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Abstract

The REPIC (RNA EPItranscriptome Collection) database records about 10 million
peaks called from publicly available m6A-seq and MeRIP-seq data using our unified
pipeline. These data were collected from 672 samples of 49 studies, covering 61 cell
lines or tissues in 11 organisms. REPIC allows users to query N6-methyladenosine
(m6A) modification sites by specific cell lines or tissue types. In addition, it integrates
m6A/MeRIP-seq data with 1418 histone ChIP-seq and 118 DNase-seq data tracks
from the ENCODE project in a modern genome browser to present a comprehensive
atlas of m6A methylation sites, histone modification sites, and chromatin accessibility
regions. REPIC is accessible at https://repicmod.uchicago.edu/repic.
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Background
Over 150 chemical modifications have been identified in messenger RNAs (mRNAs) and

non-coding RNAs (ncRNAs) [1]. Among them, N6-methyladenosine (m6A) is character-

ized as the most abundant and reversible mRNA internal modification [2, 3]. Numerous

studies have emerged to establish m6A as a critical regulator of post-transcriptional gene

expression programs which is involved with many cellular activities including splicing [4],

translation efficiency [5], stability [6], export, and cytoplasmic localization [7] of m6A-

modified mRNAs. Furthermore, m6A also impacts a series of physiological processes in-

cluding, but not limited to, proliferation [8], development [9], neurogenesis [10], circadian

rhythm [11], and embryonic stem cell differentiation [12].

With the advent of next-generation sequencing (NGS) technologies, several high-

throughput sequencing methods (m6A-seq or MeRIP-seq [13, 14], PA-m6A-seq [15],

m6A-LAIC-seq [16], miCLIP [17, 18], m6A-REF-seq [19], MAZTER-seq [20], and

DART-seq [21]) have been developed to explore m6A modifications quantitatively

across the entire transcriptome, paving the way for understanding their biological func-

tions. These methods, especially m6A/MeRIP-seq, have been widely adopted to profile

the m6A marks in a variety of cell lines and tissue types from multiple species. To bet-

ter explore m6A data sets with increasing complexity, several databases (RMBase v2.0

[22], MeT-DB v2.0 [23], CVm6A [24]) and web servers (RNAmod [25], WHISTLE

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Liu et al. Genome Biology          (2020) 21:100 
https://doi.org/10.1186/s13059-020-02012-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02012-4&domain=pdf
mailto:mengjiechen@uchicago.edu
mailto:mengjiechen@uchicago.edu
https://repicmod.uchicago.edu/repic
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


[26], SRAMP [27]) have been constructed to organize and integrate existing resources.

Among these, RMBase v2.0 integrates information on sites of five or more types of

RNA modifications, RBP binding sites, and single nucleotide polymorphisms, whereas

MeT-DB v2.0 and CVm6A publish m6A peaks processed by their own pipelines from

raw m6A sequencing data (Table 1). However, these databases have limitations. It has

been shown that distinct m6A patterns occur in different developmental stages or tissue

types, implying their dynamic regulation in a tissue-dependent manner [28]. Unfortu-

nately, all of the above databases, except for CVm6A, simply combine m6A peaks

across data sets without considering cell type or tissue specificity (Table 1). Further-

more, recent studies have uncovered associations between m6A modifications and pro-

moters [29–31] or histone marks [32, 33], offering new insights into potential

regulatory pathways and underlying mechanisms, through which m6A could influence

transcriptional regulation and gene expression. However, to our knowledge, m6A modi-

fications and epigenomic data have not been curated together well. New bioinformatic

tools are needed for processing, analyzing, and visualizing the integration of these data.

Here, we present the REPIC (RNA EPItranscriptome Collection) database, which

currently focuses on integrating m6A modifications with ENCODE epigenomic data

(Table 1). The m6A modification peaks are generated by re-processing publicly avail-

able m6A-seq and MeRIP-seq data sets using a unified customized pipeline. REPIC

allows users to query m6A modification sites by cell lines or tissue types with a user-

friendly interface and provides a built-in genome browser for visualization. Overall,

REPIC is a new resource designed to allow users to explore cell/tissue-specific m6A

modifications and investigate potential interactions between m6A modifications and

histone marks or chromatin accessibility.

