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Abstract

Background: Many genome-wide collections of candidate cis-regulatory elements (cCREs) have been defined using
genomic and epigenomic data, but it remains a major challenge to connect these elements to their target genes.

Results: To facilitate the development of computational methods for predicting target genes, we develop a
Benchmark of candidate Enhancer-Gene Interactions (BENGI) by integrating the recently developed Registry of
cCREs with experimentally derived genomic interactions. We use BENGI to test several published computational
methods for linking enhancers with genes, including signal correlation and the TargetFinder and PEP supervised
learning methods. We find that while TargetFinder is the best-performing method, it is only modestly better than a
baseline distance method for most benchmark datasets when trained and tested with the same cell type and that
TargetFinder often does not outperform the distance method when applied across cell types.

Conclusions: Our results suggest that current computational methods need to be improved and that BENGI
presents a useful framework for method development and testing.
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Background
With the rapid increases in genomic and epigenomic data
in recent years, our ability to annotate regulatory elements
across the human genome and predict their activities in
specific cell and tissue types has substantially improved.
Widely used approaches integrate multiple epigenetic sig-
nals such as chromatin accessibility, histone marks, and
transcribed RNAs [1–7] to define collections of regulatory
elements that can be used to study regulatory programs in
diverse cell types and dissect the genetic variations associ-
ated with human diseases [5, 8–11].
To maximize the utility of regulatory elements, one

must know which genes they regulate. We recently
developed the Registry of candidate cis-Regulatory ele-
ments (cCREs), a collection of candidate regulatory
genomic regions in humans and mice, by integrating
chromatin accessibility (DNase-seq) data and histone
mark ChIP-seq data from hundreds of biosamples

generated by the ENCODE Consortium (http://screen.
encodeproject.org). Over 75% of these cCREs have
enhancer-like signatures (high chromatin accessibility as
measured by a high DNase-seq signal and a high level of
the enhancer-specific histone mark H3K27ac) and are
located distal (> 2 kb) to an annotated transcription start
site (TSS). For cCREs proximal to a TSS, it may be safe
to assume that the TSS corresponds to the target gene,
but to annotate the biological function of the TSS-distal
cCREs and interpret the genetic variants that they har-
bor, we need to determine which genes they regulate.
Assigning enhancers to target genes on a genome-

wide scale remains a difficult task. While one could
assign an enhancer to the closest gene using linear
distance, there are many examples of enhancers skipping
over nearby genes in favor of more distal targets [12].
Experimental assays such as Hi-C and ChIA-PET survey
physical interactions between genomic regions [13–17],
and by overlapping the anchors of these interactions
with annotated enhancers and promoters, we can infer
regulatory connections. Approaches based on quantita-
tive trait loci (QTL) associate genetic variants in
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intergenic regions with genes via the variation in their
expression levels across multiple individuals in a human
population [18, 19]. Recently, a single-cell perturbation
approach extended this idea [20]. However, these assays
are expensive to perform and have only been conducted
at a high resolution in a small number of cell types.
Therefore, we need to rely on computational methods to
broadly predict enhancer-gene interactions.
One popular computational method for identifying

enhancer-gene interactions is to correlate genomic and
epigenomic signals at enhancers and gene promoters
across multiple biosamples. This method is based on the
assumption that enhancers and genes tend to be active
or inactive in the same cell types. The first study to
utilize this method linked enhancers with genes by cor-
relating active histone mark signals at enhancers with
gene expression across nine cell types [1]. Several groups
subsequently used similar approaches to link enhancers
and genes by correlating various combinations of DNase,
histone mark, transcription factor, and gene expression
data [8, 21–23]. While these methods successfully identi-
fied a subset of biologically relevant interactions, their
performance has yet to be systematically evaluated.
Other groups have developed supervised machine-

learning methods that train statistical models on sets of
known enhancer-gene pairs. Most of these models use
epigenomic signals (e.g., histone marks, TFs, DNase) at
enhancers, promoters, or intervening windows as input
features [24–27]. PEP-motif, on the other hand, uses
sequence-based features [28]. The performance of these
methods has not been systematically evaluated for sev-
eral reasons. First, different methods use different defini-
tions for enhancers ranging from EP300 peaks [26] to
chromatin segments [27]. Second, these methods use
different datasets to define their gold standards, such as
ChIA-PET interactions [24, 26] or Hi-C loops [26, 27],
along with different methods for generating negative
pairs. Finally, many of these methods use a traditional
randomized cross-validation scheme, which results in
severe overfitting of some supervised models due to
overlapping features [29, 30].
To facilitate the development of target gene prediction

methods, we developed a collection of benchmark
datasets by integrating the Registry of cCREs with
experimentally derived genomic interactions. We then
tested several published methods for linking enhancers
with genes, including signal correlation and the super-
vised learning methods TargetFinder and PEP [27, 28].
Overall, we found that while TargetFinder was the best-
performing method, it was only modestly better than a
baseline distance method for most benchmark datasets
when trained and tested on the same cell type, and
Target Finder often did not outperform the distance
method when applied across cell types. Our results

suggest that current computational methods need to be
improved and that our benchmark presents a useful
framework for method development and testing.

Results
A Benchmark of candidate Enhancer-Gene Interactions
(BENGI)
To effectively evaluate target gene prediction methods,
we curated a Benchmark of candidate Enhancer-Gene
Interactions (BENGI) by integrating our predicted
enhancers, cCREs with enhancer-like signatures (cCREs-
ELS), with 3D chromatin interactions, genetic interac-
tions, and CRISPR/dCAS9 perturbations in a total of 21
datasets across 13 biosamples (Fig. 1a, Additional file 1:
Tables S1 and Additional file 2: Table S2a). For 3D
chromatin interactions, which include ChIA-PET, Hi-C,
and CHi-C interactions, we selected all links with one
anchor overlapping a distal cCRE-ELS and the other an-
chor falling within 2 kb of a GENCODE-annotated TSS
(Fig. 1b, see “Methods”). For approximately three quar-
ters of the total interactions, the anchor of the 3D
chromatin interaction overlaps the proximal region of
more than one gene, making the assignment of the exact
gene target ambiguous. To assess the impact of these
potentially ambiguous assignments, we created two
versions of each 3D interaction benchmark dataset. In
the first, we retained all cCRE-gene links; in the second,
we removed links with ends within 2 kb of the TSSs of
multiple genes (i.e., ambiguous pairs). For genetic inter-
actions (cis-eQTLs) and CRISPR/dCas9 perturbations
(crisprQTLs), we paired a cCRE-ELS with a gene if the
cCRE overlapped the reported SNP or targeted region
(Fig. 1b). In total, we curated over 162,000 unique
cCRE-gene pairs across the 13 biosamples. Because these
experimental datasets capture different aspects of
enhancer-gene interactions (see statistical analyses in the
next section), we retained the cCRE-gene pairs as separ-
ate datasets in BENGI.
To complement the positive cCRE-gene pairs in each

