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Abstract

The three-dimensional conformation of a genome can be profiled using Hi-C, a technique that combines chromatin
conformation capture with high-throughput sequencing. However, structural variations often yield features that can
be mistaken for chromosomal interactions. Here, we describe a computational method HiNT (Hi-C for copy Number
variation and Translocation detection), which detects copy number variations and interchromosomal translocations
within Hi-C data with breakpoints at single base-pair resolution. We demonstrate that HiNT outperforms existing
methods on both simulated and real data. We also show that Hi-C can supplement whole-genome sequencing in
structure variant detection by locating breakpoints in repetitive regions.
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Background
The Hi-C assay provides genome-wide identification of chro-
matin interactions, thereby enabling systematic investigation
of the three-dimensional genome architecture and its role in
gene regulation [1]. Hi-C data have been used, for example,
to characterize topologically associated domains (TADs),
which are megabase-sized local chromatin interaction
domains within which genomic loci interact with higher
frequency [2–4]. Characterization of genome organization
using Hi-C data has enhanced our understanding of a
number of biological processes, such as X-inactivation [2, 5],
cell cycle dynamics [6], and tumor progression [7].
However, it has been shown that structural variations

(SVs) can confound the interpretation of Hi-C data [6,
8–11]. For example, when there is copy number in-
crease, the observed number of sequencing reads that
correspond to chromosomal interactions in that region
will be larger than expected, not because there is greater

frequency of interaction but because there are multiple
copies of that region. Similarly, when there is an inter-
chromosomal translocation, the reads that correspond to
interactions between the translocated segment and its
proximal regions will be inflated, but this should not be
mistaken for changes in interaction frequency.
One approach to mitigate the impact of SVs on the

Hi-C interaction map is to first identify SVs using
whole-genome sequencing (WGS) data and then use
that information to adjust the Hi-C map. Although a
great deal of progress has been made in WGS-based SV
detection [12, 13], the use of WGS data requires add-
itional sequencing and analysis expertise. Furthermore,
SV breakpoints within repetitive regions, which are often
genomic SV hotspots, cannot be easily detected from
WGS due to low mappability [14]. Indeed, Hi-C and
WGS data are complementary in SV detection: as Hi-C
read pairs span genomic distances from base pairs to
megabases, they enable detection of breakpoints in re-
petitive regions when one read of a read pair maps to a
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repetitive region and the other maps to a surrounding
mappable region (Additional file 1: Fig. S1).
Here, we present HiNT (Hi-C for copy Number

variation and Translocation detection), an algorithm for
detection of copy number variations (CNVs) and inter-
chromosomal translocations in Hi-C data. Based on
simulated data and comparisons to variants identified in
WGS, HiNT outperforms existing computational
methods both in sensitivity and false discovery rate
(FDR). HiNT also provides translocation breakpoints at
single base-pair resolution, a feature not available in
existing methods that utilize only Hi-C data. Further-
more, HiNT supports parallelization, utilizes efficient
storage formats for interaction matrices, and accepts
multiple input formats including raw FASTQ, BAM, and
contact matrix. HiNT is available at https://github.com/
parklab/HiNT.

Results
Overview of HiNT
HiNT has three main components. HiNT-PRE performs
preprocessing of Hi-C data and computes the contact
matrix, which stores contact frequencies between any
two genomic loci. HiNT-CNV and HiNT-TL start with
a Hi-C contact matrix and predict copy number seg-
ments and interchromosomal translocations, respectively
(Additional file 1: Fig. S2).
HiNT-PRE aligns read pairs to the genome using

BWA-MEM [15] and creates a Hi-C contact matrix. The
matrix is constructed from normal read pairs (non-
chimeric reads that map uniquely to the genome) as well
as unambiguous chimeras [16] (Fig. 1a). The latter is a
product of Hi-C ligation and is defined as a read pair in
which one chimeric read is split into locus A and locus
B and the other read is uniquely mapped to locus B
(Fig. 1a). All other read pairs containing split reads are
defined as ambiguous chimeras [16], which will be used
for translocation breakpoint detection (Fig. 1a).
HiNT-CNV (Additional file 1: Fig. S2) first creates a

one-dimensional (1D) coverage profile across the gen-
ome by calculating row or column sums of the contact
matrix at a fixed resolution, e.g., 50 kb. These sums
should be correlated with the copy number across the
bins since they correspond to the strength of interaction
of that region with all other regions. It is critical to use
the unnormalized contact matrix here because the
matrix-balancing normalization (setting the sum of each
row or column to be 1), which is the most widely used
Hi-C normalization approach, removes not only biases
but also copy number information. The next step is to
perform further adjustment to remove other biases that
are inherent in the Hi-C experiments, such as GC
content, mappability, and restriction site frequency. In
Fig. 1b, we see that, without additional adjustment, the

1D profiles for K562 (human chronic myelogenous
leukemia cell line; known to have high genomic instabil-
ity) and GM12878 (human lymphoblastoid cell line)
show similarity to each other but not with the copy
number profiles estimated from WGS. However, when
we remove Hi-C internal biases in K562 by using
GM12878 as a control (Fig. 1b, right), the 1D coverage
profile becomes highly correlated with the (ploidy-ad-
justed) copy ratios estimated from WGS data. This result
shows that proper normalization is essential in extract-
ing copy number information from Hi-C data. Given
that an appropriate control is often unavailable, HiNT-
CNV uses a generalized additive model to remove the
biggest sources of bias: GC content, mappability, and
restriction fragment length (see Methods) [17, 18]. The
boundaries of CNV segments are determined using the
BIC-seq segmentation algorithm, which utilizes the
Bayesian information criterion to identify regions with
enriched or depleted read counts [19]. We used the
latest version BIC-seq2 [20] that does not require a
matched control. It is important to tune the parameter λ
in BIC-seq2 to achieve the desired level of smoothness
in the CNV profile. Other CNV segmentation algorithms
may also be substituted in place of BIC-seq2.
HiNT-TL (Additional file 1: Fig. S2) detects transloca-

tions by analyzing normalized interchromosomal inter-
action matrices. In general, contact probabilities between
two regions on the same chromosome decrease mono-
tonically with distance, and interchromosomal interac-
tions are considerably less frequent compared to intra-
chromosomal ones. When an interchromosomal trans-
location occurs, we expect the contact probabilities in
two opposite quadrants around the breakpoint to be ele-
vated to the levels observed for adjacent chromosomal
regions (Fig. 1c). Thus, HiNT-TL identifies candidate
translocated chromosomal pairs based on the presence
of high contact probabilities and their unequal distri-
bution. To identify exact breakpoints, HiNT-TL first
identifies the breakpoint regions with a coarse 100-kb
resolution from the 1D profiles (see “Methods”). HiNT-
TL then uses Hi-C ambiguous chimeric reads located
within these regions to refine breakpoints to single base-
pair resolution.

