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Abstract

Background: Single-cell RNA-seq (scRNA-seq) is emerging as a powerful tool to
dissect cell-specific effects of drug treatment in complex tissues. This application
requires high levels of precision, robustness, and quantitative accuracy—beyond
those achievable with existing methods for mainly qualitative single-cell analysis.
Here, we establish the use of standardized reference cells as spike-in controls for
accurate and robust dissection of single-cell drug responses.

Results: We find that contamination by cell-free RNA can constitute up to 20% of
reads in human primary tissue samples, and we show that the ensuing biases can be
removed effectively using a novel bioinformatics algorithm. Applying our method to
both human and mouse pancreatic islets treated ex vivo, we obtain an accurate and
quantitative assessment of cell-specific drug effects on the transcriptome. We
observe that FOXO inhibition induces dedifferentiation of both alpha and beta cells,
while artemether treatment upregulates insulin and other beta cell marker genes in
a subset of alpha cells. In beta cells, dedifferentiation and insulin repression upon
artemether treatment occurs predominantly in mouse but not in human samples.

Conclusions: This new method for quantitative, error-correcting, scRNA-seq data
normalization using spike-in reference cells helps clarify complex cell-specific effects
of pharmacological perturbations with single-cell resolution and high quantitative
accuracy.

Introduction
Recent advances in single-cell transcriptome profiling have enabled the comprehensive

characterization of cell populations in multiple tissues, resulting in initial drafts of

mouse and human cell atlases [1–4]. To date, these atlases focus primarily on the static

cell composition in tissues, while there is as yet little information on the dynamic re-

sponses of individual cells to stimuli in a whole-tissue setting. Such response dynamics

are of particular interest in pancreatic islets of Langerhans, a tissue composed of mul-

tiple endocrine cell types defined by their marker hormones glucagon (alpha cells),
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insulin (beta cells), pancreatic polypeptide (PP cells), somatostatin (delta cells), and

ghrelin (epsilon cells). Cell-type-specific transcriptomes are established during develop-

ment, yet even fully mature islet cells retain the ability to alter their cellular identity by

dedifferentation and transdifferentiation. Furthermore, islet cells respond transcription-

ally to the blood glucose levels they control through their secreted hormones and to

drugs that target the glucose sensing and hormone secretion pathways. Importantly, all

of these processes are dependent on an intricate paracrine and endocrine crosstalk be-

tween the different cell subtypes, requiring their study at the whole-tissue level.

In adult islets, most cells express a single hormone at the protein level, and only ap-

proximately 1% of cells are being described as polyhormonal [5–8]. Whether this is also

true on the transcriptome level is currently unclear. Different single-cell transcription

studies [9–23] by RNA-seq, RNA-PCR, and RNA-FISH reached different conclusions

regarding the levels of polyhormonality. While some studies conclude that the majority

of endocrine cells express more than one hormone [10, 24, 25], others find that islet

cells predominantly are monohormonal also on the transcript level [26]. These discrep-

ancies may reflect different sensitivities and detection limits as well as technical limita-

tions such as RNA cross-contamination or the inadvertent analysis of cell doublets

instead of single cells.

The question of polyhormonality is of particular importance during dedifferentiation

and transdifferentiation processes that are thought to often proceed through a stage where

cells coexpress multiple hormones and progenitor markers [7, 27–33]. These processes

can be induced genetically through the aberrant expression or the ablation of cell-type-

specific master regulatory transcription factors in animal models. Most notably, alpha cells

have been shown to undergo transdifferentiation to beta cells following overexpression of

PAX4 [30] and ablation of ARX either alone or in combination with DNMT1 [27, 28].

Moreover, beta cell-specific knockout of FoxO1 is a well-established dedifferentiation

model, resulting in reduced beta cell mass and adoption of alpha cell fate by a subset of

beta cells [33]. Direct translation of these genetic animal models to primary human islets

is challenging due to inefficient genome editing and limited functional timespan of intact

islets in vitro. Only recently, it was shown that human alpha and PPY cells can be con-

verted to insulin-producing cells by overexpression of both PDX1 and MAFA [34].

Alterations of pancreatic endocrine cell identity have also been achieved with

pharmacologic agents, which, compared to genetic methods, promise faster kinetics,

dose-responsiveness, species-independence, and potential clinical utility. For example, a

small-molecule FOXO inhibitor [35] has been shown to convert delta cells to insulin-

producing cells following near-complete beta cell ablation [36]. Moreover, we previ-

ously reported that the small-molecule artemether impairs alpha cell identity and in-

duces insulin expression, resulting in improved glucose tolerance in diabetes models

[37]. Recent studies have demonstrated that artemether indeed improves glucose toler-

ance in multiple in vivo models [37–42]. Similarly, GABA has been reported to im-

prove glucose homeostasis by alpha cell transdifferentiation or beta cell proliferation

[43–52]. However, the mechanisms of artemether and GABA have been controversial,

as two recent studies have not detected an increase in alpha cell-derived beta cells

using lineage tracing models [8, 41].

