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Abstract

To understand diversity in enormous collections of genome sequences, we need computationally scalable tools
that can quickly contextualize individual genomes based on their similarities and identify features of each genome
that make them unique. We present WhatsGNU, a tool based on exact match proteomic compression that, in
seconds, classifies any new genome and provides a detailed report of protein alleles that may have novel functional
differences. We use this technique to characterize the total allelic diversity (panallelome) of Salmonella enterica,
Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Staphylococcus aureus. It could be extended to others.
WhatsGNU is available from https://github.com/ahmedmagds/WhatsGNU.

Keywords: S. enterica, S. aureus, P. aeruginosa, M. tuberculosis, Panallelome, Pangenome, Compression, Microbial
genomics, blastp

Introduction
With vastly reduced sequencing costs and the exponen-
tial growth of public genomic databases, scalable tools
are needed to categorize and classify new sequences and
measure genomic novelty [1]. Currently, 30 of the
microbial species in NCBI have more than 1000 assemblies
each, and the top 7 have more than 10,000 assemblies
each [2].
Traditional methods for identifying new polymor-

phisms in a genome rely on a single reference sequence
for comparison, an approach that is limited because it
can only describe differences from the reference and
cannot tell whether the identified polymorphisms are
rare or widespread in the natural variation of the species.
The use of multiple references might still ignore known
variation, and using the entire database of available
reference genomes becomes computationally intractable
as databases grow.

One way to compress the information in large data-
bases is to eliminate copies of redundant sequences that
are exactly the same while retaining information about
the genomes in which they are found, reducing data-
bases to a fraction of their original size. Importantly, this
method can also yield a simple count of the number of
exact protein sequence matches (100% identity and
coverage) for any given protein allele in the database.
This simple count, which we call the gene novelty unit
(GNU) score, provides a useful metric that can be used
in multiple ways in comparative analysis, some of which
we demonstrate here. The GNU score for each protein
is inversely proportional to novelty. Proteins with a low
GNU score are infrequent in genomes in the database. A
GNU score of zero means that there is no match, the
first known allele of its kind. A high GNU score mean
that this allele is well represented in the database and is
likely to be a highly conserved protein. In essence, the
GNU score is of interest because it describes what we
“know” already about a protein variant across the entire
database; it can be used to gauge the novelty of a newly
observed allele and the overall amount of novelty in a
proteome.
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Several tools have been developed to assess genetic
variant frequencies in human genomic databases using
nucleotide sequences [3–8], but we are not aware of any
tools for either microbial or eukaryotic genomes that
assess protein allele frequency in public or private data-
bases by constructing a panallelome of an entire species.
We developed the WhatsGNU tool to quickly calculate

the GNU score for each protein across a genome and
provide a range of comparative graphs for publication
quality figures. With the addition of information about
the orthology of each allele, WhatsGNU can also be
used to link pangenomic and panallelomic analyses.

Results and discussion
The WhatsGNU toolbox is composed of four Python3 [9]
scripts that (1) download GenBank genomes, (2)
customize annotations with strain name and metadata, (3)
compress all protein sequences to unique alleles, and (4)
plot graphs of the results (Additional file 1). It accepts for
analysis protein FASTA files of genomes that are pro-
duced by annotation tools such as Prokka [10] and RAST
[11]. The database file could be derived from public data-
bases such as GenBank [12, 13] or new, unpublished data.
WhatsGNU can compress large bacterial genomic da-

tabases of 4000–10,000 genomes to nonredundant
panallelomes in less than 4 min on a standard laptop
processor. Two of the biggest available curated bacterial
collections, 43,913 genomes in Staphopia [14] and 216,
642 in Enterobase [15], took less than 20 min and 2.5 h,
respectively (Fig. 1a, b and supplementary Table 1).
Databases had approximately 20- to 190-fold compression
with no information loss.
To better understand the performance of WhatsGNU

compression with large numbers of genomes in the data-
base, we generated a collector’s curve of the Staphopia
database by randomly resampling the database and not-
ing the size of the compressed panallelome. The result-
ing curve never plateaus suggesting that there is
unsampled allelic diversity in S. aureus. Interestingly,
when compared to databases available at GenBank, Sta-
phopia shows higher numbers of unique alleles at similar
numbers of sampled genomes suggesting that the
GenBank database may have more sampling bias (Fig. 1c
and supplementary Table 2).
Once a compressed database is loaded, running a

