, K1, over the count of those reads residing in the other exonic
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regions of the same gene, K0, and is computed as K1/K0 (Fig. 2b). For the ith event in the
jth sample, Kijl denotes either the read count on the event body (l = 1) or the read count
of all the other exonic regions of the same gene (l = 0). Similar to the DEXSeq formulation
[27] for exonic bins, we model Kijl with a Negative Binomial (NB) distribution as

Kijl ∼ NB(mean = sjμijl, dispersion = αi),

where sj is the size factor of the jth sample and adjusts for the sequencing depth, and αi
is the dispersion parameter for event i. The mean parameter μijl is modeled by a log-link
function as

log(μijl) = βS
g(i)j + βE

il + βEC
iρ(j)l, (1)

where ρ(j) is the experimental condition of sample j (i.e., wild-type or shRNA knock-
down) and g(i) is the gene (group) from which the ith event originates. Here, βS

g(i)j
accounts for the main effect of each sample and provides a gene-specific log-scale over-
all read count. βE

il is non-zero only when l = 1 due to identifiability constraints; hence, it
quantifies the logarithm of REU, Kij1/Kij0, for the ith event across all samples regardless of
experimental conditions. Finally, βEC

iρ(j)l captures the effect of the experimental condition
on the REU. This model is fit for each ATR event type by pooling across genes, and the dif-
ferential REU of each event is quantified by testing the REU × condition interaction term
(βEC) in Eq. (1) under the null hypothesis that the event has equal REU across the condi-
tions. The overall false discovery rate (FDR) is controlled with the Benjamini-Hochberg
(BH) procedure [34] by pooling over all ATR event types. SURF further quantifies the
change in REU for each ATR event in the form of log2 fold change in REU. As a result,
an “increased REU upon RBP knockdown” indicates the exclusion of variable sub-exons
under the wild-type condition. Similarly, a “decreased REU upon RBP knockdown” indi-
cates that RBP tends to promote the inclusion of variable sub-exons under the wild-type
condition. We remark that this interpretation does not necessarily extend to core compo-
nents of the spliceosome since these components are likely to interact with every spliced
intron at some level regardless of the inclusion or exclusion outcome.

Analysis module 2: testing for positional associations

To infer global positioning preferences of protein-RNA interactions, SURF extracts event-
specific features representing the potential locations of protein-RNA interactions, within
and flanking the event body, as well as additional genomic regions near the constitutive
exons (Additional file 1: Fig. S5). Then, the eCLIP-seq reads over these features are aggre-
gated and normalized to adjust for the lengths of the features and the overall sequencing
depth of the samples. We refer to these resulting quantities as feature signals (Fig. 2c).
Next, SURF associates the feature signals to differential ATR events. Specifically, the ATR
events are divided into three groups as “increase” (i.e., increased REU upon RBP knock-
down), “decrease,” and “no change,” using the DrSeq results. Then, SURF evaluates the
feature signals for their association with these labels of ATR events (Fig. 2d). By adapting
a generalized linear model, SURF tests marginal association of each feature and outputs a
list of genomic regions that define global positioning preferences of the RBP. This module
is applied to each RBP-ATR event type combination separately.
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Discoverymodule: assessing comparative transcriptional activity of RBP targets

This module leverages public transcriptome data from GTEx and TCGA to address
whether transcripts harboring differential ATR events exhibit differential transcriptional
activity between different clinical conditions, e.g., normal (GTEx) versus LAML (TCGA).
The module first lifts over the SURF-inferred location features to transcript (or gene)
level and forms the sets of transcript (or gene) targets of the RBP, while keeping them
specific to ATR event types. For example, the transcript targets of SRSF1 through SE reg-
ulation (SRSF1-SE) are the set of transcripts with at least one differential ATR event of
type SE regulated by SRSF1. We apply an area under the curve (AUC) approach similar to
that in [35] to evaluate whether transcriptional activity of the transcript set significantly
differs between the normal and tumor samples, for each combination of RBP and event
type (Fig. 2e and Additional file 1: Fig. S6). As a result, this module yields key RBPs with
“increased” or “decreased” transcriptional activity in tumor samples through specific AS,
ATI, and APA events.
Overall, SURF (i) leverages established appealing characteristics of DEXSeq [27] and

generalizes it for detecting differential ATR events, (ii) systematically evaluates associa-
tions of differential ATR with protein-RNA interactions, and (iii) offers a unique way of
further exploring large compendium of expression data with RBP and ATR event-specific
transcript sets.

SURF enables comprehensive detection of differential ATR events

We evaluated the differential ATR event detection module (DrSeq) of SURF by compar-
ing it to rMATS [19]. The choice of rMATS among the plethora of available methods is
reasoned by the fact that it accommodates biological replicates, which we have two per
condition, and that it detects differential ATR for individual alternative splicing events as
opposed to the differential exon usage in DEXSeq or the local splice variations in MAJIQ
(Additional file 1: Fig. S7). We additionally compared DrSeq with the following two sim-
ple strategies of mapping DEXSeq’s results to ATR event level. Specifically, we labeled
an event as a differential ATR event when (i) at least one of its exonic bins (liberal strat-
egy, DEXSeq-L) or (ii) at least half of its exonic bins (conservative strategy, DEXSeq-C)
is/are identified as differentially used by DEXSeq.We evaluated the above strategies using
human transcriptome-based simulated data as described in the “Materials and methods”
section. We quantified the performance of each method by its realized power and
empirical FDR at gene level at target FDR levels of 0.01, 0.05, and 0.1.
The overall results, summarized in Fig. 3a and Additional file 1: Fig. S8, delineated

