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We present TADsplimer, the first computational tool to systematically detect topologically associating domain
(TAD) splits and mergers across the genome between Hi-C samples. TADsplimer recaptures splits and mergers of
TADs with high accuracy in simulation analyses and defines hundreds of TAD splits and mergers between pairs
of different cell types, such as endothelial cells and fibroblasts. Our work reveals a key role for TAD remodeling in
epigenetic regulation of transcription and delivers the first tool for the community to perform dynamic analysis of
TAD splits and mergers in numerous biological and disease models.
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Background

The three-dimensional (3D) structure of chromosomes
inside the nucleus of a cell plays essential roles in the
regulation of transcription, replication, and many other
biological procedures [1-3]. Techniques recently devel-
oped to infer the conformation of the chromatin are
providing powerful methods to uncover the relationship
between genome functionality and spatial organization
of chromosomes [1-3]. Particularly, the Hi-C technique
generates DNA sequencing data to enable a systematic
detection of 3D structures across the genome [4]. One
of the key findings revealed by Hi-C is that a chromo-
some is divided into individual topologically associating
domains (TADs) [5]. A TAD represents a spatial unit
with frequent interaction between DNA sequences
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within the unit, but with about 2-fold fewer interactions
between units [4—6]. Therefore, TADs physically restrict
interactions between enhancers and promoters for tran-
scriptional regulation [4]. The boundary of TAD is
found to be highly conserved between cell types and
thus stable during development [6], although the density
of interaction between DNA sequences within a TAD
can dynamically change during cell differentiation or
reprogramming [7-10]. The long-range interaction
between a promoter and a regulatory element may be
cell type-specific, but generally occurs within a highly
conserved TAD [11]. However, little is known about the
split of individual TADs or the merger of neighboring
TADs on the chromatin.

There are several lines of evidence indicating that
TADs serve as functional units of the chromosome.
First, genes within the same TAD often display similar
changes in RNA expression during cell differentiation
[5]. Second, the boundaries of a TAD constrain the
spread of histone modifications and lamin association;
therefore, there is a strong correlation between genomic
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sites in their histone modifications within a highly con-
served TAD [5, 12]. Third, co-regulated genes, such as
protocadherin genes, tend to co-locate in the same TAD
[13]. Considering that TADs represent a functional unit
of the chromosome, studying the remodeling of TADs
will advance our understanding of the cell type-specific
gene expression regulation by chromatin state, the long-
range enhancer-promoter interaction, and the dynamics
of chromatin 3D structure.

Many algorithms have been developed to define TADs
in a single Hi-C sample [4, 5, 14—17]. However, system-
atically analyzing the reorganization of TADs in re-
sponse to biological stimuli remains a technical
challenge. In this study, motivated by an initial observa-
tion of splits and mergers of individual TADs in fibro-
blast relative to endothelial cells, we developed
TADsplimer, the first algorithm to systematically detect
these events across the genome. We next applied the al-
gorithm to Hi-C data from endothelial cells, fibroblasts,
8 stages of T cell differentiation, and multiple cancer cell
lines, and uncovered important biological implications of
TAD split and merger events in these biological
contexts.

Results

Develop the TADsplimer algorithm to detect TAD splits
and mergers in one sample relative to another sample
We initially observed that several of the TADs in human
umbilical vascular endothelial cells (HUVEC) were
each organized into two smaller TADs in the fibro-
blast (a “TAD split” in fibroblast relative to HUVEC)
(Fig. 1a). This phenomenon was highly reproducible
in data generated by the same lab for different donors
of HUVEC (Fig. 1a) and was further observed in data
generated independently by another lab for these two
cell types (Fig. 1b). Similarly, we found that other
genomic regions that were each defined by two neigh-
boring TADs in the HUVEC cell were merged in the
fibroblast to form a single TAD (a “TAD merger” in
fibroblast relative to HUVEC) (Fig. 1c), and the
phenomenon is highly reproducible in data generated
by the same lab for different donors of HUVEC
(Fig. 1c), and further in data generated independently
by another lab for these two cell types (Fig. 1d).

To systematically investigate this phenomenon, we de-
veloped TADsplimer, the first algorithm for dynamic
analysis of TAD splits and mergers based on Hi-C data
from one sample relative to another sample. We de-
signed two major functions in TADsplimer. The first
function is to define individual TADs across the genome
in each sample. The second function is to calculate a
split score for each TAD in once sample relative to an-
other sample. In the first function (Fig. le), the input
data is the processed Hi-C reads that each indicates an
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interaction between two loci in the genome. These Hi-C
reads form a contact matrix M, in which each element
M;; is the number of reads that each indicates an inter-
action between the loci Z; and loci L; (Fig. le, step I).
For each loci L;, TADsplimer then defines a flanking re-
gion in which many loci interact with L, This region
would appear to be a strap S; in the contact matrix M,
and we will define the left and right edges for the strap
(Fig. e, step II). If there is a TAD, the straps defined for
individual loci in the same TAD will overlap with each
other and thus will allow us to define TAD boundaries
based on the distribution of strap edges (Fig. le, step
III). When TADs overlap with each other, it becomes
more difficult to match the two boundaries of each
TAD. To solve this problem, we utilized two-
dimensional kernel density estimation to calculate the
probability that a pair of boundaries comes from the
same TAD (Fig. le, step IV). In the second function,
TADsplimer first matches each TAD defined in one
sample to the overlapped TADs in another sample
(Fig. 1f, step V). It then calculates a split score for each
pair of TADs from the two samples based on the corner
split ratio by default, and further allows users to calcu-
late the split score based on three additional alternative
methods, including Laplacian matrix similarity (LMS)
[18], stratum-adjusted correlation coefficient (SCC) [19],
and image hashing similarity (IHS) [20] (Fig. 1f, step VI).

