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Abstract
Many differential gene expression analyses are conducted with an inadequate number of biological replicates. We
describe an easy and effective RNA-seq approach using molecular barcoding to enable profiling of a large number of
replicates simultaneously. This approach significantly improves the performance of differential gene expression
analysis. Using this approach in medaka (Oryzias latipes), we discover novel genes with sexually dimorphic expression
and genes necessary for germ cell development. Our results also demonstrate why the common practice of using
only three replicates in differential gene expression analysis should be abandoned.
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Identification of differentially expressed genes (DEGs)
is a fundamental step for many biomedical studies.
The advent of RNA-sequencing technology ushered in a
new era for DEG discovery. Single-cell RNA-sequencing
has emerged as a powerful tool to achieve this end.
However, due to the technical difficulties and the high
cost associated with single-cell technologies, bulk RNA-
sequencing remains themost popular approach fordifferential
expression (DE) analysis in many biomedical fields. For
example, 2 widely used algorithms for DE analysis, edgeR
[1] and DESeq2 [2], have been cited over 10,000 times.
Analysis with inadequate replicates affects the accu-

racy and has the potential to invalidate many conclu-
sions arrived at in such a manner. Biostatisticians have
long encouraged the use of more biological replicates
to achieve sufficient statistical power to call DEG cor-
rectly [3–6]. Nevertheless, many biologists are unaware of
the appropriate number of replicates required to reach a
threshold level of statistical power. We roughly estimated
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the replicate number commonly employed in publicly
released studies. From NCBI GEO (Gene Expression
Omnibus) database, we extracted 1,167 expression profil-
ing studies which cited edgeR or DESeq2 and named the
associated samples like “rep1” or “replicate 1” etc., which
enabled us to estimate the replicate number used. From
these studies, we found 39% of studies using only two
replicates, 43% using three replicates, and only 18% using
four or more replicates. The median replicate number
was 3 (Additional file 1: Fig. S1). At this level of replication,
only the most strongly changing gene can be identified.
Our approximate estimation showed that presently most
studies are underpowered to detect significant differences
at a biologically meaningful level. Considering the wide
application of DE analysis, the number of underpowered
studies is surprisingly large.
This fundamental problem could be due to limita-

tions of current bulk RNA-sequencing profiling methods,
including relatively high cost and complex processing,
which prevents researchers from using adequate repli-
cates. For example, the cost and time needed to profile
several dozens of samples would impose significant cost
constraints on most research projects. Another scenario
is that samples to be profiled are diminutive. To meet the
requirement of the quantity of input RNA for the sequenc-
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ing, researchers have to pool multiple samples together,
which constrains the usable sample number even further.
Therefore, the lack of practical experimental approaches
prevents biologists from employing adequate replicates to
achieve sufficient power in DEG discovery studies.
DNA barcode technology provides a solution to the

problem. The capacities of current sequencing platforms
greatly exceed the requirements of most single experi-
ments. Therefore, various strategies of library multiplex-
ing have been developed. For example, with Illumina
TruSeq RNA technology, each library is processed indi-
vidually and tagged with a short DNA barcode in a late
step (ligate adapters), and a few dozens of libraries could
be sequenced simultaneously in a single run. Most RNA-
seq technologies are compatible with this late multiplex-
ing strategy.
In recent years, single-cell RNA-seq (scRNA-seq) tech-

nologies have been developed rapidly. Some full-length
scRNA-seq technologies (e.g., Smart-seq2 [7]) process
each cell and tag each library individually in a late step
(library amplification). Many other scRNA-seq technolo-
gies (e.g., STRT-seq [8], MARS-seq [9], Drop-seq [10],
Cel-seq2 [11], Seq-well [12], Microwell-seq [13], and
SPLiT-seq [14]) add barcodes from the early step (reverse
transcription), then pool all samples together for the
downstream processing. Since the barcodes are added
before fragmentation, only one end of the transcript can
be tagged. Thus, this early multiplexing strategy sacrifices
the information of full-length transcripts while it enor-
mously minimizes the library construction labor and cost
and increases the multiplexity to the level of thousands or
even more.
In addition to the use of DNA barcode to identify dif-