To clarify cell-type-specific drug effects in primary islets requires to quantify low-

level induction of cell type foreign hormones with high accuracy, robustness, and
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sample-to-sample comparability. In particular, any sample carryover or cross-

contamination that occurs in droplet-based single-cell RNA-seq needs to be effectively

corrected for. To that end, we develop a method that combines standardized reference

cells as spike-in controls with a computational decontamination algorithm. Applying

our method to ex vivo pancreatic islet samples, we obtain 24,729 mouse and 82,463 hu-

man single-cell islet transcriptomes in response to drug treatment of undissociated tis-

sue samples. Using our method, we observe dramatically lower numbers of

polyhormonal cells than based on the uncorrected analysis, in line with previous obser-

vations on the protein level. We further show that a small-molecule FOXO inhibitor

can induce beta cell dedifferentiation ex vivo, and we observe that artemether consist-

ently increases the expression of insulin and other beta cell genes in a subset of alpha

cells.

Results
Reference cells as spike-in controls identify contamination in single-cell RNA-seq

To systematically assess the effect of drug treatments on primary pancreatic islets with

quantitative cell-type-specific resolution, we exposed intact human and mouse islets to

10 μM artemether, 100 μM GABA, 1 μM FoxO inhibitor AS1842856 (FoxOi), and con-

trol DMSO for 72 h ex vivo (Fig. 1a). After that period, we dissociated islets, filtered for

single cells, and performed single-cell transcriptome analysis on the 10X Chromium

platform. Following alignment and initial quality control, we obtained a total of 142,165

transcriptome profiles.

Analyzing the resulting human transcriptomes, we observed striking sample-specific

differences in glucagon (GCG) and insulin (INS) expression across all cell types be-

tween replicates (Fig. 1b). In addition, we observed surprisingly high levels of expres-

sion for both GCG (3.0% and 6.1% of all reads in replicates I and II, respectively) and

INS (6.5% and 4.5%) in all cells, and no INS-negative cells were observed (Fig. 1b).

Similar patterns are present in most published droplet-based scRNA-seq datasets of

pancreatic islets (Fig. 1c). In contrast, hormone-negative cell populations were detected

in some scRNA-seq studies based on sorting cells to individual wells, although also

there the majority of islet cells have detectable levels of both INS and GCG. The high

study dependence and low fraction of monohormonal cells indicates potential technical

biases in the scRNA-seq results.

Inclusion of internal standards is widely appreciated for quality assessment,

normalization, calibration, and quantitation of analytical data [53]. Such internal stan-

dards should be spiked in early during the sample processing workflow and have highly

similar, yet clearly discriminable properties to the analytical samples. For single-cell

transcriptomics, ideal internal standards are therefore well-characterized homogenous

cell populations. We chose to use two cell lines, mouse 32D and human Jurkat cells, as

internal standards, both of which we characterized by RNA-seq. Methanol-fixed cells

(~ 5% of all cells) were spiked into all samples shortly before droplet formation, and

thus prior to processing, sequencing, and bioinformatics analyses as part of the entire

dataset. We found that cross-species spike-ins (here mouse 32D cells) provide particu-

larly clean reference points when aligned to a combined human/mouse reference gen-

ome, for two reasons. First, they were easily separable from other cells (here: human
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Fig. 1 (See legend on next page.)
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islet and spike-in) by the ratio of human/mouse reads per cell (Fig. 1d and

Additional file 1: Fig. S1). Second, counting the number of cross-aligned reads (here:

human reads found in mouse cells) provided a straightforward way of evaluating

sample-specific biases.

Measuring contamination as the percentage of reads that aligned to the human refer-

ence in mouse spike-in cells (Fig. 1e), we observed a high, sample-specific, level of con-

tamination in both samples (medians 8.1% and 17.4% in samples from human donors I

and II, respectively), with a maximum of 19.9% in sample I. However, the contamination

profile was highly similar within the cells of each sample (Fig. 1f). This human contamin-

ation in mouse spike-ins was highly correlated with the average expression in human cells

(Fig. 1g), suggesting that the contamination was indeed derived from islet RNA. To iden-

tify affected genes, we next compared mouse and human spike-ins in human islet samples

to mouse and human spike-ins sequenced in isolation as external reference, all aligned to

the human genome (Fig. 1h). Both human and mouse spike-ins from islet samples showed

strong expression of major islet marker genes such as INS, GCG, TTR, SST, PPY, IAPP,

and REG1A. Given that expression of these genes was virtually absent from reference

cells, it can be attributed to contamination.

Likely the contamination was found in the medium or buffer the cells are resuspended

in, in the form of cell-free RNA originating from dying cells that were enclosed in droplets

during processing. Possibly cell lysis may occur during the single-cell transcriptomics

workflow during incubation of the cell suspension with the master mix providing reagents

for the reverse transcription step prior to droplet generation. Importantly, both empirical

and theoretical considerations excluded the alternative hypothesis that contamination oc-

curs between samples during sequencing through index switching [54]. Empirically, we

observed low overlap in barcodes between experiments run on the same lane (Add-

itional file 1: Fig. S2). Theoretically, all contaminated cells (barcodes) in a given sample

would require a corresponding cell (barcode) in another sample that was processed on

the same lane and contains all contaminating genes. This is highly unlikely given that only

a small fraction of all barcodes is labeled as cells.