Simulation data demonstrated superior performance of
TADsplimer

To evaluate the performance of TADsplimer, we per-
formed a test based on a pair of simulated Hi-C datasets,
in which we know the exact split or merger sites of a
subset of simulated TADs. Receiver operating character-
istics (ROC) curve was used to compare the methods for
calculating the split score and, thus, to evaluate the ac-
curacy for the identification of TAD splits and mergers.
The AUC value for corner split ratio was 0.94, whereas
the values for the SCC, LMS, and IHS methods were
0.87, 0.81, and 0.6, respectively (Fig. 1g). Therefore, the
default method, corner split ratio, outperformed the
three alternative methods in the detection of TAD splits
and mergers.

We next determined if the methods for defining indi-
vidual TADs influenced the accuracy in detecting TAD
splits and mergers. We replaced our default TAD identi-
fication method with each of the four state-of-the-art
methods [21], including the HiCseq [22], TopDom [16],
DomainCaller [4], and IC-finder [15]. The results indi-
cated that the default method in TADsplimer outper-
formed HiCseq, TopDom, DomainCaller, and IC-finder
(Fig. 1h). Therefore, the method to define TAD is im-
portant to the accuracy of the detection of TAD splits
and mergers, and our TAD identification method in



Wang et al. Genome Biology (2020) 21:84

Page 3 of 16

IMR90 VS
HUVEC (Rao

A IMR90 VS HUVEC-D1 IMR90 VS HUVEC-D2 IMR90 VS HUVEC-D3 B
(Zirkel)

a IMR90 m 122

=

©

S ’

g "

< =

@ Qs

g o H e} a5 HUVEC™
C w IMR90 VS HUVEC-D3 D MReo vs HUVEC

o Zirkel

=

=

p:

[aV]

iy

P

[aV]

&

=

(&)

E | 7D identification Contact matrix | F
|

V. TAD matching

Contact map

Targets:a b
Targets:a b
~ ITS_ _d _____________ Contact matrix |
eeda Right edge
P Seeda eeeeensy
A A

Leftedge  Right edge Left edge

“m  Contactmatix |
Right boundary ?1 R2 1 Corner split ratio (default)
Seed a o2 2 Laplacian matrix similarity

3 Stratum-adjusted correlation coefficient
4 Image hashing similarity

Left boundary L1 L2 Contact map

\% Boundary pairing map
max
R2 i
R1 Pa.|r Frequency
min
L1L2
G H I
1.00 1.00
o) o I
T 0.75 ® Celll
e : o 0.75
:% 0.50 —Corner split ratioBUE) 0.50 — TADsplimer
g -SCC 8 —HiCseq
o 025 — Laplacian 2 0.25 — TopDom
=] —Image hashin 2 - DomalnCaIIer
= 0.00 9 9 " 500 —IC-finder
’ Cell2
0.00 0.50 1.00 0.00 0.50 1.00
False positive rate iti
p False positive rate Sequence depth= 400Mb
J — Corner split ratio K — TADsplimer v

= 0.6 —8cC 5 07 — HiCseq Cell
g — Laplacian € 06 —TopDom :
Q — Image hashing 3 —DomainCaller
(g o — IC-finder
3 8
o
5 s
@ @
a a

100 200 300 400
Sequencing depth (Mb)

100 200 300 400

Sequencing depth (Mb) Sequence depth=25Mb
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five TAD identification methods on detection of TAD splits

Fig. 1 Develop the TADsplimer algorithm to detect TAD splits and mergers with high accuracy. a-d Heatmaps showing the chromatin
interactions in a fibroblast TAD that was split in HUVEC (a, b) and in a HUVEC TAD that was split in fibroblast (c, d). In each heatmap, the top
right triangle area indicates data for the fibroblast IMR90, and the bottom left triangle area indicates data for HUVEC. HUVEC data generated by
the same lab for 3 donors was indicated by 3 heatmaps in a and c¢. HUVEC data generated by an additional lab was indicated in b and d. Al
heatmaps in a and b indicate data from the same genomic region, whereas all heatmaps in ¢ and d indicate data from another genomic region.
The blue circle indicates chromatin loops that were not disrupted by the TAD splits. Color scales for each heatmap were indicated in the top
right and bottom left corners. e Cartoons showing steps | to IV for TAD identification in TADsplimer. f Cartoons showing the two steps to define
TAD split or merger in one sample relative to another sample in TADsplimer. g ROC curve showing the performance of four alternative methods
in TADsplimer for scoring TAD splits. h ROC curve showing the influence of five TAD identification methods on the detection of TAD splits. i
Heatmaps showing the simulated frequency of chromatin interaction at a sequencing depth of 400 million (top) or 25 million (bottom) reads. j
ROC curve distance to top left corner is plotted against Hi-C sequencing depth to show the performance of the four alternative methods in
TADsplimer for scoring TAD splits. k ROC curve distance to top left corner is plotted against Hi-C sequencing depth to show the influence of the

TADsplimer has been optimal when compared to the
existing methods.