that all count-based methods (DrSeq and two variants of DEXSeq) achieve significantly
higher TPR and lower FDR, compared to rMATS, despite detecting comparable num-
ber of events (Additional file 1: Fig. S9). Lower power of rMATS is likely due to the fact
that rMATS detects only simple splicing events (i.e., excludes ATI and API). For a lim-
ited number of simple ATR event types (e.g., SE), however, rMATS has comparable power
with count-based methods (yet worse FDR, Additional file 1: Fig. S10). Higher empirical
FDR for rMATS (under various signal-to-noise levels, Additional file 1: Fig. S11) can be
largely attributed to the fact that rMATS only utilizes the reads nearby the event body and
splice junctions, in contrast to the other count-based methods which account for all reads
relevant to the genes (Additional file 1: Fig. S12 and Tables S1 and S2). All count-based
methods control the FDR similarly, while DrSeq achieves slightly higher power. The key
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Fig. 3 Detection of differential ATR events from RNA-seq data by DrSeq of SURF. a Comparison of the
performances of DrSeq, rMATS, and two simple strategies for stitching DEXSeq inferences into ATR level
(DEXSeq-L and DEXSeq-C), using simulated RNA-seq data. For each method, the three points display the true
positive rate (TPR) and observed false discovery rate (FDR) at target FDR levels of 0.01, 0.05, and 0.1,
respectively. b The distribution of eight event types in (upper panel) all 216,140 possible ATR events parsed
from human genome annotation file (GENCODE version 24) and (lower panel) a total of 83,839 differential
ATR events identified by DrSeq in at least one of the comparisons of 104 shRNA-seq experiments versus
wild-type control (after duplication removal). c The distribution of differential ATR events identified by DrSeq
in 104 RBP knockdown experiments across eight event types. The strip on the left-hand side of the plot
groups RBPs by their previously reported primary functions [11]. For each RBP, the adjacent bar on the
right-hand side displays the total number of differential ATR events across all types

difference between DrSeq and DEXSeq is mainly in their experimental units, which are
ATR events and exonic bins, respectively.
Since a single ATR event typically spans multiple exonic bins, DrSeq combines data

over exonic bins belonging to the same event and leads to better overall performance. In
fact, the two “ad hoc” approaches we designed either have satisfactory FDR control at the
expense of power loss or sustain a fairly large power while trading off FDR control. This
analysis further supports that our extension of DEXSeq to ATR event level provides it
with the competitive functionality as rMATS (i.e., event-level resolution) in addition to
its unique feature of encompassing differential analysis of ATI and APA event classes.

SURF reveals global positioning preferences of RBPs in AS, ATI, and APA events

We applied SURF to a collection of 104 paired RNA-seq and eCLIP-seq datasets from the
v78 release of the ENCODE project. We extracted AS, ATI, and APA events from a fil-
tered version of the current human genome annotation file (GENCODE [36] version 24)
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as described in the “Materials and methods” section. The filtering procedure was moti-
vated by the observation that isoform pre-filtering improves performance of count-based
methods for the analysis of differential transcript/exon usage [27] and resulted in 74,734
transcripts, 66,545 of which originated from protein coding genes. Collectively, these
transcripts generated 199,877 AS, ATI, and APA events (upper panel in Fig. 3b). ATI and
APA events constituted 65.31% of the total events with A5U at 17.50% and TAP at 16.86%,
and SE, at 10.81%, was the most abundant category in AS.
Application of DrSeq to paired wild-type RNA-seq and shRNA-seq datasets of 104

RBPs in K562 cells identified 80,402 differential AS, ATI, and APA events (at FDR level of
0.05 and after duplication removal for analysis module 2). We observed that ATI and APA
are the major sources of differential ATR (lower panel in Fig. 3b). In addition, we observed
that a higher level of transcriptional complexity resulted from AS in the human genome
than previously revealed by rMATS (Additional file 1: Fig. S13) [11]. Overall, these results
reflect both the direct (i.e., through occupancy of events by RBPs) and indirect effects of
RBPs on transcriptome and instigate the previously reported findings forD. melanogaster
[37]. The observed complexity further accords with the results of a recent study on cross-
tissue isoform differences [38]. Collectively, Fig. 3c shows the types and quantities of the
differential ATR events. It highlights that (i) the impact of RBPs on ATR varies widely in
magnitude (Fig. 3c); (ii) many RBPs affect a wide variety of ATR events (directly or indi-
rectly), indicating a potentially complex co-regulating network of RBPs (e.g., AQR and
SF3B4 as depicted by the volcano plots in Additional file 1: Figs. S14 and S15); and (iii)
some RBPs exhibit event type specificity (e.g., CPSF6 exhibits evidence of TAP specificity,
Additional file 1: Fig. S16).
We next focused on 76 RBPs with eCLIP-seq data to study the direct effects of RBPs