Spike-in reference cells enable accurate computational correction of cell signatures

We model contamination as a transcriptional signature that is added to the transcrip-

tional signature of each cell. While the signature of contamination is highly similar

(See figure on previous page.)
Fig. 1 Spike-ins enable assessment of contamination in scRNA-seq experiments. a Islet treatment and
sample preparation scheme. b Expression (log TPM) of insulin and glucagon in all cells of DMSO-treated
islets from human donors I and II. Horizontal lines indicate the shifts of the non-alpha and non-beta cells
from non-expressing levels. Red dotted line: baseline expression for non-islet cells as reported in the
Human Cell Atlas (HCA). c Expression of insulin and glucagon in external datasets. TPM and RPKM values
reported in each dataset were log transformed. d Alignment of reads to both the human and mouse
genomes to identify spike-in reference cells, here mouse spike-ins in a human sample (DMSO, donor II). e
Contamination of mouse spike-ins in human samples. Contamination is quantified as the percentage of
reads aligned to the human genome in mouse spike-ins. f Correlation of the contamination profile within
the mouse spike-in cells in human samples. g Average contamination in mouse spike-ins (y-axis) versus
average expression in the sample (human pancreatic cells, x-axis) shown for sample DMSO, human donor II.
Spearman correlation R = 0.888. h Average expression (log TPM) of genes with the largest difference in
mouse and human spike-ins, and external references
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across cells within each sample, the extent to which this profile is added is specific to

each cell (Fig. 1e). Decontamination thus requires the estimation of two variables. First,

the extent of total contamination of each cell, quantified as the fraction of contaminat-

ing reads (fc). Second, the extent to which each gene contributes to the contamination

in each sample, i.e., the transcriptional signature of contamination (Sc). Estimation of

these factors is difficult in classical single-cell RNA-seq experiments where only the

final, contaminated profile of each cell is observed. However, both variables can be esti-

mated from spike-in cells, where contaminated expression profiles can be compared to

clean reference profiles, which were obtained by sequencing spike-ins separately (in the

absence of potentially contaminating cells). Of particular advantage are cross-species

spike-ins, where cross-species aligned reads enable straightforward quantification of

contamination signature and fraction in those spike-ins (Fig. 1g). For example, reads

aligned to the human genome in a mouse cell are likely to arise from contamination.

Based on the above rationale, we devised a computational decontamination procedure

based on spike-in cells to correct expression data of all cells (Fig. 2a). First, we esti-

mated the Sc in each sample by comparing contaminated mouse spike-ins to clean ref-

erences. Next, we predicted the fraction of contamination for all cells. To do so, we

relied on mouse spike-ins, where fc was calculated as the fraction of cross-species

aligned reads. Based on these ground truth fc values in mouse spike-ins, we fitted linear

models that learn to predict fc based on the expression of the most contaminating

genes. Next, these models were applied to predict fc in all human cells. Finally, Sc scaled

by fc was subtracted from the expression profile of all cells.

To evaluate our correction procedure, we first assessed the accuracy of our fc predic-

tions using 3-fold cross validation within mouse spike-ins. This assessment showed

high prediction performance (Fig. 2b, R = 0.72). Next, we correlated the corrected

values of mouse and human spike-ins to clean external references. In all cases, cor-

rected values correlated more strongly with external references than did the raw data.

This evaluation was done in cross-validated mouse as well as human data unseen by

the predictor (Fig. 2c). Similar high performance was observed when decontaminating

mouse cells based on human spike-ins (Fig. 2d).

After decontamination, hormone reads were only present in endocrine cells and not

in all cell populations (Additional file 1: Fig. S3a). Also, our decontamination method

showed better performance when compared to other correction methods [55] (Add-

itional file 1: Fig. S3b, Additional file 2: Table S1).

Altogether, these analyses demonstrate that cellular spike-in controls not only are

powerful tools to detect sample contamination with cell-free RNA, but also enable highly

accurate correction of contaminated data (Fig. 2e). Importantly, spike-ins require marginal

sequencing resources as they only constitute a small fraction of all cells analyzed.

Machine learning enables marker-free assignment of cell types in pancreatic islets

Based on our contamination-corrected expression data, we next sought to identify cell

types to assess cell-type-specific effects of drug treatment. To identify islet cell subpop-

ulations, we initially performed principal component analysis followed by t-distributed

stochastic neighborhood embedding (t-SNE) on corrected gene expression data (Add-

itional file 1: Fig. S4). We identified clusters of non-endocrine acinar, ductal,
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Fig. 2 Accurate computational correction of cellular signatures based on spike-in cells. a Mouse spike-ins
are used to estimate the fraction of contamination fc and the signature of contamination Sc. b Predicted
versus measured fc. c, d Pearson correlation of raw (black) and corrected (red) values of the spike-ins in the
human and mouse samples to the external reference spike-in transcriptome. e Flow diagram of data
correction of DMSO samples from donors I and II. Left to right: 1—Scatter plot of raw INS and GCG from
human donors I and II. 2 and 3—Density plots of donors separately of raw and corrected data. 4—Scatter
plot of corrected INS and GCG from human donors I and II. ***p < 0.0001, **p < 0.001, *p < 0.005
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endothelial, and immune cells. In addition, we identified same-species spike-ins by their

correlation to reference transcriptomes. Endocrine cell types were not well separated in

this initial analysis. We therefore repeated clustering and t-SNE analysis separately for

endocrine cells (Fig. 3a) and observed improved resolution but still no clear separation

(Fig. 3b).

We then employed a machine learning-based approach, which was trained on unam-

biguously assignable cells, to predict cell type of difficult to assign cells. First, we assigned

clear representatives of alpha, beta, gamma, and delta cells solely based on high expression

of insulin, glucagon, somatostatin, or pancreatic polypeptide. In addition, a cluster ex-

pressing high levels of REG1A was assigned as “acinar like” in human samples (Fig. 3b).

We next trained a classifier to predict cell type from the transcriptome based on these

clear representatives of each cell type, which were first subsampled to reduce class imbal-

ance. Importantly, cell type defining hormones were removed from the transcriptomes.