Since Hi-C analysis often requires deep sequencing
depth, we further investigated the influence of sequen-
cing depth on the detection of TAD splits and mergers
by TADsplimer. We down-sampled the simulated Hi-C
reads (Fig. 1i) to reduce sequencing depth and evaluated
the performance of each alternative method. We ob-
served little effect on the performance of these methods
when sequencing depth decreased from 400 million to
100 million, whereas all four methods for calculating
split score show poorer performance when the
sequencing depth continued to decrease (Fig. 1j,
Additional file 1: Fig. S1A). The five methods for TAD
identification also show similar sensitivity to the sequen-
cing depth (Fig. 1k, Additional file 1: Fig. S1B). However,
the default method of TADsplimer consistently
displayed the best performance even after we reduced
the sequencing depth to 20 million (Fig. 1j, k,
Additional file 1: Fig. S1A, B). Similarly, the performance
at different Hi-C resolutions is always the best for the
default algorithm in TADsplimer when compared to
other alternative algorithms (Additional file 1: Fig. S1C).
These results again indicated that TADsplimer is an op-
timal algorithm for the detection of TAD splits and
mergers between Hi-C samples.

TADsplimer successfully detected TAD splits and mergers
in Hi-C data from different cell types

To test the performance of TADsplimer on real Hi-C
data, we compared human umbilical vascular endothelial
cells (HUVEC) with the fibroblast cell IMR90, as
endothelial-to-mesenchymal transition and fibroblast-to-
endothelial trans-differentiation are of physiological and
pathobiological importance [23]. Based on a corner split
ratio cutoff value of 0.45, which corresponds to a false-
positive rate of 0.01, TADsplimer successfully detected
613 splits but only 67 mergers of TADs in IMR90 rela-
tive to HUVEC (Fig. 2a). The splits and mergers distrib-
uted evenly on individual chromosomes, with the

number of splits plus the number of mergers ranges
from 50 to 9 on each chromosome when comparing
IMR90 to HUVEC. The difference in the pattern of
chromatin interaction between the merged and split
states of these TADs is clearly observed both by manu-
ally inspecting individual TADs (Fig. 1a) and by aligning
all differential TADs around split sites to calculate aver-
age frequency (Fig. 2b). The average size of these TADs
is 2.01 Mb before splitting and 0.96 Mb after splitting
(Fig. 2c). Because CTCF was known to bind on TAD
boundaries, we observed that the number of CTCF
ChIP-Seq enrichment peaks at TAD split sites signifi-
cantly increased after the splitting (Fig. 2d). We next fur-
ther used TADsplimer to detect TAD splits and mergers
between 8 human cell types and between 3 mouse cell
types. We observed a smaller number of TAD splits and
mergers between cell types that have a closer develop-
mental relationship to each other, e.g., small number
between mesoderm cell types or between ectoderm cell
types and larger number between mesoderm and ecto-
derm cell types (Fig. 2e).

We calculated the Jaccard index to measure the repro-
ducibility of the detected TAD splits and mergers
between replicates from each of the 8 human cell types.
Our results showed that the reproducibility is the high-
est for the default algorithm when compared to the
other alternative algorithms in TADsplimer (Fig. 2f).
Because we have to define TADs before defining TAD
splits and mergers, we further calculated the Jaccard
index to measure the reproducibility of identified TADs
between Hi-C replicates from each of the 8 human cell
types [12, 24]. TADsplimer showed similar performance
when compared to HiCseq and TopDom and had better
performance when compared to DomainCaller and IC-
finder (Fig. 2g). Therefore, the default algorithm is
optimal when compared to other alternative algorithms
in TADsplimer for the detection of TAD splits and
mergers in real Hi-C data.

We next questioned whether the TAD splits or
mergers are associated with biological functions of the
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the B-H method

Fig. 2 TADsplimer successfully detected TAD splits. a Chromosome map showing the genomic locations of fibroblast (IMR90) TADs that were
split in HUVEC (blue) and HUVEC TADs that were split in IMR90 (red). b Heatmaps showing the average frequency of chromatin interaction in 6
aggregates: merged in HUVEC (top left) and split in IMR90 (top right), split in HUVEC (middle left) and merged in IMR90 (middle right), and all
adjoint TADs in HUVEC (bottom left) and IMR90 (bottom right). ¢ Violin plot of TAD sizes for merged, split, and regular TADs from HUVEC and
IMR90 cells. d Boxplots showing the binding frequency of CTCF at the individual group of TAD boundaries. @ Heatmaps showing the number of
split TADs between cell types. f Boxplots showing the Jaccard index of split TADs between replicates. Results were plotted for individual TAD split
identification methods. g Boxplots showing the Jaccard index of identified TADs between replicates. Results were plotted for individual TAD
calling methods. h Enrichment of representative pathways in genes associated with split or merged TADs. P value was determined by Fisher's
exact test and adjusted by the B-H method. i Heatmaps and barplot showing the enriched pathways and the number of enriched pathways,
respectively, for genes in split and merged TADs defined by alternative methods. P value was determined by Fisher's exact test and adjusted by

analyzed cell types. We retrieved genes in the TADs that
were split or merged in IMR90 relative to HUVEC and
submitted the genes to pathway enrichment analysis
using Ingenuity Pathways Analysis (IPA, Ingenuity
System Inc., USA). Fibroblast and endothelial pathways
displayed significant enrichment in these genes (Fig. 2h),
e.g., pathways of vessel formation, which is a major func-
tion of endothelial cells, and other pathways such as the
fibroblast cell proliferation, fibroblast movement, and
cell death of fibroblast. Therefore, genes in the TADs
that were split or merged are enriched in the pathways
important for the underlying cell types.

We further evaluated the performance of alternative
algorithms in TADsplimer by comparing the enrichment
of individual biological pathways in the genes associated
with the detected TAD splits and mergers. For the path-
ways associated with TAD splits or mergers defined by
at least one of the four methods for scoring TAD split,
the largest number of enriched pathways was from the
corner split ratio method when compared to the SCC,
Laplacian, or image hashing methods (Fig. 2i). We also
evaluated the influence of TAD identification methods
on the enrichment of these pathways. For the pathways
associated with TAD splits or mergers defined based on
at least one of the five methods for TAD calling, the
largest number of enriched pathways was from TADspli-
mer when compared to the TopDom, HiCseq, Domain-
Caller, or IC-finder (Fig. 2i). Therefore, TADsplimer is
optimal for detecting functionally meaningful TAD splits
or mergers on the base of real Hi-C data.