and their global positioning preferences for different types of ATR events. We limited our
exposition to RBPs with at least 100 differential ATR events (i.e., increase or decrease
upon knockdown) to enable association analysis. In addition, we estimated the average
numbers of false positives in the association analysis by shuffling the grouping labels of
differential ATR events and rerunning the analysis multiple times. This resulted in an
average of 3.88 (with an s.d. of 2.38) false positive associations at target FDR level of
0.05 (Additional file 1: Table S3), indicating a conservative overall error control. Figure 4a
reveals a large diversity in global positioning preferences for the 54 RBPs (see a full version
of 76 RBPs in Additional file 1: Fig. S17) consistent with the earlier work [39]. Specifically,
direct protein-RNA interactions of 14 RBPs significantly associate with differential ATR
in all of the eight ATR event types, while some RBPs exhibit a more specialized associ-
ation, e.g., 24 RBPs govern only one or two ATR event types (Fig. 5a). At the individual
RBP level, SURF recapitulated known binding preferences for a number of spliceosome
components [40], while revealing additional general trends of RBP interactions with RNA
(Fig. 4a). Focusing on SE events, for instance, we observed that AQR and PRPF8 binding
at the flanking intronic regions of event body (location features γ and ζ ) associated with
differential SE significantly (at FDR level of 0.05, Fig. 4b and Additional file 1: Figs. S18-
S20). SF3B4 and SMNDC1 recognize the branching point (location feature ε of A3SS,
Additional file 1: Fig. S5) of A3SS (Additional file 1: Figs. S21 and S22). In the class
of ATI events, binding of GEMIN5 and AQR significantly associated with differential
A5U (Additional file 1: Figs. S18 and S23), whereas U2AF1 and U2AF2 exhibited asso-
ciation with differential AFE (Additional file 1: Figs. S24 and S25). The latter further
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Fig. 4 Global positioning associations with differential ATR. a SURF-identified associations (analysis module
2) of location features with differential ATR across 54 RBPs. Each row depicts a single RBP, and each column
represents one location feature, grouped by the corresponding ATR event types (column strips). Each circle
symbol in individual cells indicates a significant association at FDR of 0.05. The color of the circles represents
inclusion (pink) or exclusion (green), and the fill-in densities are determined by − log10-transformed adjusted
p values from the association testing. For features with dual functions (i.e., binding of RBPs at these features
associate with both inclusion and exclusion), the circle size indicates the percentage of − log10-transformed
adjusted p value for the stronger one relative to the sum of both (i.e., smaller circles indicate similar
associations). Illustrations above the column strips of event types depict the notions of exclusion and
inclusion status of ATR. b Functional association plot of AQR for SE event. Upper panel box plot displays the
distributions of feature signals among the three differential ATR groups (decrease, no change, increase). The
numbers of SE events in each group are reported in parentheses at the top strip. The lower panel depicts the
− log10-transformed p values for each tested association after multiplicity correction. The dashed line
indicates the FDR level of 0.05

suggested the involvement of spliceosomal components in recognizing alternative pro-
moters [41]. In addition to these observations on spliceosomal components, SURF yielded
various regulatory rules for non-spliceosomal RBPs. For example, we observed that
CPSF6 [42] promotes the inclusion of the distal termination sites in regulating TAP (Addi-
tional file 1: Fig. S26), while UCHL5 promotes the exclusion of the distal termination sites
in TAP (Additional file 1: Fig. S27).
While most global positioning tendencies of RBPs that associate with AS, ATI, and APA

events (either previously reported [41, 43] or as revealed above) reside on or near the
event body, our large-scale analysis with SURF instigates that many location features near
the upstream (and sometimes downstream) constitutive exons of the ATR events also
play fundamental roles in ATR through their interactions with RBPs. For example, SURF
identified 21 RBPs as associating with SE by interacting at the intronic region adjacent
to the upstream constitutive exon (location feature β). We further assessed the overall
significance of each feature by aggregating the SURF-identified global positioning associ-
ations across all the 76 RBPs for each individual event type (Fig. 5b) as described in the
”Materials and methods” section. For SE events, the intronic region adjacent to upstream
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Fig. 5 Summary of global positioning preferences across 76 RBPs and event-specific sequence preferences
of RBPs. a The number of ATR event types that each RBP regulates, summarized from SURF (analysis module
2) results of 76 RBPs. b Aggregation of global positioning association results across each ATR event type.
Column strips cluster location features into three groups: upstream, body, and downstream. The darker color
indicates higher abundance of RBPs on the location feature (i.e., there are more RBPs for which the specific
protein binding associates with differential ATR). Location features with a significant relative abundance at
the significance level of 0.05 are marked with an asterisk. c Hierarchical clustering of motifs from de novo
sequence analysis of location features for 82 RBP-event type combinations. Each tip point corresponds to the
top motif found in SURF-identified location features that associated with a specific combination of RBP and
ATR event. Going from the outer tips towards the root, the motifs that merge earlier have higher similarity. d
Sequence motif identified in 394 SURF-inferred location features for HNRNPC in TAP (E value 3.0 × 10−68).
The total height of the letters depicts the information content of the position, in bits. e Sequence motif
identified in 306 SURF-inferred location features for HNRNPC in SE (E-value 3.2 × 10−152)

constitutive exon (β) exhibited marked enrichment compared to others with a p value of
4.88× 10−4 according to Pearson’s χ2 test. The same observation held for A3SS events (p
value of 1.79×10−4, Pearson’s χ2 test test) and highlighted the notable contribution from
regions beyond proximal alternative splice sites. Overall, SURF identified 31 (40.7%) RBPs
that showed evidence for interaction with features distal to the event body, suggesting a
broader genomic scope of functional protein-RNA interactions than previously revealed.

SURF-identified location features carry ATR-specific sequence motifs

The analysis module 2 of SURF identified 34,795 differential ATR events associated with
binding of at least one of 54 RBPs. Aggregation across these associations resulted in
71,667 SURF-inferred location features (at FDR level of 0.05 and feature signal cut-off of
20, the “Materials andmethods” section), among which 34.9% (25,006) are associated with
two or more RBPs. The numbers of inferred location features exhibited considerable het-
erogeneity across ATR types, with TAP having the largest numbers of inferred location
features (19.2% and constituting 10.2% of all the possible location features of TAP event
type), followed by A5U (15.5% and constituting 7.9% of all the possible location features of
TAP event type) and SE (13.3% and constituting 5.5% of all the possible location features
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of A5U event type) classes (Additional file 1: Fig. S28). Additional file 1: Fig. S29 displays
the distribution of genomic coverage by inferred features for all the eight event types.
Recent machine learning applications to predict pre-mRNA processing highlighted