ferent samples/cells, another type of barcode termed as
the unique molecular identifier (UMI) was also devel-
oped [15, 16]. A short random sequence is added to each
cDNA molecule during reverse transcription, and quan-
tification of transcripts is achieved by counting the num-
ber of distinct UMIs instead of by counting the number
of reads. This method significantly reduced the inherent
noise introduced by the PCR amplification and improved
the accuracy of quantification.
A few methods have adopted these barcoding tech-

nologies to bulk RNA-seq samples. SCRB-seq [17] was
originally developed for single-cell analysis, which adds
both cell barcodes and UMIs to cDNAs by early mul-
tiplexing, then specifically enriches 3′ fragments for
gene expression quantification. This method was used
in bulk RNA-seq analysis in several studies and then
was further optimized to form an approach called
BRB-seq [18]. By 3′ end barcoding and enrichment,
BRB-seq is able to produce dozens of libraries at a
very low cost, which showed great potential for DE
analysis.

The major problem of BRB-seq is that its library
structure makes the sequencing difficult. Nucleotide
diversity is important for the generation of high-quality
data. BRB-seq libraries contain a poly(T) stretch
introduced by the reverse transcription primer. Sequenc-
ing through such a low diversity region typically yields
poor read qualities [19]. There are three ways to deal
with this problem. The first is to adjust the read length to
avoid the poly(T) stretch. The BRB-seq study used this
way, and the read1 sequencing was set to 6–21 cycles.
However, this adjustment will affect the entire flow cell,
which means that users have to devote the entire flow
cell for BRB-seq libraries. The sequencing cost of a flow
cell is prohibitive for most users. The second solution
is to add the PhiX control library as spike-in to provide
enough sequence complexity to cover the poly(T) stretch.
However, BRB-seq uses a customized read1 primer which
cannot sequence the PhiX control and other standard
Illumina libraries. The third solution is simply devoting
the entire lane for BRB-seq libraries without the PhiX
control and bearing the low quality of reads. In short,
although BRB-seq showed its high multiplexing capacity
to reduce the library construction cost, it is technically
challenging or expensive to sequence the libraries. To our
knowledge, there is currently still no practical approach
to achieve early multiplexing for bulk RNA-seq with low
cost of both library construction and sequencing.
To address this issue, here, we describe a practical

approach Decode-seq (Differential Expression analysis by
barCODEd SEQuencing) to overcome the current limi-
tations and enable more accurate DEG discovery. This
approach is technically simple, is compatible with stan-
dard sequencing settings, and significantly reduces the
cost of both library construction and sequencing. With
the high number of replicates, it dramatically improved
sensitivity and reduced the false discovery rate. We
applied this method in analyzing medaka fish at the early
stage of sex determination and discovered multiple novel
sexually dimorphically expressed genes, some of which are
required for germ cell development.
Decode-seq adopts both sample barcode and molec-

ular barcode in bulk RNA-seq for the DEG discovery
purpose. During the reverse transcription, a fragment
containing a unique sample identifier (USI) and a unique
molecule identifier (UMI) is added to the 3′ end of the
first-strand cDNA corresponding to the 5′ end of the
transcript using the template switch method (Additional
file 1: Fig. S2). With these identifiers, a large number
of samples can be mixed into one pool and processed
for library construction. After the tagmentation step, the
fragments containing UMI, USI, and 5′ end of the tran-
script are enrich by PCR and sequenced using the Illu-
mina platform. Thus, USIs carry the sample identification
and enable multiplexing; UMIs carry the origin cDNA
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molecule identification and enable amplification of a small
amount of starting material without severe quantifica-
tion bias; 5′ end sequencing avoid the poly(T) stretch
of the reverse transcription primer which causes base
calling difficulty. In addition, 5′ end instead of full-length
sequencing also reduce the number of reads needed.
The Decode-seq libraries can be sequenced with stan-
dard Illumina sequencing primers. Therefore, it can be
sequenced together with any common libraries, without
the requirement of dedicating the entire lane or flow cell.
Altogether, these designs significantly reduce the time and
cost required for profiling a large number of samples.
For example, in this study, 30 samples were profiled in 1
Decode-seq library, which reduced the library construc-
tion cost to about 5%; sequencing depth was also reduced
to about 10–20% (6M vs. 30–60M); in total, the cost of