The trained classifier was then applied to all cells not used in training, demonstrating the

high prediction performance (Fig. 3c and Additional file 1: Fig. S5a). Computationally pre-

dicted class was then used to assign cell types to only those cells that were not assignable

based on marker genes (labeled “endocrine” in Fig. 3c and Additional file 1: Fig. S5a).

Since we are interested in studying cell type identities, a heterodoublet between two differ-

ent cell types could have an impact on our analysis. Given that there was no clear cutoff

for doublets removal based on the classical cutoffs of nGene or nUMI, we performed a

cell-type-specific filtering based on cell type predictions and nGenes (Additional file 1:

Fig. S6 and Additional file 3: Table S2).

Following assignment of single cells to cell types, we first analyzed the ratios of

different cell types compared to the total population (Additional file 1: Fig. S5b-c).

Overall, we observed strong donor-to-donor differences, which dominated over the

effects of drug treatment with FoxOi, artemether, and GABA. To evaluate cell-

type-specific drug effects, we calculated relative cell-type-specific gene expression

changes by comparing compound treatment to donor-matched DMSO controls

(Additional file 4: Table S3).

Pharmacological inhibition of FoxO induces islet cell dedifferentiation in vitro

We first analyzed the effects of the FoxOi on islet cells, to evaluate whether the compound

can model beta cell dedifferentiation in vitro. In line with genetic models of FoxO loss

[33, 56, 57], the FoxOi caused a reduction of insulin expression in mouse beta cells that

we also observed in human beta cells (Fig. 4a, Additional file 5: Table S4).

To analyze whether transcriptome-wide changes reflected a true dedifferentiation

event, we used gene set enrichment analysis (GSEA) to compare expression changes in

beta cells treated with FoxOi to known beta cell dedifferentiation signatures [56]. Genes

with increased expression in a triple FoxO KO mouse model were upregulated upon

FoxOi treatment in mouse and human islets (Fig. 4b). Important beta cell transcription

factors such as NEUROD1, ISL1, NKX6-1, NKX2-2, FOXA2, MAFA, PDX1, and

FOXO1 were downregulated (Fig. 4c). Consistent with the genetic models of FOXO

loss, we identified LY96 and immature beta cell markers CRYBA2 and C2CD4A to be

upregulated in beta cells after FoxOi treatment. GSEA revealed that the main pathways

associated with the downregulated genes in FoxOi-treated beta cells were “regulation of
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gene expression in beta cells,” “pancreatic secretion,” and “type II diabetes”

(Additional file 6: Table S5).

Interestingly, we also observed a loss of alpha cell identity in response to FoxOi treat-

ment. Glucagon, as well as the master transcription factor ARX, and other alpha cell-

specific genes such as GC, NEUROD1, TTR, PAX6, PCSK2, MAFB, and TM4SF4 were

downregulated (Fig. 4c).

In order to validate the loss of alpha cell and beta cell identity in an unbiased ap-

proach, we correlated gene expression signatures of FoxOi-treated cells to gene sets

comprised of non-hormone alpha and beta cell markers (Fig. 4d). Thus, we obtained a

value of correlation to an alpha or beta cell signature gene set for each single cell. In

both mouse and human islets, FoxOi induced a loss of both alpha and beta cell identity

and a shift in both cell populations to less committed gene expression signatures.

A subset of alpha cells in islets treated with artemether upregulate insulin and beta cell

markers

We next analyzed the effects of artemether on alpha cells based on the scRNA-seq data.

In DMSO-treated controls, 1–6% of mouse and human alpha cells express detectable

levels of insulin (4–6% Ins1, 0.7–3.3% Ins2, 1.3–4.3% INS). Following 10 μM artemether

treatment for 72 h, we observed a consistent increase in the population of insulin-

Fig. 3 Cell type assignment. a t-SNE plot of endocrine human cells. b Expression of marker genes on t-SNE
plot. c Cell type probability predicted for each cell not used in training in human samples. Cell type
reassignment based on predictions was only done for those cells not previously assignable, here
labeled “endocrine”
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expressing alpha cells by approximately 3-fold in human islets and 2-fold in mouse is-

lets (Fig. 5a, Additional file 1: Fig. S7a and Additional file 7: Table S6). This effect was

also observed in a third human human donor treated with artemether for 72 h, but not

for 36 h (Additional file 1: Fig. S8a). This increase was consistently detected in cells pre-

dicted to be alpha cells with > 50% probability for both human and mouse samples, en-

suring that these cells should be considered as alpha cells rather than any other

endocrine cell type (Additional file 1: Fig.S7b-c). This effect was observed independ-

ently of the insulin/glucagon ratio in islets from the different donors (Additional file 1:

Fig. S7d). Importantly, treatment with FoxOi failed to increase the fraction of alpha

cells that express insulin, suggesting an artemether-specific effect not linked to general

dedifferentiation (Fig. 5a and Additional file 1: Fig. S7A).

