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Abstract

Genomic analyses are sensitive to contamination in public databases caused by
incorrectly labeled reference sequences. Here, we describe Conterminator, an efficient
method to detect and remove incorrectly labeled sequences by an exhaustive
all-against-all sequence comparison. Our analysis reports contamination of 2,161,746,
114,035, and 14,148 sequences in the RefSeq, GenBank, and NR databases, respectively,
spanning the whole range from draft to “complete” model organism genomes. Our
method scales linearly with input size and can process 3.3 TB in 12 days on a 32-core
computer. Conterminator can help ensure the quality of reference databases. Source
code (GPLv3): https://github.com/martin-steinegger/conterminator
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Introduction
The number of genomes in public and private repositories has been skyrocketing for at
least the past decade, primarily due to the rapidly dropping costs of sequencing. The
public genome database GenBank, which is regularly synchronized with the EMBL and
DDBJ databases, has been doubling in size roughly every 18 months [1]. These genomics
databases provide a vital worldwide resource that has been driving new findings in
biotechnology and medicine for nearly three decades.
Draft genomes consisting of hundreds to thousands of unordered DNA sequence frag-

ments represent a large fraction of the over 500,000 genomes stored in GenBank [2]. Some
of these fragments contain foreign DNA due to contamination from reagents, laboratory
materials, sample processing artifacts, or cross-contamination frommultiplexed sequenc-
ing runs (Fig. 1a). These contaminating sequences may cause a variety of problems,
including incorrect labels on sequences in metagenomic studies [3], faulty conclusions
about horizontal gene transfer [4, 5], or poor annotation quality of genomes [6].
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Fig. 1 How contamination occurs and how Conterminator detects it. a DNA extraction from an organism
(red) is imperfect and often introduces contamination by other species (violet). DNA sequencing then
generates short reads that are assembled into longer contigs. Contaminated DNA is typically assembled into
separate, small contigs, but sometimes is erroneously included in the same contigs as DNA from the source
organism. Contigs may also be linked by scaffolding, which can produce scaffolds containing a mixture of
different species. Final assemblies are submitted to GenBank, and higher-quality assemblies are entered in
RefSeq. b Conterminator detects contamination in proteins and nucleotide sequences across kingdoms, e.g.,
bacterial contaminants in plant genomes. The following describes the nucleotide contamination detection
workflow. (1) We take taxonomically labeled input sequences and cut them into non-overlapping segments
of length 1000 and extract a subset of k-mers. (2) We group the k-mers by sorting them and compute
ungapped alignments between the first and all succeeding sequences per group. (3) We extract each region
of the first sequence that has an alignment to other kingdoms that is longer than 100 nucleotides with a
sequence identity greater than 90%. We perform an exhaustive alignment of the input sequence segments
against the multi-kingdom regions. (4) We reconstruct contig lengths within scaffolds by searching for the
scaffold breakpoints (indicated by N characters in the DNA sequence) on the left and right side from the
alignment start and end position. We predict that contamination is present if an alignment hits a contig that
is shorter than 20 kb that aligns to a different kingdom with an contig length longer than 20 kb

To combat the contamination issue, NCBI (the home of GenBank) applies two filter-
ing protocols for detection of contaminated fragments. First, VecScreen [7] is used to
detect synthetic sequences (vectors, adapters, linkers, primers, etc.), and second, BLAST
[8] alignments against common contaminants identify a broader array of contaminat-
ing sequences. Despite these filters, contamination still occurs, and its detection remains
challenging [9, 10].
Because humans are always present in sequencing labs, Homo sapiens continues to be