library preparation and sequencing is reduce to about
10–15%.
We first evaluated the performance of Decode-seq

using human/mouse RNAmixtures of known fold change.
Sample mix5 was human RNA containing 5% mouse
RNA, while mix1 was human RNA containing 1% mouse
RNA. Thus, the difference of mouse genes between two
sample mixes was fivefold. Each mix was profiled 30 times
at the 100 ng level. Reads were processed by customized
scripts (Supplementary Data). DE analysis was performed
with edgeR. As we knew all mouse genes were true DEGs
and all human genes were not, we can calculate sensi-
tivity, specificity, and all other performance statistics of
DE callings with different numbers of replicates. For the
statistics to be comparable, we fixed the specificity (per-
centage of human genes which were called non-DE) at

Fig. 1 Performance evaluation of Decode-seq. a Differential expression analysis with 3 pairs of replicates. True positive (TP, red dots), mouse genes
which were called DE; false negative (FN, orange dots), mouse genes which were called non-DE; true negative (TN, gray dots), human genes which
were called non-DE; false positive (FP, blue dots), human genes which were called DE. Specificity = TN/(TN + FP), and it was fixed to 95% in all
calculation. Sensitivity = TP/(TP + FN). False discovery rate = FP/(TP + FP). b DE analysis with 30 pairs of replicates. The sensitivity increased to 95.1%,
and the false discovery rate dropped to 14.2%. c DE performance related to replicate number calculated by random downsampling of 30-pair data.
Each replicate number was calculated 100 times. Sensitivity and false discovery rate were improved dramatically when the number of replicates
increased. d Spearman’s correlations among replicates of Decode-seq and BRB-seq. Each replicate was compared with all other replicates of
Decode-seq and BRB-seq, respectively. The distribution of these correlations was shown as the box for each replicate. In the Decode-seq group,
replicate has higher correlations with each other, indicating the higher reproducibility. e DE performance of Decode-seq and BRB-seq. Bars in three
colors represent DE performance of three sets: Decode-seq, BRB-seq with the same filter parameters as Decode-seq, and BRB-seq with the same
total gene as Decode-seq. When using the same filter parameters, BRB-seq detected fewer genes. When using loose filter parameters to ensure the
same total gene, BRB-seq gave a lower sensitivity
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the same level (95%), then calculated the sensitivity (per-
centage of mouse genes which were called DE) and false
discovery rate (percentage of human genes in all identified
DEGs) with replicates downsampled from 30 to 2 pairs.
As illustrated in a calculation using 3 pairs of replicate
(Fig. 1a), the sensitivity is 31.0% as only 1372 (red dots)
out of 4432 mouse genes (1372 red and 3060 orange dots)
were identified as DEGs, while the false discovery rate was
as high as 33.8%, as out of 2072 recognized DEGs (1372
red and 700 blue dots), 700 were human genes (blue dots).
When the replicate number increased to 30, measure-
ments of human and mouse genes were clearly separated
(Fig. 1b). The sensitivity dramatically increased to 95.1%,
and the false discovery rate dropped to 14.2%. The calcula-
tion was repeated 100 times for each number of replicates,
and the results clearly showed the trends that the perfor-
mance was greatly improved when more replicates were
used (Fig. 1c). This conclusion is consistent with previous
studies [3–6].
We downsampled the sequencing depth and found that