We further characterized insulin-positive alpha cells by comparing their transcrip-

tomes to all other alpha cells (Additional file 8: Table S7). In order to assess whether

the increase in insulin expression was a reflection of loss of alpha cell identity and a

possible induction of beta cell identity, we tested the correlation to gene signatures

Fig. 4 FoxOi induces dedifferentiation in alpha and beta cells of human and mouse islets. a Insulin
expression in beta cells from human (INS) and mouse (Ins1 and Ins2) islets treated with 1 μM FoxOi for 72 h
(*p < 10−10, **p < 10−45). b GSEA with the set of upregulated genes in triple Foxo knockout mice (FoxO1−/−,
FoxO3a−/−, and FoxO4−/−) [57] in beta cells from human and mouse islets treated with 1 μM FoxOi for 72 h.
c Gene expression changes in alpha (top) and beta (bottom) cells from human and mouse islets treated
with 1 μM FoxOi for 72 h compared to DMSO treatment. d Correlation of alpha and beta cell gene
expression from human and mouse islets treated with 1 μM FoxOi for 72 h to an alpha or beta cell gene
signature set

Marquina-Sanchez et al. Genome Biology          (2020) 21:106 Page 10 of 22



Fig. 5 (See legend on next page.)

Marquina-Sanchez et al. Genome Biology          (2020) 21:106 Page 11 of 22



specific to alpha cells or beta cells, excluding cell type defining hormones (as above).

Alpha cells that expressed insulin lost alpha cell identity and gained relevant aspects of

beta cell identity compared to insulin-negative alpha cells (Fig. 5b). In human, the beta

cell-specific genes IAPP, DLK1, ABCC8, PDX1, MAFA, NKX6-1, and NKX2-2 were in-

creased and the alpha cell-specific genes GCG, ARX, and TTR were decreased, in line

with a more general loss of alpha cell identity (Fig. 5c). The main upregulated pathways

were “insulin secretion” and “insulin signaling.” In mouse, the beta cell-specific genes

Ins1, Igf1r, Pdx1, Nkx6-1, Nkx2-2, Iapp, Foxo1, Abcc8, and Slc2a2 were all upregulated,

corresponding to an increase in “regulation of gene expression in beta cells” and “beta

cell development”-specific gene sets (Additional file 9: Table S8) [58, 59].

We also observed this induction of insulin/glucagon double positive cells likely arising

from alpha cells in artemether-treated islets from a fourth donor with Drop-seq as an al-

ternative technology to capture single-cell RNA expression (Additional file 1: Fig. S9) [60].

The effect of artemether on beta cells in pancreatic islets is species-specific

We next analyzed the effects of artemether on beta cells. In mouse beta cells, arte-

mether caused a strong decrease of insulin expression, in line with an earlier report that

suggested the drug induces beta cell dedifferentiation [8] (Fig. 5d).

To confirm that these changes reflect a true dedifferentiation event, we compared the

gene expression signatures of artemether-treated beta cells to the known transcrip-

tomes of dedifferentiated beta cells using GSEA (Additional file 1: Fig. S10a). In mouse

beta cells, artemether-induced gene expression changes correlated with those induced

by FoxOi (Additional file 1: Fig. S10b, R = 0.518). With both compounds, we observed

downregulation of genes in the insulin secretion, glucagon signaling, and FoxO signal-

ing pathways such as Ucn3, Nkx6-1 Pcsk2, and FoxO1 (Fig. 5e).

In contrast to our observations for the mouse samples, beta cells isolated from human

islets treated with artemether showed no reduction, and indeed a small increase, in insulin

expression compared to DMSO-treated controls (Fig. 5d). Insulin expression was also not

decreased in the third human donor at 36 nor 72 h (Additional file 1: Fig. S8b). This spe-

cies specificity was in contrast to the effect of FoxOi, which caused insulin downregulation

both in mouse and in human beta cells. In line with this difference between artemether

and FoxOi treatment, the overall correlation of gene expression changes in human beta

cells was found to be weaker between the two compounds (Additional file 1: Fig. S10b,

R = 0.263). While FoxOi downregulated key beta cell genes including NKX2-2, PDX1,

(See figure on previous page.)
Fig. 5 Artemether upregulates insulin in a subset of mouse and human alpha cells while effects in beta
cells are species dependent. a Inverse cumulative distribution of insulin expression in assigned alpha cells
from human (INS) and mouse (Ins1 and Ins2) islets treated with 1 μM FoxOi or 10 μM artemether or DMSO
for 72 h. Plotted is the fraction of alpha cells that express insulin to a higher level as indicated on the x-axis.
b Correlation of gene expression signatures in alpha cells without (Ins−) and with (Ins+) detectable insulin
expression alpha or beta cell gene signature sets. c Gene expression changes of Ins+ alpha cells relative to
Ins− alpha cells. d Inverse cumulative distribution of insulin expression in beta cells from human (INS) and
mouse (Ins1 and Ins2) islets treated with 1 μM FoxOi or 10 μM artemether or DMSO for 72 h. e Gene
expression changes in human and mouse beta cells treated with 10 μM artemether or 1 μM FoxOi
compared to DMSO
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FOXA2, MAFA, and INSR, expression of these genes was mostly unaltered in

artemether-treated human beta cells (Fig. 5e).

Finally, we compared drug effects across species by matching orthologous genes be-

tween mouse and human beta cells. We observed that the effects of the FoxOi were

weakly correlated between species (Additional file 1: Fig. S10c, R = 0.296) whereas no

correlation was observed for artemether effects in mouse and human beta cells (R =

0.129). While artemether downregulated key beta cell genes INS1/2,SLC2A2, ISL1,

GCGR, UCN3, and SCG5 in mouse beta cells, the expression of these genes remained

unchanged in human beta cells. In addition, many genes changed discordantly, for ex-

ample artemether downregulated SPP1 in mouse beta cells, whereas it upregulated its

expression in human beta cells, and vice versa for IGF1R. These data indicate that

FoxOi effects are conserved in mouse and human beta cells, whereas artemether causes

more species-dependent gene expression changes.