CNVs predicted by HiNT from Hi-C are consistent with
those identified from WGS
To predict CNVs, we first calculate the coverage profile
throughout the genome at 50 kb resolution. We then
correct for Hi-C biases such as GC content, mappability,
and the number of restriction sites (given a fixed bin
size, the number of expected fragments depends on the
number of cut sites by the restriction enzyme used). To
model the non-linear correlation between 1D coverage
and biases observed (Additional file 1: Fig. S3), we use a
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Fig. 1 Illustration of HiNT. a Hi-C read pairs are classified into normal pairs (left panel), unambiguous chimeric pairs (middle panel), and ambiguous
chimeric pairs (right panel). Hi-C unambiguous chimeric pairs are the product of Hi-C ligations in which one read crosses the ligation junction and
thus maps to both locus A and locus B, while the other normal read maps only to locus B. Hi-C ambiguous chimeric pairs are often caused by
structural variations, with one read mapping to both locus A and locus C, while the other read maps to locus B. b Copy number information is
reflected in the Hi-C 1D coverage profile after Hi-C biases are removed by normalizing the K562 Hi-C contact matrix with the GM12878 Hi-C
contact matrix. The copy number profile (log2 ratios) estimated from WGS data is shown in the bottom row for comparison. c Comparison of the
Hi-C contact matrix between chr9 and chr19 in samples with and without translocations. The distribution of normalized contact frequencies is
higher in the sample with translocation (purple dots) than in the sample without (cyan dots). Contact frequencies were calculated in 1-Mb bins in
chr9 and chr19
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generalized additive model (GAM) with the Poisson link
function. GAM is an ideal framework here, as it allows
non-parametric fitting with relaxed assumptions on the
relationship between predictor and response variables.
The copy number information is extracted from regres-
sion residuals by the following equation:

log Coverageð Þ ¼ s1 GCcontentð Þ þ s2 Mappabilityð Þ
þ s3 NumberOfRestr:Sitesð Þ þ ε

where si (i = 1, 2, 3)(•) is an unspecified function esti-
mated for each predictor variable and ε is the residual.
The model fits better for GM12878 (R2 = 0.798) than for
K562 (R2 = 0.631), since K562 is known to have more
SVs.
To evaluate CNVs identified from Hi-C, we compare

the log2 copy ratios along the genome from the model
above with those estimated from WGS. For K562, we
see that copy number alterations are prevalent and that
the log ratios from Hi-C and WGS are mostly concord-
ant (Fig. 2a, Additional file 1: Fig. S4A; Spearman correl-
ation = 0.82). For GM12878, the correlation is lower
(Spearman correlation = 0.21) because there are very few
CNVs in this cell line, and the existing small ones are
detected only from WGS (Additional file 1: Fig. S4B,
Additional file 1: Fig. S5A). The copy ratios fluctuate
more in the Hi-C profile relative to WGS data (Fig. 2a,
Additional file 1: Fig. S5A) due to the different read
depth and possibly due to Hi-C biases that may not have
been captured by our model. When the copy number
log ratios are segmented using BIC-seq [19], the con-
cordance between the platforms is striking (rows 2 and 3
in Fig. 2b), with ~ 85% and 92% of the large (> 2Mb)
segments from Hi-C overlapping those from WGS in
K562 and GM12878, respectively (Fig. 2c, Add-
itional file 1: Fig. S5D; our definition of overlap is de-
scribed in Additional file 1: Fig. S5C). The copy number
profile from array comparative genomic hybridization
(CGH) data obtained from Zhou et al. [21] is also mostly
concordant (row 1 in Fig. 2b).
To ensure that our results are generalizable, we ap-

plied HiNT-CNV to five more cell lines: Caki2 (human
renal cancer cell line), LNCaP (human prostate adeno-
carcinoma cell line), MCF7 (human breast cancer cell
line), PANC-1 (human pancreatic cancer cell line), and
CHM13hTERT (an effectively haploid cell line, abbrevi-
ated as CHM13). Our results show that copy number
profiles estimated by HiNT agree well with those in-
ferred from WGS, with a Spearman correlation of ~ 0.8
(Additional file 1: Fig. S6-10A) in most cells. The low
correlation (0.4) in LNCaP cells may due to the poor
quality of its Hi-C data [22]. More than 80% of large
CNV segments identified by HiNT are supported by
those identified from WGS in most cell lines (exact

overlaps are described in the figure legends of Add-
itional file 1: Fig. S6-10B,C). Collectively, our analysis
suggests that HiNT is a reliable tool for identifying
large-scale CNVs in both cancer and normal Hi-C data.

HiNT outperforms HiCnv and OneD for identifying CNVs
from Hi-C data
We compared the performance of HiNT to that of
two other algorithms. HiCnv [23] infers copy number
from normalized Hi-C coverage by employing kernel
density smoothing followed by a hidden Markov
Model; however, it also requires a baseline chromo-
some copy number from WGS or karyotyping to de-
termine the true copy number of each chromosome.
OneD [24] estimates copy number via a hidden Mar-
kov model on the corrected contact frequencies ob-
tained from a generalized additive model. When we
compare the copy number profiles generated by
HiCnv and OneD to those derived from WGS, we
find that they are largely discordant. The Spearman
correlations of log2 copy ratios inferred from HiCnv
and WGS are 0.67 in K562, 0.1 in GM12878, and
0.03 in CHM13 (Additional file 1: Fig. S4C-F,
Additional file 1: Fig. S10A). Moreover, only 44.74%,
27.64%, and 70% of the large CNV segments detected
by HiCnv overlap those identified from WGS in
K562, GM12878, and CHM13, respectively (Fig. 2b, c,
Additional file 1: Fig. S5B,D, Supp. Fig, 10B-C). The
concordance between HiCnv and WGS is better in
Caki2, LNCaP, MCF7, and PANC-1, but it is still less
than that observed for HiNT (Additional file 1: Fig.
S6–9; the exact correlations and overlaps have been
labeled in the figures or figure legends). For OneD,
the copy number log ratios are largely discordant
with WGS in all cell lines except CHM13, with the
correlation between 0.3–0.5 and only ~ 50% of the
large CNV segments agreeing with those inferred
from WGS (Fig. 2b, c, Additional file 1: Fig. S4E-F,
Additional file 1: Fig. S5–10, the exact correlations
and overlaps are in the figures or legends).
In addition, input to HiCnv must be either HiC-Pro

