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Leveraging biological and statistical
covariates improves the detection power in
epigenome-wide association testing
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Abstract

Background: Epigenome-wide association studies (EWAS), which seek the association between epigenetic marks
and an outcome or exposure, involve multiple hypothesis testing. False discovery rate (FDR) control has been
widely used for multiple testing correction. However, traditional FDR control methods do not use auxiliary
covariates, and they could be less powerful if the covariates could inform the likelihood of the null hypothesis.
Recently, many covariate-adaptive FDR control methods have been developed, but application of these methods to
EWAS data has not yet been explored. It is not clear whether these methods can significantly improve detection
power, and if so, which covariates are more relevant for EWWAS data.

Results: In this study, we evaluate the performance of five covariate-adaptive FDR control methods with EWAS-
related covariates using simulated as well as real EWAS datasets. We develop an omnibus test to assess the
informativeness of the covariates. We find that statistical covariates are generally more informative than biological
covariates, and the covariates of methylation mean and variance are almost universally informative. In contrast, the
informativeness of biological covariates depends on specific datasets. We show that the independent hypothesis
weighting (IHW) and covariate adaptive multiple testing (CAMT) method are overall more powerful, especially for
sparse signals, and could improve the detection power by a median of 25% and 68% on real datasets, compared to
the ST procedure. We further validate the findings in various biological contexts.

Conclusions: Covariate-adaptive FDR control methods with informative covariates can significantly increase the
detection power for EWAS. For sparse signals, IHW and CAMT are recommended.
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Background

DNA methylation, as a major form of epigenetic modifica-
tions, plays a vital role in various biological processes includ-
ing cell differentiation [1-3], genomic imprinting [4], gene
transcription, and X-chromosome inactivation [5]. The land-
scape of DNA methylation is not only associated with nor-
mal physiological phenomena such as aging [6-8], but also
with many human diseases including cancers [8—10], athero-
sclerosis [11], and Alzheimer’s disease [12, 13]. While the
DNA sequences are relatively constant throughout life, DNA
methylation is dynamic and modifiable, providing promising
therapeutic targets for disease treatment [14—16].

With the advance of high-throughput genomic tech-
nologies, DNA methylation can now be interrogated at
the genome scale. Although the gold standard for DNA
methylation measurement remains bisulfite sequencing
[17], DNA methylation arrays, due to its low cost, high
reproducibility, and good genome coverage, have been
widely used in genome-wide methylation analyses. Illu-
mina’s Infinium Human Methylation 450K BeadChip
and EPIC BeadChip, which cover more than 450,000
and 850,000 CpG methylation sites respectively, are two
predominant products in the market. The availability of
these high-density methylation arrays has fueled
epigenome-wide association studies (EWAS), which seek
to identify methylation variants associated with an out-
come or exposure of interest [18—23]. Analysis of EWAS
data typically involves testing all the CpG sites simultan-
eously, leading to a massive multiple testing problem.
Two statistical approaches have been developed to ad-
dress multiple testing: family-wise error rate (FWER)
and false discovery rate (FDR) control. The FWER ap-
proach controls the probability of making one or more
false discoveries, while the FDR approach controls the
expected proportion of false discoveries. Therefore, the
FWER approach, such as Bonferroni correction [24], of-
fers a more stringent type I error control but is substan-
tially less powerful than the FDR approach. For EWAS
data, the sample size and the expected effect size are
usually moderate, making the FDR approach particularly
appealing [25-27]. Among existing FDR control proce-
dures, the original Benjamini-Hochberg step-up proced-
ure (BH) [28] and Storey’s g value procedure (ST) [29]
are the two most popular methods for genome-wide
multiple testing. Compared to the BH procedure, the ST
procedure considers the proportion of null hypotheses
and is more powerful when the signal is dense.

Both BH and ST procedures do not differentiate hy-
potheses, that is, they assume that each hypothesis is
equally likely to be true or false, and their rejection rule
is based solely on the p values. Therefore, BH and ST
procedures may not be optimal when we have additional
information about the hypotheses in terms of their null
probability (the probability for the null hypothesis to be
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true) or statistical power. For EWAS data, besides the as-
sociation p values, we have plenty of auxiliary covariates,
which could be informative of the null probability or statis-
tical power of the CpG-specific hypotheses. For example, dif-
ferentially methylated CpG positions (DMPs) have been
found to be enriched in specific genomic regions, such as
promoters [30, 31], CpG islands [20], shores [32], a specific
chromosome [33], and DNase I hypersensitive sites [32, 34].
In addition, some studies found that DMPs tend to change
in the same direction, especially in cancer, where genome-
wide hypomethylation or hypermethylation has been fre-
quently observed [10]. Other studies found a large portion of
the CpGs are subject to large measurement errors, hence
low statistical power [35, 36]. Therefore, incorporating such
biological or statistical covariates in FDR control could po-
tentially improve the power to detect DMPs.

Recently, there has been a surge in the development of
statistical methodologies for FDR control procedures ac-
commodating covariates with the aim to improve the detec-
tion power while still maintaining the target FDR level.
Such covariate-adaptive FDR control methods include
weighted FDR [37], the conditional local FDR (LFDR) [38],
EDR regression (FDRreg) [39], independent hypothesis
weighting (IHW) [40], adaptive shrinkage (ASH) [41], Boca
and Leek’s FDR regression (BL) [42], adaptive p value
thresholding (AdaPT) [43], and covariate adaptive multiple
testing (CAMT) [44]. Although these methods differ in
their respective model and input, they share the same idea:
by relaxing the rejection criterion for more promising hy-
potheses based on the covariate information and tightening
the criterion for others, substantial power improvement
can be achieved without affecting the target FDR level
These covariate-adaptive methods have been demonstrated
to be superior to traditional BH/ST procedures by case
studies on ChIP-seq, genotype, microbiome, RNA-seq, and
scRNA-seq data [45], but application to EWAS data has
not yet been attempted. Since these methods rely on the as-
sumption that the hypotheses are independent or weakly
dependent, it is not clear whether they are robust to the
typical correlation structure observed in EWAS data. More-
over, it is unknown what CpG-related covariates are rele-
vant. Therefore, a rigorous and comprehensive evaluation
of the covariate-adaptive FDR methods for EWAS data is
critical before recommending them to the field.