BENGI dataset, we generated negative pairs for each
cCRE-ELS by selecting all unpaired genes whose TSS
was located within (either upstream or downstream) the
95th percentile distance from all positive cCRE-gene
pairs in the dataset (Additional file 2: Table S2a, see
“Methods”). These distance cutoffs ranged from 120 kb
(RNAPII ChIA-PET in HeLa) to 1.83Mb (Hi-C in
K562). The percentages of positive pairs also varied from
1.8% (Hi-C in K562) to 23.5% (CHi-C in GM12878), and
datasets with greater class imbalance (i.e., a smaller
percentage of positive pairs) are inherently more chal-
lenging for a computational algorithm. To enable the
comparison of algorithm performance across datasets,
we further created datasets with a fixed ratio of one
positive to four negatives for each BENGI dataset by
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randomly discarding the excess negatives. This strategy,
along with the previously mentioned removal of ambigu-
ous 3D chromatin interaction pairs, resulted in four
BENGI datasets per ChIA-PET, Hi-C, or CHi-C experi-
ment and two BENGI datasets per eQTL or crisprQTL
experiment (Fig. 1c, Additional file 2: Table S2a). All
pairs with a natural positive-negative ratio were used in
our analyses unless otherwise noted.
To facilitate the training and testing of supervised

machine-learning algorithms, we then assigned both
positive and negative pairs to 12 cross-validation

(CV) groups by chromosome such that pairs within
the same chromosome were always assigned to the
same CV group, while similar sizes were maintained
for different CV groups by pairing one large
chromosome with one small chromosome (chromCV,
see “Methods”, Fig. 1d). Because GM12878 and other
lymphoblastoid cell lines (LCLs) had the most
BENGI datasets and have been extensively surveyed
by the ENCODE and 1000 Genomes Consortia, we
will highlight our analyses on the BENGI datasets
from LCLs.

Fig. 1 A benchmark of candidate enhancer-gene interactions (BENGI). a Experimental datasets used to curate BENGI interactions categorized by
3D chromatin interactions, genetic interactions, and CRISPR/Cas9 perturbations. b Methods of generating cCRE-gene pairs (dashed straight lines
in green, shaded green, or red) from experimentally determined interactions or perturbation links (dashed, shaded arcs in red, pink, or gold). Each
cCRE-gene pair derived from 3D chromatin interactions (top panel) has a cCRE-ELS (yellow box) intersecting one anchor of a link, and the pair is
classified depending on the other anchor of the link: for a positive pair (dashed green line), the other anchor overlaps one or more TSSs of just
one gene; for an ambiguous pair (dashed line with gray shading), the other anchor overlaps the TSSs of multiple genes; for a negative pair
(dashed red line), the other anchor does not overlap with a TSS. Each cCRE-gene pair derived from genetic interactions or perturbation links
(middle and bottom panels) has a cCRE-ELS (yellow box) intersecting an eQTL SNP or a CRISPR-targeted region, and the pair is classified as
positive (dashed green line) if the gene is an eQTL or crisprQTL gene, while all the pairs that this cCRE forms with non-eQTL genes that have a
TSS within the distance cutoff are considered negative pairs (dashed red line). c To reduce potential false positives obtained from 3D interaction
data, we implemented a filtering step to remove ambiguous pairs (gray box in b) that link cCREs-ELS to more than one gene. This filtering step
was not required for assays that explicitly listed the linked gene (eQTLs and crisprQTLs). Additionally, for comparisons between BENGI datasets,
we also curated matching sets of interactions with a fixed positive-to-negative ratio. Therefore, a total of four BENGI datasets were curated for
each 3D chromatin experiment (A, B, C, D), and two were curated for each genetic interaction and CRISPR/Cas-9 perturbation experiment (A, B). d
To avoid overfitting of machine-learning algorithms, all cCRE-gene pairs were assigned to cross-validation (CV) groups based on their
chromosomal locations. Positive and negative pairs on the same chromosome were assigned to the same CV group, and chromosomes with
complementary sizes were assigned to the same CV group so that the groups contained approximately the same number of pairs
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Summary statistics of BENGI datasets
We asked whether the various types of chromatin, gen-
etic, and CRISPR experiments might capture different
types of enhancer-gene interactions. To answer this
question, we carried out several statistical analyses
across the BENGI datasets. First, we performed hierarch-
ical clustering of the six BENGI datasets in GM12878/
LCLs by the overlap coefficient—the number of positive
cCRE-gene pairs shared between two datasets divided by
the number of positives in the smaller dataset. We ob-
tained two clusters: one comprising the two eQTL data-
sets and the other comprising the four chromatin
interaction datasets (Fig. 2a). This overall grouping of
the datasets was consistent with the characteristics of
the experimental techniques (Table 1). Beyond the over-
all grouping, the two eQTL datasets exhibited higher
overlap coefficients with the RNAPII ChIA-PET and
CHi-C datasets (0.20–0.36) than with the Hi-C and

CTCF ChIA-PET datasets (0.01–0.05). This reflects the
promoter emphasis of the first four techniques, enrich-
ing for promoter-proximal interactions. In contrast, Hi-
C identifies significantly more distant interactions than
the other techniques (Fig. 2b, Additional file 3: Figure
S1a, Wilcoxon rank-sum test p value = 1.1E−223).
Additionally, we note that the eQTL and crisprQTL
interactions all have maximum distances of 1Mb
(Additional file 3: Figure S1a) because the original stud-
ies only tested SNPs within 1Mb of each gene.
We then compared the gene expression of the positive

pairs among the six GM12878/LCL datasets (Fig. 2c).
Overall, the genes in the GEUVADIS eQTL pairs exhib-
ited the highest median expression (median = 10.9
transcripts per million sequenced reads, or TPM;
Wilcoxon rank-sum test p = 1E−3), while the genes in
the CHi-C pairs presented the lowest median expression
levels (median = 0.24 TPM, p = 7E− 39). When we