a major source of contamination for genome projects. Contaminating pieces of human
DNA occasionally remain in published genomes [11] despite automated searches. A
recent study, for example, showed that thousands of human DNA fragments can be found
in draft bacterial genomes and that many of these have been erroneously translated and
annotated as proteins [10]. However, many other species [12–16] also cause contamina-
tion. Systematic approaches to detect contamination are limited by computational costs
of comparing every submitted genome against all other known genomes. For example, a
BLAST all-against-all comparison of the RefSeq database [17], which has a size of 1.5 Tb,
would take ≈ 30,000 CPU years. Faster alignment methods such as Minimap2 [18] or
Bowtie2 [19] will take less time, but will still suffer from the quadratic complexity of
this comparison. Other fast methods such as Mash [20] and sourmash [21] can compare
genomes more quickly, but are not suited for finding small contaminating sequencing
within a larger genome.
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We present Conterminator (Fig. 1b), a fast method for detecting contamination in
nucleotide and protein databases by computing local alignments across taxonomic king-
doms. It utilizes the linear-time all-against-all comparison algorithm from Linclust [22]
followed by exhaustive alignments using MMseqs2 [23]. This enables us to process huge
nucleotide and protein sequence sets on a single server. We applied this method to quan-
tify the current state of contamination in the nucleotide databases Genbank [1] and
RefSeq [17], and in the comprehensive NR protein database [1].

Results
Figure 2 summarizes the contamination found by Conterminator in RefSeq (Fig. 2a, b) and
GenBank (Fig. 2c, d). Processing the 1.5 and 3.3 TB in RefSeq and GenBank took 5 and
12 days on a single 32-core machine with 2 TB of main memory. Conterminator reported
114,035 and 2,161,746 contaminated sequences affecting 2767 and 6795 species in Ref-
Seq and GenBank, respectively. Identifiers of the contaminated sequences are available

Fig. 2 Results of contamination within the RefSeq and GenBank. a Distribution of contaminated species in
RefSeq across five kingdoms: Bacteria and Archaea (violet), Fungi (yellow), Metazoa (red), Viridiplantae (green)
and other Eukaryotes (turquoise). b Sankey plot of the top 13 contaminated species in RefSeq. We show the
taxonomic ranks domain, kingdom, phylum, and species. Numbers shown above each taxonomic node
indicate the total number of contaminated sequences. The tree uses the same color code for kingdoms as in
a. c, d Same as a, b but for GenBank
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in Additional files 1 and 2: Listing S1. In GenBank, over 95% of contamination occurred
in eukaryotic genomes. Eukaryotic genomes tend to be much more fragmented due to
their larger genome sizes and higher repetitive content (as compared to prokaryotes), and
many of the smaller contigs in eukaryotic genome assemblies suffer from contamination.
In RefSeq, only 52% of the contamination occurred in eukaryotic genomes. One likely

reason for this is the more stringent filters used to determine which GenBank genomes
are included in RefSeq; these filters reject genomes with very low contig sizes or genomes
that were flagged as contaminated. The number of species identified as contaminants (i.e.,
the species causing contamination) in RefSeq was 2881, and in GenBank, the number
was 13,981. The leading contaminant species areHomo sapiens, Saccharomyces cerevisiae,
Stenotrophomonas maltophilia, and Serratia marcescens (see Additional file 3: Figure S1).

Contamination in high-quality genomes

We expected that well-studied model organisms would have the highest-quality genomes
and that these genomes would have very little, if any, contamination. We also expected
very little contamination in finished microbial genomes. Therefore, we created a con-
trol set of high-quality genomes consisting of 928 genomes from FDA-ARGOS, a curated
set of complete microbial genomes [24], plus genomes for model organisms Saccha-
romyces cerevisiae, Danio rerio, Mus musculus, Drosophila melanogaster, Arabidopsis
thaliana, Caenorhabditis elegans, and Homo sapiens. We searched for (presumably) false
positive predictions by scanning our RefSeq results for contaminants in these high-
quality genomes. Initially, our method did not report any contamination for any of
these genomes, in part because by default it only reports contamination when the tar-
get sequence is shorter than 20 kb (see the “Methods” section). We then considered
alignments to sequences longer than 20 kb in this high-quality genome set. In this addi-
tional scan, we found alignments between bacterial sequences and two eukaryotes: (1)
Acidithiobacillus thiooxidans in Homo sapiens and (2) E. coli in Caenorhabditis elegans,
shown in Fig. 3.