In this study, we compared five covariate-adaptive
FDR control methods using real data-based simulations
and investigated the performance of 14 CpG-related co-
variates on 61 EWAS datasets. The contribution of the
paper is thus threefold: (1) we developed a powerful stat-
istical test for detecting and selecting informative covari-
ates, (2) we identified the most robust and powerful
covariate-adaptive FDR control methods for EWAS data,
and (3) we recognized the most relevant covariates for
EWAS data.
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Results

Overview of the EWAS datasets and covariates selected
for evaluation

In this study, 61 EWAS datasets were collected based on 58
Gene Expression Omnibus (GEO) methylation datasets
whose platforms were Infinium Human Methylation 450K
BeadChip. The sample size of EWAS datasets ranged from
100 to 689, with an average of 211. Details about the data
source and analyzed phenotypes can be found in the add-
itional file (Additional file 1: Table S1). The methylation
datasets came from diverse tissue sources, including blood,
brain, lung, breast, colorectal, liver, esophagus, and others
(Additional file 6: Figure S1). Around half of the datasets
were from the blood (30/61). After quality control, we per-
formed surrogate variable analysis (SmartSVA) [46] to cap-
ture significant sources of methylation variability, such as
cellular heterogeneity [47] and batch effects [48]. The con-
structed surrogate variables were included as covariates in
the regression model to account for potential confounding
effects. After adjusting for surrogate variables, we observed a
significant reduction of the genomic inflation [46] of the as-
sociation p values (Additional file 6: Figure S2). The adjusted
p values were then to be corrected for multiple testing by
various FDR control procedures.

Covariate-adaptive FDR control methods require selec-
tion of appropriate covariate(s) for the method to work. To
be statistically valid, the covariate should be independent of
the p values under the null. Meanwhile, in order to increase
the detection power, the covariate should be informative of

Table 1 Description of the covariates evaluated
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the prior null probability or statistical power of the under-
lying hypotheses. For EWAS data, we investigated 14 po-
tential covariates, which were assumed to possess the
aforementioned properties. These covariates can be classi-
fied as statistical covariates (internal) and biological/tech-
nical covariates (external). Statistical covariates are related
to the statistical properties of the methylation data. We in-
vestigated mean of the Beta-value (“mean”), standard devi-
ation of the Beta-value (“sd.b”) or M-value (“sd.m”), median
absolute deviation of the Beta-value (“mad”, a robust meas-
ure of variance), measure of unimodality of the Beta-value
(“dip”), inverse precision parameter of the Beta-value (“pre-
cision”) [49], sign of the regression coefficients (“direction”)
for binary/continuous phenotype, and intraclass correlation
coefficient (ICC) using the Beta-value (“icc.b”), or M-value
(“iccm”) when replicates were available. Biological/tech-
nical covariates describe the biological/technical properties
of the CpGs and are based on the annotation of the CpG
probes. We considered the location in the gene region
(“refgene.pos”), relation to the CpG island (“cpg.loc”),
chromosome number (“chr”), DNase I hypersensitive site
(“dhs”), and Infinium probe type (“probe.type”). Details of
the covariates are listed in Table 1.

An omnibus test to assess the informativeness of the
covariate for multiple testing adjustment

For a covariate that could be leveraged to increase the
power for epigenome-wide multiple testing, it has to be
informative of the null probability or the statistical

Covariate Definition Type

mean Mean Beta-values (R base:mean) Statistical, continuous
sd.b/sd.m*! Standard deviation of Beta-value or M-value (R stats::sd) Statistical, continuous
mad Median absolute deviation (R stats:mad) Statistical, continuous
dip Measure of unimodality using dip statistic (R diptest:dip) Statistical, continuous
precision Inverse precision parameter, (1/(meanx(1 — mean)/sd2 -1)) Statistical, continuous
direction? Sign of regression coefficients Statistical, categorical

{positive, negative}

iccb/iccm® Intraclass correlation coefficient (R CpGFilter:CpGFilterlCC) Statistical, continuous

refgene.pos Position in the gene region

cpg.loc Relation to CpG island

chr Chromosome number
dhs DNase | hypersensitive site
probe.type Infinium probe type

Biological, categorical
{5'UTR, TSS1500, TSS200, 1stExon, Body, 3-UTR, Non_gene™*}

Biological, categorical
{OpenSea, N_Shelf, N_Shore, Island, S_Shore, S_Shelf}

Biological, categorical
{chrl, chr2, ..., chr22}

Biological, categorical
{yes, no}

Technical, categorical
{type |, type II}

#1. The suffix .b and .m stand for Beta-value and M-value, respectively. If not noted, the calculation is based on Beta-value

#2. Used when the phenotype is binary or continuous
#3. Used when there are technical replicates in data

#4. When multiple gene regions are annotated for the CpG, the first one is used. If no annotation is available, we labeled it “Non_gene”
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power, either of which will lead to the dependency be-
tween the p value and the covariate. Such dependency is
usually explored by various diagnostic plots such as scatter
plot and stratified p value histogram  [40]
(Additional file 6: Figure S3 & 4). Although these diagnos-
tic plots can detect a strong dependency efficiently, they
may have limited ability to reveal a more subtle and com-
plex relationship, especially when the signal is sparse. We
thus develop a formal statistical test to rigorously assess
the dependency between p value and the covariate
(“Methods”). Basically, the test exploits the assumptions
that the signal is usually sparse, and the dependency may be
highly nonlinear. This is achieved by testing the association
between two categorical variables after dichotomizing the p
values at the lower end and splitting the covariate into dis-
joint sets if it is continuous. An omnibus-type test is de-
signed to combine evidence through various categorizations,
and permutation is used to assess the statistical significance.
We first performed simulations to assess the type I error
and power of the proposed omnibus test and bench-
marked it against the naive tests—Spearman’s rank test
and Kruskal-Wallis test for continuous and categorical co-
variates, respectively. We generated data with both con-
tinuous and categorical covariates and varied the degree
of p value-covariate dependency and signal density
(“Methods”). For a continuous covariate, we investigated
both monotonic and non-monotonic dependency. The re-
sults are summarized in Fig. la. When there was no
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dependency (the covariate was not informative), both the
omnibus and naive tests controlled the type I error at the
nominal level under all settings. When the signal was
sparse, the omnibus test was significantly more powerful
than the naive tests. As the signal became denser, the
power difference decreased for categorical covariates and
continuous covariates under a monotonic relationship.
However, when the relationship was non-monotonic, the
naive tests were powerless under all settings. Therefore,
the proposed omnibus test was particularly suited for the
sparse signal and complex dependency setting, which were
expected in many EWAS datasets.