Most TAD splits and mergers are independent of genetic
alternations

It has been reported that genetic alterations can disrupt
TADs and form neo-TADs [25, 26]. Accordingly, we in-
vestigated whether the TAD splits and mergers detected
by TADsplimer are a result of genetic structure varia-
tions such as chromatin recombination, DNA deletion,
duplication, or translocation. Intriguingly, although a
split is associated with the loss of most interactions be-
tween DNA sequences from the two sides of a split site,

chromatin loops between the two sides can remain un-
altered (Fig. 1la—d). This suggested that the two TADs
resulting from each of these TAD splits are still con-
nected; therefore, that TAD splits are unlikely caused by
chromatin recombination. Further, the TAD splits and
mergers are highly consistent when we analyze the
primary cell HUVEC from four different donors
(Fig. la—d). Considering that the four different donors
are unlikely to all have genetic alterations at the same
genomic location, this further suggested that TAD splits
and mergers might be independent of genetic alteration.

To further exclude the possibility that TAD splits and
mergers detected by TADsplimer are due to genetic
changes, we analyzed data [26] from two cancer cell
lines, A549 and K562. Cancer cell lines are more likely
to have genetic alterations. Whole genome sequencing
(WGS) data revealed no chromatin recombination in
these two cell lines but detected 9789 putative genomic
structure variations (SVs) of other types. Visual inspec-
tion indicated that the TAD split site could have no
overlap with these SVs (Additional file 1: Fig. S2A).
Further, the patterns of change caused by SVs to chro-
matin interaction are both expected and observed to be
different from the pattern caused by a TAD split or mer-
ger in the cell line K562 in comparison with the cell line
A549 (Additional file 1: Fig. S2A-D). We identified 496
TAD splits and mergers between these cells and found
none of them overlapped with the sites of SVs previously
defined on the basis of the expected patterns in the same
Hi-C data [26] (Additional file 1: Fig. S2E). For the 9475
putative SVs detected by WGS data [26], we observed an
overlap with only 363 TADs associated with splits and
mergers, which are less than 394 TADs observed on
average by randomizing the genomic location of SVs
1000 times (Additional file 1: Fig. S2F). Further, the SVs
detected by WGS are randomly located in the TAD and
thus are not enriched at the associated split sites
(Additional file 1: Fig. S2G). Together, these results
indicated that most (if not all) of the TAD splits and
mergers detected by TADsplimer were not likely due to
genetic structure variations.
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TAD splits and mergers are associated with changes in
the chromatin epigenetic state

It was reported that histone modifications are highly
correlated between different sites within the same TAD,
indicating coherence of chromatin state within a TAD
[5, 12]. We thus investigated whether the smaller TADs
derived from the split of a large TAD undergo a change
in their chromatin state. We analyzed histone modifica-
tions associated with active promoter (H3K4me3), active
enhancer (H3K27ac), active transcription elongation
(H3K79me2), and repression of  transcription
(H3K9me3). We first manually inspected these histone
modifications at individual TADs that were merged in
HUVEC but split in IMR90 (Fig. 3a, left panels) or
merged in IMR90 but split in HUVEC (Fig. 3a, right
panels). We found that merged TADs tend to be in a re-
pressed status, no matter it is merged in IMR90 or in
HUVEC. Intriguingly, one of the two new TADs gener-
ated by a splitting tends to become activated, no matter
the splitting happens in IMR90 or HUVEC. This obser-
vation motivated us to combine all TAD split sites from
both cell types for the analysis of histone modification
around the split sites in their associated cell type. In this
combined analysis, if the split site is in IMR90, the
histone modification data in IMR90 will be used for ana-
lysis; if the split site is in HUVEC, the histone modifica-
tion data in HUVEC will be used for analysis. Similarly,
we also combine all merge sites from both cell types for
the analysis of histone modification around the merge
sites in their associated cell type. The difference in each
type of histone modification between the two sides of
individual split sites is significantly larger than the
difference between the two sides of individual merge
sites (Fig. 3b). This observation became more obvious
when the cutoff that we used to define histone modifica-
tion sites was set to be more stringent (Additional file 1:
Fig. S3A, B). Furthermore, we used the absolute read
counts (from both peak regions and non-peak regions)
at each side of the TAD split sites to perform the ana-
lysis. The result indicated that the difference in absolute
read count is still bigger after splitting relative to before
splitting (Additional file 1: Fig. S3C). Taking together,
after a TAD splitting, the newly formed TADs at the
two sides of the split site were more likely to manifest a
difference in chromatin state.

We next investigated whether the TAD splits hap-
pened before or after the change in chromatin state. We
therefore analyzed Hi-C and DNase-Seq data [7] to
examine the dynamic interaction between the chromatin
state and the split or merger of TAD at eight stages of T
cell lineage specification, from the hematopoietic stem
and progenitor cells (HSPCs) stage to the CD4+ CD8+
double-positive (DP) stage. TADsplimer detected 152
splits and 197 mergers of TADs in total in the DP stage
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when compared to the HSPC stage. Visual inspection
shows that the DNase-Seq signal appears at one side of
a TAD merger site before the merging and progressively
decreased during the merging (Fig. 3c). For 78% of the
TAD mergers, we found the mergers happened later
than the change in chromatin state (Fig. 3d, left, cluster
A). Similarly, for 62% of the TAD splits, the splits hap-
pened later than the change in chromatin state (Fig. 3d,
right, cluster A). The rest of the TAD splits and mergers
happened either earlier than or simultaneously with the
change in chromatin state. Therefore, the majority of
TAD splits and mergers happened after a change in
chromatin state during the processes of T cell lineage
specification.