WhatsGNU report on any new single genome takes less
than 1 s (Additional file 4). The detailed proteomic out-
put of WhatsGNU gives a GNU score for each protein
in the genome and any other appended metadata (Add-
itional file 4). Genomes can be batched for analysis, and
experiments on a single processor computer showed that
100 and 1000 S. aureus genomes could be analyzed by
WhatsGNU in 24 and 62 s, respectively, while blastp
[16] took 3 days to analyze one genome (Fig. 1d). The

numbers of exact matches reported by WhatsGNU were
identical to blastp (Additional files 1 and 4).
One potential limitation of the GNU score is that

completely “novel” variants may in fact be due to se-
quencing errors or incomplete assemblies that produce
truncated genes. In a test set of 16 S. aureus genomes of
varying quality, we noted a strong linear correlation
between the number of proteins with GNU score of zero
and the number of contigs for each assembly (P < 0.0001,
R2 = 0.9544, Fig. S1). This strong relationship suggests that
proteins with GNU = 0 should be treated cautiously,
with confirmatory sequencing if necessary, and that
WhatsGNU will perform best with high-quality se-
quences. Low, non-zero, GNU scores (e.g., 1–10) may
be less likely to be sequencing errors since they have
been sequenced in other genomes.
In addition to exact match compression and GNU score

reports, WhatsGNU offers several other features (Fig. 2a).
One such feature is the ability to quickly find the closest
match genomes from the database by reporting those that
have the highest numbers of exact matches to the query
genome. This could be useful for selecting closely related
genomes for reference-based comparisons and offers a
preliminary classification similar to a complete genome
multilocus sequence type. In a comparison with the
existing tool Mash [17], this functionality produced an
identical list of the top 10 genome hits, but WhatsGNU
was 2.5 times faster (Details in Additional file 1).
The GNU score can be a useful metric for comparative

genomic analysis that gives insight into the distribution
of allelic diversity across a genome. In the example
histogram (Fig. 2b, Fig. S2 and Additional file 4) of
proteins in a single genome, the first peak of 37 proteins
(GNU< 100) represents the potential novelty in the
genome of rarely seen variants, while the peaks around
GNU > 10,000 represent highly conserved proteins in
the species. The three peaks around GNU scores of
1200, 1900, and 5000 represent alleles shared with
specific clades or lineages (USA300, CC8, and CC5/CC8
genomes, respectively), suggesting that these groups are
overrepresented in the database.
WhatsGNU also offers the possibility of reporting the

composition of any metadata (e.g., geographical location,
disease condition, sequence type (ST), or clonal complex
(CC)) associated with exact match alleles in the database.
To demonstrate this functionality, we compared a gen-
ome of a clinical isolate of S. aureus to a CC/ST-curated
database. The WhatsGNU report outputs the percentage
of genomes from each CC/ST in the database where
each allele is seen. As examples, alleles of ArcB and
SbnD are shared by most of genomes in CC1/8/398 and
CC1/5/8, respectively, while the exact match of TraG is
more prevalent, proportionally, outside of CC8 (Fig. 2c,
Additional file 4).
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To extend the utility of WhatsGNU and to link it to
pangenomic analysis, we implemented functions that
can use information about the orthology of each allele in

each compressed, curated database. If WhatsGNU is
given information about orthology of each allele, (e.g.,
using the clustered_proteins output file from Roary