Evaluation of the informativeness of EWAS-relevant
covariates

We next applied the omnibus test to the aforementioned
14 covariates based on the CpG association p values
from the 61 EWAS datasets. To satisfy the exchangeabil-
ity assumption of the permutation-based omnibus test,
we subsampled the p values so that the auto-correlation
coefficient was close to 0 between adjacent CpGs. We
plotted the distribution of the omnibus test p values (log
scale) for these 14 covariates to assess their informative-
ness (Fig. 1b, Additional file 2: Table S2). One clear
pattern is that the statistical covariates dominate the bio-
logical/technical covariates with overall smaller omnibus
p values. Interestingly, among the statistical covariates,
the mean methylation level (“mean”) was the most
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Fig. 1 Informativeness assessment by the proposed omnibus test. a Performance evaluation of the omnibus test compared with naive tests.
Simulated datasets are used to assess type | error ("No dependence” between the p value and the covariate, first column) and power (“Weak
dependence” and “Moderate dependence”, second and third column). Varying signal intensities (“Sparse signal,” “Medium signal,” and “Dense signal”,
first to third row) as well as different data generation models are studied. “Cont.(Mon.),” “Cont.(Non-Mon)," and “Cat." represent continuous covariates
with a monotonic dependence, continuous covariates with a non-monotonic dependence, and categorical covariates, respectively. Naive tests refer to
Spearman’s rank correlation test and Kruskal-Wallis test for continuous and categorical covariates, respectively. The nominal level for type | error is 0.05
(dashed line). b Informativeness of EWAS-relevant covariates as assessed by the omnibus test. Boxplot depicts the distribution of the omnibus test p
values across datasets. The x-axis is on a log scale, and the boxplots are ordered by the median values. The dashed line indicates p value 0.05
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informative, followed by the covariates measuring the
methylation variance (“sd.b,” “mad,” “precision”). For
these covariates, the majority of datasets achieved signifi-
cant omnibus test p values (p <0.05). Additional file 6:
Figure S3A&B shows two examples where the small as-
sociation p values were enriched in small and medium
Beta-values, respectively. Variance on the methylation
Beta-value (“sd.b”) was more informative than that on
the M-value (“sd.m”). The direction of the effect (“direc-
tion”) had mixed results, with 46.3% (25/54) of the data-
sets being significant. The DIP statistic (“dip”), on the
other hand, was the least informative; only 12 out of 61
datasets had significant p values. For the three datasets
with replicates, where we could calculate ICC values, we
also evaluated the informativeness of the ICC measure
(“icc.b” and “icc.m”). One dataset achieved a very low
omnibus test p value (p <0.001) while the other two
were not significant, possibly due to few replicates avail-
able and an extremely sparse signal. In contrast, the bio-
logical/technical covariates were less “universal”: they
were informative only on specific datasets. Overall, the
relation to the CpG island (“cpg.loc”) was the most in-
formative, followed by the position in the reference gene
(“refgene.pos”) and probe type (“probe.type”). For
chromosome location (“chr”) and DNase I hypersensitive
site (“dhs”), they were only significant in 4 and 10 data-
sets, respectively.

A statistically valid covariate needs to be independent
of the p values under the null [40]. We verified this con-
dition using stratified histograms as suggested by [40]:
the distribution of larger p values had an approximate
uniform distribution across the strata of the covariate.
Additional file 6: Figure S3 & S4 gave representative ex-
amples for each type of covariate.

Evaluation of the performance of covariate-adaptive FDR
control methods on simulated EWAS datasets

Most of the existing covariate-adaptive FDR methods
rely on the independence assumption, i.e., the hypoth-
eses are not correlated. However, for EWAS data, the
methylation levels of neighboring CpGs are usually
correlated, violating the independence assumption. It
is not clear whether these methods can still control
FDR at the target level while retaining the high statis-
tical power for EWAS data. We thus use simulation,
where we know the ground truth, to study the per-
formance of the methods. To mimic the correlation
structure of EWAS data, we used a real EWAS data-
set [50] as a template. We drew random samples
from the control group to create two groups of equal
sample size and added random or correlated differen-
tial signals of wvarying strength and density
(“Methods”). We simulated covariates with varying
degrees of informativeness and compared the
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performance of AdaPT, BL, CAMT, FDRreg, IHW,
and the traditional BH and ST procedure (Table 2).

We first studied the performance under random signal
setting, where the DMPs were randomly distributed. We
observed that all the methods controlled the false dis-
covery proportion close to or under the target level (5%)
across settings (Fig. 2a). As expected, BH procedure was
more conservative than ST procedure when the signal
was dense. IHW was generally the most conservative, es-
pecially in the dense signal setting. AdaPT was severely
conservative in the sparse signal and less informative co-
variate setting. CAMT was also conservative in that set-
ting, but to a lesser degree. In terms of statistical power,
all the covariate-adaptive methods performed better than
or similar to the BH/ST procedure when the covariate
was informative, indicating their ability to exploit the co-
variate information (Fig. 2b). CAMT and AdaPT were
more powerful than other methods when the signal was
dense, or the covariate was highly informative.

However, when the signal was sparse and the covariate
was less informative, AdaPT was significantly less
powerful than other methods. In contrast, FDRreg and
BL performed slightly better than or similar to ST across
settings while the performance of IHW varied according
to the underlying signal density. IHW was less powerful
than FDRreg and BL when the signal was dense, and
even slightly less powerful than ST when the covariate
was not very informative. As the signal became sparser,
IHW was more powerful than FDRreg and BL. We also
simulated correlated signals, where the DMPs tended to
cluster together. Nevertheless, the pattern remained
similar, indicating the robustness of these methods to
correlated EWAS signals (Additional file 6: Figure S5).
Taken together, all these covariate methods could con-
trol the FDR for EWAS data, and their optimal power
depended on the specific signal structure as well as the
informativeness of the covariate. The favorable perform-
ance under the sparse signal makes CAMT and IHW
promising candidates for EWAS data since the sparse
signal scenarios are statistically more challenging.