[25] output or a SAM file, which is then converted to
HiC-Pro format, incurring high computational cost for
terabyte-scale datasets. For example, 3 billion read pairs
result in a ~ 600 GB BAM file, and the required SAM
format is at least fourfold larger than BAM format in
size. In contrast, HiNT-PRE accepts FASTQ and BAM
files and generates the Hi-C contact matrix in hic [16,
26] or cool [27] format, which serves as the input to
HiNT-CNV. Both hic and cool are efficient and widely
used formats for genomic interaction matrices. Taken
together, HiNT-CNV outperforms these existing tools in
detecting CNVs in both cancer and normal cell lines in
both accuracy and usability.
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HiNT accurately identifies translocated chromosomal pairs
Translocations modify the 3D organization of the genome,
and they will be incorrectly identified as long-range interac-
tions in Hi-C data if they are not accounted for properly.
To first study their impact on Hi-C interaction maps, we
developed a simulation scheme to recapitulate the effect of
translocations, encompassing homozygous/heterozygous
and balanced/unbalanced translocations. A balanced
translocation is an even exchange of segments between
chromosomes without genetic information gain or loss; an
unbalanced translocation involves a loss or gain of chromo-
some segments. As observed in previous studies [23, 28,
29], a balanced translocation forms a “butterfly” appearance
in the chromosomal interaction map (Fig. 3a and Fig. 3b
middle, marked by red circles). In contrast, an unbalanced
translocation only has a single block (Fig. 3a and Fig. 3b,

right column, marked by red circles) [28]. Detection of
intra-chromosomal translocations is complicated by the
presence of chromatin structures such as TADs and loops.
Therefore, we focus on identification of interchromosomal
translocations.
Our method is based on detection of two characteris-

tics. First, the contact frequencies should be distributed
unevenly around the translocation breakpoint. For this,
we utilize the Gini index, a statistical measure of distri-
bution initially used to quantify income inequality in
economics [30]. To compute this index, we estimate the
cumulative distribution of contact frequencies in each
square of the interaction map (we use 1Mb × 1Mb) and
determine how much it deviates from a linear increase
(see “Methods”). A high index corresponds to a more
uneven distribution of interaction strength. Second, the

Fig. 2 Copy number inference in K562 cells. a Comparison of log2 copy ratios calculated using regression residuals from Hi-C (blue) and using
read coverage from WGS (orange). b Comparison of CNV profiles from Hi-C, array CGH, and WGS after segmentation. Red, green, and gray bars
represent copy gain (log2 copy ratio > 0.3), copy loss (log2 copy ratio < − 0.3), and copy neutral regions (log2 copy ratio between − 0.3 and 0.3),
respectively. c The number of CNV segments (categorized by size) detected from Hi-C that are also supported by WGS. Specifically, 85.91%,
44.74%, and 60.98% of the large CNV segments identified by HiNT, HiCnv, and OneD are supported by those from WGS, respectively. The overlap
criteria for consistency are shown in Additional file 1: Fig. S5C
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maximum interaction level surrounding the breakpoint
should be high for a translocation. Regions without a
translocation but with a high noise level may satisfy the
first criterion of uneven contact frequencies, but their
maximum interaction level would not be large. Combining
the two features (interaction level and evenness), we de-
fine the rank product score as RPi = (Rgini,i/n) ∗ (Rmif,i/n),
where Rgini,i and Rmif,i are the ranks of matrix i based on
Gini index and maximum interaction frequency, respect-
ively, and n is the total number of interchromosomal
interaction matrices.
The rank product score performs well in simulated data,

separating the translocated and non-translocated cases in
nearly all cases (Additional file 1: Fig. S11). For real data,
we found that direct application of the rank product was
insufficient, due to the various factors that are not cap-
tured by the normalization step, e.g., the A/B compart-
ment effect and the increased interactions between small
chromosomes or between sub-telomeric regions. To elim-
inate such biases, we created a background interaction
matrix by averaging the matrices from five normal cell
lines (Additional file 2: Table S1, see “Methods”) and used
it to normalize the original matrix. In Fig. 4a, we show
three examples of chromosomal pairs in K562 data whose
scores change as a result of the additional normalization.
In the first case (chr1- chr21), the score does not change

significantly; in the second case (chr1- chr18), the score
increases so that a translocation is now called; and in the
third case (chr16 - chr19), the score decreases so that a
mistaken call is avoided. Using the chromosomal pairs re-
ported in the literature or validated by FISH experiments
[4, 29] as true positives, we see that the adjusted matrix re-
sults in an increased prediction accuracy, as measured by
the area under the curve (AUC) (Fig. 4b; see “Methods”).
As visualized in Fig. 4c, the previously observed biases are
effectively reduced by the normalization, allowing for
better delineation of translocations (Additional file 1:
Fig. S11, Additional file 1: Fig. S12A-D).
Although the rank product approach detects the ma-

jority of translocated chromosomal pairs, four validated
translocations are not identified. To investigate this
issue, we compare the Hi-C interaction matrices of the
detected (Additional file 1: Fig. S13) and missed chromo-
somal pairs (Additional file 1: Fig. S14). Compared to
the detected chromosomal pairs, no translocation signa-
ture can be visually detected from the interaction matri-
ces for missed pairs. In addition, the sharp boundaries at
translocation breakpoints on the 1D coverage profile can
only be found in our predicted translocated chromo-
somal pairs. Thus, we believe that there are some trans-
located chromosomal pairs that are simply not reflected
within Hi-C data, or the validation data may be

Fig. 3 Simulated translocations in Hi-C data. a Homozygous cases. b Heterozygous cases. An example of a translocation involving two
chromosomes is illustrated. The three columns correspond to original matrix, balanced translocation, and unbalanced translocation, respectively.
Circles highlight the features introduced by the translocations
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incorrect, e.g., due to the variation among the K562
lines. We further examined four more cancer cell lines,
including HelaS3 (cervical carcinoma), LNCaP, PANC-1,
and T47D (breast cancer), for which FISH data were
available for validation. We found that the rank product
and the maximum interaction perform better than the
Gini index in LNCaP, T47D, and PANC-1, whereas the
rank product and Gini index are more predictive in
HelaS3 (Additional file 1: Fig. S12E).