Fig. 1 Workflow and performance of WhatsGNU. a Workflow for the WhatsGNU tool and its compression technique. The tool starts by
compressing the database of proteins. The second step is to match each protein from a query genome to an exact match in the compressed
database. The final step is to produce a report with a GNU (Gene Novelty Unit) score for each protein. b Compressed Databases available in
WhatsGNU. c A collector’s curve expresses the number of exact matches (unique alleles) as a function of the number of genomes sequenced.
The size of the panallelome of available genomes of S. aureus on GenBank and Staphopia were compared. The 1000, 2000, 4000, 8524, 10,350,
20,000, and 30,000 genomes from the 43,914 S. aureus genomes available on Staphopia were randomly selected. The random sampling step was
done three times, independently. The error bars are shown in green. d Effect of the number of isolates on the running wall time of WhatsGNU
and blastp. Both WhatsGNU and blastp were used on a single CPU and 16 GB of RAM. The S. aureus database used for WhatsGNU was previously
processed and serialized using the Python3 pickle module. The time needed to find exact matches for each of the 2893 proteins of S. aureus
NCTC 8325 was noted for WhatsGNU and blastp. 1, 100, and 1000 copies of NCTC 8325 genome were used to evaluate the running time for
WhatsGNU. For blastp, to reduce computational costs, the running time of one NCTC 8325 genome was multiplied by 100 and 1000, respectively.
Running time would differ on desktops with different specifications. Blastp running time can be reduced by using multiple threads if more than
one CPU is available
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Fig. 2 Visualization methods of WhatsGNU. a Box showing some potential WhatsGNU uses and options. b A histogram of GNU scores of a
clinical-CC8-USA300 S. aureus genome “SSTI_179_1”. c Percentage of genomes of clonal complexes (CC) 5, 8, 22, 398,30, and 1 with an exact
match for three proteins, SbnD (staphyloferrin B export MFS transporter), TraG (Transfer complex protein), and ArcB (ornithine
carbamoyltransferase) from the same genome used in b. d A heatmap of GNU score for key components of the TCA cycle, the glycolytic
pathway, and terminal components of the electron transport chain in eighteen different clinical S. aureus isolates. Proteins are listed on the left
and isolates numbers on the bottom. In the case of annotated cells, ‘r’ refers to ortholog variant rarity index (OVRI) scores that are less than 0.045.
This can be interpreted as an indication that GNU scores this low or lower are very rare in this ortholog group. e Volcano plot showing proteins
with a lower average GNU score in a case group (atopic dermatitis) compared to a control group (soft and skin tissue infection). Proteins with
lower average GNU score in the AD case group of 18 CC8 S. aureus isolates are shown in red. Proteins with lower average GNU score in the SSTI
control group of 49 CC8 S. aureus isolates are shown in green. The P value is from a Mann–Whitney–Wilcoxon test. A second volcano plot with Y-
axis as OVRI is shown in supplementary figure 3. Example WhatsGNU reports are in the supplementary data
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[18]), it can then be used to compare GNU scores of
alleles in the same orthologous group, linking panallelo-
mic and pangenomic approaches with known database
distributions and frequencies. This functionality can be
used to judge whether or not a GNU score is unusual
for an orthologous group (see further ortholog variant
rarity index in Additional file 1). In Fig. 2, we provide
some examples of possible applications of the GNU
score for genomic and comparative analysis. One basic
approach is to compare GNU scores of alleles that are
associated with different biological variables [19]. The
heatmap in Fig. 2d shows GNU scores for key compo-
nents of the TCA cycle, glycolytic pathway, and electron
transport chain in 18 different clinical S. aureus isolates
from atopic dermatitis (AD) and skin and soft tissue in-
fection (SSTI). This type of analysis could uncover dif-
ferences between groups in user-specified proteins. For
instance, there are approximately two times the number
of proteins with rare alleles in AD compared to SSTI,
perhaps showing novel adaptations in the AD group.
Interestingly, high GNU scores show that enolase (Eno)
is highly conserved in all isolates, while fumarase
(FumC) has more diversity/novelty across genomes,
which may signal that FumC is less constrained evolu-
tionarily, and a candidate for possible positive, or relaxed
negative, selection. Stark contrasts between GNU scores
may signal adaptation or change in function in an indi-
vidual strain. For instance, SdhA appears to be strongly
conserved over the database, and yet isolate number
228_42 has a rare allele with low GNU score.
WhatsGNU can be used for targeted analyses (Fig. 2c,

d) and also untargeted (Fig. 2b, e) approaches. Figure 2e
and Fig. S3 show volcano plots where two groups of S.
aureus isolates were compared from patients with AD
(n = 18) and SSTI (n = 49) to find proteins with lower
average GNU scores in one group that might represent
specific adaptations to the clinical context. This tech-
nique uncovered multiple potential genes of interest. For
instance, the glutamate dehydrogenase (GudB or GluD)
protein that has been implicated in growth in niches
where glucose is not as abundant such as SSTI [20], has
a lower average GNU score in SSTI isolates compared to
AD. Conversely, the MHC class II analog protein, Map,
had a lower average GNU score in AD isolates. This
gene has a premature stop codon in all of the SSTI
isolates and is fully intact in 6 of the AD isolates. A pre-
vious study showed that Map is an immunomodulatory
protein that may play a role in persistent S. aureus infec-
tions by reducing activated T cell proliferation [21].

Conclusion
WhatsGNU leverages natural variation in existing public
databases to give context to newly sequenced genomes
and protein sequences. The GNU score measures known

protein diversity and conservation, identifies the closest
matching genomes, and assays for protein novelty. In a
matter of seconds on a desktop computer, WhatsGNU
will identify completely new sequence variants (GNU
score 0), as well as rare protein variants that have been
observed only a few times before (low GNU scores).
Thus, the GNU score is a convenient way to highlight
rare protein variants for targeted functional studies, and
to identify possible novel mutations or adaptations.

Methods
Genomes were downloaded for S. aureus, P. aeruginosa,
and M. tuberculosis databases from GenBank [12, 13]
using WhatsGNU_get_GenBank_genomes.py, annotated
using Prokka [10] and the pangenome was done using
Roary [18]. For each species, the proteins of each genome
were curated with the strain name, and metadata (CC/ST
type) in case of S. aureus, and concatenated to one
file using WhatsGNU_database_customizer.py. The
concatenated file was then used with WhatsGNU_
main.py.
Eighty clinical S. aureus isolates from an ongoing project

(Additional file 5) were used to produce the volcano plot,
heatmap, and a single query genome to produce a histo-
gram of GNU scores and to show CC composition using
WhatsGNU_plotter.py. A total of 16 isolates from the
same project were used to evaluate the effect of sequence
quality on GNU= 0 associated error rate. NCTC8325 was
used to evaluate the running time of WhatsGNU against
blastp [16]. Detailed methods are in Additional file 1.
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1186/s13059-020-01965-w.
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and 3.

Additional file 2: Table S1. Names of the different strains in the five
databases. (XLSX 3836 kb)

Additional file 3: Table S2. Names of the different strains used in the
collector’s curve in Fig. 1c.
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