Fig. 2 Characteristics of BENGI datasets. Six datasets in GM12878 or other LCLs were evaluated: RNAPII ChIA-PET (red), CTCF ChIA-PET (orange),
Hi-C (green), CHi-C (blue), GEUVADIS eQTLs (purple), and GTEx eQTLs (pink), and the same color scheme is used for all panels. a Heatmap
depicting the overlap coefficients between positive cCRE-gene pairs in each BENGI dataset. The datasets were clustered using the hclust
algorithm, and the clustered datasets are outlined in black. b Violin plots depicting the distance distributions of positive cCRE-gene pairs for each
BENGI dataset. The 95th percentile of each distribution is indicated by a star and presented above each plot. c Violin plots depicting the
expression levels of genes in positive cCRE-gene pairs (in transcripts per million, TPM). d Violin plots depicting CTCF signal levels at cCREs-ELSs in
positive cCRE-gene pairs. A dashed box indicates cCREs-ELS with a signal > 5. e Distributions of the number of genes positively linked with a
cCRE-ELS across datasets
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removed ambiguous pairs, gene expression increased sig-
nificantly for all four chromatin interaction datasets
(Additional file 3: Figure S1b), suggesting that some of
the ambiguous pairs were false positives. We observed
similar increases in gene expression upon the removal of
ambiguous pairs in other cell types for which we had
RNA-seq data (Additional file 3: Figure S1c-e). Without
the ambiguous pairs, the RNAPII ChIA-PET pairs
showed comparable expression to the GEUVADIS eQTL
pairs. The enrichment for RNAPII in the ChIA-PET
protocol may preferentially identify interactions that in-
volve higher RNAPII activity and higher gene expression.
The K562 crisprQTL pairs presented the highest overall
median expression of 26.4 TPM. We expected to observe
high expression for the eQTL and crisprQTL datasets
because these interactions can only be detected for genes
that are expressed in the respective biosamples.
We also observed significant differences in the CTCF

ChIP-seq signals at cCREs-ELS between the BENGI
datasets: cCREs-ELS in CTCF ChIA-PET pairs and Hi-C
pairs showed significantly higher CTCF signals than
cCREs-ELS in the other datasets (Wilcoxon rank-sum
test p < 3.7E− 9, Fig. 2d, Additional file 2: Table S2b).
Similarly, these pairs were enriched for components of
the cohesin complex such as RAD21 and SMC3
(Additional file 2: Table S2b). This enrichment for CTCF
was biologically consistent, as CTCF was the target in
the ChIA-PET experiment, and Hi-C loops are enriched
for convergent CTCF binding sites [14].
Finally, we tallied the number of linked genes for each

cCRE-ELS. Across all BENGI datasets, the majority of
cCREs-ELS were linked to just one target gene (Fig. 2e,
Additional file 2: Table S2c). As expected, this trend was
more pronounced for 3D chromatin datasets without
ambiguous pairs (on average, 84% of cCREs-ELS were
paired with only one gene, p < 3.3E−5). With or without
ambiguous pairs, a lower percentage of cCREs-ELS in

CHi-C pairs was paired with just one gene (19% of all
pairs and 55% of unambiguous pairs) than in the other
BENGI datasets (p < 3.1E− 75). This observation, along
with the lower average expression of the linked genes
(Fig. 2c), suggests that some of the CHi-C pairs were
either false positives or captured interactions between
cCREs-ELS and genes that are yet to be expressed.
These analyses suggested that the various experimental

techniques whose results formed the basis of the BENGI
datasets capture different classes of genomic interac-
tions. Because we do not have a complete understanding
of which experimental techniques are best able to
capture bona fide enhancer-gene interactions, we
propose that computational methods (Table 2) should
be evaluated on the entire collection of these BENGI
datasets to provide a comprehensive understanding of
their performance.

A baseline method of target gene prediction using
genomic distance
Using the BENGI datasets, we evaluated a simple closest
gene method for target gene prediction: a cCRE-ELS was
assigned to its closest gene in terms of linear distance,
computed by subtracting the genomic coordinates of the
cCRE and the nearest TSS. All BENGI datasets, despite
interaction type, had highly similar ELS-gene distance
distributions (Additional file 3: Figure S1f). We tested
this method using two gene sets, consisting of all genes
or all protein-coding genes annotated by GENCODE
V19, by evaluating precision and recall on the basis of
each BENGI dataset. The use of protein-coding genes in-
variably resulted in better performance than the use of
all genes (50% better on average over all 21 datasets
across cell types; Additional file 2: Table S2d); thus, we
used protein-coding genes for all subsequent analyses
with this method.

Table 1 Genomic interaction dataset

Assay Reference

3D chromatin interactions

Hi-C High-resolution in situ Hi-C: identifies chromatin loops anchored by convergent CTCF binding sites [14]

RNAPII ChIA-PET Chromatin interaction analysis by paired-end tag sequencing targeting RNAPII: identifies chromatin
interactions enriched for RNAPII binding

[16]

CTCF ChIA-PET Chromatin interaction analysis by paired-end tag sequencing targeting CTCF: identifies chromatin
interactions enriched for CTCF binding

[16]

CHi-C Promoter capture Hi-C: identifies chromatin interactions between promoters and other loci [17]

Genetic interactions

eQTLs Expression quantitative trait loci: identifies genetic variants correlated with changes of gene expression
of individuals in a human population

[18, 19]

CRISPR/Cas9 perturbations

crisprQTLs Identifies loci that when targeted with CRISPR/Cas9 correlate with changes in gene expression
measured in single cells

[20]
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The closest gene method worked best for crisprQTL
pairs (precision = 0.67 and recall = 0.60), followed by
ChIA-PET RNAPII pairs (precision = 0.66 and recall =
0.31 averaged across cell lines). The method performed
worst for Hi-C pairs, with an average precision of 0.19
and an average recall of 0.12. These results are consist-
ent with our statistical analyses described above, which
revealed that crisprQTL and RNAPII ChIA-PET pairs
were enriched in gene-proximal interactions, while Hi-C
pairs tended to identify more distal interactions.
For comparison with other enhancer-gene prediction

methods, we adapted the closest gene method to a quan-
titative ranking scheme where we ordered cCRE-gene
pairs by the distance between the cCRE-ELS and the
gene’s closest TSS. For each BENGI dataset, we evalu-
ated the overall performance of the resulting distance
method by calculating the area under the precision-
recall curve (AUPR). Accordingly, the distance method
exhibited the highest AUPR (0.41) for RNAPII ChIA-
PET pairs and the lowest AUPR (0.06) for Hi-C pairs
(Fig. 3a,b, Additional file 3: Figure S2b, Additional file 4:
Table S3). Since the distance method is cell-type inde-
pendent and does not require any experimental data, we
considered it as the baseline method for comparing all
enhancer-gene prediction methods.