Construction and content
The REPIC database collected m6A modifications and epigenomic sequencing data

from different species. We designed a modern, user-friendly web portal for querying

Table 1 Summary of comparison between REPIC and published databases

Item REPIC RMBase v2.0* MeT-DB v2.0 CVm6A

Species 11 13 7 2

Cell/tissue 61 45 40 31

Data set 49 39 26 23

Sample 672 524 437 130

Peak set 339 NA 185 69

De novo data processing ✓ ✓** ✓ ✓

Pipeline supported ✓ NA NA NA

Peak calling tools exomePeak MeTPeak MACS2 exomePeak** exomePeak MeTPeak

Cell/tissue-based query ✓ NA NA ✓

Genome browser ✓ ✓ ✓ ✓

Intergenic m6A query ✓ NA NA NA

RNA modification type m6A 5+*** m6A m6A

Epigenomic data 1536 NA NA NA

NA not available
*Statistics from five modification types (m1A, m5C, m6A, Nm, and Ψ)
**Only m6A/MeRIP-seq and m1A-seq data were considered
***More than five RNA modification types
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m6A modification sites and an interactive genome browser empowered by GIVE [34]

for data visualization (Fig. 1a). The web application of the REPIC database was con-

structed using Apache v2.4.18, MySQL v5.7.25, and PHP v7.2.14. The data processing

procedures starting from raw data sources are shown in Fig. 1b. To better disseminate

the resource and facilitate downstream analysis, we provide curated data that can be

downloaded from the REPIC database website.

High-throughput sequencing data

Raw m6A-seq and MeRIP-seq data were manually collected through an extensive litera-

ture search and then retrieved from the Gene Expression Omnibus (GEO) and the Se-

quence Read Archive (SRA). In total, 607 m6A-seq and 544 MeRIP-seq run data were

obtained from SRA. After merging different runs in the same experiment and excluding

unpaired input-IP samples, 672 samples—which consisted of 339 pairs of input-IP data

from 49 studies, covering 61 cell lines or tissue types in 11 organisms—were used for

database construction (Additional file 1: Table S1). For epigenomic data, a total of 118

DNase-seq peak sets from 29 cell lines or tissue types, and 1418 histone ChIP-seq peak

Fig. 1 a Overall design of the REPIC database. b Schema of the customized pipeline for m6A-seq or MeRIP-
seq data processing
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sets from 27 histone marks in 22 cell lines or tissue types in human and mouse, match-

ing with curated m6A modification data, were downloaded from the ENCODE website

(Additional file 1: Table S2 and S3).

Genome annotation data

Human and mouse genome sequences and gene annotations were acquired from the

UCSC Genome Browser [35] and GENCODE [36], respectively. Arabidopsis thaliana

genome sequences and gene annotations were obtained from the Arabidopsis Informa-

tion Resource (TAIR) [37]. The rest were downloaded from the Ensembl website [38].

The widespread versions of genome sequences and gene annotations for each of the 11

organisms were chosen for further analysis (Additional file 1: Table S4).

Raw m6A-seq and MeRIP-seq data reprocessing

The aforementioned 339 pairs of input-IP data were re-processed by our customized

pipeline [39, 40] (Fig. 1b). Briefly, adapters of raw sequencing data were clipped away

by Cutadapt v1.15 [41]. Reads longer than 15 nt after trimming were first mapped to

ribosomal RNAs (rRNAs) by HISAT2 v2.1.0 [42]. All unmapped reads were then

aligned to genomes using HISAT2 v2.1.0 with default parameters. For samples with

low mapping ratios, we used FastQ Screen [43] to find possible contaminants in those

sample reads. To check library complexity, PCR duplicates were evaluated by MarkDu-

plicates from Picard v2.17.10 [44]. We then calculated the PCR duplicate proportion