HiNT detects translocation breakpoints at single base-pair
resolution using Hi-C chimeric reads
Once a chromosomal pair containing a translocation is
identified based on the rank product, HiNT searches for
the translocation breakpoint. For a translocation, the 1D

row/column-sum profile should change abruptly at the
breakpoint (Additional file 1: Fig. S13, and Add-
itional file 1: Fig. S15A). To identify this point, we use a
change point detection method called breakpoints from
the R package strucchange [31], which adopts a linear
model to detect one or several change points in multi-
variate time series. However, the majority of the change
points detected by breakpoints are the result of lower
mappability and unremoved compartment effects and
thus should not be identified as the translocation break-
points (Additional file 1: Fig. S15A). To remove these
false positives, we impose a filtering step in which only
those with one quadrant (unbalanced translocation) or
two diagonally opposite quadrants (balanced transloca-
tion) around the candidate breakpoint have very high

Fig. 4 Accurate identification of translocated chromosomal pairs by HiNT. a The distribution of the rank product scores for all chromosomal pairs
in K562 before (left) and after (right) adjustment by background subtraction. Chromosomal pairs in pink and blue correspond to two FISH-
validated translocation pairs (chr1, chr21) and (chr1, chr18); the one in yellow corresponds to a chromosome pair (chr16, chr19) without
translocation. After matrix adjustment, the blue pair now has a lower score and the yellow pair has a higher score, as desired. TP: true positive,
TN: true negative, FN: false negative, FP: false positive, 0.05 is used as the cutoff. b Receiver-operator characteristic (ROC) curves show HiNT
performs better after the background subtraction. Areas under the ROC curves (AUCs) are shown in parentheses. c The original, background
(average of multiple other Hi-C maps), and the adjusted maps are shown for the three cases highlighted in panel a. Validated translocations are
marked by circles
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interactions (Additional file 1: Fig. S15, “Methods”).
Here, we define a high interaction frequency as being
greater than the 99th percentile of all the interactions
between the two chromosomes.
Next, we determine the precise coordinates of the

breakpoints by using ambiguous chimeric reads [16]
(Fig. 1a). These reads have their primary alignment near
a breakpoint in one chromosome (e.g., chrA) and their
clipped part align near a breakpoint in another chromo-
some (e.g., chrB). HiNT provides the intervals in which
the breakpoints occur (100 kb resolution) and, as long as
the breakpoint does not occur in an unmappable region,
the exact location of the breakpoint (1 bp resolution).

Hi-C can supplement WGS by locating translocation
breakpoints in repetitive regions
To assess its performance, we compare the translocation
breakpoints determined from Hi-C using HiNT with
those detected from WGS using Delly [32] and Meerkat
[33]. In K562, 89 and 135 interchromosomal transloca-
tions are detected by Meerkat and Delly (see “Methods”),
respectively, with only 20 translocations detected by
both (Fig. 5a, Additional file 3: Table S2). This level of
discrepancy is not unexpected [34] and is indicative of
the difficulty of detecting SVs in general. When we
intersect these 20 consensus WGS-based translocations
with those detected by HiNT, we find that 5 are in com-
mon (Fig. 5a). Two additional ones were found by HiNT
and either Meerkat or Delly but not both. In these 7
cases, the breakpoints were exactly the same at the nu-
cleotide level, confirming the accuracy of the calls (Add-
itional file 4: Table S3). An example is a translocation
between chromosome 9 and 22 shown in Fig. 5b, with
more than 100 supporting clipped reads in Hi-C data
and many discordant reads in WGS data (Fig. 5c).
Thirty-three translocations are detected only from Hi-C

data (Fig. 5a; listed in Additional file 5: Table S4). For ex-
ample, a significant rank product score is found between
chr3 and chr18 in the Hi-C interaction matrix (Fig. 5d),
and three breakpoint regions are detected by HiNT in-
cluding one validated by FISH [29] (Additional file 6:
Table S5). However, few discordant reads are identified
from WGS. A major reason for this difference is the low
mappability around those breakpoints. As illustrated in
Supplementary Figure 1, the long physical distance be-
tween Hi-C read pairs allow identification of transloca-
tions whose breakpoints occur in a repetitive region—the
paired reads can “jump over” the repeat region and map
to surrounding mappable regions, even though the break-
point itself cannot be mapped. Indeed, we find that large
repeat (> 1 kb) regions (as found in repBase [35]) make up
a disproportionately large fraction of regions containing
Hi-C-only breakpoints compared to WGS consensus
breakpoints (Fig. 5e). We note that repetitive regions with

high sequence divergence are mappable, but we used the
term “repetitive region” for conceptual clarity.
For the translocations detected only in WGS, 6 out of

15 are missed in Hi-C simply because of the lower
spatial resolution in Hi-C. Due to the nature of the
assay, the coverage in the intergenic regions is especially
sparse, regardless of the sequencing depth. As illustrated
by two examples in Additional file 1: Fig. S16, when
there is a translocation that turns out to be an insertion
of a small segment from another chromosome, the Hi-C
map does not show clear evidence (position indicated by
a red dotted cross in the lower-left panel). When one
zooms into that area, some interaction indicative of a
translocated boundary is present; however, the inter-
action is too weak to be detected unless one lowers the
detection criteria as to incur too many false positives.
Two of the other nine cases appear to be complex SVs. In
the two examples we show in Additional file 1: Fig. S17,
discordant reads around the breakpoint are from two
different chromosomes (indicated by different colors). Re-
gardless of the exact details of the SV, it is clear that the
Hi-C map (lower-left panel) does not capture the interac-
tions; thus, HiNT cannot detect them. For the remaining
seven cases, we believe these are false positive calls in
WGS, often occurring in repetitive regions. We find that
the discordant reads from WGS for these cases contain a
large fraction of single nucleotide variants or have low
mapping qualities, indicating issues in read alignment
(Additional file 1: Fig. S18). Consistent with those being
false positive WGS calls, no translocation-associated
features are found in the Hi-C interaction maps. These
analyses suggest that Hi-C is a powerful tool to detect
translocations and can complement WGS, especially for
detecting those with breakpoints in repetitive regions.