We further systematically checked whether TAD splits
are more likely to be associated with an increase in acti-
vating marks or repressive marks on one side of the
split. We identified TADs that were merged in IMR90
and split in HUVEC, or split in HUVEC and merged in
IMR90. We compared each histone modification in the
merged TADs in one cell type and in their associated
split TADs in the other cell type, at each side of the split
site (Fig. 3e). We observed that in the majority (43—46%)
of the split sites, the chromatin displayed an increase of
active modifications (H3K4me3, H3K27ac, or H3K9me2)
at one side and no detectable change at the other side.
In another 28% of the split sites, the chromatin displayed
activation as assessed by a decrease in repressive marks
(H3K9me3) at one side, with no detectable change at the
other side. Thus, over 65% of split sites displayed chro-
matin activation on at least one side of a split site, by
comparing the split TADs in one cell type to their asso-
ciated merged TAD in the other cell type. Intriguingly, a
few split sites displayed chromatin repression (a decrease
of activating modification or increase of repressing
modification) at each side. We further examined the
DNase-Seq data from the eight stages of T cell lineage
specification (Fig. 3f). The results showed that split sites
were associated with the strengthening of the DNase-
Seq signal at one side and no detectable change at the
other side in 41% of cases (Fig. 3f). The percentage of
split sites associated with the strengthening of DNase-
Seq signals at both sides increased from 0 to 25% during
the splitting. In contrast, the percentage of split sites
associated with no change of DNase-Seq signals at either
side decreased from 88 to 33% during the splitting.
Together, these data indicated that the majority of TAD
splits displayed chromatin activation at one side of the
split sites.

TAD splits and mergers are associated with changes in
RNA expression at one side of the split site

The change of chromatin state at one side of the TAD
split site in response to the splitting suggests that gene
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Fig. 3 TAD splits and mergers are associated with changes in chromosome state. a Heatmaps of chromatin interactions determined by Hi-C (top
panels) and Genome Browser tracks of ChIP-Seq signal for histone modifications (bottom panels) in HUVEC and IMR90. Vertical dash lines indicate
TAD split sites. Color scales for each heatmap were indicated in the top right and bottom left corners. b Boxplot showing the difference in each
histone modification between the two sides of TAD boundaries in HUVEC and IMR90 cells. ¢ Heatmaps of chromatin interactions determined by
Hi-C and DNase-Seq signal around a TAD split site at five stages of T cell lineage specification. d Heatmap of TAD split score (top panels) and fold
difference of DNase-Seq signal between the two sides (bottom panels) of individual TAD merge sites (left panels) and split sites (right panels). e, f
Percentage of TAD split sites associated with each category of histone modification change between IMR90 and HUVEC (e) or DNase-Seq signal
change across the 8 stages of T cell lineage specification (f). “4," “|,” and “—" denote increase, decrease, and no change of a histone modification
or DNase-Seq signal at one side of the split site in response to the splitting. Each category of change is defined by changes at the two sides of
the split site. For T cell lineage specification, the TAD splits are defined between DP and HSPC cells

expression level may also change at one side. To test this
hypothesis, for each split site in IMR90, we first defined
the side that displays a strong signal of a given histone
modification in IMR90 and defined the other side as dis-
playing a weak signal of that histone modification. We
also defined the two sides for each split site in HUVEC
based on the histone modification in HUVEC. The split
sites were then combined to perform statistical analysis.
We compared the expression level of genes at the strong
modification side before and after TAD splitting, and
further did the comparison at the weak modification
side. The average number of genes in each split site is
4.2. We found that the gene expression was significantly
upregulated at the active (strong active modification or
weak repressive modification) side after TAD splitting,
while the gene expression shows little change at the
other side (Fig. 4a). This result indicated that after TAD
splitting, the gene expression tends to be activated at
one side of the split site and shows no detectable change
at the other side.

We further used data from the 8 stages of T cell
lineage commitment to investigate whether the gene ex-
pression change happens before or after TAD splits and
mergers. We first analyzed merge sites between TADs
that merged during T cell lineage specification, as indi-
cated by a decrease of the split score. We observed a
large difference in the expression of genes at the two
sides of these sites in HSPC and a reduction in this dif-
ference during the T cell lineage specification. For ex-
ample, the genes Mpped2 and Fshb are at the two sides
of a TAD merge site; the gene Mpped2 was expressed in
HSPC but repressed in double-positive T cells, whereas
the gene Fshb was repressed at all 8 stages of T cell
lineage specification (Fig. 4b). For 62% of these TAD
merge sites, the mergers happened earlier than the de-
crease in the expression difference between the two sides
(Fig. 4c, left, cluster A). For the other TAD merge sites
associated with merged TADs, the mergers happen ei-
ther later than or concurrently with the decrease of the
expression difference between the two sides of a split
site (Fig. 4c, left, cluster B). For TADs that were split
during T cell lineage specification, we observed an in-
creased difference in the expression of genes between

the two sides of the split site. For 50% of these split sites,
the increase of split score preceded the increase of ex-
pression difference (Fig. 4c, right, cluster A), whereas the
other split sites displayed an increase of split score either
later than or concurrently with the increase of the ex-
pression difference between the two sides of the split site
(Fig. 4c, right, cluster B). We further assessed what
percentage of changes in the gene expression can be
explained by TAD split or merger. We identified 2514
genes with differential expression between HSPC and
DP. About 10% (242/2514) of these genes are associated
with TAD mergers or splits. Together, these results indi-
cated that the majority of TAD splits or mergers hap-
pened earlier than gene expression changes, although
some of them appear to happen concurrently with or
later than expression changes.