Fig. 3 Contamination in the reference genomes of Homo Sapiens and Caenorhabditis elegans. a Alignment of
Homo sapiens alternative scaffold NT_187580 of chromosome 10 against RefSeq. Chromosome 10
(NC_000011.10) aligns with 100% sequence identity from position 1 to 169918. The remaining 18,397
residues of NT_187580 align only to Acidithiobacillus thiooxidans at 98% sequence identity. Shown are only
6 out of 15 alignments to Acidithiobacillus thiooxidans. b The X chromosome of Caenorhabditis elegans
NC_003284.9 aligns on the left and right flanking position around 5907856 until 5912458. E. coli genomes
aligns from 5907856 to 5912087, a total of 4231 residues. Shown are only 3 out of 8199 alignments to E. coli
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A. thiooxidans in human genomic sequence

The human reference genome (currently GRCh38) consists of chromosomal scaffolds,
unplaced scaffolds, and “alternate” scaffolds. The last group is included in the reference
genome to represent sequences that are divergent from the primary chromosome
sequence. In NT_187580, an alternate scaffold on chromosome 10 in GRCh38.p13, we
detected a sequencematchingAcidithiobacillus thiooxidans that spans positions 169,917–
188,315 of the human scaffold (Fig. 3a), which has a length of 188,315 bp. Fifteen different
A. thiooxidans genomes align to the contaminated portion of the scaffold. The primary
sequence of human chromosome 10 aligns perfectly from positions 1 to 169,918 on the
alternate scaffold, but that alignment stops at the region that aligns to A. thiooxidans.
Thus, the last ∼ 18 kb of this human alternative scaffold appears to be bacterial.

E. coli in the C. elegans reference genome

Our method also detected a bacterial contaminant in the C. elegans reference genome,
in chromosome X (GenBank accession NC_003284.9). A segment spanning positions
5907856–5912087 of the C. elegans sequence aligns perfectly to multiple strains of E. coli
(Fig. 3b). To check whether this might be a false positive reported by our method, we
downloaded the raw Illumina reads used for a more-recent assembly of the same C. ele-
gans strain (SRR003808 and SRR003809) and aligned them against the chromosome X
assembly (NC_003284.9) using Bowtie2 [19]. Only six reads (30 bp each) aligned in this
region. In contrast, the average coverage over the rest of the chromosome was ∼ 99.8.
This indicates that the E. coli sequence was indeed a contaminant. To corroborate the
contamination further, we looked at a recent assembly of C. elegans that used a combina-
tion of long and short reads [25]. We aligned their assembly of chromosome X (GenBank
accession UNSB01000006.1¸ ) against the current reference and found that in this newer
assembly, the E. coli region is not present. This strongly suggests that the C. elegans
reference genome contains a ∼ 4-kb insertion of E. coli contamination.

Meleagris gallopavo genome cleanup

The most contaminated genome in RefSeq, on our initial scan, was the turkey genome,
Meleagris gallopavo [26]. The contaminants included 6698 small, unplaced scaffolds with
a total size of 2,655,271 bases. More than half of the contaminations were caused by
Achromobacter xylosoxidans and Serratia marcescens. We contacted the original authors
of that assembly to communicate our findings, and they subsequently removed all con-
taminated fragments, plus an additional 39,413 contigs that were shorter than 300 bp.
The new version of the assembly, Turkey_5.1, has no contaminants and is available in
GenBank as accession GCA_000146605.4.