HiNT outperforms existing tools on detecting
translocations
Others have attempted to identify structural variants from
Hi-C data. One approach is simply to visually inspect the
interaction heatmaps—a low-resolution detection of
breakpoints with poor scalability and reproducibility [28].
Better approaches search for regions that contain abnor-
mal interaction frequencies based on normalized Hi-C
interaction maps [6, 36]. However, such methods utilizing
only contact frequencies cannot easily distinguish translo-
cations from chromatin interactions, thus giving a high
false discovery rate (FDR). A recent algorithm HiCtrans
[23] identifies translocation breakpoints based on change
point statistics obtained by scanning the interchromo-
somal contact maps of each chromosomal pair. However,
searching the breakpoints across all interchromosomal
contact maps leads to a high computational cost. For a
comprehensive set of inter- and intrachromosomal trans-
locations, one could integrate WGS, Hi-C, and optical
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mapping data [29]. However, in most cases, it is impracti-
cal to generate all these data types for a given sample. The
method they used for Hi-C data [29] is hic_breakfinder,
an iterative approach to locate local clusters that deviate
from the expected interaction frequencies in a Hi-C
contact matrix.
To compare the performance of these algorithms, we first

apply HiCtrans [23] and HiNT to simulation data. Hic_
breakfinder [29] is not used here because it requires the
aligned reads in BAM format, but our simulation is matrix-
based. Of the 21 simulated interchromosomal transloca-
tions (mix of balanced/unbalanced and heterozygous/

homozygous translocations), HiNT identified 20 correctly
while calling an additional 5 breakpoints (Additional file 1:
Fig. S19A). The one missing translocation was located at
the centromere of chr21 (Additional file 1: Fig. S19B). In
contrast, HiCtrans called 531 translocations (distributed
across 100 different chromosomal pairs), but none were
bona fide translocations (Additional file 1: Fig. S19C).
We also compared HiNT, HiCtrans [23], and hic_

breakfinder [29] on the K562, LNCaP, PANC-1, and
T47D data. As shown in Additional file 1: Fig. S19D-E,
HiNT has the highest AUC measure in most cell lines
(0.85 vs 0.78 and 0.77 in K562, 0.98 vs 0.96 and 0.93 in

Fig. 5 Comparison of breakpoints detected from Hi-C and WGS. a Overlap of the translocation breakpoints detected by Meerkat (WGS), Delly
(WGS), and HiNT (Hi-C). b The Hi-C interaction map containing a breakpoint detected in both Hi-C and WGS. c The same exact breakpoint in
panel B is captured in WGS. Discordant reads in light green (dark green) are paired end reads whose mates are found on chr9 (chr22). d Hi-C
interaction map illustrating a clear case of a translocation detected only by HiNT. e Breakpoints detected in both Meerkat and Delly (“WGS
Common”) and only in Hi-C only are classified into small repeat, large repeat, and non-repeat regions, showing that Hi-C is enriched for SVs
involving large repeats
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LNCaP, 0.84 vs 0.87 and 0.7 in PANC-1 and 0.97 vs 0.84
and 0.93 in T47D, see “Methods”) as well as the best
precision-recall curve. Additionally, in K562, we found
that while HiCtrans identified 132 translocated chromo-
somal pairs, which is more than half of the number of
all chromosomal pairs, only 10 of them contain known
translocations. Among all 931 breakpoints (~ 1Mb reso-
lution) identified by HiCtrans, only 2 of them cover what
are detected from WGS by both Meerkat and Delly
(Additional file 1: Fig. S19F). On the other hand, hic_
breakfinder identified 77 breakpoints (~ 100 kb reso-
lution). Among these breakpoints, 4 are identified by
both Meerkat and Delly (Additional file 1: Fig. S19F).
This suggests a higher false discovery rate of HiCtrans
and hic_breakfinder than HiNT. Furthermore, we found
that 60% (24/40) of HiNT-identified breakpoints can
also be identified by other methods. In contrast, this
value is only 35% (26/77) and 3.0% (27/931) for break-
points output from hic_breakfinder and hictrans, re-
spectively (Additional file 1: Fig. S19F). Collectively,
HiNT-TL outperforms HiCtrans and hic_breakfinder in
both specificity and accuracy.

Conclusion
Robust identification of SVs remains paramount to accurate
inference of long-range interactions from Hi-C data. We
have shown that HiNT can be used to identify CNVs and
interchromosomal translocations with split read support
for breakpoints whenever possible, and that it outperforms
existing methods. We found that the other methods give
inconsistent performance, depending on the extent of gen-
omic alterations in the sample; this may be partially due to
the less robust scheme for parameter tuning or the use of
the hidden Markov Model [37]. Although not as sensitive
as WGS data in general, Hi-C data can be surprisingly ef-
fective for CNV and translocation detection despite its less
even coverage, and it can complement WGS data for detec-
tion of translocations in repetitive regions. As new tech-
nologies for capturing three-dimensional interactions are
introduced, further computational methods will be needed
to avoid the confounding effects of SVs.

Methods
Data sources
Hi-C data: in-situ Hi-C data in cancer cell line K562 and
in normal cell lines including GM12878, HMEC,
HUVEC, IMR90, and NHEK were obtained from GEO
(Gene Expression Omnibus) with the accession number
GSE63525 [16]. All the normal cell line data were com-
bined to create the background Hi-C interaction matrix.
Hi-C data for HelaS3, LNCaP, PANC-1, Caki2, and
T47D, which were generated by the Dekker lab [38],
were downloaded from the ENCODE website. Hi-C data
in MCF7 and CHM13 were downloaded from GEO

(GSM1631185) and the Telomere-to-Telomere consortium
[39], respectively (see details in Additional file 2: Table S1).
WGS data: We downloaded the BAM file for

NA12878 WGS data from the 1000 genomes project
[40], and the BAM file for K562 WGS data from the
GDC legacy archive of the Cancer Cell Line
Encyclopedia (CCLE) project [41]. Raw FASTQ files in
CHM13, LNCaP, and MCF7 were downloaded from
SRA (Sequence Read Archive; see details in Add-
itional file 2: Table S1), and FASTQ files in PANC-1 and
Caki2 were obtained from a previous publication [29].

CNV identification from WGS
BIC-seq2 [20] was used to derive CNV segments from
WGS read coverage data. For the segmentation step, we
used binsize = 50,000 bp and λ = 50 to determine the
final CNV breakpoints in NA12878. λ is a parameter
that controls the smoothness (the number of break-
points) of the final CNV profile. chrY and chrM were
excluded from the analysis.

Definition of copy ratios in Hi-C and WGS data
Copy ratio is defined as the ratio of observed and ex-
pected values. In Hi-C, observed values are the residuals
from GAM Poisson regression, and expected values are
set to zero. In WGS, observed values are read coverage,
and expected values are estimated by a semi-parametric
regression model via BIC-seq2 [20].

Simulation of interchromosomal translocations in Hi-C
contact maps
The simulation pipeline defines two random coordinates
from distinct chromosomes as the origin and destination
of the translocation (e.g., x on chr1, and y on chr2).
Then, it creates the translocated version of interaction
matrices for chr1 to chr1, chr2 to chr2, and chr1 to chr2
via rearranging the original interaction probabilities.