5.9M reads per sample was good for the purpose of this
experiment (Additional file 1: Fig. S3). The sequencing
depth should be determined on different purposes, for
example, if detection of rare transcripts is required, more
reads are needed to ensure the saturated UMI counts. We
also tested this approach in threefold difference scenario
(Additional file 1: Fig. S4) or lower input scenario (10 ng
and 1 ng level) (Additional file 1: Fig. S5). It consistently
improved the DE performance in all situations. In brief,
Decode-seq is able to profile 30 pairs of biological repli-
cates thus dramatically improved the DE performance at
much less cost.
We also compared the performance of Decode-seq and

BRB-seq. As discussed above, the structure of BRB-seq
library is not compatible with standard Illumina sequenc-
ing conditions. Users have to either devote the entire
flow cell and adjust the sequencing cycles to ensure high-
quality reads, or devote one lane and use the customized
primer but bear the low-quality reads. The BRB-seq study
used the former strategy. Due to the prohibitive cost of
using an entire flow cell, we did not compare two meth-
ods this way. Instead, we used the latter strategy, which
cannot generate high-quality reads but is more practical
for most labs. As expected, the read quality was adversely
affected by the poly(T) repeats (Additional file 1: Fig. S6).
Correspondingly, the mapping rate was only 65% while
that of Decode-seq was 80%. We calculated the Spearman’s
correlation coefficients between each replicate and all
other replicates in the groups of Decode-seq and BRB-
seq, respectively (Fig. 1d, Additional file 1: Fig. S7). The
result showed that the correlations among BRB-seq repli-
cates were lower than those of Decode-seq, indicating a
lower reproducibility. In the comparison of DE perfor-
mance (Fig. 1e, Additional file 1: Fig. S8), when the same

filter parameters of edgeR were used, BRB-seq detected
fewer genes than Decode-seq (16,112 vs. 18,425). If we
loosed the filter parameters to ensure the same total num-
ber of genes detected, BRB-seq showed lower sensitivity
(86.9% vs. 95.1%). In short, with standard sequencing set-
tings, BRB-seq generated reads with poor quality, which
further reduced the performance of DE analysis. Decode-
seq uses standard sequencing primers and contains no
low diversity poly(T) repeats. Therefore, users do not
have to devote the entire flow cell or lane, which signifi-
cantly reduced the sequencing cost and make the experi-
ment design flexible. In fact, we routinely sequenced the
Decode-seq libraries with only 10% lane per library for the
quality control purpose. However, Decode-seq is 5′ based
and uses the template switching mechanism which biases
towards full-length cDNA molecules. BRB-seq is 3′ based
and uses the nick translation mechanism. Therefore, if
these are the concerns and customized sequencing is not
an issue, BRB-seq is an attractive alternative solution to
achieve multiplexing.
Next, to test the applicability of Decode-seq, we sought