Discussion

Recent studies revealed that most TAD boundaries are
highly conserved across cell types [12]. It is also known
that changes in a few individual TADs have biological
implications for cell differentiation, development, and
diseases [12, 27-31]. In this study, we highlighted the
phenomenon of splits and mergers of TAD regions. We
developed a novel computational algorithm, TADspli-
mer, for detecting TAD splits and mergers based on Hi-
C data from one biological sample relative to another
sample. Simulation data indicated the optimal perform-
ance of the default algorithm in TADsplimer when com-
pared to alternative algorithms. Using Hi-C data from
multiple cell types, we demonstrated that TADsplimer
successfully detected functionally relevant splits and
mergers of TADs. TADsplimer is novel and may be of
great scientific utility in the following three aspects.
First, TADsplimer is the first computational tool to
analyze splits and mergers of TADs between two Hi-C
samples. Previous tools are designed to define individual
TADs based on each single Hi-C sample. Little attention
is paid to the comparison of TAD structure between dif-
ferent biological conditions, for example, at different
stages during cell differentiation. Second, we used an in-
tegrated statistical framework to jointly optimize the
performance of both TAD identification and analysis of
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TAD splits and mergers. This allowed TADsplimer to
significantly improve the accuracy for detection of TAD
splits and mergers when compared to other state-of-the-
art TAD identification methods. Third, we provided a
simulation data to estimate the performance of different
algorithms and also used the significance of pathway

enrichment to evaluate the performance based on real
Hi-C data. The results demonstrated that TADsplimer
successfully identified biologically significant TAD splits
and mergers with high accuracy.

Recent studies have revealed that during cell differenti-
ation, stimulation response, or cancer development,
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chromatin 3D structure is reorganized by A/B compart-
ment switching events [7, 32, 33]. Chromatin 3D struc-
ture is also reported to be reorganized due to genetic
alterations, e.g., DNA copy number variation and trans-
locations [32, 34—37]. At the level of TADs, it has been
reported that a subset of TADs shows changes in inter-
action frequency within each TAD during cell lineage
specification [10]. In this study, we found that a number
of TADs can change their structures by splitting or mer-
ging in one cell type relative to another cell type, som-
atic cell types, cancer cell lines, and individual cell types
at the 8 stages of T cell differentiation. The structure
changes of those TADs are associated with epigenetic al-
terations in the chromatin and changes of the gene ex-
pression. Pathway enrichment analysis also shows that
genes in the structurally changed TADs were highly as-
sociated with the differentiation pathways of these cells.

Conclusions

We have demonstrated that TADsplimer overcomes the
unique challenges of systematically detecting the splits
and merges of TADs between Hi-C samples. We further
developed the first set of benchmarks to evaluate the ac-
curacy of the identification of TAD splits and merges.
Our computational pipeline, TADsplimer, will serve as a
valuable tool to compare TADs under different bio-
logical conditions and facilitate the functional under-
standing of chromatin structure organization in
numerous biological models and disease processes.

Methods

TAD identification

In the first step of the algorithm, we denote the Hi-C
matrix as M ={M; ;:i=1:n,j=1:n}, where M;; is the
contact probability between bins i and j. For bin i, we
define a contact strap S; as:

S, = {Mi,t ILiStSRl'}, (1)

where L; is the left edge of the contact strap, and R; is
the right edge of the contact strap (Fig. 1c, II). Let Y3
and Y, denote the random variables for the observed
intra-strap contact and extra-strap contact. We model
the normalized Hi-C data by a Gaussian distribution as
follows:

Yl NN(MDO‘%)) (2)
Yy ~ Ny, 02), (3)

where N(y, 0®) is a Gaussian distribution with mean U
and variance ¢®. Parameters of two Gaussian distribu-
tions are estimated using the maximum likelihood esti-
mation. For bin i, we then use the binary segmentation
method [38], which is widely used in the detection of
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change point, to estimate the position for L; and R;. For-
mally, to infer the position of L; and R; we define the
following likelihood ratio of bin i as a cost function
which is maximized using the binary segmentation
method:

LR = L(M;y1,) + L(M;g.n)
+ L(Mir:z)~L(Mirn) (4)

We apply the binary segmentation method to estimate
the position of the left and right edges for all straps. To
calculate the distribution of the left and right edges, we
estimate the density function using the Gaussian distri-
bution as the smooth kernel function and then calculate
the probability for each bin.

In the second step of the algorithm, we infer TAD
boundaries based on an assumption that strap edges of a
TAD are distributed around its boundary (Fig. lc, step
III). The distribution of TAD boundaries is estimated
based on a Bayesian method [39] using the distribution
of strap edges as priors. In this part, we summarize their
main model and present the changes made to the algorithm
for detecting TAD boundaries. Let EX = {EF:i=1:n}
and ER = {ER:i=1:n} denote the possibility of the
left and right edges in each bin estimated in the first
step. We next estimate the distribution of the left and
right boundaries. We assume that there is a partition
that divides E* (or E¥) into contiguous block, such
means of E- (or EX) are equal within each block but
different between neighboring blocks. The partition is
initialized as a zero partition p={U;, U, ---, U,} = {0,
0, -+, 0,1}, where U;=1 indicates a block change point
at bin i+1 and then updates p by a Markov chain
Monte Carlo (MCMC) method. In each step of the
Markov chain, a value of U; is drawn from the condi-
tional distribution of U; given EL (or E®) and the
current bin i. From Barry et al’s work, we know that
the transition probability, p = {p1, po, ***, pu}, is:

p P(Ui=1|X,Uj, j=i)
1-p, P(U; =0[X,U;, j=i)
Wo W2
e e 0 (W Byw)
T Pem(-e) At 5

dw (5)

o

)
w2

fwoimldw
* (Wo+ Bow)T

where X is P; or Pr; Wy, By, W1, and B; are the within-
and between-block sums of squares obtained when U; =
0 and U; =1, respectively; m is the number of blocks;
and pg and w, are the hyperparameters of priors to con-
trol the sensitivity of the algorithm. Then, the posterior
means are conditionally updated based on the current
partition after each iteration and is used to infer the
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possibility of a TAD boundary at each locus. The prob-
ability density function of the left and right boundaries
is:

) =D 1) 6)
£ =3 ), @)

1, lf xeBi
0, otherwise’

1n(s) = { ®)
where uf and uR are the posterior means, and B, is the
ith block.

In the third step of the algorithm, we estimate the prob-
ability that a pair of the left and right boundaries forms a
TAD (Fig. 1c, IV). Let W = {(EF,ER) : i = 1 : n} denotes
each pair of the left and right edges for each strap S;. We
use the bivariate normal kernel to estimate the probability
density function of W which is denoted as f*(x", x%). The
probability of TAD located between bin m and bin # can
be written as follows:

PL,= > Ao G0 SPG)) 9)

msij<n

Differential signal calculation

Considering two Hi-C experiments under two condi-
tions, ¢; and c,, we first use a set of TADs 7= {13, 1o,
-+, 74 in the first biological condition as a reference to
infer the matched TADs in the second condition. A cod-
ing tree of TADsplimer algorithm is defined as follows:

Initiation 7 = {13, 7y, -+, 7}, where [; is the left boundary
of 7; and r; is the right boundary of 7, p=1, P = {}.

Use Hi-C contact map of ¢, as input to calculate /-, /%,
and f*;

fori={1,2, -t}

set l() = li, ro= l,‘;

while [, < 7;

Choose lo<y<r; such that the /(o) - (y)-F (Lo, y) is
maximized:

set p=p-f o) - /() -/ Uo y)s

setlp=y;

set p=p-flo) - f(ri) - f (Lo, 1:);

Append p to P

set p=1;

return P.

Using the same strategy for two conditions, TADspli-
mer outputs the possibility that a big TAD matches with
small TADs for each TAD in two conditions.

As TADsplimer allows hierarchical structures of
TADs, it is possible that small TADs that are matched
with the big TAD are sub-TADs but not truly split
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TADs. To avoid this problem, we further calculate four
differential scores to measure the similarity of TADs
under two experimental conditions. The four differential
scores are corner split ratio (CSR), Laplacian matrix
similarity (LMS), stratum-adjusted correlation coefficient
(SCC), and image hashing similarity (IHS). To calculate
the corner split ratio, let (L7 ,R7,) denotes a pair of the
left and right boundaries for TAD T; in the condition ¢,
and {(L7,R7):j=1:s} denotes a set of pair of the
left and right boundaries for TADs in condition ¢, which
are matched with T} In conditions ¢; and c,, we further
denote the sub-matrix of contact probability on {(L?/,

R7):j=1:s}as
7§ = e MiY : L, <h, k<R |,
TG = e M, 15, sh k<R |,

and denote the sub-matrix of contact probability on (L7,
R?7) as:

TG = {M;{k :LCTlish,ksRchi}
TG = { M5 L9, <h k<R }.
We estimate the mean of T¢, T¢, Ty r\T_gl, and T%n

T2 as us, u2, us, and 2, respectively. The corner split
ratio is defined as:

c1 c
p(15.13) = |76 B, (10)
s Hs
where || || is the Euclidean distance.

Three alternative differential score methods are
Laplacian matrix similarity (LMS), stratum-adjusted cor-
relation coefficient (SCC), and image hashing similarity
(IHS). We use the HiC-spector, the HiCRep package,
and the OpenCV to apply LMS, SCC, and IHS for meas-
uring the similarity of each TAD between the two
conditions.

Simulation of Hi-C data

We first simulate TAD boundaries for two conditions.
We generate Hi-C contact matrix that contains 20 TADs
for each condition, with a bin size of 10 kb in the matrix.
For one condition, we simulate 20 TADs of which the
size ranges from 100 to 500 bins. For the other condi-
tion, we randomly select 5 TADs to merge with the
TAD next to them. Second, we simulate the contact
probability for two conditions based on a Poisson distri-
bution. Considering the effect of the distance [40], we
simulate the contact probability of each TAD between
bin i and bin j as:
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log(M; ;) = Poisson <L> , (11)

i~
where y is the mean of contact probability in each TAD
which is set to range from 1 to 3. To estimate the per-
formances of prediction on simulation data, we apply
the ROC curve using the ROCR package.

Processing of Hi-C data

All Hi-C data were processed using the bioinformatics
toolkit Juicer version 1.13.01 (https://github.com/aiden
lab/juicer/wiki) [41]. We used the Juicer with default
parameters to map human Hi-C reads against the refer-
ence genome version hgl9 to generate the .hic file,
which is a compressed binary file that contains contact
matrices, Similarly, mouse Hi-C reads were aligned
against the reference genome version mm9 to generate
the .hic files using Juicer with default parameters. We
then used the Dump function in Juicer to extract .txt
files, the matrix format of contact matrices, from the .hic
files at a resolution of 10kb with vanilla coverage
normalization [12]. Vanilla coverage normalization is a
method in which the value of each element in a matrix
is first divided by the sum of all values in the associated
row and subsequently further divided by the sum of all
values in the associated column.