SV detection from WGS
SV detection from WGS was carried out using Delly and
Meerkat. Default parameters were used to run Delly.
Only translocations that passed the internal quality con-
trol and were marked as “PRECISE” in Delly were used
for comparison. Default parameters were used to run
Meerkat, and filtering was performed according to the
post-processing steps described in the tool manual. Only
valid precise interchromosomal translocations were kept
for comparison. Translocation breakpoints located at
pseudo-chromosomes are removed in both Meerkat and
Delly for the comparison.

Gini index calculation
For each Hi-C interchromosomal interaction matrix M
(at 1Mb resolution), we first sorted the contact regions,

Wang et al. Genome Biology           (2020) 21:73 Page 10 of 15



based on the adjusted contact frequencies between these
two regions, from lowest to highest, then calculated the
cumulated contact frequencies of matrix M. Regions that
did not form contacts with any other regions were ex-
cluded. A plot of this functional relationship is called a
Lorenz curve. The Gini index is computed as twice the
area between the Lorenz curve and the diagonal.

Breakpoint filtering
To remove false discovered change points, we first construct
two-dimensional Cartesian coordinate systems originating
from the intersection of each pair of candidate breakpoints.
For each coordinate system, we then define four, 5-bin-by-
5-bin quadrants around the origin, and we calculate the
average interaction frequency within each quadrant (Add-
itional file 1: Fig. S15A). The valid breakpoints for transloca-
tions should have only one (unbalanced translocation) or
two (balanced translocation) quadrants with very high inter-
actions, and the remaining quadrants should have lower
interaction frequencies (Additional file 1: Fig. S15B upper
panel). More specifically, for balanced translocations, the
two quadrants with high interaction frequencies should di-
agonally oppose each other (Additional file 1: Fig. S15B
upper panel). If zero, three, or all quadrants have high inter-
action frequencies, the proposed breakpoints are considered
false positives and removed (Additional file 1: Fig. S15B
lower panel). Here, we define a high interaction frequency
as being greater than the 99th percentile of all the interac-
tions between the two chromosomes.

ROC curves of HiCtrans and HiC_breakfinder on
translocated chromosomal pair prediction
To create ROC curves for the evaluation of translocated
chromosomal pair prediction, we rank all the chromosomal
pairs first. Both HiCtrans and hic_breakfinder output a score
(entropy ratio in HiCtrans, and log-odds in hic_breakfinder)
to measure the strength of each breakpoint call. We assign
each chromosomal pair a representative score by taking the
score of the most significant breakpoint that is located in
this chromosomal pair. The chromosomal pairs are then
ranked by the representative scores. ROC curves and AUC
values are calculated by using the R package ROCR [42]; p
values of the statistical test used to compare ROC curves
were calculated by the R package pROC [43]. The chromo-
somal pairs reported in the literature or validated by FISH
experiments are used as true positives here.

Details of the HiNT pipeline

1. HiNT-PRE: Raw Hi-C data in FASTQ format are
aligned to a reference genome (hg19) via bwa-mem
(version 0.7.17-r1188): bwa mem -SP5M bwaIndex/
hg19.fa in1.fq in2.fq. Read pairs that are both

uniquely mapped to the genome are collected as valid
pairs. However, 10–20% of the remaining Hi-C read
pairs contain at least one chimeric read with split
alignments. Chimeric pairs with one read uniquely
mapped and the other chimeric, due to ligation, are
defined as unambiguous chimeras [16] and counted
as valid pairs. All other chimeric pairs are classified as
ambiguous [16] chimeras and are used to identify
translocation breakpoints at single base-pair reso-
lution. All the unmapped, multi-mapped, and PCR
duplicated read pairs are discarded from our analysis.
All pairs are classified by pairtools (https://github.
com/mirnylab/pairtools). Then, a Hi-C interaction
matrix is generated from all the valid pairs by cooler
[27] or juicer tools [44] at 50 kb, 100 kb, 1Mb, or at a
user-specified resolution.

2. HiNT-CNV: First, a 1D coverage profile for each
50-kb bin (default) is calculated along the whole
genome using an unnormalized contact matrix. Bin
size can be specified by users based on the sequen-
cing depth and accuracy need. Then, a GAM re-
gression with a Poisson link function is performed
to remove the known Hi-C biases with pre-
calculated GC content, mappability, and the num-
ber of restriction sites in each bin. In this study, we
used the ENCODE 50mer mappability track down-
loaded from the UCSC table browser (https://
hgdownload.soe.ucsc.edu/goldenPath/hg19/enco-
deDCC/wgEncodeMapability/wgEncodeCrgMap-
abilityAlign50mer.bigWig). As the local alignment
strategy used in BWA-MEM may result in align-
ments of different lengths, using the mappability
track of smaller fragment length, rather than the
fixed 50mer track, may be more conservative. If de-
sired, users can choose (via --maptrack) 24mer or
36mer tracks, also available from the UCSC table
browser. Then, the segmentation method of BIC-
seq is applied to the regression residuals to identify
the breakpoints and generate the final CNV profile.

3. HiNT-TL: Translocation detection is performed in
three steps; determination of the translocated
chromosomal pairs, identification of the rough
breakpoint regions, and determination of the exact
breakpoints at single base pair resolution. To
determine the translocated chromosomal pairs, 1-
Mb-binned and genome-wide normalized interchro-
mosomal interaction matrices are taken as input.
To remove the effects of A/B compartments, a
background model is created by averaging multiple
in situ Hi-C data in normal cell lines (Add-
itional file 2: Table S1). Our background model is
built from five normal cell types. As these five are
unlikely to be representative of all cell types, users
may use their own cell type-specific background
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matrix or build average matrices by leveraging data
from other tissues. Each interchromosomal inter-
action matrix is corrected with the background by
taking the ratio between the original signals and the
background signals. Then, for each possible
chromosomal pair, Gini index and the maximum
contact frequency are calculated. Then, a rank
product score is computed RPi = (Rgini,i/n) ∗ (Rmif,i/
n), where Rgini,i and Rmif,i are the ranks of matrix i
based on Gini index and maximum interaction fre-
quency, respectively, and n is the total number of
interchromosomal interaction matrices. Chromo-
somal pairs with RPi ≤ 0.05 are defined as the poten-
tial translocated chromosomal pairs.