Correlation-based approaches perform worse than the
distance method
We next evaluated the performance of two correlation-
based methods with the BENGI datasets: a method
based on correlating the DNase signals at predicted
enhancers with the DNase signals at TSSs across a panel
of biosamples [22] and a method based on correlating
DNase signals with gene expression [23]. Both the

DNase-DNase and DNase-expression methods outper-
formed random predictions for all 21 BENGI datasets,
with average AUPR values of 0.10 and 0.12 vs. 0.07,
respectively, but the differences were modest (Add-
itional file 3: Figure S2; Additional file 4: Table S3). As
previously demonstrated [22], positive pairs presented
significantly higher correlations under both methods
than negative pairs in all datasets (Additional file 3:
Figure S2); however, the relative rankings of these corre-
lations were mixed and did not completely segregate
positive from negative pairs. The DNase-expression
method significantly outperformed the DNase-DNase
method for all but two BENGI datasets (Wilcoxon
signed-rank test p = 6.7E−5), with an average AUPR
increase of 29% (Additional file 2: Table S2).
We then evaluated the performance of the GeneHan-

cer prediction model, via an integration of four types of
enhancer annotations, including an earlier version of our
cCREs, to generate a collection of candidate enhancers
[31]. These candidate enhancers were then linked to
genes by integrating co-expression correlations, eQTLs,
CHi-C data, and genomic distance. Because the authors
used eQTLs and CHi-C from the same data sources as
those in BENGI to build the GeneHancer model, we
only evaluated the performance of the model on the
ChIA-PET, Hi-C, and crisprQTL pairs. While the Gene-
Hancer predictions were better than random predictions,
the differences were extremely modest (average im-
provement of 0.01 in AUPR). The GeneHancer predic-
tions also had a much lower overall recall than the
correlations methods (on average 8% compared to 100%
and 76% for DNase-DNase and DNase-expression re-
spectively). Even for these limited sets of predictions,
GeneHancer never outperformed the DNase-expression

Table 2 Computational methods for target gene prediction

Method Description Reference

Unsupervised methods

Distance Ranks pairs by inverse linear distance

DNase-DNase Calculates the Pearson correlation coefficient between the DNase signals at enhancers and
promoters across 32 cell-type categories.

[22]

DNase-expression Calculates the Pearson correlation coefficient between the normalized DNase signals at
enhancers and normalized gene expression levels measured by microarray across 112 cell types.

[23]

GeneHancer Cell-type agnostic predictions based on co-expression correlations, CHi-C interactions, eQTLs,
and genomic distance

[31]

Average-rank Combines the distance and DNase-expression methods by averaging the rank of for each
prediction between the two methods

Supervised methods

PEP-motif Features: frequency of motif instances at enhancers and promoters [28]

Classifier: Gradient boosting (XGB package)

TargetFinder Features: Cell-type-specific epigenomic signals (ChIP-seq, DNase, CAGE, etc.) at enhancers, promoters,
and the intervening window between enhancers and promoters.

[27]

Classifier: Gradient boosting (scikit learn)
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model and only outperformed the DNase-DNase model
for crisprQTLs (Additional file 3: Figure S3).
Ultimately, the distance method substantially outper-

formed the two correlation-based methods and the
GeneHancer predictions: distance was better than
DNase-DNase for all 21 datasets (average AUPR increase
of 127%; p = 1.9E−6; Additional file 2: Table S2), better
than DNase-expression for 17 datasets (average AUPR
increase of 77%; p = 1.6E−4), and better than GeneHan-
cer predictions for all datasets (average AUPR increase
of 256%; p = 9.5E−7). The PR curves of the distance
method and the two correlation-based methods for the
RNAPII ChIA-PET pairs are shown in Fig. 3a. For the
first 25 k predictions, the distance method presented a
similar precision to the DNase-DNase method and lower
precision than the DNase-expression method, but when
more predictions were made, the distance method

substantially outperformed both correlation-based
methods and achieved a much higher AUPR (0.41 vs.
0.28 and 0.26). We observed this crossover of PR
curves in other non-QTL datasets as well (Add-
itional file 3: Figure S2); thus, we integrated the
distance and DNase-expression methods by averaging
their ranks for the same prediction. Notably, this
average-rank method showed high precision for its
top-ranked predictions (Fig. 3a) and achieved higher
AUPRs than the other methods for all 13 datasets
except for GTEx eQTL pairs, with an average AUPR
increase of 17% over the distance method for these
datasets (Fig. 3b, Additional file 2: Table S2). For the
eight GTEx eQTL datasets, the distance method
remained the best approach, showing an 18% higher
AUPR on average than the second-best method, aver-
age rank (Additional file 2: Table S2).