Correlating the transcription changes between individual samples further supports

the finding that these drugs exert different effects in mouse and human islet cells

(Fig. 6).

Discussion
We developed, validated, and applied a method to experimentally determine and com-

putationally remove contaminating transcripts in single-cell RNA-seq data. We demon-

strated that droplet-based single-cell transcriptomes can contain up to 20%

contaminating transcripts, likely derived from cell-free RNA of lysing cells. This effect

is most relevant for highly abundant transcripts, and it can result in incorrect

conclusions.

Housekeeping genes with similar levels of expression across cell types tend to be

among the most highly expressed genes, which is a likely reason why this type of con-

tamination has not constituted a major limitation for primarily qualitative studies of

cell type composition in primary tissues. In islet cells, however, the most highly

expressed genes and most abundant contaminating transcripts are the cell-type-specific

hormone genes, allowing us to more easily detect contamination and to develop a

method to computationally remove it. While the extent of contamination is dependent

on the tissue of origin and culture conditions, a baseline level of transcript redistribu-

tion is likely to occur in all droplet-based scRNA-seq samples. For this reason, we rec-

ommend including cross-species spike-in cells during the sample preparation workflow.

Given the high number of single-cell transcriptomics studies currently ongoing, future

standardization to a common extensively characterized set of spike-in cells to be used

across a broad range of studies would be highly desirable to maximize data quality, par-

ticularly for future reference data sets.

To understand drug effects on islet cells, we analyzed data of a total of 107,192 islet

single cells for cell-type-specific relative transcription changes caused by FoxOi, arte-

mether, and GABA compared to DMSO. Previous work has shown that genetic inhib-

ition of FOXO signaling in beta cells induces their dedifferentiation. Here we show that

the effect can be phenocopied by a pharmacological inhibitor and is conserved in both

mouse and human islets (Fig. 6b). We extend these findings to show that FoxOi also

causes dedifferentation of alpha cells. FoxOi effects are correlated between alpha and

beta cells, suggesting induction of a common signature possibly due to dedifferentiation
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(Fig. 6b). We did not observe strong effects of FoxOi on delta cells (Fig. S11), in line

with the original publication [36] that describes such effects to occur specifically only

after beta cell ablation. These data highlight the importance of intra-islet signaling for

cellular transdifferentiation and validate FoxOi-mediated beta cell dedifferentiation as a

model to identify inhibitors of the process.

In murine beta cells, transcription changes caused by GABA and artemether clus-

tered with FoxOi, suggesting that these drugs also cause dedifferentiation as previously

reported [8]. In human samples, however, these drugs formed a clearly separated clus-

ter and did not cause downregulation of insulin (Fig. 6b). These data suggest that drug

Fig. 6 Artemether effects on beta cells are species dependent. a Spearman correlations of log fold changes
of comparisons of 1 μM FoxOi, 10 μM artemether, or 100 μM GABA to DMSO for alpha and beta cells from
mouse and human islets. b FoxOi induces dedifferentiation of alpha and beta cells in mouse and human,
while artemether increases the fraction of INS+ alpha cells. In beta cells, artemether effects are species
dependent; in mouse, the drug induces beta cell dedifferentiation, while in human there are no
strong effects
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effects are species dependent; it will be important to understand what factors are re-

sponsible for the observed species differences.

Multiple in vivo data indicate that artemisinins are lowering blood glucose levels

[37–42, 61], rather than causing diabetes by induction of beta cell dedifferentiation. Ef-

fects of the drug on body weight and other tissues including adipocytes and immune

cells may contribute to altered glucose homeostasis, and it is currently unclear whether

these effects are islet-independent as impairing alpha cell function can cause similar

phenotypes [62, 63]. We originally observed impaired glucagon secretion and induction

of insulin expression in alpha cells treated with artemether [36]. Two subsequent stud-

ies using lineage tracing mouse models failed to observe increases of alpha cell-derived

beta cells following artemisinin treatment [8, 40]. Here we confirm direct effects of the

drug on islet cells and show in both human and mouse islets that artemether induces

expression of insulin and other beta cell-specific genes in a subpopulation of alpha

cells. The levels of induction we observe after 3 day in vitro treatment are drastically

lower than those present in beta cells, and different detection methods might contrib-

ute to the different conclusions of the studies. Overall, the gene expression changes

caused by artemether and GABA appear correlated. While we did not observe the

emergence of insulin-expressing alpha cells in samples from mouse islets treated with

GABA, one human sample showed an increase from approximately 4 to 14% insulin-

positive alpha cells.

Based on our and others’ studies, it is clear that artemisinin and GABA and FoxOi

impact gene expression and cell identity in isolated pancreatic islets from mouse and

human and that they alter glucose tolerance in mice in vivo. Our new spike-in-based

method to obtain clean single-cell transcriptomes will aid future studies to clarify

whether effects on islets cells are causative for the physiological effects on the whole or-

ganism level.

Methods
Donor information

Gender Age (years) BMI HbA1c (%) Provider Institution

Donor I Male 38 30.1 5.80 Tebu-bio Prodo Laboratories

Donor II Male 32 26.2 5.30 IIDP University of Wisconsin

Donor III Male 37 29.4 5.1 IIDP The Scharp-Lacy Research Institute

Donor IV Male 68 29.7 5.2 IIDP The Scharp-Lacy Research Institute

Mouse and human pancreatic islet sample preparation and single-cell RNA-seq

Human islets were obtained from the Integrated Islet Distribution Program (IIDP) and

Tebu-bio. The current study was approved by the Ethics Committee of the Medical

University of Vienna (EK-Nr. 1228/2015). Mouse islets were isolated in the Collombat

laboratory according to standard protocols.