Improved detection power of covariate-adaptive FDR
control methods on real EWAS datasets

We next applied IHW, CAMT, AdaPT, FDRreg, and BL
to the 61 real EWAS datasets with the 14 aforemen-
tioned covariates in addition to the BH and ST proced-
ure. We first compared the run time of these covariate-
adaptive methods with different covariates. IHW was al-
most an order of magnitude faster than the next fastest
method (BL) while FDRreg and AdaPT were computa-
tionally the most intensive (Additional file 6: Figure S6).
The run time of CAMT and AdaPT was sensitive to the
number of categories for categorical covariates (e.g.,
“dhs” and “chr”) while other methods were less so. In
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Table 2 Description of the methods evaluated
Method description R package Ref

BH The classic procedure. p values for m hypotheses are ordered from the smallest to the largest. Given a stats (p.adjust) [28]
target FDR level g, the ith hypothesis is rejected if the p value is less than the threshold a .

ST The global proportion of null hypotheses is estimated and used to adjust the threshold in the BH qvalue [29]
procedure. Less conservative than BH when the signal is not sparse. (qvalue)

FDRreg Covariates are allowed to influence the prior probability of null. The rejection rule is based on local FDRreg [39]
false discovery rate (IFDR) under the two-component mixture model. (FDRreg)

HW Tests are divided into groups based on the covariate. Each group is associated with a weight, and the ihw [40]
weight is used to adjust the threshold in the BH procedure. Only one covariate is allowed. (ihw)

BL A regression framework is used to estimate the proportion of null hypotheses conditional on observed swfdr [42]
covariates. The estimates are used to adjust the threshold in the BH procedure. (Im_pi0)

AdaPT Covariates are allowed to influence both the null probability and the p value distribution under the adaptMT [43]
alternative. The rejection rule is based on IFDR and an adaptive approach is implemented to control (adapt_glm)
FDR in finite sample.

CAMT Covariates are allowed to influence both the null probability and the p value distribution under the CAMT [51]
alternative. A new rejection rule is designed to be robust to model mis-specification. (camt.fdr)

terms of detection power, the ST procedure dominated
the BH procedure and never detected less DMPs (Add-
itional file 6: Figure S7). We thus used the ST procedure
as the baseline and computed the log fold change in the
number of detected DMPs between a method-covariate
combination and ST. Figure 3 gave an overview of the
detection power for all method-covariate combinations
across all datasets, ordered by the estimated signal dens-
ity. Clearly, none of the methods dominated ST and
power loss could occur for all methods when the covari-
ate was uninformative, or the signal density was very
low. When the signal density was high (Fig. 3, top),
AdaPT and CAMT could significantly improve the de-
tection power with informative covariates and lost little
power for less informative ones. BL was slightly more
powerful than ST, while FDRreg was in the opposite dir-
ection. IHW, on the other hand, was significantly less
powerful than ST for most covariates. However, when
the signal became less dense (Fig. 3, bottom), CAMT
and THW were overall more powerful than other
methods when appropriate covariates were used. In con-
trast, AdaPT suffered a significant power loss on a num-
ber of datasets, regardless of the covariates used. Power
loss was also observed for FDRreg; however, to a lesser
degree than AdaPT. Interestingly, BL was relatively ro-
bust and did not lose power in these situations, but the
power improvement was also not extensive (Add-
itional file 6: Figure S8A). Overall, the results on the real
data agreed well with those from simulations.

We next ranked the detection power of the covariates
on each dataset for each method separately (1—the
worst, 12—the best). Among statistical covariates,
“mean,” “sd.b,” “mad,” and “precision” outperformed
others (Fig. 3, top panel), consistent with the omnibus
test results (Fig. 1b). The covariate “mean” was the most
informative and ranked top for all methods. Even in

datasets such as EWAS33, where there was no obvious
correlation between the p value and covariates measur-
ing the variance (“sd.m”, “sd.b”, “mad”), a stronger cor-
relation was observed for the covariate “mean”
(Additional file 6: Figure S9). Although biological/tech-
nical covariates’ performance was not as universal, they
could improve detection power for specific datasets. For
example, “cpgloc” was highly informative for EWAS19
and could improve the detection power for all methods.
Therefore, selecting the most relevant covariate(s) is im-
portant to achieve optimal performance.

In terms of the detection power with the best covari-
ate, CAMT, followed by IHW, had apparent advantages
over other methods (Additional file 6: Figure S8B, S10)
with little power loss, indicating its potential to improve
the detection power for underpowered studies. Interest-
ingly, the omnibus test p values of the covariates (Fig. 1b)
coincided well with the improvement in detection power
across methods (Additional file 6: Figure S11), suggest-
ing that the omnibus test could be potentially used to
select the most informative covariate before applying
those covariate-adaptive methods. Additional file 6: Fig-
ure S10 presented the heat map based on the most sig-
nificant covariate. Besides using the most informative
covariate, combining all informative covariates is also
possible for methods that accommodate multiple covari-
ates such as CAMT. We tried both strategies using
CAMT. We could see that both approaches achieved
quite robust results (Additional file 6: Figure S12), the
power improvement (top panel) was similar to or slightly
better than the best covariate “mean”.

Further validation of the detected DMPs by covariate-
adaptive FDR methods

The covariate-adaptive FDR methods improved the de-
tection power over traditional methods using
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combinations of different level of covariate informativeness ("“Non-informative,” “Moderately informative,” and “Strongly informative,” columns),
signal density (“Sparse signal,” “Medium signal,” and “Dense signal” rows), and signal strength ("“Weak,” “Medium,” “Strong"). Error bar indicates the
standard error across 100 repetitions, and the dashed line denotes the target FDR level (0.05)
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Fig. 3 Performance comparison of covariate-adaptive FDR control methods on real EWAS data. Comparison of the detection power across
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informative covariates, and their results covered the ma-
jority of the BH detected DMPs (Additional file 3: Table
S3). In this section, we further demonstrated the cred-
ibility of the improved detection power from different
perspectives using several example datasets. We will
focus on CAMT and IHW since they have the overall
best performance in the simulation studies.