to apply Decode-seq to address a real biological question.
Sex determination is an essential step in the fate decisions
of germ cells. Medaka (Oryzias latipes), a small egg-laying
freshwater teleost, is an important model organism for
studying vertebrate sex determination [20]. Several key
factors controlling medaka sex determination are known,
including DMY [21], gsdf [22], foxl2 [23], and foxl3 [24].
However, the cohort of genes involved in this process is
largely unknown. It was reported that the first appear-
ance of morphological sex difference in medaka is the
difference in the number of germ cells, as these cells in
female undergo a rapid proliferation while they remain
quiescent in male. At stage 39 (just hatching), the average
numbers of germ cells in male and female are about 80
and 120 [25]. Therefore, DEGs at this stage are expressed
differentially in only a few hundred cells (germ cells and
somatic gonadal cells) per fish. It is a great challenge to
correctly identify DEGs between male and female at this
stage. Using Decode-seq, we profiled gene expression of
30 male fry and 30 female fry (Fig. 2a). Top 300 highly sex-
ually dimorphically expressed genes ranked by adjusted p
values were selected for further analysis (Additional file 2:
Table S1). One hundred twenty-one genes in male and
179 genes in female were identified as DEGs, including
gsdf and foxl3. Some known markers (e.g., DMY, foxl2)
are expressed at low levels. Although these genes showed
clear dimorphic expression in the data, they do not fall
into the top 300 list. We selected 25 genes based on the
expression, gene structure, and functional clues from this
top 300 list for further study. In the qPCR validation
(Fig. 2b), 20 (80%) of them were confirmed to be signifi-
cantly differentially expressed. We did the downsampling
analysis similar to the human/mouse RNA experiment,
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Fig. 2 Differential gene expression analysis of sex determination of medaka. a Expression profiling of 30 pairs of medaka male/female fry with
Decode-seq. Top 300 genes were color coded. Blue dots, genes expressed higher in male; red dots, genes expressed higher in female; black circled
dots, known genes with dimorphic expression. b qPCR validation of identified DEGs, including 4 known markers and 25 novel DEGs. Error bar: SE. *p
< 0.05, **p < 0.01. c Sample size downsampling shows much fewer DEGs would be identified with fewer replicates. d Hybridization chain reaction
validation of cd74a. Green signal: vasa, expressed in germ cells; red signal: sox9b, expressed in somatic cells; blue signal: cd74a, expressed in germ cells.
Scale bar: 10 μm. e–h Functional validation of ENSORLG00000007290 using genetic knockout. Medaka fry at stage 39 (hatching) was used. Arrows
indicate the GFP-labeled germ cells. Scale bar, 100 μm. eWild-type female fry, a cluster of germ cells with strong GFP signal are visible. fMutant
female fry, germ cells are barely visible. gWild-type male fry, a cluster of germ cells are visible. hMutant male fry, germ cells are largely depleted

and the conclusion was the same: much fewer genes could
be identified with fewer replicates (Fig. 2c). Further, we
used in situ hybridization chain reaction (HCR) [26] to
check the cellular location of cd74a, a novel DEG (Fig. 2d).
The expression of this gene co-localized with the germ
cell marker vasa, instead of the somatic cell marker sox9b.
This indicates cd74a is specifically expressed in germ cells.
The dimorphic expression pattern of cd74a is consistent
with the dimorphic different number of germ cells. In
fact, Decode-seq also identified the germ cell marker vasa
as a DEG in the top 300 list. Lastly, we knocked out a
novel DEG (ENSORLG00000007290) using a rapid knock-
out method to generate F0 mutants [27, 28]. The mutant
showed severe germ cell depletion (Fig. 2e–h, Additional
file 1: Fig. S9), which indicates that this gene is required
for germ cell development. Briefly, Decode-seq was able
to identify novel genes with differential expression and
potential key functions in very challenging scenarios.
The salient features of Decode-seq are as follows: (1)

multiplexing—a large number of samples can be mixed in
one library, which significantly reduces the time and cost
of library preparation; (2) high sensitivity—trace amounts

of RNA can be profiled, and therefore, small tissue sam-
ples can be analyzed without being pooled together; (3) 5′
cDNA end enrichment—this greatly reduces sequencing
depth required compared to the full-length sequencing
and overcomes the difficulty of 3′ end sequencing; and (4)
compatible with standard Illumina sequencing settings—
it does not require customized sequencing cycle numbers
or primers, so users do not have to devote the entire
flow cell or lane for sequencing. This feature significantly
reduces sequencing cost. Given the high performance
and low cost associated with this approach, we antici-
pate Decode-seq to be widely used to improve differential
gene expression analysis in many instances where, for one
reason or another, the single-cell analysis is not possi-
ble or affordable. Despite biostatisticians’ longtime appeal
of using more replicates to achieve sufficient statistical
power, it is still very common to employ only two or three
replicates. Here, we described an easy and effective exper-
imental approach for DEG discovery. Depending on the
purpose of studies and resources available, researchers
could use either 5′-basedDecode-seq or 3′-based BRB-seq
to achieve multiplexing. Unless samples are precious, full-
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length sequencing is necessary, or underpower is not an
issue, there are few reasons to use inadequate replicates.
Therefore, we appeal that the common practice of using
three replicates in differential gene expression analysis
should be avoided if possible.
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