strong predictive power of sequence variants [44–46]. While the SURF framework does
not emphasize in silico prediction of ATR events from sequence input, we expected some
location features to harbor sequence motifs for RBPs. Leveraging the ability of SURF to
identify distinct location features for different ATRs regulated by the same RBP, we asked
whether these location features harbored distinct sequence motifs. Specifically, we per-
formed de novomotif analysis with theMEME suite [47] for location features of 222 RBP-
ATR event type combinations involving 52 distinct RBPs (the “Materials and methods”
section). This analysis captured a number of known, experimentally validated RBP motifs
[48], e.g., TARDBP, U2AF2, HNRNPC, and TIA1. We next clustered these RBP-event
type combinations, which involved 30 RBPs for which significant motifs were identified,
based on the similarities of their identified motifs (E values ≤ 0.01) (Fig. 5c). The event
type-based clustering evident in Fig. 5c is partly driven by the shared location features of
RBPs for the same event type (Additional file 1: Fig. S30). However, the extent of overlap
between the location features of different RBPs for the same event type is relatively low
(Additional file 1: Fig. S31) and indicates marked contribution of sequence similarities of
the RBP-event type-specific motifs to the clustering structure. Overall, de novo sequence
analysis of SURF-inferred features unveiled multiple unique sequence motifs of RBPs
for distinct ATR events. Specifically, 19 RBPs exhibited motif multi-modality of varying
degrees which we quantified by the maximum andminimumKullback-Leibler divergence
between all the learnt PWMs of individual RBPs (Additional file 1: Fig. S32). For exam-
ple, we observed that HNRNPC, a known poly(U)-binding regulator for the TAP class (E
value 3.0 × 10−68, Fig. 5d) [49–51], potentially recognizes a 5′-CCUC-3′ motif for the SE
class (E value 3.2 × 10−152, Fig. 5e). Furthermore, this clustering reconfirmed that while
TIA1 overall prefers uridine-rich sequences [52–54], it also interacts with an AU-riched
sequences [55], 5′-AAUAAA-3′, which resembles the canonical cleavage and polyadeny-
lation site motif, in event types IAP and TAP in addition to two other significant motifs
(Additional file 1: Fig. S33).

SURF-identified location features are enriched for somatic mutations from ICGC and TCGA

Recent studies highlighted central roles of RBPs in neurodegeneration, auto-immune
defects, and cancer [56–64]. We hypothesized that the 71,667 location features associ-
ated with differential ATR events should harbor more somatic mutations than expected
by chance or expected in comparable regions of the genome not necessarily associated
with such ATR events. To test this, we leveraged genome-wide mutation data from ICGC
(excluding US projects as they only contained coding mutations) and coding mutations
from TCGA. Noting that the set of SURF-inferred features is a subset of all possible
location features extracted from genome annotation, we designed the following control
sets: (i) the full set of location features, (ii) union of span of events where the span is
defined as the event body and its location features, (iii) genomic span of genes harbor-
ing all the events with an extension by 300 bp upstream of transcription start sites and
downstream of transcription end sites. These control sets form a nested set of regions
from (i) to (iii) (Fig. 6a). Then, we calculated mutation per kilobase (MPK) as a mea-
sure of mutation quantification for each set of the genomic sets (Fig. 6b and Additional
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Fig. 6 Integration of SURF results with large-scale datasets from ICGC, TCGA, and GTEx. a Illustration of RBP
location features and three sets of control genomic regions. The set of SURF-inferred features (asterisks) is a
subset of all possible location features (blue). The spanning regions (cyan) consist of event body and all
possible location features. The set of spanning regions is a subset of the set of all genes (light green). b
Mutations per kilobase (MPK) of SURF-inferred features and three control genomic sets. The bars depict the
MPK quantified with somatic mutations in ICGC (non-US only) projects. The solid line with the right-hand side
axis depicts the total length (in bp) of the genomic regions considered. c Comparison of gene activity level
between normal whole blood and LAML tissues. Each dot depicts the mean AUC (activity level) of a gene set
in whole blood (GTEx) and LAML (TCGA) samples. The 222 target gene sets are color in blue. The randomized
control gene sets are colored in gray. d Changes in isoform percentages across eight ATR event types. Each
data point corresponds to either a target transcript set (blue) or a randomized control transcript set (gray).
The mean difference in isoform percentages (	IsoPct) from normal whole blood (GTEx) to LAML (TCGA)
samples is averaged across individual transcript sets. Each of the 222 transcript sets is depicted in one of eight
associated ATR event types. e Change in isoform percentages (	IsoPct) of 552 SURF-inferred transcript
targets of SRSF1 in IAP regulation. A blue dashed line indicates the mean of 	IsoPct across the full set. The
gray solid line indicates the mean of 	IsoPct across all transcripts in a randomized control set. f Detection of
differential activity by discover module of SURF for 222 target transcript sets. Each dot depicts, for one
RBP-ATR event type combination, the base activity level (x-axis) and the observed change in the activity level
(	AUC) from normal (TCGA) to tumor (GTEx) samples. Transcript sets with significant differential activity (FDR
<0.05) are marked in red. The gray dashed line indicates the mean of 	AUC across all control transcript sets

file 1: Fig. S34). We observed an increasing enrichment of somatic mutations from genes
to SURF-inferred features (p value 3.00 × 10−4 from an exact Poisson test with a fold
change of 1.50, Additional file 1: Table S4). This enrichment highlights that location fea-
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tures inferred as associated with differential ATR events by SURF harbor markedly more
somatic mutations compared to a large class of control sets. In addition, SURF-inferred
location features also harbored more somatic mutations than the regions significantly
bound in eCLIP-seq data (i.e., peaks with IDR <0.01, covering a total length of 30.77 mil-
lion bp and with an MPK of 17.08 compared to the 21.97 MPK of SURF-inferred location
features, p value 5.138×10−5 from an exact Poisson test with a fold change of 1.27). A sim-
ilar result continued to hold with TCGA mutation data and is available from Additional
file 1: Fig. S35 and Table S5.