Down-sampling analysis

The objective of the down-sampling analysis is to see
whether the covariate-adaptive methods have improved
power to detect the DMPs based on the full dataset

(denoted as “fDMPs”) at a smaller sample size. To
achieve this end, we down-sampled a large dataset
EWAS51 (n =216, human fetal alcohol spectrum dis-
order) [52] and performed CAMT with different covari-
ates on the down-sampled datasets. We first defined a
list of “gold standard” fDMPs by applying Bonferroni
correction (a = 0.05) to the association p values based on
the full dataset. We then compared the percentage of
these fDMPs detected by CAMT with different covari-
ates to BH/ST at different sample sizes (Fig. 4). None of
the procedures could detect any fDMPs when the sam-
ple size was too small (< 30). Significant differences in
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detection power were observed starting from »n =40, and
peaked at n=70. As the sample size increased continu-
ously, the power differences became smaller and reached
almost 100% for all methods at #=100. Therefore,
covariate-adaptive FDR methods could be particularly
helpful for a moderately powered study (i.e., power neither
too low nor sufficiently high). Notably, covariates “mean,”
“mad,” and “sd.b” outperformed other covariates for this
dataset. Similar results can be found for IHW, where we
observed a similar trend (Additional file 6: Figure S13).

Detection of age-associated DMPs

To see whether the covariate-adaptive FDR methods
have a better power to detect age-associated DMPs (de-
noted as “aDMPs”), we defined a list of “gold standard”
aDMPs (n =583) derived from two independent studies
based on purified blood cell types as described in [46].
We then performed a detailed analysis based on
EWAS45, an age EWAS using the peripheral whole
blood [25]. For this dataset, all the methods detected
more DMPs than ST using informative covariates (Fig. 5).
FDR adjustment by the covariate “mean” led to the high-
est detection power followed by these ICC and variance-
based covariates. CAMT, AdaPT, and IHW were overall
more powerful than FDRreg and BL with the same in-
formative covariate. We next focused on the list of gold

standard aDMPs and compared the distribution of their
significance rank among all probes for different method-
covariate combinations. We would expect a much lower
rank if a procedure was efficient in detecting aDMPs. Based
on THW, a much lower rank for aDMPs was observed using
covariates “mean,” “sd.b,” and “mad,” which are the covari-
ates that also yielded high detection power (Fig. 5a, b). A
similar pattern was observed for other methods
(Additional file 6: Figure S14). Notably, the covariate
“mean” achieved the best rank for all the methods. We thus
further compared the rank distribution of aDMPs for the
five FDR-adaptive methods using the covariate “mean”
(Fig. 5¢). IHW, AdaPT, and CAMT achieved a significantly
lower median rank than other methods, indicating their im-
proved ability to enrich aDMPs with an informative covari-
ate. We repeated the same analysis on another age EWAS
dataset (EWAS27) [53] and arrived a similar conclusion
(Additional file 6: Figure S15). Taken together, adaptive
FDR control with informative covariates not only increased
detection power but also improved the power to retrieve
biologically relevant DMPs.

Detection of smoking-associated DMPs

Smoking has been tightly related to DNA methylation
change [54—-56]. Here we re-analyzed the dataset from
an EWAS of smoking [57] (EWAS20) using [HW and
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CAMT. The majority of the 30 smoking-associated
DMPs (denoted as “sDMPs”) reported by [57] were repro-
duced in our results (Additional file 4: Table S4A).
Compared with BH/ST, which produced the same results on
this dataset, IHW detected more sDMPs with covariates
“sdb”, “mean,” “mad,” “precision,” and “refgene.pos”
(Table 3). Some of these new findings were reported in both
European and Chinese populations, including c¢g19827923,
cg19254163, cg07986378, cg15159987, and cg22132788 [58].

“«

Two of the SDMPs (cg04885881 and cg22132788) were also
among the list of smoking-related CpGs reported at least
three times in a systematic review [59].

In addition, cg00300637, cg17924476, and cg24688690
recovered by the covariate “mean” were all located in the
body of AHRR, a gene which encodes aryl-hydrocarbon
receptor repressor and is known to be associated with
smoking [60, 61]. Moreover, we noted that cg18092474,
which was discovered by covariates “sd.b,” “mean,” and
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Table 3 Additional smoking-associated DMPs detected by IHW

mean mad sd.b precision refgene.pos
€g04885881* cg04885881%  g04885881% g19827923* g06972908
€g12856965 ¢gl14179389  ¢g22740783 ¢g19719391
€g26337070 cg22740783  cg19827923* cg07986378*
€g03147185 ¢g26337070  ¢cg19719391 cg14712058
cg13185177  cg19827923* ¢g17924476 cg15159987*
cg19719391  cg19719391  cg08149865

€g00300637 ¢cg17924476  cg17476951

cg17924476  <g22132788*" g19254163*

€g24688690 cg08149865  cg07986378*

€g03774957  cg02526790  cg18092474

€g08149865 cg17476951  cg06972908

cg17476951 cg13151811  cg08149682

€g19254163* cg07986378* cg14712058

€g07986378* cg08730245  cg15159987*

€g08730245 918092474

€g10322443  cg01207684

€g18092474  cg06972908

cg01207684  cg25683268

€g16519923  cg08149682

€g06972908 cg14712058

€g25683268 cg15159987*

€g15159987*

* reported in both European and Chinese population
# reported at least three times

“mad” at the same time, was located 1500 bp upstream of
the transcription start site (TSS) of the CYP1Al gene,
which encodes a member of the cytochrome P450 super-
family of enzymes and was reported to be associated with
maternal smoking in newborns [62-64]. Here we show
that smoking is also associated with CYP1A1 methylation
in adults’ peripheral blood. The mean methylation level at
¢g18092474 for both former and current smokers was sig-
nificantly lower than never smokers (Additional file 6: Fig-
ure S16). Polycyclic aromatic hydrocarbons (PAHs),
products of cigarette smoking, were shown to induce the
expression of CYP1A1 [65]. Therefore, we speculate that
PAHs may upregulate the expression of CYP1A1 by hypo-
methylation at the cgl18092474 position. These results
were also supported by CAMT (Additional file 4: Table
S4B), which had substantial overlap with the IHW results
(Additional file 6: FigureS17).