(PDP), which we defined as the number of PCR duplicate reads divided by the total

number of mapped reads. Another three metrics, non-redundant fraction (NRF) and

PCR bottlenecking coefficients 1 (PBC1) and 2 (PBC2), were quantified using ENCODE

standards [45]. Input samples from m6A-seq and MeRIP-seq data were used to estimate

gene expression levels by StringTie v1.3.4d [46]. If the library type was strand-specific,

we further divided the sequence alignment data by strands. For visualization, log2 fold

enrichment levels of m6A were calculated using bamCompare, and gene expression

levels were reported in bins per million mapped reads (BPM) using bamCoverage from

deepTools v3.0.2 [47]. exomePeak [48], MeTPeak [49], and MACS2 v2.1.1 [50] were

used to detect peaks. For exomePeak and MeTPeak, parameters were set as follows:

PEAK_CUTOFF_FDR = 0.05, WINDOW_WIDTH = 50, SLIDING_STEP = 10, MIN-

IMAL_MAPQ = 20, FOLD_ENRICHMENT = 2, and REMOVE_LOCAL_TAG_ANOM-

ALITIES=F. The values of the parameters FRAGMENT_LENGTH and READ_

LENGTH varied under different library settings. Parameters in MACS2 were set as fol-

lows: -f BAM -B --SPMR --nomodel --keep-dup all. The values of the options -g,

--tsize, and --extsize varied under different library settings. Finally, HOMER v4.9 [51]

was used for motif enrichment analysis based on the top 2000 peaks ranked by their

fold enrichment levels.

Utility and discussion
Evaluation of m6A-seq and MeRIP-seq data quality

We applied our pipeline to re-process all collected m6A-seq and MeRIP-seq samples.

As rRNAs could potentially interfere with mRNA expression quantification and peak

calling, we first interrogated the rRNA content in each sample. rRNA reads comprised
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less than 30% of total reads in 566 samples (85.0% of the total), while 371 samples

(55.7% of the total) contained a proportion of rRNA reads below 5% (Fig. 2a), suggest-

ing that most samples were not subject to rRNA contamination. Next, we examined

the counts of reads mapped to the genomes after filtering out rRNA reads. Five hun-

dred seventy-one samples (85.7%) were shown to be of high quality with a genome

mapping ratio greater than 75% (Fig. 2b). Sixteen human and 22 mouse samples with a

low genome mapping ratio (< 60%) were detected as containing viral infection, vector

or mycoplasma contamination, or other unknown conditions.

To further evaluate data quality, we assessed the library complexity of all samples by

four metrics: PDP, NRF, PBC1, and PBC2, with the last three as defined by the EN-

CODE project [45]. The PDP values indicated that around 75% of the samples con-

tained PCR duplicate proportions of greater than 50% (Additional file 2: Figure S1A),

whereas the NRF values showed that only about 25% of the samples had a fraction of

distinct, uniquely mapping reads greater than 50% (Additional file 2: Figure S1B). Both

PDP and NRF values across the samples implied that multiple reads in the same posi-

tions of the genomes were prevalent. However, the decision of whether to remove them

as PCR duplicates is an open question, since it is difficult to distinguish between arti-

facts of PCR amplification and real transcriptional events using current computational

Fig. 2 The quality of m6A-seq or MeRIP-seq reads mapping. Boxplots depicting the distribution of reads
mapped to a rRNAs and b genomes in the input and IP samples, respectively. The y-axis in a and b represents
the percentage of reads mapped to rRNAs and non-rRNA reads mapped to genomes, respectively. Both left-
side panels show the whole range of the ratios and the right-side panels of a and b zoom in on the ranges of
0–5% and 75–100%, respectively
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methods. Furthermore, direct removal of duplicate reads with the same mapping coor-

dinates may introduce unwanted bias [52, 53]. Therefore, our pipeline keeps duplicated

reads for downstream analysis. Unlike for PDP and NRF, about 90% of the input sam-

ples and 75% of the IP samples showed no severe (PBC1 > 0.5) or moderate (PBC2 > 3)

levels of PCR bottlenecking (Additional file 2: Figure S1C and S1D) according to EN-

CODE standards. Overall, the two metrics PBC1 and PBC2 indicated that the library

complexity of the majority of samples was of acceptable quality; thus, we considered

them for further analysis. Nevertheless, we note that some characteristics of RNA bio-

genesis are more complicated than DNAs, so new metrics may need to be developed

for the evaluation of RNA library complexity.