SURF-identified ATR targets of RBPs exhibit differential transcriptional activity between

TCGA acute myeloid leukemia tumor and GTEx whole blood samples

We next performed a comparative analysis of transcriptional activity of genes and tran-
scripts harboring specific RBP-ATR event type combinations in normal versus tumor
samples by leveraging GTEx and TCGA resources. We specifically considered TCGA
LAML sample for which the K562 erythroleukemic cell line has the most relevance for.
Harnessing of gene and transcript targets based on SURF-inferred location features cap-
italizes our construction of location features—each location feature is designated to a
single ATR event that originates from a unique transcript. Among the 222 available
RBP-ATR event type combinations, 132 (or 131) of them had more than 100 genes (or
transcripts) with at least one SURF-inferred location feature (Additional file 1: Fig. S36).
On average, protein-coding genes compromised 97.3% of all the gene sets. We first asked
whether the activity of an RBP, as measured by expression of its target genes, signifi-
cantly varied between 173 GTEx whole blood samples and 337 TCGA LAML samples
(Additional file 1: Fig. S37). To account for potential within cohort biases of the RNA-seq
data, we constructed randomized control sets for each gene set by matching their sizes
and average activity levels (as measured by AUC, the “Materials and methods” section).
With such control, we observed a general shift of target gene activity from normal to
tumor tissues (Fig. 6c and Additional file 1: Fig. S38), suggesting potential importance of
SURF-identified RBP targets for LAML.
We next queried whether specific transcript targets of RBPs behaved differentially

among all isoforms originating from the same gene, across tissue conditions. To this
end, for every transcript, we quantified the changes in isoform percentage (IsoPct as
reported by RSEM) from GTEx whole blood samples to TCGA LAML samples. Isoform
percentage of a transcript depicts the percentage of its abundance over its parent gene’s
abundance, and its comparison across conditions elucidates how the contribution of a
transcript to overall gene abundance is changing across conditions. Comparison of iso-
form percentages revealed a diverse pattern across ATR event types (Fig. 6d), suggesting
a refined transcript-level biological relevance of SURF-identified RBP targets. Specifi-
cally, the transcript sets associated with AS events (AS, RI, A3SS, and A5SS) exhibited
reduced isoform percentage (as compared to matched random control sets from other
isoforms originating from the same gene) between normal (GTEx) and tumor (TCGA)
tissues (Additional file 1: Fig. S39). In contrast, the transcript sets associated with APA
events (namely IAP and TAP) exhibited increased isoform percentage in tumor samples
compared to normal samples (e.g., SRSF1 in IAP, Fig. 6e), indicating that the transcripts
harboring these event types contributed more to their parent gene’s overall abundance.
This observation is further supported by multiple replicates of random control and after
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de-duplicating transcripts across event types (Additional file 1: Figs. S40 and S41). Since
ATR events are defined by variable bins, which originate from shorter transcripts (i.e.,
those with absent exonic parts), this observation suggests that the transcripts that termi-
nate earlier at 3′ end, as well as those with more internal “spliced-in” exonic parts, tend to
be more transcriptionally active in the LAML cancer tissues compared to normal blood
tissues. Shortening of 3′ UTRs is widely observed during tumorigenesis and cancer pro-
gression [65, 66]. In addition to supporting this widely observed phenomenon, our results
suggest that AS and APA events contribute more to transcriptome diversity in cancer
compared to ATI events.
To test the differential activity for individual transcript sets, we applied the discov-

ery module of SURF, with their paired controls by including the transcripts originating
from the same corresponding target genes. Of all the RBP-ATR event type combina-
tions, 18 of them (among the 131 with more than 100 transcripts) exhibited significantly
different transcriptional activity between the whole blood (GTEx) samples and LAML
(TCGA) samples, at FDR cut-off of 0.05 (Fig. 6f ). The detected transcript sets orig-
inate from 9 RBPs, among which FXR1, SRSF1, and U2AF2 associate with the most
diverse ATR event types (SE, A3SS, A5SS for all three RBPs, and RI for FXR1 addi-
tionally), followed by AQR and HNRNPC through two event types (Additional file
1: Table S6), many of which have previously reported implications in cancer (e.g.,
[67, 68]). All but two of these RBPs (FXR1 and PUM1) are splicing factor genes and
U2AF1 exhibited significant driver mutation patterns across a wide variety of cancer
types [63].

Discussion and conclusions
In this study, we presented SURF, a new integrative framework for the analysis of large-
scale CLIP-seq and coupled RNA-seq data and applied it to ENCODE consortium data
(Table 1). A key advancement in SURF is the extension of differential exon usage method
DEXSeq to differential alternative transcriptional regulation at the event level. We pre-
sented a formulation, DrSeq, that avoided ad hoc downstream analysis stitching DEXSeq
results into event level, while controlling FDR and achieving as well or better power
than alternatives. In addition, DrSeq uniquely enabled differential ATR detection for
alternative transcription initiation and alternative polyadenylation events, a feature cur-
rently lacking in the widely adapted tool rMATS. SURF performs all integrated analyses
based on the AS, ATI, and APA events as experimental units. Event-centric analyses
are preferred when focusing on alternative splicing at the level of individual splicing
events, e.g., the inclusion of a skipped exon, or the usage of a particular alternative
splicing site. Interpreting the results of event-centric analyses is straightforward, and
follow-up validation experiments for differential AS, ATI, and APA events are easier
to design.