Potential of using EWAS p value from a related disease/
phenotype as a covariate

When there are published EWAS data from a similar
disease or the same disease but from a different tissue or
cell type, we may want to use the published data to
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improve the detection power of a new EWAS since we
expect signal sharing across datasets. Covariate-adaptive
FDR methods provide a convenient way to exploit previ-
ous data by using the association p value as a covariate.
To investigate such possibility, we performed analysis
based on EWAS28 and EWAS29, two datasets from
EWAS of systemic lupus erythematosus (SLE) using
CD19+ B cells and CD4+ T cells, respectively [66]. The
signal in EWAS28 (539 DMPs) was much stronger than
that of EWAS29 (26 DMPs) according to results from
ST. Thus, we used the z-score transformed p value from
EWAS28 as the covariate to adjust the p value of
EWAS29 to see whether we can improve the detection
power of a less-powered study. We first verified the as-
sumption of independence under the null using stratified
histograms (Additional file 6: Figure S18). Next we ap-
plied the omnibus test for assessing the informativeness.
The omnibus test showed the new covariate “p value”
was highly informative (p = 0.002), and it appeared to be
more informative than the previously studied covariates
for all the covariate-adaptive methods (Fig. 6a). Applica-
tion of IHW with the new “p value” covariate detected
far more DMPs than other covariates (Fig. 6b). Remark-
ably, it recovered many DMPs detected by EWAS28 but
otherwise missed by EWAS29 alone (Fig. 6b). According
to Gene Ontology (GO) enrichment analysis based on
the genes detected using the new covariate, three out of
the top five GO enrichment terms belonged to type I
interferon (INF I)-related biological processes (Fig. 6c,
all p value < 1E-20), which plays an important role in
SLE and serves as a therapeutic target [67]. Although
these terms were also enriched in the results of the ST
method, they were not among the top 10 terms
(Additional file 5: Table S5). Similar results can be found
by applying CAMT (Additional file 6: Figure S19A&B).
Collectively, the use of p value from a related EWAS as
the covariate in FDR control serves as a convenient way
to integrate previous knowledge to enrich signal and is a
promising approach to an underpowered study.

Discussion

In this study, we explored the use of start-of-the-art
covariate-adaptive FDR control methods in multiple
testing correction for epigenome-wide association test-
ing. We also studied the performance of various EWAS-
related covariates based on a large collection of EWAS
data. We show that all these covariate-adaptive methods
could control the false discovery rate at the target level
and were substantially more powerful than traditional
EDR control methods such as Benjamini-Hochberg’s
step-up procedure [28] and Storey’s g value procedure
[29], once informative covariates were used. Compared
to the benchmarking simulation study in [44], which
simulated the p values directly, we simulated original
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methylation data, upon which p values were calculated.
In this way, we preserved the typical correlation struc-
ture among p values observed in real EWAS data, and
thus the evaluation of false discovery rate control was
more rigorous. In addition, we propose an omnibus test
for assessing the informativeness of the covariates, inves-
tigate the performance of various EWAS-relevant covari-
ates, and benchmark the methods on a large number of
real EWAS datasets.

For the 61 real EWAS datasets, the most informative
covariate could improve the detection power by a me-
dian of 68% and 25% for CAMT and IHW, the two best
performing methods, compared to the ST procedure.
Remarkably, for 9 EWAS datasets, where BH/ST proced-
ure did not make any discovery, CAMT and IHW were
able to make positive findings in four and one of the
datasets using informative covariates, respectively. We
further demonstrated with concrete examples that the
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additional DMPs recovered were biologically meaningful
and could help reveal more biological insights. Given the
enormous cost associated with epigenome-wide profil-
ing, using covariate-adaptive multiple testing could po-
tentially rescue an underpowered study, reduce the
discovery cost, and ultimately shorten the bench to bed-
side cycle time.

Although the investigated covariate-adaptive FDR
control methods all maintained the target FDR level,
their power varied tremendously depending on the
covariate informativeness and signal density. CAMT
and AdaPT were most powerful when the signal
density was high or the covariate was strongly in-
formative, suggesting their strong ability to utilizing
the underlying information. However, when the signal
became sparser and the covariate less informative,
AdaPT suffered from a great power loss, which was
consistent with the observation in [45]. Although
some remedy could be possibly invoked to compen-
sate the power loss as suggested in [45], no imple-
mentation has been available in the AdaPT package
as of January 2020. On the other hand, CAMT was
less susceptible to such power degradation, although
some power loss was still observed for less inform-
ative covariates in real data. On the contrary, IHW
had the best performance when the signal was sparse,
but the performance deteriorated with increasing sig-
nal density. In circumstances where the signal is
dense, and the covariate is not very informative, IHW
could be less-powerful than ST. The power of FDRreg
and BL, on the other hand, were overall more similar
to ST. Significant power gain was only observed when
the signal was relatively dense, and the covariate was
very informative. In the real data, BL was more ro-
bust than FDRreg. Although there was no uniformly
most powerful procedure, CAMT and IHW stood out
due to their excellent performance under the sparse
signal setting, where power improvement is most
needed. Also, IHW was an order-of-magnitude faster
than other methods, making it particularly appealing
for large-scale analyses.

All the covariate-adaptive FDR control methods could
lose power if the covariate was not informative. Thus,
assessment of the informativeness of the covariate was
recommended before applying a covariate-adaptive
method. The traditional way of assessment relied on
statistical graphics such as scatter plots or stratified p
value histograms [40]. Such an assessment was not ef-
fective when the signal was sparse. We thus developed a
powerful omnibus test to test the dependence between
the p value and the covariate accounting for potential
nonlinearity and signal sparsity. We show that the omni-
bus test p value correlated well with the power improve-
ment for various covariate-adaptive methods. However,
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the optimal omnibus p value cutoff to achieve significant
power gain differed by method and simulation studies
may help determine the best cutoff.

The validity of these covariate-adaptive methods de-
pends on the assumption that the p value is independent
of the covariate under the null. This assumption is usu-
ally assessed empirically by stratified histograms: for
large p values (e.g, p values >0.5), the distribution
should appear uniform across strata. A variant of the
omnibus test could be used to formally assess the as-
sumption of independence under the null. Specifically,
the omnibus test can be focused on the large p values (p
value > 0.5, considered to be dominantly null p values)
and tailor the p value cutoff points to be more equally
spaced (e.g. p(i) €{0.1,0.2,0.4, 0.6, 0.8, 0.9}-quantile of
the p values). We show by additional simulations (Add-
itional file 6: Figure S20, simulation details in the legend)
that this test is very powerful and can detect a very mod-
erate deviation from the assumption. Therefore, in prac-
tice, we could apply both types of omnibus test
simultaneously and select covariates that are significant
in the original test (i.e., overall dependency between p
value and covariate) and not significant in the suggested
variant (i.e., the dependency is not due to violation of
the independence assumption under the null).