[0-73]

[0-124]

[0-196]

[0-827]

Fig. 3 Evaluation of unsupervised methods for predicting cCRE-gene pairs. a Precision-recall (PR) curves for four unsupervised methods evaluated
on RNAPII ChIA-PET pairs in GM12878: distance between cCREs-ELS and genes (gray), DNase-DNase correlation by Thurman et al. (green), DNase-
expression correlation by Sheffield et al. (purple), and the average rank of the distance and the DNase-expression method (black). The areas under
the PR curve (AUPRs) for the four methods are listed in the legend. The AUPR for a random method is indicated with a dashed line at 0.15. b The
AUPRs for the four unsupervised methods are computed for each of the six benchmark datasets from LCLs. c Genome browser view
(chr6:88,382,922-88,515,031) of epigenomic signals and positive BENGI links (RNAPII ChIA-PET in red, Hi-C in green, CHi-C in blue, and GEUVADIS
eQTL in pink) connecting the EH37E0853090 cCRE (star) to the AKIRIN2 gene. d Scatter plot of normalized AKIRIN2 expression vs. the normalized
DNase signal at EH37E0853090 as calculated by Sheffield et al. (Pearson correlation coefficient = 0.16). Although AKIRIN2 is highly expressed across
many tissues, EH37E0853090 presents high DNase signals primarily in lymphoblastoid cell lines (purple triangles), resulting in a low correlation
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We asked why correlation-based methods performed
poorly for predicting enhancer-gene pairs. One particu-
lar example is highlighted in Fig. 3 c, d. cCRE-ELS
EH37E0853090 was paired with the AKIRIN2 gene by
RNAPII ChIA-PET, Hi-C, CHi-C, and a GEUVADIS
eQTL (Fig. 3c). However, this pair was poorly ranked by
both correlation-based methods (correlation coefficients:
r = 0.03 and 0.16 for DNase-DNase and DNase-
expression, respectively). AKIRIN2 was highly expressed
in most surveyed cell types (median normalized expres-
sion of 8.5 vs. background of 4.7 RPKM, Additional file 3:
Figure S4a), and its promoter exhibited a high DNase
signal (signal ≥ 50) for each of the DNase-seq groups
(Additional file 3: Figure S4b). However, EH37E0853090
only presented high DNase signals in four cell types,
which were all lymphoblastoid cell lines, suggesting that
this enhancer was primarily active in the B cell lineage.
The ubiquitous expression of AKIRIN2 and the cell-
type-specific activity of EH37E0853091 resulted in a low
correlation (Fig. 3d, Additional file 3: Figure S4b). In
general, TSS-overlapping cCREs (cCREs-TSS) are active
in many more biosamples than distal cCREs-ELS
(median of 92 vs. 46 biosamples, p = 3.6E− 264,
Additional file 3: Figure S4c-d). In summary, because the
epigenomic signals at cCREs-ELS are far more cell type
specific than the epigenomic signals at TSSs and gene
expression profiles, correlation across biosamples is a
poor method for detecting enhancer-gene pairs.

Supervised methods outperform baseline methods upon
cross-validation
We tested two supervised machine-learning methods
that were reported to perform well in the original
publications on the methods: TargetFinder, which uses
epigenomic signals such as histone mark ChIP-seq, TF
ChIP-seq, DNase-seq in the corresponding cell types as
input features, and PEP-motif, which uses the occur-
rence of TF sequence motifs as features. Xi et al. subse-
quently revealed that the original implementation of
cross-validation (CV) by TargetFinder and PEP-motif
allowed the assignment of enhancer-gene pairs from the
same genomic loci to different CV groups, which led to
sharing of training and testing data, overfitting of their
models, and inflated performance [29]. Thus, we imple-
mented the chromCV method to ensure that pairs from
the same chromosome were always assigned to the same
CV group (Fig. 1e; “Methods”).
We first tested these two supervised methods on the

six BENGI datasets in GM12878 because there were a
large number of epigenomic datasets for this cell type
that could be used as features to train the methods. Al-
though PEP-motif performed better than random, it
underperformed the distance method for all GM12878
pairs and was far worse than the average-rank method

pairs (Fig. 4a, b; Additional file 2: Table S2b). In con-
trast, TargetFinder outperformed the average-rank
method for all six datasets, with an average AUPR
improvement of 66% (Fig. 4a, b; Additional file 2: Table
S2), but the AUPRs were still low, especially for the Hi-
C (0.17) and eQTL datasets (0.19 and 0.26).
Because the results of TargetFinder and PEP-motif

upon our chromCV implementation were worse than
the original published results for these methods, we also
implemented a randomized 12-fold CV method as de-
scribed in the original publications to test whether we
could reproduce their results. Indeed, we observed large
performance decreases for the chromCV method with
respect to the original CV method (Fig. 4c), suggesting
that overfitting was a source of inflated performance.
PEP-motif presented a more substantial decrease in
performance (average AUPR decrease of 80%) than
TargetFinder (average AUPR decrease of 51%), likely be-
cause PEP-motif added 4 kb of padding on both sides of
each enhancer, increasing the chance of overlapping
training and testing data. Although PEP-motif and
TargetFinder used Hi-C loops as the gold standard in
their original analyses, both methods showed the largest
performance decreases for the BENGI GM12878 Hi-C
pairs (AUPR decrease of 95% for PEP-motif and 80% for
TargetFinder). This analysis further highlights the utility
of a carefully designed benchmark to prevent overfitting
of supervised models.
Our implementation of TargetFinder in GM12878

cells involved 101 epigenomic datasets, including
ChIP-seq data for 88 TFs, resulting in a total of 303
input features (Fig. 4d). However, such extensive TF
ChIP-seq data were not available for other biosam-
ples; thus, we also trained TargetFinder models using
only distance and four epigenomic features: DNase,
H3K4me3, H3K27ac, and CTCF data, which we refer
to as the core4 TargetFinder models. While the core4
models exhibited an average AUPR reduction of 23%
compared with the respective full models across the
13 BENGI datasets (Fig. 4a, b; Additional file 4: Table
S3), they still outperformed the distance and average-
rank methods for all datasets. Of particular note were
the IMR-90 Hi-C pairs, which presented the greatest
decrease in performance between the full and core4
TargetFinder models, with an AUPR reduction of 0.29
(81%). We observed similar large decreases in
performance across all four variations of the IMR-90
Hi-C pairs. We also trained core3 models for the
biosamples without CTCF data, and they showed an
average AUPR reduction of 34% compared with the
respective full models across the 13 BENGI datasets.
For the seven GTEx eQTL datasets from tissues,
these core3 models did not outperform the distance
or average-rank models.
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Overall, TargetFinder’s performance on the RNAPII
and CTCF ChIA-PET pairs was markedly higher than its
performance on other BENGI datasets. These datasets
were the only two benchmarks of 3D chromatin interac-
tions mediated by specific TFs. When we analyzed the
feature-importance scores (i.e., Gini importance) from
TargetFinder’s GBM model, we found that RNAPII and
CTCF ChIP-seq signals at promoters had the highest
importance in the respective models. To further dissect
the features contributed to TargetFinder’s performance,
we ran the algorithm on a subset of positive and nega-
tive pairs (1:2 ratio of positives to negatives) and three
selections of positive and negative pairs that were
matched for (i) only promoter inclusion, (ii) only
distance, and (iii) promoter inclusion and distance (for
promoter distance, see “Methods”). For all four subsets,
the full TargetFinder still outperformed all other
methods (Additional file 5: Table S4e); however,