HiNT then calculates the 1D coverage profiles by calcu-
lating the sum of each row and column of the adjusted in-
terchromosomal interaction matrices for those predicted
translocated chromosomal pairs. It then applies the func-
tion breakpoint in the R package strucchange, a function
with high computing performance that allows simultan-
eous estimation of multiple breakpoints in a given time
series data, to the coverage profiles to identify all change
points. The translocation rough breakpoint regions are
further decided after the filtering step as we described in
Additional file 1: Fig. S10.
To get the precise breakpoints at single base-pair reso-

lution, HiNT uses the soft-clipped read-based algorithm
that is commonly used for WGS SV prediction. Trans-
location breakpoints that are covered by at least one
split read pair with one end mapped to the rough break-
point region on one chromosome, and the other end
mapped to the rough breakpoint region on another
chromosome are reported at single base-pair resolution;
otherwise, the predicted rough breakpoint regions will
be reported. Not all the breakpoints are expected to have
supported clipped reads due to the non-uniform distri-
bution of read coverage in Hi-C data.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-020-01986-5.

Additional file 1: Figure S1. Hi-C data is superior to WGS in variation
detection in repetitive regions. A, Illustration of a fused chromosome with
a breakpoint located in repetitive region. B-C, The distribution of the real
distances (pink) between two mates, and the insert sizes (light blue) in
WGS (B) and Hi-C (C). D, Reads can be correctly mapped to the reference
genome if repeat size is less than the insert size in WGS. E, Reads cannot
be correctly mapped to the reference genome if repeat size is larger than
the insert size in WGS. F, Reads surrounding the repetitive regions can be
used to detect the breakpoint in Hi-C. Figure S2. Overview of the HiNT
workflow. HiNT has three components: HiNT-PRE, HiNT-CNV, and HiNT-TL.
HiNT-PRE preprocesses Hi-C data to generate the contact matrix; HiNT-
CNV performs CNV detection; and HiNT-TL detects translocation break-
points at 100 kb as well as base-pair resolution. Figure S3. Correlation