Table 1 Overview of the data used by individual modules of SURF

Module No. of RBPs Input datasets (sources)

1 – DrSeq 104 104 shRNA-seq with paired control RNA-seq from wild-type condition (ENCODE)

2 – Association 76∗ 76 eCLIP-seq with paired control datasets from size-matched input library (ENCODE)

3 – Discovery 54∗∗ 173 whole blood RNA-seq (GTEx) and 337 LAML RNA-seq (TCGA)
*RBPs lacking at least 100 differential ATR events are excluded from the analysis module 2
**The discovery module studies a subset of RBPs in ∗ with at least one inferred location feature
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Association of DrSeq-identified differential ATR results to global positioning prefer-
ences of RBPs with eCLIP-seq data revealed large diversity among RBPs and suggested
dual inclusion and exclusion roles for RBPs based on the positioning of protein-RNA
interactions. Furthermore, aggregation of the positioning preferences across RBPs within
each event type revealed that locations near the upstream and sometimes downstream
constitutive exons of the ATR events also play a significant role in ATR. Sequence anal-
ysis of SURF-inferred location features (e.g., regions that SURF deemed as significantly
related to ATR) revealed known and novel interactionmodalities for RBPs in ATR. To fur-
ther assess the overall relevance and importance of SURF-inferred location features, we
compared the somatic mutation densities of these regions with carefully designed con-
trols. This analysis revealed that location features inferred as associated with differential
ATR events harbored significantly more somatic mutations both in ICGC and TCGA
consortia data. Further integration with reference transcriptomes from GTEx and TCGA
highlighted contribution of APA and AS regulation in diverse transcriptome activity in
cancer and revealed RBPs with ATR event-specific differential transcriptional activities in
LAML tumors compared to GTEx normals.
SURF presents the first framework for systematic integrative analysis of large collec-

tions of CLIP-seq and RNA-seq data and includes a discovery module for probing public
TCGA and GTEx transcriptome data. This comprehensive approach coupled with the
ability to identify differential ATR events from settings with multiple biological replicates
underlines SURF’s potential as an integrative tool. There are a number of directions that
naturally build on the results of SURF. Since we have observed significant enrichment of
somatic mutations from ICGC and TCGA in SURF-identified location features, evalua-
tion of impact of individual somatic mutations on RBP binding with in silico calculations
[69, 70] could elucidate how such mutations might be manifesting their effects. SURF
focused on each RBP marginally. Given the complex combinatorial nature of ATR [11,
43], a promising extension to SURF framework should be in the direction of multivariate
analysis of large collections of RBPs.

Materials andmethods
Isoform pre-filtering

In order to improve FDR control, we pre-filtered transcripts in the human genome anno-
tation file (GENCODE version 24) before extracting ATR events, as suggested by [27].
We performed the filtering based on the RSEM [71] transcriptome quantification of 486
RNA-seq datasets, including 220 RBP knockdown experiments (with two replicates) and
23 wild-type control experiments (with two replicates). Specifically, the transcripts with
(i) relative isoform abundance estimate (IsoPct, IP) of less than c% across all samples or
(ii) TPM estimate less than 1 across all samples were removed. We varied the threshold c
for filtering relative isoform abundance as 5%, 10%, and 25% and considered the follow-
ing strategies: (1) IP ≥ 5%, (2) IP ≥ 10%, (3) IP ≥ 25%, (4) TPM ≥ 1, and (5) IP ≥ 5% and
TPM ≥ 1. Additional file 1: Table S7 summarizes the filtering thresholds, the number of
retained genes, transcripts, and the sum of TPM (averaged across all samples). The total
read counts aggregated across transcripts appeared similar to the sum of TPM, thus are
omitted from the table. This investigation suggested that isoform pre-filtering markedly
reduces the transcriptome complexity of the raw genome annotation, while possessing
the vast majority of transcriptome signals. In fact, 70% of the genes in the filtered set were
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protein-coding as opposed to 32% in the original file. This implies that majority of the
filtered transcripts are from non-coding genes.

Parsing AS, ATI, and APA events from genome annotation

The parsing procedure consists of two steps. First, we define variable bins of exonic
regions for each transcript as the set of absent exonic regions of the transcript compared
to the full gene model (Additional file 1: Fig. S3). This definition is previously introduced
by [33], and it enjoys the property that all variable bins of a transcript aremutually disjoint.
We group runs of variable bins (i.e., merge any consecutive ones within the transcript)
and categorize each as an ATR event. In the second step, we invoke a decision tree to
uniquely annotate each event to a specific category among alternative splicing (AS) events
including exon skipping (SE), alternative 3′ (A3SS) or 5′ (A5SS) splicing, intron retention
(RI), alternative first exon (AFE), alternative 5′UTR (A5U), and intronic (IAP) or tan-
dem (TAP) alternative polyadenylation, according to its relative position within the gene
(Additional file 1: Fig. S4). Note that all the ATR events from one transcript are isolated
from each other, which essentially forges the uniqueness of event annotations. Finally, we
deduplicated the events from different transcripts of the same gene that (i) shared the
same genomic information (coordinates, strand, and constitutive upstream/downstream
exons) and (ii) were classified into the same event type.

Extracting location-specific features

We generated a set of location features relevant to the ATR events according to their
event types (Additional file 1: Fig. S5). These location features were designed to capture
RBP binding signals in the upstream/downstream constitutive exons of the event, start-
ing and end sites of the event body, as well as adjacent intronic regions. For example, an
SE event has eight location features: two 100-bp regions from the upstream and down-
stream constitutive exons, four 300-bp regions from two flanking introns (upstream and
downstream) of the event body (i.e., the cassette exon), and two 100-bp flanking regions
spanning the start and end of the event body (Fig. 2c). For the flanking or spanning regions
that were shorter than the desired length of 100 bp or 300 bp, we used one half of the
exonic or intronic length. The number of location features for the other ATR event types
ranges between 4 and 8. Each location feature represents a global positioning preference
that potentially associates with the DrSeq-inferred differential ATR status. Detailed pic-
torial illustrations of location features for each event type are depicted in Additional file
1: Fig. S5.