Proteins in contaminated RefSeq contigs

We detected that 19.4% of the contaminated RefSeq contigs contain protein annotations
and encode a total of 47,943 proteins. A previous study [10] reported 3437 spurious bacte-
rial proteins that originate from human repeats that have contaminated bacterial genome
assemblies. We aligned these sequences against our set using MMseqs2, enforcing a
80% alignment coverage of the shorter sequence (--comp-bias-corr 0 -mask 0

--cov-mode 5 -c 0.8), and discovered that our set contains 62% of the previously
reported proteins.
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We clustered the proteins using MMseqs2 at a 95% sequence identity, enforcing a
bi-directional coverage of 95% (cluster --min-seq-id 0.95 -c 0.95). This
resulted in 3339 clusters that covered 12,494 sequences. The remaining sequences were
singleton clusters. The largest cluster consists of 185 bacterial proteins, all of which are
located on contigs shorter than 1 kb, and the proteins are widely spread among multi-
ple phyla in the bacterial kingdom. Despite the long evolutionary distance, 166 of the
sequences are 100% identical to each other and the remaining are at least 95% identical,
suggesting that all of them represent contaminants (see Fig. 4). All short bacterial con-
tigs containing the 185 proteins align to multiple positions in the domestic sheep Ovis
aries genome; the fragments align to chromosome 15 (NC_040266.1) with a sequence
identity greater than 94% with nearly complete coverage.

Contamination in the protein database NR

Conterminator can be used to analyze protein sequences. It clusters proteins [22] at
95% sequence identity, while requiring at least 95% sequence overlap. It reports clusters
containing multiple kingdoms, using the same kingdom definition as for the nucleotide
comparison. We predict that the kingdom with fewer members in the cluster is contami-
nated, e.g., if a cluster contains 100 proteins, and 99 represent animals while 1 represents
bacteria, then the bacterial protein likely originates from a contaminated genome.
We analyzed the NCBI NR protein sequence [1] database using this procedure. We

predicted 14,148 proteins to represent contaminants (Additional file 4: Listing S1), out of

Fig. 4 Multiple sequence alignment of 31 spurious bacterial proteins encoded on short contaminated
contigs. Shown here are 31 out of 185 spurious proteins from bacterial genomes. A majority of the sequences
are 100% identical. The only differing residues are highlighted in white. This highly conserved “protein” is
conserved on across different bacterial phyla, suggesting it is likely a contaminant that has been erroneously
translated as part of automated annotation procedures. The respective short contigs (< 1 kb) encoding these
spurious proteins align with high sequence identity and coverage to the Ovis aries genome
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which 7359 are also present in the Uniprot database [27]. The majority of these proteins
( 70.46%) are eukaryotic, and the remaining 29.34% are bacterial (see Additional file 3:
Figure S2). Over 6114 contaminant proteins originate from the phylum Arthropoda, and
out of this 2401 are from the species Trichonephila clavipes, the golden silk orb weaver
spider, which contributes overall the most contamination. We next take a closer look at
this organism.

Contaminated proteins in Trichonephila clavipes

The T. clavipes proteins identified as possible contaminants are distributed across 504
contigs with a total length of 24,152,567 residues. One hundred sixty-three of the con-
tigs are longer than 20 kb. The longest contaminated contig from the assembly [28] is
MWRG01000001, which spans 1,655,743 bases and encodes 490 proteins. We found 219
of these proteins in contaminated protein clusters, a majority of them matching the
bacterium Gemmobacter sp. YJ-T1-11. We aligned the contig against the assembly of
Gemmobacter sp. YJ-T1-11 and found that it is nearly 90% covered at a 97.76% iden-
tity (see Additional file 3: Figure S3). Thus, this clearly appears to be a bacterial contig
mistakenly included in the assembly of the T. clavipes spider.

Discussion
We present two complementary approaches to detect contamination, first using
nucleotide information to detect short contaminated fragments and second using
protein-based analysis to reveal long contaminated contigs. We used a conservative
approach that only considered a sequence to be a contaminant if it had a near-identical
match to a species in an entirely different kingdom from the source, e.g., a bacterial
sequence found in an animal genome or vice versa. However, our software has a parameter
(--kingdom) that allows one to identify contamination across phyla or other taxo-
nomic levels as well. Our method can efficiently detect contamination in large reference
databases, and we found that a substantial fraction of the genome sequences in both
GenBank and RefSeq ( 0.54% and 0.34% of entries, respectively) appear to be contami-
nated. Contamination occurs mostly as short contigs, flanking regions on longer contigs,
or regions of larger scaffolds flanked by Ns, but we also observed a few longer sequences
with contamination.
Note that to simplify our analysis, we merged Bacteria and Archaea, which are two