compared to the 1:2 ratio set (average AUPR = 0.86),
performance was lower for the distance-matched and
promoter-matched sets (average AUPR = 0.74 and 0.69)
and was the lowest for the promoter-distance-matched
sets (average AUPR = 0.61). We observed similar
patterns with the TargetFinder core4 and core3 though
the relative drop in performances was much larger—
average decreases in AUPR of 0.25 for full model, 0.28
for core4 model, and 0.32 for core-3 model. Particularly,
for the core3 CTCF ChIA-PET promoter-distance
model, which does not include CTCF as a feature, we
observed an AUPR of 0.43, a 0.30 reduction in AUPR
compared to the 1:2 ratio pairs, and only a 0.03 im-
provement in AUPR over the DNase-DNase correlation
method. These results suggest that differences in RNA-
PII/CTCF ChIP-seq signal and distance between positive
and negative pairs contribute to TargetFinder’s ability to
successfully predict cCRE-ELS-gene pairs.

Fig. 4 Evaluation of supervised learning methods for predicting cCRE-gene pairs. a PR curves for three supervised methods evaluated using
RNAPII ChIA-PET pairs in GM12878: PEP-motif (green) and two versions of TargetFinder (full model in darker blue and core model in lighter blue).
For comparison, two unsupervised methods presented in Fig. 3 (the distance (gray) and average-rank (black) methods) are also shown along with
the AUPR for a random method (dashed line at 0.15). The AUPRs for the methods are listed in the legend. b AUPRs for the three supervised
methods, two unsupervised methods, and a random approach, colored as in a, for each of the six BENGI datasets from LCLs. c Scatter plot of
AUPRs for TargetFinder (triangles) and PEP-motif (circles) across the BENGI datasets evaluated using 12-fold random CV (X-axis) vs. chromosome-
based CV (Y-axis). The diagonal dashed line indicates X = Y. d Schematic diagram for the full and core4 TargetFinder models
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TargetFinder exhibits moderate performance across
different cell types
The most desirable application of a supervised method
is to train the model in a biosample with 3D chromatin
or genetic interaction data and then use the model to
make predictions in another biosample without such
data. Thus, we tested the TargetFinder core4 and core3
models for such application to the ChIA-PET, Hi-C,
CHi-C, and GTEx eQTL datasets, readjusting our
chromCV method to prevent overfitting [32] (see
“Methods”).
As expected, the cross-cell-type models performed

worse than the same-cell-type models, but their
performance varied compared with the unsupervised dis-
tance and average-rank methods. For the CHi-C and
RNAPII ChIA-PET datasets, all tested cross-cell-type
TargetFinder models outperformed the distance and
average-rank methods for both tested cell types
(GM12878 vs. HeLa and GM12878 vs. CD34+), with
average AUPR increases of 32% and 12%, respectively
(Fig. 5a,b, Additional file 6: Table S5). For CTCF ChIA-

PET, the core3 model trained on HeLa cells did not out-
perform the unsupervised methods for predicting
GM12878 pairs (AUPR = 0.15 vs 0.21), but the models
trained on GM12878 and the core4 model trained on
HeLa did slightly outperform the unsupervised methods
for predicting HeLa pairs and GM12878 pairs respect-
ively (average AUPR increase of 7% Fig. 5c, Add-
itional file 6: Table S5). The results for the Hi-C datasets
were mixed. Among the 60 cross-cell-type models
tested, 12 outperformed the distance and average-rank
methods. Specifically, the model trained on GM12878
only outperformed the distance and average-rank
methods for predicting HeLa or NHEK pairs (Fig. 5d,
Additional file 6: Table S5), with an average 50%
increase in performance. The model trained on IMR-90
never outperformed the distance and average-rank
methods, and for the prediction of HMEC, IMR-90, and
K562 pairs, none of the cross-cell-type models
outperformed the distance or average-rank methods
(Additional file 6: Table S5). These results were consist-
ent across the fixed ratio pairs as well. Finally, none of

Fig. 5 Evaluation of supervised learning methods trained in one cell type and tested in another cell type. AUPRs for the distance (gray), average-
rank (black), and TargetFinder core4 (purple) methods across a RNAPII ChIA-PET, b CTCF ChIA-PET, c CHi-C, d Hi-C, and e GTEx eQTL pairs. The
cell type used for training is indicated in the panel title, and the cell type used for testing is indicated on the X-axis. The best-performing method
for each dataset is indicated by a star, and random performance is indicated with a dashed line
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the cross-cell-type models outperformed the distance
method for the GTEx datasets; the distance method was
the highest-performing model for all GTEx datasets
(Additional file 6: Table S5).

Discussion
Here, we have presented BENGI, a benchmark compris-
ing cCRE-ELS-gene pairs, curated through the integra-
tion of the Registry of cCREs and genomic interaction
datasets. We used BENGI to evaluate four published
computational methods for target gene prediction that
represent most of the widely used approaches in the
field while surveying orthogonal dimensions: correlation
methods survey across the biosample dimension, while
supervised machine-learning methods such as Target-
Finder survey across the assay dimension. We found that
the two correlation-based, unsupervised methods signifi-
cantly underperformed the baseline distance method,
while one of the two supervised methods examined,
TargetFinder, significantly outperformed the distance
method when trained and tested within the same cell
type by cross-validation. Although TargetFinder outper-
formed the distance method for all BENGI datasets, the
AUPRs of the TargetFinder models were generally still
low (0.07–0.72). In particular, TargetFinder performed
best on ChIA-PET pairs; however, the performance sub-
stantially decreased when the positive and negative pairs
were matched for their distributions of RNAPII/CTCF
ChIP-seq signals at promoters and cCRE-ELS-gene dis-
tances. Thus, these features are the main contributors to
TargetFinder’s higher performance on ChIA-PET data-
sets than other BENGI datasets. The other supervised
method, PEP-motif, significantly underperformed the
distance method, suggesting that the frequencies of TF
motifs at enhancers and promoters are not sufficiently
predictive of genomic interactions. When trained and
tested in different cell types, TargetFinder performed
better than the distance method for some BENGI data-
sets, albeit by a much smaller amount. Overall, there is
much room for improvement for all of these methods,
indicating that target gene prediction remains a challen-
ging problem. BENGI datasets can be used by the com-
munity to tackle this problem while avoiding overfitting
issues such as those identified for TargetFinder and PEP
post publication [29, 30].
Our analyses highlight the differences between the

genomic interactions identified by various experimental
techniques (Table 1). For the same biosample (e.g.,
LCLs), the BENGI datasets generated by the same tech-
nique shared ~ 40% of their pairs (e.g., between RNAPII
and CTCF ChIA-PET and between GEUVADIS and
GTEx eQTLs), but the overlap between the datasets gen-
erated by different techniques were typically lower than
25% and could be as low as 1% (e.g., between eQTL and