DrSeq for detecting differential alternative transcriptional regulation

Differential ATR event detection is performed in two phases: RNA-seq read counting and
statistical inference. The entire procedure takes as input the annotation of ATR events
and the aligned reads from RNA-seq samples and outputs for each ATR event the result of
differential testing including the test statistics, p values, estimated log2 fold changes, and
additional summary objects. For each event, DrSeq counts RNA-seq reads at two levels,
event body and the gene to which the event belongs, by resorting to featureCounts

[72]. While this counting scheme allows reads to overlap multiple events or genes, diag-
nostic plots did not reveal any adverse effects (Additional file 1: Fig. S42). Since DrSeq
tests for each event separately, each read is used at most once in each test. DrSeq
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invokes DEXSeq as an inference engine to fit the differential ATR model (1). Specifically,
the events are grouped by their types and model fitting is performed separately. This
allows capturing the mean-dispersion relationships in an event type-specific manner and
reduces dependency among the tests (Additional file 1: Fig. S43). After the model fitting
and testing, all p values are jointly corrected for multiplicity with the BH procedure.

Simulation design for differential ATR detection

We simulated RNA-seq data following the strategy by [27]. First, RSEM model parame-
ters were estimated from two real RNA-seq assays (ArrayExpress dataset E-MTAB-3766
in [73]). Then, a mean/dispersion relationship, learnt from real data [74], was used to
generate samplewise transcript expression estimates, for three replicates of the wild-type
and three replicates of differential conditions. To create the differential condition, we
sampled 1000 genes and introduced differential transcript usage by switching the relative
abundances for the two most expressed transcripts. These genes were selected randomly
among those with sufficiently high expression (expected count greater than 500) and at
least two sufficiently highly expressed isoforms (i.e., with relative expression abundance,
as calculated by RSEM, above 10%). Since the isoforms have varying lengths, the expected
read count for these genes varied between the conditions, while the TPM remained
similar. This procedure generated a spectrum of differential ATR events and eliminated
potential confounding due to gene-level differential expression. Finally, we used RSEM
to simulate paired fastq files with a read length of 101 bp for each sample. For DrSeq,
we used the default pipeline. For DEXSeq, we used default settings with the exception of
invoking the -r no configuration to avoid merging overlapping genes into complexes.
For rMATS (version 4.0.2), we used the default cut-off of 0.0001 for splicing difference
and employed the same FDR thresholds as DrSeq. For MAJIQ (version 2.1), we adminis-
tered both the default setting and a liberal setting where the change threshold of MAJIQ
(-threshold) was set to 0.1.

Read coverage of ATR events from RNA-seq

In the analysis module 2 of SURF, we filtered out (i) low coverage events and (ii) over-
lapping ATR events of the same type to avoid near-duplication observations in the
association analysis. Specifically, we employed a read coveragemeasure that is akin to the
Fragments Per Kilobase Million (FPKM) in transcriptome quantification for RNA-seq.
For a given event, we first counted the number of reads residing on the event body (in
million), where we utilized only the reads with mapping quality score greater than 10 (this
threshold also applies to eCLIP-seq reads). To account for sequencing depth differences,
the counts were then normalized by the size factor of each sample [75] and averaged
across all four samples (two replicates per condition). We refer the resulting quantity as
the base mean, which is also reported by DrSeq. Next, we adjusted the base mean by
dividing it with the pseudo length of each event (in kilobase) and used this adjusted mean
as the coverage of ATR events. Here, the pseudo length of an ATR event is defined as its
actual length (in kilobase) shifted by the read length minus one, that is, 99 bp (all shRNA-
seq experiments from the ENCODE consortium have the same read length of 100 bp).
The adjustment with pseudo length (as opposed to the actual length) regularized those
extremely short (in length) ATR events and reduced the effects of overlapping counting.
This had negligible effect on long ATR events. Finally, we excluded any ATR events with
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read coverage smaller than 0.05, and among the overlapping ATR events, we only kept the
event with the highest read coverage for the downstream analysis.

Generation of feature signals from eCLIP-seq data

Each ATR event has a set of location features, each of which is a genomic region of poten-
tial protein-RNA interaction. This step of SURF takes as input the aligned reads from the
IP and accompanying control input samples of eCLIP-seq and summarizes the eCLIP-
seq signals at these features. To this end, for each feature, it first counts the number of
overlapping reads (in million) in each sample by requiring an overlap of at least 12 bp
between the read and the location feature. The 12 bp corresponds to the 25% of the read
length in the ENCODE eCLIP-seq experiments. Then, the read counts are normalized by
the sequencing depth of each sample. Next, the normalized read counts are weighted by
the genomic length (in kilobase) of the feature, which is then averaged separately across
the IP and control input samples. Finally, the difference between normalized IP and input
samples is reported as feature signal.