Human and mouse islets were cultured with 1 or 10 μM artemether (Cayman,

Cat#11815) here referred as “Artemether” (stored at − 20 °C as 10 mM stock in

DMSO), 10 μM artemether (Sigma-Aldrich, Cat#A9361) (stored at − 20 °C as 10mM

stock in DMSO) here referred as “A-Sigma” 100 μM GABA (Sigma-Aldrich, A2129)
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(stored at − 20 °C as 100 mM stock in water), 1 μM FoxOi (Sigma-Aldrich,

Cat#AS1842856) (stored at − 20 °C as 1 mM stock in DMSO), and control DMSO

(Sigma-Aldrich, Cat#41640) for 36 or 72 h in CMRL (Thermo-Fisher, Cat#11530037)

medium supplemented with 10% fetal bovine serum (Thermo-Fisher, Cat#10500064),

5% penicillin/streptomycin (Thermo-Fisher, Cat#15140122), and 1 X Glutamax

(Thermo-Fisher, Cat#35050038). Islets were maintained in culture at 37 °C in a 5% CO2

humidified atmosphere. After that period, islets were dissociated as follows: Islets were

collected, centrifuged (1100 rpm, 3 min), and washed once with 10 ml of PBS. Islets

were resuspended in 2 ml of Accutase (Sigma-Aldrich, Cat#A6964) and incubated at

room temperature for 20 min with gentle intermittent mixing by pipetting. CMRL

media with 10% FBS was used to stop the dissociation process. The dissociated islets

were filtered through a 40-μm filter to obtain a single-cell suspension. A total of 20,000

cells were resuspended in 33 μl of PBS + 0.04% BSA. After the addition of 1 μl spike-in

cells (equaling a total of 300–500 cells), the sample was run in the Chromium Single

Cell Controller (10x Genomics) using version 2 chemistry for 3′ RNA sequencing as

detailed in the manufacturer’s instructions. Individual libraries were diluted and pooled

equimolarly, followed by sequencing on Illumina HiSeq 3000/4000 machines using the

75-bp paired-end setup.

Preparation of spike-in cells

Human Jurkat cells and mouse 32D cells were cultured over 10 days and grown to a

density of 106 cells/ml. Cells were mixed in equal amounts and a total of 106 mixed

cells was pooled and centrifuged at 500g for 5 min at room temperature. The cells were

washed once in PBS. After the last wash, the supernatant was reduced to 200 μl and the

pellet was resuspended. A total of 800 μl of ice-cold pure methanol was added drop by

drop to the cells along with constant mixing of the cell suspension. The cell-methanol

mix was incorporated on ice for at least 15 min and transferred to − 80 °C for long-

term storage. In preparation of each single-cell RNA-seq run, 100 μl of the methanol-

fixed cells was supplemented with 900 μl ice-cold PBS slowly administered and the fully

resuspended cells were centrifuged for 5 min at 4 °C at 3000g. The resulting pellet was

resuspended in 100 μl of ice-cold PBS, and the cells were counted on a CASY cell

counting system.

Computational methods

Single-cell RNA-seq data preprocessing

Illumina BAM files were demultiplexed using cellranger mkfastq (version 2.1.0).

Human samples were aligned to human and mouse to mouse reference genomes using

cellranger count. Reference spike-in samples were aligned to both the mouse and hu-

man reference genomes. All samples were further aligned to the combined human/

mouse reference genome (version 1.2.0). Samples were combined using cellranger aggr

without down-sampling. Further data processing was carried out in R (3.4.0). Data were

imported using the function Read10X from the Seurat package (version 2.0.1). Reads

were transformed to transcripts per million (TPM) and log transformed (natural loga-

rithm of TPM + 1) as done by Seurat. Barcodes with more than 500 UMIs and more

than 200 genes were labeled as cells. In total, we obtained 35,333 (including 1420
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spike-ins) mouse and 128,810 human (including 1778 spike-ins) single-cell

transcriptomes.

Contamination factor and signature estimation from cross-species spike-ins

Cross-species spike-ins for each sample were identified by the ratio of reads aligned to

human and mouse reference genomes, with cells with a log2 cutoff of 2 and − 2 used to

label human and mouse cells, respectively. Ambiguous cells, which had reads from both

human and mouse cells, were removed from the analysis. The contamination factor (fc)

in cross-species spike-ins was estimated as the fraction of reads aligned to the sample

genome divided by all aligned reads in the human/mouse combined alignment. Con-

tamination signatures of each sample were obtained by dividing gene expression (TPM

values) of cross-species spike-ins by (1 − fc) and subtracting the reference signature for

each cell. These contamination values were normalized by setting negative values to

zero, scaled up to reflect TPMs, and then averaged across cells for each sample, thus

producing sample-level contamination signature estimates.