Visualization of Hi-C data

Heatmaps of Hi-C matrices were visualized using the
bioinformatics tool Juicebox (https://aidenlab.org/soft
ware.html) [42] at a resolution of 10 kb using “cover-
age” normalization method, which applies vanilla
coverage normalization to the Hi-C matrices. The
color in each heatmap indicates the normalized num-
ber of Hi-C reads. Arc plot of Hi-C data was gener-
ated using the WashU Epigenome Browser (https://
epigenomegateway.wustl.edu).

Identification of TAD split/mergers

A full tab-separated value (TSV) matrix at a resolution
of 10 kb is used as the input for TADsplimer. In the real
Hi-C data analysis of our study, this input data is the
output contact map from the tool Juicer, with vanilla
coverage normalization at 10 kb resolution. The row and
column of the input matrices represent two genomic
loci, and the value of an element in the input matrices
indicates the frequency of interaction between the two
genomic loci associated with the row and column. We
used the corner split ratio method in TADsplimer to
identify TAD splits or mergers with a cutoff value of
0.45, which corresponds to a false-positive rate (FDR) of
0.01. All split scores used for further analysis were calcu-
lated by the corner split ratio method described above in
detail. We used the z-score method to further normalize
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the split score for comparison between the eight stages
of T cell differentiation (Figs. 3d and 4c).

Assessing the performance of TADsplimer

To define TADs, we used four existing tools, including
HiCseq, TopDom, DomainCaller, and IC-finder. For
HiCseq, we used the Gaussian distribution method to
identify TADs. The other parameters of HiCseq were set
as the default values. For TopDom, the parameter win-
dow size was set to 10. The other parameters were set as
the default values. For IC-Finder, all parameters were set
as default values. For DomainCaller, we used the win-
dow size 500 kb to correspond to the window size set-
ting described in the main document for the 10kb. To
calculate the TAD split score, we used four methods in-
cluding CSR, LMS, SCC, and IHS. A FDR of 0.01 was
used as the cutoff for each method. To measure the
performance of TAD identification in real Hi-C data, we
calculate the Jaccard index for the overlap of the identi-
fied TADs between replicates. The Jaccard index was
defined as the number of overlapped TADs (intersec-
tion) divided by the number of all TADs (union) from
both replicates [43]:

| WlﬂWZ |
Wi, W) =7—F——
] ( 15 2) | WlUW2 | )
where W7 and W, are the length TADs. The perform-
ance of TAD splits and mergers identified in real Hi-C
data was also measured by the Jaccard index of overlap
between replicates.

Analysis of ChIP-Seq data

For ChIP-Seq data analysis, the sequencing reads
from human cell lines were mapped to the human
reference genome version hgl9, and the sequencing
reads of mouse cell lines were mapped to the mouse
reference genome version mm9 using the bioinfor-
matics tool Bowtie version 1.1.0 with default parame-
ters. Only the uniquely mapped reads were used for
downstream analysis. We used the Danpos version
2.2.2 [44, 45] to define ChIP-Seq or DNase-Seq en-
richment peaks. We normalized the average reads
density across the genome to 0.65 reads/bp using
Danpos2. The “Dpeak” function in Danpos2 was used
for peak calling with default parameters. In the read
data analysis, the signal of ChIP-Seq data is defined
as the normalized ChIP-Seq read count at each base
pair.

Analysis of RNA-Seq data

The reference gene set UCSC Known Genes were
downloaded from the UCSC Genome Browser website
(http://hgdownload.soe.ucsc.edu/downloads.html) [46].
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We mapped the RNA-Seq reads to the human gen-
ome version hgl9 or mouse genome version mm9
using TopHat (v2.0.12) with default parameters. The
bioinformatics tool Cuffdiff (version 2.0.12) was used
to calculate the gene expression level and significance
of differential expression based on the classic-FPKM
with default parameters. To analyze the changes of
RNA expression in the split or merged TADs between
the eight stages of T cell differentiation, we first cal-
culated the fold difference of FPKM value for each
possible pair of genes from the two sides of each split
site. We then analyzed whether this fold difference
increases or decreases in response to TAD splits or
mergers. Expressed genes, whose FPKM values are
larger than 1, were included in the analysis.

Pathway enrichment analyses

Ingenuity Pathway Analysis (IPA) for genes that are
located in the split or merged TADs was performed.
Both the canonic pathways and functional pathways
in the annotation database of IPA were used to do
the pathway enrichment analysis. The IPA used Fish-
er’s exact test to determine the significance of enrich-
ment and used the Benjamini-Hochberg (B-H)
methods to adjusted the p value for multiple test. A
B-H-adjusted p value cutoff of 0.05 was used to select
significantly enriched pathways. Given that there are
n, ny, and n, genes in the reference gene set, in the
split and merged TADs, and in an IPA pathway, the
number of overlap expected by random chance be-
tween the n; genes and the n, genes will be n, =n; x
ny/n. Given that the observed number of overlap be-
tween the n; genes and the n, genes is n, then the
fold enrichment for this pathway will be f=n,/n,. The
IPA has a function to perform a comparative analysis
of pathway enrichment between multiple different
gene sets; we therefore used this function to compare
between genes in the split and merged TADs defined
by the multiple alternative algorithms in TADsplimer.

Statistical analyses

All statistical analyses were conducted using the R
version 3.5.1. Wilcoxon test was performed using the
function wilcox.test from the stats package. The
permutation test was performed using the permTS
function from the perm package (https://cran.r-pro
ject.org/web/packages/perm/index.html) with default
parameters. The circular permutation test was per-
formed using the the enrichmentAnalysis function
from the shiftR package (https://cran.r-project.org/
web/packages/shiftR/index.html) with a npermute par-
ameter value of 1000.
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