Hi-C). The BENGI datasets also differed significantly in
terms of enhancer-gene distance and the enrichment of
epigenomic signals at enhancers and TSSs. Thus, we still
do not have a comprehensive understanding of the fac-
tors that regulate enhancer-gene interactions, and these
different experimental techniques may capture different
subsets of interactions.
Overall, all computational methods evaluated pre-

sented difficulty in predicting Hi-C pairs; even for the
fixed ratio datasets, the Hi-C pairs consistently exhibited
the lowest overall performance. This could be due to the
technical challenges of calling Hi-C loops or the bio-
logical roles of these loops. For example, it has been
noted that the detection of Hi-C loops requires care, and
different loop-calling methods can produce markedly
different results [33]. Additionally, recent results from
the Aiden lab demonstrated that gene expression did
not change upon loop disruption via knocking out the
key protein CTCF using a degron system [34]. This find-
ing may suggest that these CTCF Hi-C loops may play
specific biological roles and may only represent a small
subset of enhancer-gene interactions that have different
properties compared to the other interactions.
Although the correlation-based methods did not outper-

form the distance method, the DNase-expression method
did augment the distance method when combined with it.
Furthermore, because correlation-based methods and
supervised machine-learning methods survey orthogonal
dimensions (biosample vs. assay), one promising future dir-
ection will be to combine these two types of approaches.
For such future work to be fruitful, it will be beneficial to
understand the differences in performance between the two
correlation-based methods because the DNase-expression
correlation method consistently outperformed the DNase-
DNase correlation method. Several factors could contribute
to this increased performance. First, gene expression may
be a better readout for enhancer-gene interactions than a
promoter’s chromatin accessibility, although these two fea-
tures are correlated (average Pearson correlation r = 0.68).
Second, for the DNase-expression method, Sheffield et al.
generated normalized, batch-corrected matrices for the
DNase-seq and gene expression data, while the DNase-
DNase method used a read depth-normalized signal with-
out any additional processing. To avoid imprecision in
reimplementation, we downloaded these exact input data-
sets from the original publications (i.e., the exact normal-
ized matrices for the DNase-expression method and the
ENCODE2-processed DNase-seq bigWigs for the DNase-
DNase method). The Sheffield et al. normalization tech-
nique may correct for outliers and batch effects, which
would otherwise lead to spurious correlations impacting
performance. Third, the DNase-DNase method merged 79
cell types into 32 groups based on cell type similarity. While
this grouping may correct an uneven survey of the

Moore et al. Genome Biology           (2020) 21:17 Page 11 of 16



biosample space, it may lead to lower overall correlations
for cell-type-specific interactions. We highlighted one such
case involving the LCL-specific EH37E0853090-AKIRIN2
interaction, where the DNase-DNase method reported a
correlation of 0.03, and the DNase-expression method re-
ported a correlation of 0.12. The low correlation calculated
by the DNase-DNase method was due to the combination
of the four LCLs in one group, reducing the statistical
power (Additional file 3: Figure S4b). These possible expla-
nations should be carefully considered when designing
future correlation-based and combined methods. Addition-
ally, although these correlation-based methods did not per-
form well on the BENGI datasets, they may present better
predictive power when used on curated sets of biosamples
such as those obtained across embryonic development or
cell differentiation. As we expand the number of cell types
and tissues covered by BENGI, we hope to test these
methods to evaluate their performance systematically.
Finally, we developed BENGI using an enhancer-centric

model, as we were motivated by the Registry of cCREs.
We hope to expand upon this approach to include a gene-
centric model (i.e., for a given gene, determine the inter-
acting enhancers) for future developments. Additionally,
though BENGI datasets currently span 13 biosamples, the
majority of the gene-ELS pairs derived from GM12878 or
LCLs because these cells have been extensively profiled.
Therefore, users of the benchmark should be cognizant
that not all biosamples are profiled equally. Furthermore,
the remaining BENGI datasets all derived from cell lines
or heterogeneous tissues, none from primary cells. We will
increase the representation of primary cells in our bench-
mark as soon as 3D chromatin and genetic interaction
data on primary cells become available. We also plan to
expand BENGI to include more functionally tested data-
sets such as the crisprQTLs as these results are published.

Conclusions
Precise and accurate identification of enhancer-gene links
in a cell-type-specific manner remains a major challenge.
Systematic comparisons using the BENGI datasets enabled
us to identify the pitfalls in the current repertoire of
computational methods, such as correlation-based
approaches and the more complex, tree-based supervised
algorithms. BENGI will aid the development of future
enhancer-gene prediction models and improve our under-
standing of how regulatory elements control gene expres-
sion and ultimately the role that regulatory elements play
in human diseases.

Methods
Data acquisition
ChIA-PET
We downloaded the following ChIA-PET clusters
generated by the Ruan lab [16] from the NCBI Gene

Expression Omnibus (GEO) under accession number
GSE72816.

GSM1872886_GM12878_CTCF_PET_clusters.txt

GSM1872887_GM12878_RNAPII_PET_clusters.txt

GSM1872888_HeLa_CTCF_PET_clusters.txt

GSM1872889_HeLa_RNAPII_PET_clusters.txt

We filtered each set of clusters by selecting ChIA-
PET links that were supported by at least four reads
(column 7 ≥ 4).

Hi-C loops
We downloaded the following Hi-C loops generated by
the Aiden lab [14] from GEO under accession number
GSE63525.