Three peak calling tools—exomePeak, MeTPeak, and MACS2—have been widely

used for m6A peak detection. exomePeak and MeTPeak were developed by the same

group, but their algorithms vary. MeTPeak outperforms exomePeak based on robust-

ness against data variance and detection of lowly enriched peaks [49]. However, with

our processed data sets, exomePeak achieves better motif enrichment than MeTPeak.

Unlike exomePeak and MeTPeak, both of which, by design, detect peaks across the

transcriptome, MACS2 determines peaks genome wide. Thus, we can use MACS2 to

obtain intronic and intergenic peaks. Because the algorithms of all three tools each have

unique advantages, we applied them all to identify m6A peaks from the collected sam-

ples using fixed parameters. To assess the similarity of the peak sets identified by differ-

ent tools, we adopted the Jaccard Index (JI) and Simpson Index (SI). JI is defined as the

number of intersecting bases between two peak sets divided by the number of bases in

the union of the two peak sets [54], and SI measures the ratio of the number of inter-

secting bases between two peak sets to the number of bases in the smaller of the two

peak sets [55]. Thus, by definition, a given pair of peak sets has a higher SI than JI; the

indexes have the same numerator, but the SI has a smaller denominator. To limit the

comparisons at the transcriptome level, we considered only MACS2 peaks that over-

lapped with annotated transcripts. Unexpectedly, only about 13.6% and 3.0% of the

peak sets from MACS2 had 50% or greater complete overlap (JI > 0.5) with those from

exomePeak and MeTPeak, respectively (Fig. 3a, b). This observation indicated poor re-

producibility between peak sets called by MACS2 and those by exomePeak or MeTPeak

for the same given data sets. On the contrary, about 77.4% of the peak sets from exo-

mePeak have JI > 0.5 when compared with those from MeTPeak (Fig. 3c). In addition,

about 73.0% and 86.6% of the peak sets from exomePeak have SI > 0.75 with those from

MACS2 and MeTPeak, respectively (Fig. 3a, c). However, the proportion of the peak

sets between MACS2 and MeTPeak with the same SI was reduced to 37.7% (Fig. 3b). It

suggests that peaks called by MACS2 and MeTPeak achieve lower consistency than

those called by MACS2 and exomePeak. Taken together, exomePeak and MeTPeak

agreed on over 75% of peak sets (JI > 0.5 or SI > 0.75), while MACS2 recovered limited

peaks from exomePeak and especially MeTPeak.

Cell- or tissue-specific m6A modifications

As genes are expressed in a tissue-specific manner, we asked whether m6A modifica-

tions possess similar characteristics. According to the metagene profiles of m6A in

mRNAs [56], we first considered five distinct genomic features: 5′ UTR, CDS, stop
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codon regions (± 200 bp around the stop codons), 3′ UTR, and whole regions. We then

examined the top 2000 genes ranked by coefficients of variation (CV) of fold enrich-

ment levels of m6A peaks at these regions across human cell lines and tissues. By com-

paring the m6A peak enrichment between samples at the 5′ UTR (Additional file 2:

Figure S2A), CDS (Additional file 2: Figure S2B), 3′ UTR (Additional file 2: Figure

S2C), and whole regions (Additional file 2: Figure S2D), we observed the strongest cor-

relations among samples from the same cell lines or tissue types at stop codon regions

(Fig. 4a), even when they were collected from different studies or labs. This

phenomenon was also presented in the t-distributed stochastic neighbor embedding (t-

SNE) [57] plot; samples from the same cell or tissue type were clustered together and

Fig. 3 Evaluation of similarities of peak sets generated by three peak calling tools. Scatter plots showing the
distributions of the Jaccard Index and Simpson Index from comparisons of a exomePeak versus MACS2, b
MeTPeak versus MACS2, and c exomePeak versus MeTPeak across all samples. Paired-end and single-end
sequencing types are represented by triangles and circles, respectively. Species are indicated by colors