between the natural log of 1D coverage and the number of restriction
sites (left), GC content (middle), and mappability (right) in each 50 kb bin
in GM12878 (A) and K562 (B) cell. Figure S4. CNVs detected by HiNT
from Hi-C are consistent with those detected from WGS. A-B, Correlation
of log2 copy ratios in each bin (50 kb) detected from WGS and Hi-C
(HiNT) in K562 (A) and GM12878 (B). C-D, Correlation of log2 copy ratios
in each bin (50 kb) detected from WGS and Hi-C (HiCnv) in K562 (C) and
GM12878 (D). E-F, Correlation of log2 copy ratios in each bin (50 kb) de-
tected from WGS and Hi-C (OneD) in K562 (E) and GM12878 (F). Figure
S5. Copy number inference in GM12878 cells. A, Comparison of log2
copy ratios calculated using regression residuals from Hi-C (blue) and
using read coverage from WGS (orange). B, Comparison of CNV profiles
from Hi-C and WGS after segmentation. Red, green and gray bars repre-
sent copy gain (log2 copy ratio > 0.3), copy loss (log2 copy ratio < − 0.3),
and copy neutral regions (log2 copy ratio between − 0.3 and 0.3), re-
spectively. C, Schematic of the consistency analysis. CNV segment de-
tected from Hi-C is consistent with that detected from WGS if the
overlapped region is larger than 50% of the original segment size, and
vice versa. D, The number of CNV segments (categorized by size) de-
tected from Hi-C that are also supported by WGS. Specifically, 92%, 28%,
and 60% of the large CNV segments identified by HiNT, HiCnv, and OneD
are supported by those from WGS, respectively. The overlap criteria for
consistency are shown in panel C. Figure S6. Evaluation of copy number
inference from Hi-C data in Caki2 cells. A, Correlation of log2 copy ratios
in each bin (50 kb) detected from WGS and HiNT, HiCnv, and OneD in
Caki2. B, Comparison of CNV profiles from Hi-C and WGS after segmenta-
tion. Red, green and gray bars represent copy gain (log2 copy ratio > 0.3),
copy loss (log2 copy ratio < − 0.3), and copy neutral regions (log2 copy
ratio between − 0.3 and 0.3), respectively. C, The number of CNV seg-
ments (categorized by size) detected from Hi-C that are also supported
by WGS. Specifically, 84%, 76%, and 49% of the large CNV segments iden-
tified by HiNT, HiCnv, and OneD are supported by those from WGS, re-
spectively. The overlap criteria for consistency are shown in Supp. Fig. 5c.
Figure S7. Evaluation of copy number inference from Hi-C data in LNCaP
cells. A, Correlation of log2 copy ratios in each bin (50 kb) detected from
WGS and HiNT, HiCnv, and OneD in LNCaP. B, Comparison of CNV profiles
from Hi-C and WGS after segmentation. Red, green and gray bars repre-
sent copy gain (log2 copy ratio > 0.3), copy loss (log2 copy ratio < − 0.3),
and copy neutral regions (log2 copy ratio between − 0.3 and 0.3), re-
spectively. C, The number of CNV segments (categorized by size) de-
tected from Hi-C that are also supported by WGS. Specifically, 79%, 84%,
and 54% of the large CNV segments identified by HiNT, HiCnv, and OneD
are supported by those from WGS, respectively. The overlap criteria for
consistency are shown in Supp. Fig. 5c. Figure S8. Evaluation of copy
number inference from Hi-C data in MCF7 cells. A, Correlation of log2
copy ratios in each bin (50 kb) detected from WGS and HiNT, HiCnv, and
OneD in MCF7. B, Comparison of CNV profiles from Hi-C and WGS after
segmentation. Red, green and gray bars represent copy gain (log2 copy
ratio > 0.3), copy loss (log2 copy ratio < − 0.3), and copy neutral regions
(log2 copy ratio between − 0.3 and 0.3), respectively. C, The number of
CNV segments (categorized by size) detected from Hi-C that are also sup-
ported by WGS. Specifically, 76%, 71%, and 49% of the large CNV seg-
ments identified by HiNT, HiCnv, and OneD are supported by those from
WGS, respectively. The overlap criteria for consistency are shown in Supp.
Fig. 5c. Figure S9. Evaluation of copy number inference from Hi-C data
in PANC-1 cells. A, Correlation of log2 copy ratios in each bin (50 kb) de-
tected from WGS and HiNT, HiCnv, and OneD in PANC-1. B, Comparison
of CNV profiles from Hi-C and WGS after segmentation. Red, green and
gray bars represent copy gain (log2 copy ratio > 0.3), copy loss (log2 copy
ratio < − 0.3), and copy neutral regions (log2 copy ratio between − 0.3
and 0.3), respectively. C, The number of CNV segments (categorized by
size) detected from Hi-C that are also supported by WGS. Specifically,
84%, 81%, and 58% of the large CNV segments identified by HiNT, HiCnv,
and OneD are supported by those from WGS, respectively. The overlap
criteria for consistency are shown in Supp. Fig. 5c. Figure S10. Evaluation
of copy number inference from Hi-C data in CHM13 cells. A, Correlation
of log2 copy ratios in each bin (50 kb) detected from WGS and HiNT,
HiCnv, and OneD in CHM13. B, Comparison of CNV profiles from Hi-C
and WGS after segmentation. Red, green and gray bars represent copy
gain (log2 copy ratio > 0.3), copy loss (log2 copy ratio < − 0.3), and copy
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neutral regions (log2 copy ratio between − 0.3 and 0.3), respectively. C,
The number of CNV segments (categorized by size) detected from Hi-C
that are also supported by WGS. Specifically, 92%, 71%, and 95% of the
large CNV segments identified by HiNT, HiCnv, and OneD are supported
by those from WGS, respectively. The overlap criteria for consistency are
shown in Supp. Fig. 5c. Figure S11. Rank Product approach accurately
identifies simulated translocated chromosome pairs. Distribution of the
maximum interaction frequency (left), the Gini Index in an interchromo-
some contact matrix (middle), and the rank product of these two (right)
in Hi-C data with simulated translocations. Figure S12. Rank Product ap-
proach accurately identifies translocated chromosome pairs. A, The distri-
bution of the maximum interaction frequency (MIF, left), the Gini Index
(right), and the rank product of these two (Fig. 4a) in inter-chromosome
contact matrices before (upper) and after (lower) adjustment in K652
cells. Chromosomal pairs in pink and blue correspond to two FISH-
validated translocation pairs (chr1, chr21) and (chr1, chr18); the one in
yellow corresponds to a chromosome pair (chr16, chr19) without trans-
location. B, AUROC values show either Gini Index or MIF perform better
after the background subtraction in K562 cells. C-D, ROC curves (C) and
precision-recall curves (D) of translocated chromosomal pairs predicted
by using Gini Index only (orange), the maximum interaction only (dark
green), and the rank product of these two (red) in K562 cells. E, Perform-
ance of rank product, Gini index, and the maximum interactions in
HelaS3, LNCaP, Panc1, and T47D cells. Figure S13. Examples of chromo-
somal pairs with most significant rank product. A-D, Hi-C interchromo-
somal heatmaps and 1D coverage in original K562(left), background
(middle), and adjusted K562 (K562/Background, right) data. Hi-C 1-D pro-
files (the sum of rows and columns of each inter-chromosomal inter-
action matrix) are shown along with the interaction maps. Translocation
breakpoints are marked by red circles. Figure S14. Examples of missed
translocated chromosomal pairs by HiNT. A-D, Hi-C interchromosomal
heatmaps and 1D coverage in original K562(left), background (middle),
and adjusted K562 (K562/Background, right) data. Hi-C 1-D profiles (the
sum of rows and columns of each inter-chromosomal interaction matrix)
are shown along with the interaction maps. Figure S15. Breakpoint de-
tection and filtering. A, Candidate breakpoints (gray lines) detected by
strucchange based on the 1D coverage profile (sum of rows and col-
umns). Two-dimensional Cartesian coordinate systems originating from
the intersection of each pair of candidate breakpoints are constructed;
two examples are shown in the figure. B, Patterns of Hi-C interaction fre-
quencies in four 5-bin-by-5-bin quadrants, that generated by the pair of
breakpoints from both chromosomes. Valid translocation breakpoints are
shown above the dash line, and invalid breakpoints are shown below. C,
Translocation breakpoints (red dotted lines) after the filtering step. Figure
S16. Examples of the small segment inter-chromosomal insertional trans-
location that is detected from only WGS. A, The distribution of discordant
reads and clipped reads around the translocation breakpoints detected
from WGS on chr1 and chr17 (upper); Hi-C interaction heatmap across
the whole chromosomes (bottom left) and regions around breakpoints
(bottom right). B, Similar to A, but the translocation between chr3 and
chr10. In the IGV screenshot (WGS reads distribution), each color bar rep-
resents a SNV (single nucleotide variant), and the colored reads are paired
end reads coded by the chromosome on which their mates can be
found. The color code for discordant reads is shown at the bottom. Fig-
ure S17. Examples of the complex SVs. A, The distribution of discordant
reads and clipped reads around the translocation breakpoints detected
from WGS on chr3 and chr9 (upper); Hi-C interaction heatmap across the
whole chromosomes (bottom left) and regions around breakpoints (bot-
tom right). B, Similar to A, but the translocation between chr3 and chr12.
In the IGV screenshot (WGS reads distribution), each color bar represents
a SNV (single nucleotide variant), and the colored reads are paired end
reads coded by the chromosome on which their mates can be found.
The color code for discordant reads is shown at the bottom. Figure S18.
Examples of the false positives that identified from WGS data. A, The dis-
tribution of discordant reads and clipped reads around the translocation
breakpoints detected from WGS on chr17 and chr20 (upper); Hi-C inter-
action heatmap across the whole chromosomes (bottom left) and re-
gions around breakpoints (bottom right). B, Similar to A, but the
translocation between chr19 and chr20. In the IGV screenshot (WGS reads
distribution), each color bar represents a SNV (single nucleotide variant),

and the colored reads are paired end reads coded by the chromosome
on which their mates can be found. The color code for discordant reads
is shown at the bottom. Figure S19. HiNT outperforms existing methods
on translocation breakpoints detection in both simulated and real Hi-C
data. A, The overlap of translocation breakpoints detected by HiNT and
simulated true set. B, Hi-C interaction heatmap for the breakpoint that
was missed by HiNT, the sum of rows and columns are shown along the
matrix. C, The overlap of translocation breakpoints detected by HiCtrans
and simulated true set. D-E, Evaluation of the performance of HiNT (red
curve), HiCtrans (navy curve), and hic_breakfinder (purple curve) on trans-
located chromosome pairs prediction in K562, LNCaP, PANC-1, and T47D
cells by ROC curves (D) and precision-recall curves (E). P-values (see
Methods) for the AUC comparison between HiNT and HiCtrans/OneD are
labeled in the figures. F, Intersections of the translocation breakpoints de-
tected by Meerkat and Delly from WGS, and HiNT, HiCtrans and hic_-
breakfinder from Hi-C.

Additional file 2: Table S1. Datasets used in this study.

Additional file 3: Table S2. Translocation breakpoints detected by
both Meerkat and Delly.

Additional file 4: Table S3. Translocation breakpoints identified by
both Hi-C and WGS.

Additional file 5: Table S5. Translocation breakpoints identified by
HiNT in K562 cells.

Additional file 6: Table S5. Details of breakpoints between chr3 and
chr18.

Additional file 7: Review history.
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