distinct kingdoms, into one group. Thus, we do not detect contamination between these
two kingdoms. Also note that we excluded environmental (metagenomic) samples from
our analysis. We excluded viruses because some of them can integrate their genomes into
other organisms, making it hard to distinguish contamination from genuine artifacts of
viral integration.
Contamination can be transferred into other databases that are built from GenBank,

such as the protein databases NR and Uniprot. Methods that rely on taxonomical classifi-
cation, particularly metagenomics analyses, are strongly affected by cross-kingdom con-
tamination because they often rely on subsets, e.g., microbial sequences extracted from a
larger database. This makes it more difficult for such methods to detect contamination of
the type reported here.
With the rapid and ongoing increase in the number of novel genomes sequenced every

year, the number and variety of contaminating sequences continue to increase as well,
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presenting challenges for alignment-based methods to detect contamination. Contermi-
nator’s efficiency means that it can be used routinely to detect new contamination, even
on the largest databases.

Methods
Conterminator detects cross-kingdom alignments and predicts contamination. It builds
upon existing modules of MMseqs2 [23], which it extends for use in contamination
detection.

Detection of cross-kingdom alignments

Conterminator identifies regions in genome sequences that align to genomes from other
kingdoms with a minimum length of at least 100 nucleotides and a sequence identity
threshold of at least 90%. With very few exceptions, DNA sequences from different king-
doms should not be aligned at all, and sequences that match at this level of identity are
strong candidates for contaminants. Exceptions to this rule include recent horizontal gene
transfer events, but these are very rare.
Because modern sequence databases are very large, we cannot use a naive all-against-all

alignment, which would entail a quadratic number of comparisons. Therefore, we used a
similar strategy to Linclust [22] to reduce the computational cost to a linear number of
comparisons.We reworked the algorithm to support nucleotide sequences, since Linclust
was originally built to cluster protein sequences.
Conterminator first cuts all sequences into fragments of length 1000 and records their

start positions. For each fragment, we extract m canonical k-mers (default m = 100) of
length 24 with the lowest hash value and write them into an array. (We use the hash func-
tion defined in [22]; see Supplementary Figure 5.) We store the k-mer in 8 bytes, with
the most significant bit indicating whether the k-mer is reversed, sequence identifiers (4
bytes), its length ( 2 bytes), and its position j in the genomic sequence ( 2 bytes). We sort
the array by k-mer, length, and sequence identifiers. For each k-mer group, we assign all
sequences to the longest sequence with the lowest sequence identifier c by overwriting
their k-mer with the identifier of c and their position with the diagonal i − j respect-
ing the strand directionality. We sort the array again with the previous criteria so that all
sequences with same assignment are in a consecutive block. We write each block’s cen-
tral sequence identifier, assigned sequence, strand, and diagonal to hard disk while only
keeping the diagonal with the most k-mer matches per sequence.
We perform a one-dimensional dynamic programming ungapped alignment (using the

MMseqs2 command “rescorediagonal --rescore-mode 2”) on each diagonal.
We assign matches a score of 2 andmismatches a score of−3 bits and compute an E value
using ALP [29]. We compute the sequence identity by dividing the number of identical
positions by the number of aligned positions. We filter out all hits that are shorter than
100 bases, or that have a sequence identity below 90%, or that have an E value above 10−3.
We compute the alignment start positions by adding the start position of the fragment to
the alignment coordinates (MMseqs2 command “offsetalignment”).
Based on the alignment, we extract the sequence intervals from c that are overlapped

by different kingdoms. We define five “kingdoms” based on the NCBI Taxonomy [30]:
(1) Bacteria and Archaea (taxonomy IDs 2 and 2157), (2) Fungi (4751), (3) Metazoa
(33208), (4) Viridiplantae (33090), and (5) all other eukaryotes. We ignored sequences
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from Viruses (10239), unclassified sequences (12908), other sequences (28384), artificial
sequences (81077), and environmental samples from bacteria, archaea, and eukaryotes
(61964, 48479, 48510).