For EWAS data, we investigated 14 potential useful
covariates. We found that statistical covariates are more
informative than biological/technical covariates, as the
former are more directly related to statistical power. In
addition, statistical covariates could also be informative
of the prior null probability. For example, the variance
of the feature is considered to be a good indicator of the
null probability [40] since an invariant feature is less
likely to be differential. Variance-based filters have been
frequently used to exclude invariant genomic features to
reduce multiple testing burden [68] and increase statis-
tical power. One advantage of using covariate-adaptive
methods is that filtering is no longer necessary, and the
method could automatically down-weight these less
likely features according to their variances. Interestingly,
“sd.b” performed better than “sd.m” on the real data
even though the association tests were performed on the
M-values. This could be explained by the fact that “sd.b”
as the standard deviation on the Beta-value might be a
more biologically relevant measurement of methylation
variability and is more informative of the null probabil-
ity. The strong performance of the covariate “mean” is
somewhat unexpected and may be explained by two rea-
sons, which are related to the prior null probability and
statistical power, respectively. First, DMPs are enriched
in certain regions such as the promoters [30, 31], where
the methylation levels are similar—either low or high
(Additional file 6: Figure S3A). Second, the statistical
power to detect DMPs in the middle of the methylation
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spectrum is higher than those in the two ends, where the
methylation changes are constrained (Additional file 6:
Figure S3B). The covariate “dip” was the least inform-
ative among all statistical covariates since the majority
of CpGs, including those DMPs, have unimodal distri-
butions and the dip statistic is not very informative.
Compared to statistical covariates, external covariates
were less universal than statistical covariates, and they
were informative only for specific datasets. For in-
stance, the covariate “cpg.loc” was very powerful for
EWAS19 since DMPs in pancreatic ductal adenocar-
cinoma were enriched in CpG islands [20].

Besides the traditional covariates, we also explored
the use of p value from the same or similar disease/
phenotype as a covariate, and we demonstrated a sub-
stantial power gain. Using p value as a covariate pro-
vides a convenient way to conduct integrative analysis
without the need for sophisticated statistical modeling
or access to the raw data. Other possible covariates,
which are not explored here, include the detection p
value, existence of SNP in the probe, possible cross-
hybridization [69] and probe-level reproducibility [70]
from an independent study. With large-scale genome
annotation endeavors such as the ENCODE project
[71], an increasing number of genomic annotations
are now available and they can all be used as poten-
tial covariates. The proposed framework can be used
to evaluate their relevance for EWAS.

Finally, as several covariates may be informative for a
particular dataset, finding the optimal combination of
them will be an interesting topic. Except for IHW, all
the covariate-adaptive methods can accommodate mul-
tiple covariates. Coupling the omnibus test and these
methods may be a feasible solution.

Conclusions

Covariate-adaptive FDR control methods can signifi-
cantly increase the detection power for EWAS using in-
formative covariates. The choice of the optimal method
depends on the underlying signal density and the in-
formativeness of the covariate. The informativeness of
the covariate can be assessed based on the proposed
omnibus test. For a dense signal, CAMT and AdaPT are
the most powerful; for a sparse signal, CAMT and IHW
are most promising.

Methods

Data

We collected 58 methylation datasets from GEO and
split them into 61 EWAS datasets according to the
phenotype, tissue source, and cell type under the follow-
ing criteria: (1) the platform is Infinium Human Methy-
lation 450K BeadChip; (2) sample size is no less than
100. Note that the majority of the 61 EWAS datasets are
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for different outcomes with some for the same outcome
such as smoking. For datasets with raw IDAT files
(the raw intensity data from the beadchip) available,
R function minfi:read.metharray.exp (version 1.26.2)
[72] was used to extract Beta-values and detection p
values. Otherwise, we obtained the data from the soft
file on GEO via GEOquery:getGEO (version 2.48.0)
[73]. The annotation file of Infinium Human Methyla-
tion 450K BeadChip was obtained from R package
HluminaHumanMethylation450kanno.ilmnl2.hgl19
(version 0.6.0) [74].

Quality control

The normalization of raw data was carried out by pre-
processQuantile [75] function from minfi package. Sam-
ples with mean detection p value greater than or equal
to 0.01 were removed, and probes with median detection
p value across all samples less than or equal to 0.01 were
filtered. Probes designed for sex chromosomes or auto-
somal probes co-hybridizing to sex chromosomes (cross-
reactive) [69] were also filtered. Besides, probes with
common SNPs either at the CpG interrogation site or at
the single nucleotide extension site were excluded, re-
gardless of minor allele frequency.

Differential methylation analysis and multiple testing
correction

Before performing multiple testing correction, surrogate
variable analysis was conducted using R package isva
(version 1.9) [76] and SmartSVA (version 0.1.3) [46] to
capture significant sources of methylation variability
such as cellular heterogeneity, age, and other unknown
batch effects. The resulting surrogate variables were
treated as covariates in the linear regression model to
address potential confounding effects of cellular hetero-
geneity and batch effects. Differential methylation ana-
lysis was performed using the function cpg.assoc from R
package CpGassoc (version 2.60) [77] and conducted on
M-values [78] (logit.transform = TRUE). The association
p values were then corrected for multiple testing by vari-
ous FDR control methods. Traditional FDR control
methods Benjamini-Hochberg’s step-up procedure (BH)
and Storey’s g value procedure (ST) were performed
using the R package stats (version 3.5.3) [79] and gvalue
(version 2.12.0) [80], respectively. Covariate-adaptive
FDR control methods IHW, CAMT, BL, AdaPT, and
FDRreg were performed using R package IHW (version
1.8.0) [40], CAMT (version 1.0) [44], swfdr (version
1.6.0) [42], adaptMT (version 1.0.0) [43], and FDRreg
(version 0.1) [39] with default settings (except FDRreg,
theoretical null type was used to achieve more robust
performance). See details in Table 2. A target FDR level
of 5% was used throughout the study.
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An omnibus test for assessing the informativeness of the
covariates

The informativeness of the covariate is assessed by test-
ing the association between the p value from differential
methylation analysis and the covariate. Due to potential
sparsity and nonlinearity of the association signal, rank-
based tests (e.g., Spearman’s rank test and Kruskal-
Wallis test) may not be powerful since the vast majority
of the p values are not expected to be associated with
the covariate under the null. We thus develop an omni-
bus test, which zooms into the low p value region and
addresses nonlinearity by categorizing the covariate if it
is continuous. Denote py, ps, ..., p,, the p values for m
CpGs and x4, x5, ..., %,, the values for covariate X. For a
given p value cutoff p, i=1, ..., I, we convert the p
value into a binary variable PY (<sp, > p®). We next
consider two scenarios:

(1) X is categorical. To quantify the association
between P and X, we use the y” test and denote
4" as the -log p value from the y* test. We then
define the omnibus test statistic for a categorical
covariate as

t" = maxq",
l

which pools information across different dichotomizations.
(2) X is continuous. We further categorize X to address

potential nonlinear effects. For a given number of
categories n?, j=1, ..., ], we convert X into a
categorical variable X" with equal category size. To
quantify the association between P and X, we
use both y* test and Cochran—Armitage test for
trend [81] and denote q?"’) and qgi") as the —log p
value from the respective tests. The use of
Cochran—Armitage test for trend is to compensate
potential power loss of x* test when P and X"
have a monotone relationship. We then define the
omnibus test statistic for a continuous covariate as

= max{ max [qgi‘ﬁ,qg’j)} }

i,j

We next use permutation to assess the significance.
Denote the test statistic under permutation as #; (k =1,
., K). The omnibus test p value is calculated

For both simulated and real datasets, we use p“ e
{0.001, 0.005, 0.01, 0.05, 0.1, 0.2}-quantile of the p values
,n(j)e{Z, 4,8,16,32}, K=999. Since nearby CpGs are
usually correlated, to satisfy the exchangeability
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assumption of the permutation test, we ordered CpGs
by their genomic position and down-sampled them to
achieve near zero auto-correlation (R stats:acf) in real
data analysis.

Simulation studies

Simulations for comparing covariate-adaptive FDR control
methods

To preserve the correlation structure observed in real
data, we based our simulation on a real EWAS dataset
[50]. We drew random samples from the control group to
create two groups of equal sample size (n; =n,=80),
based on which we added differential signals. For demon-
stration purpose, we only used CpGs from the chromo-
some 13 (m =11, 808). To study the impact of signal
density, signal strength, and informativeness of the covari-
ate, we simulated 27 (3 x 3 x 3) settings with a varying de-
gree of signal density (sparse, medium, and dense), signal
strength (weak, moderate, and strong), and covariate in-
formativeness (none, moderate, and strong). We first sim-
ulated “random signals,” where the differential CpGs were
randomly distributed along the chromosome. Specifically,
we first generated the covariate x;~N(0,1), i=1, ..., m.
Given x;, we generated m; the probability of being the
null for the ith hypothesis, as

exp (1o + cxi)
To; = )
1+ exp(iyo + cxi)

where we set 7€{3.5,2.5,1.5}, representing sparse,
medium, and dense signals (3%, 8%, and 18% under no
covariate effect), and ce€ {0, 1, 1.5}, representing a non-
informative, moderately informative, and strongly in-
formative covariate, respectively. With m; we generated
the differential status H;~Bernoulli(1 - 7zy;). If a CpG was
differential, i.e., H;=1, we added a methylation differ-
ence f;€1{0.27,0.33,0.45} (on M-value) to samples from
one group, representing a weak, moderate, and strong
effect. Linear regression was then performed to generate
the association p values, which were further analyzed by
various covariate-adaptive FDR procedures, along with
the covariate. We also simulated “correlated signals,”
where the differential CpGs were clustered on the
chromosome. To achieve this end, we generated x; from
a autoregressive model (R stats:arima.sim, ar = 0.75).

Simulations for studying the performance of the omnibus
test

We simulated m = 10,000 hypotheses and investigated both
categorical and continuous covariates. For a categorical co-
variate, we randomly sampled x;€{1,2,3,4,5}, i=1, ..., m..
For a continuous covariate, we generated x;,~N(0, 1), i =1,
..., m. Next, we used the same aforementioned simulation
strategy on standardized x; (mean 0, sd 1) to generate H,
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where 7 € {3.5,2.5, 1.5}, representing sparse, medium, and
dense signals, and ¢ <€ {0, 0.25,0.375}, representing no de-
pendence, weak dependence, and moderate dependence on
the covariate, respectively. To simulate a nonlinear depend-
ency for a continuous covariate, we replaced x; with xi2 in
generating 7y;. Next, we generated the z-score z;,~N(0, 1), if
H;=0, and z;~N(2.68,1) if H;=1. We finally generated the
p value based on 1 — ®(z;), where @ is the c.d.f of the stand-
ard normal.

Covariates

We investigated 14 covariates “mean,” “sd.b,” “sd.m,”
“mad,” “dip,” “precision,” “direction,” “icc.b,” “icc.m,”
“refgene.pos,” “cpgloc,” “chr,” “dhs,” and “probe.type.”
The definition, calculation, and representation of these co-
variates could be found in Table 1. If the covariate was
categorical, we coded it as a factor in R and transformed
into a model matrix if needed. If the covariate was con-
tinuous, we applied natural cubic spline transformation to
allow a certain degree of nonlinearity. We used Bayesian
information criterion (BIC) to determine the optimal de-
gree of freedom on several real datasets, and a degree of
freedom of 6 was found to be adequate to achieve satisfac-
tory results. We thus set the degree of freedom to be 6 in
the natural spline (ns(x, df = 6) in R package splines, ver-
sion 3.5.0) [79]. Besides, the same covariates were used for
both pi0 and f1 if needed (CAMT and AdaPT).

Down-sampling analysis

We used EWAS51 (112 human fetal alcohol spectrum
disorder samples with 104 controls) to perform down-
sampling analysis. CpGs with Bonferroni-corrected p
value below 0.05 based on the full sample size were de-
fined as fDMPs. Since EWAS51 was of binary pheno-
type, we subsampled each phenotype to a sample size
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. At each sample
size, 100 replications were performed.

GO and KEGG enrichment analysis

GO and KEGG enrichment analysis was done by gometh
function of R package missMethyl (version 1.16.0) [82].
All CpG labels in the array data were used as
background.

Visualization

For data cleaning and transformation, R package tidyverse
(version 1.2.1) [83] was applied. Figures were generated
and arranged by R package ggplot2 (version 3.1.1) [84],
ggforce (version 0.3.0) [85], ComplexHeatmap (version
2.1.0) [86], UpSetR (version 1.4.0) [87], ggpubr (version
0.1.7) [88], and cowplot (version 1.0.0) [89]. Clustering
heatmaps were generated with distance measure “euclid-
ean” and clustering method “ward.D”.
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