Liu et al. Genome Biology          (2020) 21:100 Page 7 of 13



Fig. 4 Cell- or tissue-specific m6A modifications. a Heatmap depicting the Pearson correlation of different
human cell lines and tissues of the top 2000 genes ranked by CVs of fold enrichment levels of m6A peaks
at stop codon regions (± 200 bp around the stop codons). The dendrogram was constructed using
complete linkage based on Euclidean distances. Each row label represents the sample information in the
format of “input_IP”. b t-SNE plot displaying grouping patterns of different cell/tissue samples in a lower-
dimensional space for the same data in a. Each dot represents a sample. Cell/tissue types are indicated
by colors
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clearly separated from other distinct groups (Fig. 4b). These results suggest that some

highly dynamic m6A modifications at stop codon regions more so than those at other

functional regions tend to be tightly controlled, perhaps in order to regulate cellular ac-

tivities and processes in a cell line- or tissue type-specific manner, in response to differ-

ent physiological stimuli or conditions.

To offer insight into the cell line or tissue specificity of m6A modifications,

REPIC supports the query of m6A modifications by cell lines or tissue types

(Fig. 5a). On the Search page, we list options for all available cell lines and tissue

types, next to filtering options that include the number of peak sites in the gene of

interest and samples from which peaks were called (Fig. 5b). Once the submitted

query is complete, a report will be presented in a user-friendly interface with the

following information for each peak: genome position, other tools that identify an

overlapping peak, fold enrichment, and genomic feature annotation (Additional file 2:

Figure S3A). More sample information can be found in a separate window, includ-

ing the data source, read mapping statistics, metagene profiles, and results from

motif enrichment analysis (Additional file 2: Figure S3B).

Fig. 5 Screenshots of the web interfaces of the REPIC database. a The Home page. b The Search page. c
Taking the query region near gene NANOG as an example, we show a visualization of m6A peaks, histone
modifications, and chromatin accessibility in the genome browser
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Visualization of m6A modifications and epigenomic data

The query on the Search page is limited to genes. To better display multi-

dimensional m6A modification information across the entire genome, REPIC pro-

vides a genome browser empowered by GIVE to visualize m6A peaks, fold enrich-

ment, and gene expression. As increasing evidence has shown that chromatin

accessibility as well as epigenetic marks such as histone modifications defines the

cell/tissue types [58, 59], we built REPIC to integrate DNase-seq and histone ChIP-

seq data in order to investigate the possible correlations between these epigenomic

characteristics and m6A modifications. As a result, a total of 3225 tracks compris-

ing seven distinct track types (Additional file 1: Table S5) constitute the built-in

genome browser. Like the UCSC Genome Browser or other similar genome

browsers, a user can select multiple tracks to interactively display peak or expres-

sion profile data at a specific genomic location. In an example demonstrating the

utility of the browser shown in Fig. 5c, we observe that H3K4me3 and DNase-seq

peaks are located in the promoter region of the NANOG gene, indicating that it is

actively transcribed in hESCs [12]. We also note that m6A modifications at the

stop codon region are enriched with H3K36me3 peaks, which is consistent with

the recently reported H3K36me3-dependent mechanism of m6A modification de-

position [32].

Future directions

As m6A modification detection technology has been applied to a variety of cell/tis-

sue types with different conditions in distinct species, we will continue to collect

new m6A/MeRIP-seq samples. In addition, with the increasing availability of

transcriptome-wide sequencing data of m6A modifications at a single-nucleotide

resolution as well as other RNA modifications including m1A, m5C, m7G, Ψ, and

Nm, we will expand REPIC to catalog those as well. Another future development

will be the integration of non-epitranscriptomic data such as RBP binding sites,

GWAS, and GTEx data [60] to facilitate assessment and interpretation of RNA

modifications.

Conclusions
The current release of the REPIC database integrates millions of m6A peaks called by

three popular tools from various cell/tissue types of multiple species. REPIC allows

users to query m6A modification sites by specific cell lines or tissue types. Furthermore,

hundreds of epigenomic data sets including chromatin accessibility and histone marks

are included with the built-in genome browser to facilitate the interpretation of the

functions of certain cell/tissue-specific m6A modifications, revealing their direct or in-

direct roles in influencing chromatin states and transcriptional regulation.
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