Contamination factor prediction and correction of expression values

To obtain contamination factors in cells where no experimental gold standard is

available, we fitted models that predict contamination factor from individual islet

marker gene expression (TPM values) in cross-species spike-ins using linear models

without bias terms. Linear models were fitted using the lm function in R. The intersect

of predefined islet marker genes with the top 100 contaminating genes was selected,

which resulted in seven genes: INS, GCG, TTR, SST, PPY, IAPP, and REG1A for hu-

man and Ins1, Ins2, Gcg, Ttr, Iapp, Ppy, and Sst for mouse. Medians of predictions

across genes were used as the final prediction. Predictions were capped at 0.2 in mouse

and 0.1 in human. In addition, three-fold cross-validated estimates were used to evalu-

ate generalizability of the predictions.

To correct expression values, contamination signatures were multiplied by fc and

subtracted from each cell’s expression values (TPM). Negative values were set to zero,

and values were scaled up to reflect TPM.

The spike-in decontamination method was applied to all human and mouse samples

in the dataset. After decontamination, we noticed that one human sample (GABA in

donor II) captured a large portion of total cells (21,978 of 164,143 human cells) but

had very low quality (Fig. S4F) and higher contamination after correction (Fig. 2c).

Since we only expect roughly 10,000 cells from each sample, this case was deemed an

outlier and excluded from further analysis, reducing the number of human cells to 106,

832 (including 3529 spike-ins), which together with the 35,333 mouse cells (including

1420 spike-ins) resulted in a total number of 142,165 cells.

Cell type assignment

Clusters of cells were identified through principal component analysis, t-distributed

stochastic neighborhood embedding (t-SNE), and clustering of the corrected data by

the Seurat package (version 2.0.1). “Resolution” parameter of 0.5 was used in the cluster

assignment. Same-species spike-ins were identified by correlating all cells to reference

spike-ins, selecting cells with Pearson correlation greater than 0.9, and then assigning
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the cluster enriched for these cells as same-species spike-ins. Non-endocrine cells clus-

tered individually and were assigned according to cluster marker genes.

Endocrine cells were not separated in the initial clustering. Clustering and t-SNE

analysis was therefore repeated on endocrine cells separately for visualization. Clear

representatives of alpha, beta, gamma, and delta cells were assigned using a

log(TPM) threshold of 7.5 for insulin, glucagon, somatostatin, and pancreatic poly-

peptide. In addition, a cluster expressing high levels of REG1A was assigned as

“Acinar like” in human samples. Then, a machine learning-based approach was

used to assign cells to cell types: A elastic net regularized logistic regression classi-

fier was trained to predict cell type. The cv.glmnet function of the glmnet package

in R was used with “alpha” parameter set to 1, “family” set to “multinomial,” and

“nfolds” set to 5. This model was trained to predict cell type for all cell types with

greater than 50 representatives in DMSO samples in each organism. The four hor-

mones used to assign cells in this procedure were removed. To reduce class imbal-

ance, training data was subsampled to maximally 100 cells per cell type and

sample. Cell type was then computationally predicted for all previously unassigned

cells using the predict function. Clusters of non-endocrine cells, where there was

no expression of marker genes or clear profile corresponding to a specific cell type,

were labeled with numbers.

Finally, we used cell type predictions to also remove potential doublets. We

based this filter on the rationale that singlets should have a high class probability

for only one class whereas doublets have high class probability for more than one

class [64, 65]. We thus calculated the ratio between the highest and second highest

class probability for each cell, and removed all cells with lower than 3-fold differ-

ence as doublets. In addition, we implemented a second filter for doublets cells

based on the number of genes per cell (Ngenes). For each cell type and sample, we

identified the expected Ngenes as the value of Ngenes with the maximal density.

Next, we removed all cells with Ngenes greater than twice the expected Ngenes of

the respective cell type and sample.

Differential expression analysis

Differentially expressed genes were identified using the FindMarkers function of the

Seurat package with parameters “negbinom” for “test.use”, 0.1 for “thresh.use.” Analysis

was run twice: First for islet hormones INS, GCG, SST, and PPY individually. In order

to control for potential biases of high expression of these hormones in cells, differential

expression analysis for all other genes was done after removing these hormones and re-

normalizing the data. p values were adjusted for multiple testing using p.adjust in R

with method “BH.” Genes with ≥ ± 1.25-fold gene expression changes and adjusted p

value smaller than 0.05 were kept as significant.

To compare log fold changes between conditions and between species, gene names

were mapped using the HomoloGene database (build 68), where only one-to-one map-

pings of gene names between human and mouse were used (genes with one-to-many

mappings were excluded). Genes with significant differential expression in any condi-

tion were used, and Spearman correlation was calculated to assess similarity of

changes.
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Correlation to beta and alpha cell signatures

Marker genes of alpha and beta cells were obtained by comparing the cell belonging to

either type to all other cells using the FindMarkers function of the Seurat package with

parameters “roc” for “test.use”, 0.7 for “thresh.use.” Genes with receiver operating

characteristic (ROC) greater than 0.75 were used as marker genes. Average alpha cell

and beta cell expression profiles were generated by taking the mean log(TPM) values of

each gene across all cells of each type from DMSO-treated controls. Individual cells

were then correlated to average profiles using the Spearman correlation, across all

genes identified as marker genes of either alpha or beta cells.

Availability of data and materials

10 X next-generation sequencing data are available in the NCBI GEO, under accession

number GSE147203 [66]. Drop-seq next-generation sequencing data are available in

the NCBI GEO, under accession number GSE147202 [67]. The authors declare that all

other data supporting the findings of this study are within the manuscript and its sup-

plementary files.

The computational pipeline to analyze this dataset is open source and publicly

available at https://github.com/epigen/Artemether_scRNA [68].
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