Association analysis for global positioning preferences

We used a logistic regression framework to derive global positioning preferences, e.g.,
position-specific rules for RBPs in regulating ATR. Specifically, for each event iwith event
type τ(i) = t, let xik denote the feature signal at the kth location feature. The random
variable Yi ∼ Bernoulli(pt) corresponds to whether an event is differentially regulated
(Yi = 1) or not (Yi = 0). We link its mean parameter pt to the eCLIP-signals of the
location features marginally with a logit function as

log
(

pt
1 − pt

)
= βA

t + βF
tkxik . (2)

Here, parameter βA
t represents the grand effect of ATR event t and quantifies a baseline

for the probability of observing a differential ATR event. This parameter also accounts
for the position independent effects of RBP in regulating this event type. Position-specific
main effect βF

tk captures the global positioning effect of RBP at the specific location feature
k.
In fitting the above model for every ATR event type t, we also considered increased and

decreased regulation separately: model for Yi = 1 corresponds to increased regulation (p
value < 0.05 and log2 fold change > 0) and model for Yi = 1 represents decreased reg-
ulation (p value < 0.05 and log2 fold change < 0). Both models incorporated the same
set of equal regulation (i.e., “no change”) events for Yi = 0 (p value > 0.4). The reason
for separating increased and decreased regulation is primarily due to the possibility that
interactions of a single RBP at a specific pre-mRNA location feature might result in both
inclusion and exclusion of the alternative site, depending on the presence/absent of other
collaborative/competitive RBPs. Differential ATR analysis of the ENCODE compendium
data of 104 RBPs with module 1 of SURF resulted in, on average and after filtering out
overlaps, 2182.02 (1.01% of all tested events) events with increased REU and 1914.98
(0.89% of all tested events) events with decreased REU. This enabled fitting of model (2)
and testing of the position-specific main effect parameter βF

tk by a standard likelihood
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ratio test. Tests for all the location features were corrected for multiplicity with the BH
procedure at FDR level of 0.05.

Summarizing association tests across RBPs

We quantified the abundance of a location feature by the normalized number of RBPs
that significantly associated with it. Specifically, we aggregated the results of global posi-
tioning associations across all the 76 RBPs for each individual event type. For each RBP
and each event type, we first applied minus logarithm (base 10) transformation on p val-
ues and normalized them to have unit sum. The normalization accounts for the fact that
an RBPmay interact with its target RNA (pre-mRNA) at multiple location features. Then,
for every event type, these values were averaged across RBPs and interpreted as feature
abundance (Fig. 5c). Next, we evaluated whether any of the features were significantly
more abundant in comparison to other features of the same ATR event type by Pearson’s
χ2 test on two variables denoting (i) whether or not a location feature is significantly asso-
ciated with the differential ATR and (ii) whether or not the location feature is x, where
x ∈ {α,β , ..., θ} is the location feature for that ATR event type. All the tests employed
Yates’s correction for continuity.

Extracting SURF-inferred location features

As a result of association testing in the analysis module 2 of SURF, each location feature
is assigned a p value (adjusted for multiplicity when appropriate). SURF then generates a
list of inferred location features by filtering as follows. First, it selects statistically signifi-
cant location features at FDR of 0.05. Note that each selected feature has a corresponding
training dataset, which consists of differential ATR events and control events. SURF then
extracts the list of genomic regions for each selected location feature from this corre-
sponding set of differential ATR events. Finally, leveraging the quantified feature signals
from the analysis module 2, it filters out the genomic regions with feature signals, i.e.,
normalized background adjusted eCLIP-seq read counts, below 20 and defines the set of
remaining genomic regions as the inferred features. Imposing the eCLIP-seq signal con-
dition ensures that the set reflects the consequences of direct protein-RNA interaction.
Note that the inferred features are event-specific and are associated with specific regu-
lation status. As a result, each inferred feature has its associated ATR event and inferred
RBP regulation function (i.e., “inclusion” or “exclusion”).

Sequence analysis for SURF-inferred location features

For SURF-inferred features, we performed de novo motif discovery using the MEME-
suite [76], with a zero or one occurrence per sequence (ZOOPS) model in the default
mode with background distribution estimated from the input sequences. Specifically, we
extracted the genome sequence (human genome version GRCh38) of each SURF-inferred
location features, which were then assembled into 326 various collections based on their
associated ATR event type, RBP, and feature type (e.g., α, β ,...). The collections of interest
corresponded to (i) 52 individual RBPs, (ii) 8 types of ATR events, (iii) 44 event× location
feature combinations (e.g., SE-α, SE-β , etc.), and (iv) 222 RBP-ATR event type combina-
tions (e.g., SRSF1-SE). Finally, we searched for the top 3 motifs with the minimum width
of 5 bp and the maximum of 12 bp in each collection of sequences, where we filtered
the resulting motifs by minimum occurrences of 40 times. The SURF-inferred location
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features and the output of 326 individual MEME runs (version 5.0.5) are deposited (see
Availability of supporting data). For clustering of identifiedmotifs, we used ametric based
on Kullback-Leibler divergence of position weight matrices (PWMs) as adapted in [77]
and Wald’s agglomeration method [78].

Differential activity of transcript sets

The discovery module of SURF takes in sets of RBP targets (e.g., transcripts or genes that
harbor SURF-inferred location features) and perform differential analysis on these sets
across conditions, in terms of their activity. This module adapts a rank-based approach,
inspired by the single-cell RNA-seq application of [35], to score the activity of a target
set in a sample by the AUC. The AUC evaluates the ranking of its elements compared
to other quantified units in the sample in terms of expression (Additional file 1: Fig. S6).
As a result, it transforms the transcriptome expression across samples into a measure of
activity across samples and enables testing of differential activity across conditions. To
calibrate the activity scores within each condition, this module also allows a paired con-
trol set for each target set. To enable subsampling for generating a null distribution, the
control set is preferably larger in size than the corresponding target set. The differential
analysis then tests for the difference in AUC between the two conditions using the dif-
ference in AUC. Our test statistic is the difference in AUC between the two conditions
(e.g., GTEx vs. TCGA). An empirical null distribution for this statistic is estimated by ran-
domly subsampling from the control set 5000 times. Each subsampling matches the size
of the target set. The p values are adjusted to control for FDR using the BH procedure
(see Additional file 1: Fig. S44 for the histogram of raw p values realized with 222 target
transcript sets).
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