Gather all alignments by exhaustive alignment

Our detection method might miss alignments because it does not extract all k-mers and
because it uses 24-mers rather than shorter k-mers. After the previous steps, we perform
an exhaustive alignment of the sequence fragments against the extracted potential con-
tamination sequences (and their respective reverse complements) using MMseqs2. The
search is performed by using the two modules prefilter and rescorediagonal.
The prefilter program masks out low complexity regions and short tandem repeats
in the potential contaminants using tantan [31] and detects all consecutive double 15-
mer diagonal hits.We rescore the detected diagonals again with the rescorediagonal
module, enforcing a minimal alignment length of 100 and a minimal sequence identity of√
0.9. The square root of the sequence identity ensures that no pair of sequences is greater

than 90% different from each other.

Predict contig length by finding scaffolding boundaries

Genome assembly programs create scaffolds by ordering and orienting contigs using a
variety of types of linking information, such as paired-end reads. A scaffold thus consists
of a sequence of contigs, usually separated (in many GenBank entries) by Ns to indicate
the scaffolding boundaries. Some of the contaminants that we identified appear as short
contigs in the midst of a longer scaffold, and we can identify these by finding the flanking
Ns. It is important for our contamination detection to know the real length of each contig
in a scaffold. A naïve approach to determining contig length would be to search for the
closest N upstream and downstream from each alignment start and end. However, this is
inefficient because many sequences contain million of bases without any Ns. We therefore
indexed all Ns for each sequence. We store the position of the first N per block in an
array associated with the sequence. The N positions are sorted in ascending order, which
enables us to perform a binary search to detect the closest N efficiently.

Predict the source of contamination

A large majority of contamination occurs as small contigs (see Fig. 2 in Breitweiser et al.
[10]). Conterminator uses this property to help it identify contamination based on the
length distribution of sequences from each kingdom. By default, it only calls a sequence a
contaminant if the sequence is shorter than 20 kb and if it aligns to a sequence in another
kingdom that is longer than 20 kb. Note that in the rare cases where a contaminating
sequence is longer than 20 kb, our method will fail to identify it. However, this prevents
us from labeling recent horizontal gene transfer events as contamination.

Predicting contamination in protein databases

Conterminator can also detect protein sequence contamination using cross-kingdom
analysis. It clusters proteins using Linclust [22] with a bidirectional length overlap of 95%
and a sequence identity of 95% (--min-seq-id 0.95 -c 0.95 --cov-mode 0

-a). It reports every cluster with cross-kingdom members. For each contaminated clus-
ter, it counts how often each kingdom occurs and reports the least abundant kingdom as
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Table 1 List of software used in this paper

Resource Version

Conterminator fa1c80

MMseqs2 [23] 333546

KrakenUniq [32] 5c0019

Pavian [33] 81d784

RefSeq [17] July 2019

GenBank [1] Dec 2018

Jalview [34] 2.11.0

The versions for MMseqs2, KrakenUniq, and Pavian are the first 6 characters of the git commit. For databases, we list the date at
which the data was downloaded

the one that is contaminated. It also reports kingdoms with equal abundance; however,
in those cases, it cannot predict the contaminated entry. Using only abundance without
concern for length may lead to incorrect directionality calls. For example, human repeats
cause contamination in multiple bacterial genomes [2]. In this case, abundance-based
directionality prediction would wrongly call the human genome to be contaminated.

Data visualization

We created the Sankey plots using the krakenuniq-report tool from KrakenUniq
[32] to create a Kraken-style report from our predicted contaminations. The visualiza-
tion was done using Pavian [33] extracted as SVG and colored by Inkscape. The multiple
alignment was created by MMseqs2 result2msa and visualized using Jalview [34].

Software and database versions

Table 1 lists the softwares and their corresponding version.
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