GSE63525_
GM12878_primary+replicate_HiCCUPS_looplist.txt

GSE63525_HMEC_HiCCUPS_looplist.txt.gz

GSE63525_HeLa_HiCCUPS_looplist.txt.gz

GSE63525_IMR90_HiCCUPS_looplist.txt.gz

GSE63525_K562_HiCCUPS_looplist.txt.gz

GSE63525_NHEK_HiCCUPS_looplist.txt.gz

We did not perform any additional filtering on
these loops.

CHi-C
We downloaded the following CHi-C interactions gener-
ated by the Osborne lab [17] from ArrayExpress under
accession number E-MTAB-2323.

TS5_GM12878_promoter-
other_significant_interactions.txt

TS5_CD34_promoter-
other_significant_interactions.txt

We filtered each set of interactions selecting CHi-C
links by requiring a log(observed/expected) value greater
than ten (column 11 > 10).

eQTLs
We downloaded cis-eQTLs from the GEUVADIS
project:
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ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/ex
periment/GEUV/E-GEUV-1/analysis_results/
EUR373.gene.cis.FDR5.all.rs137.txt
We downloaded single-tissue cis-eQTLs (GTEx_Ana

lysis_v7_eQTL.tar.gz) from the GTEx Portal https://
gtexportal.org/home/datasets. We used the following
files:

Cells_EBV-
transformed_lymphocytes.v7.signif_variant_gene_
pairs.txt

Colon_Sigmoid.v7.signif_variant_gene_pairs.txt

Liver.v7.signif_variant_gene_pairs.txt

Ovary.v7.signif_variant_gene_pairs.txt

Pancreas.v7.signif_variant_gene_pairs.txt

Stomach.v7.signif_variant_gene_pairs.txt

Thyroid.v7.signif_variant_gene_pairs.txt

CRISPR perturbations
We downloaded crisprQTL data from Gasperini et al.
[20] and mapped the reported genes to those annotated
in GENCODE V19 and intersected the reported enhan-
cer coordinates with cCREs-ELS in K562. A total of
4937 of the tested enhancers (85%) overlapped a K562
cCRE-ELS.

Defining cCREs-ELS
We used cCREs-ELS from V1 of the ENCODE Registry
of cCREs available on the ENCODE portal found under
the accessions provided in Additional file 1: Table S1a.
We selected all cCREs-ELS (RGB color code 255,205,0)
that were distal (i.e., greater than 2 kb from an annotated
TSS, GENCODE v19).

Defining cCRE-gene pairs
We created cCRE-gene pairs using the Generate-Bench-
mark.sh. script, which is available on GitHub [35].

3D chromatin interactions (ChIA-PET, Hi-C, and CHi-C)
Using bedtools intersect (v2.27.1), we intersected the
anchors of the filtered links (see above) with cCREs-ELS
that were active in the same biosample. We retained all
links with an anchor that overlapped at least one cCREs-
ELS and with the other anchor within ± 2 kb of a GEN-
CODE V19 TSS. We tagged all links with an anchor
within ± 2 kb of the TSSs of multiple genes as

ambiguous pairs and created a separate version of each
dataset with these links removed.

Genetic interactions (eQTLs)
For eQTLs, we retrieved the location of each reported
SNP from the eQTL file and intersected these loci with
cCREs-ELS that were active in the same tissue type
using bedtools intersect. We then paired the cCRE-ELS
with the gene linked to the SNP. We only considered
SNPs that were directly reported in each of the studies;
we did not expand our set using linkage disequilibrium
due to the mixed populations surveyed by GTEx.

CRISPR/dCas-9 (crisprQTLs)
For crisprQTLs, we intersected the reported positive en-
hancers with cCREs in K562 using bedtools intersect.
We then paired the cCRE-ELS with the gene linked to
the reported enhancer.

Generation of negative pairs
To generate negative pairs, we calculated the 95th per-
centile of the distances of positive cCRE-gene pairs for
each dataset, with distance defined as the linear distance
between the cCRE-ELS and the closest TSS of the gene
using bedtools closest. For each cCRE-ELS among the
positive cCRE-gene pairs that fell within this 95th per-
centile, we considered all other genes within the 95th
percentile distance cutoff as negatives. Because our
model is enhancer-centric, the same promoter may be-
long to both positive and negative sets, paired with dif-
ferent enhancers. For datasets with ambiguous links
removed (ChIA-PET, Hi-C, and CHi-C), we also ex-
cluded genes in these ambiguous pairs as negatives. For
the fixed ratio datasets, we also excluded genes that were
in the positive pairs for the cCREs-ELS in other BENGI
datasets before randomly selecting the negatives. If a
cCRE-ELS exhibited fewer than four negative pairs, then
it was excluded from this fixed ratio set.

Assignment of chromosome CV
For each BENGI dataset, we calculated the number of
cCRE-gene pairs on each chromosome and assigned
chromCV groups accordingly. The chromosome with
the most pairs (often chr1) was assigned its own group.
Then, we iteratively took the chromosome with the most
and fewest pairs and combined them to create one CV
group. In total, the 23 chromosomes (1–22, X) were
assigned to 12 CV groups.

Characterization of BENGI datasets
Clustering of dataset overlap
For each pairwise combination of the GM12878/LCL
BENGI datasets, we calculated the overlap coefficient of
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positive cCRE-gene pairs. Then, using hclust, we per-
formed hierarchical clustering with default parameters.

Gene expression
For biosamples with matching RNA-seq data, we down-
loaded corresponding RNA-seq data from the ENCODE
portal (accessions provided in Additional file 1: Table
S1b, Additional file 3: Figure S1). For each gene, we cal-
culated the average TPM between the two experimental
replicates. To test whether there was a significant differ-
ence between BENGI datasets with or without ambigu-
ous pairs, we used a Wilcoxon test.

ChIP-seq signals
For cCREs-ELS in each positive pair across the
GM12878 and LCL BENGI datasets, we calculated the
average ChIP-seq signal for 140 transcription factors and
DNA-binding proteins. We downloaded the ChIP-seq
signal from the ENCODE portal (accession available in
Additional file 2: Table S2b) and used UCSC’s bigWigA-
verageOverBed to calculate the average signal across
each cCRE. For each BENGI dataset, we then reported
the average signal for all cCREs.

Implementation of cCRE-gene prediction methods
Closest-gene method
We identified the closest TSS to each cCRE-ELS using
bedtools closest and GENCODE V19 TSS annotations.
We compared two options: use of the full set of GEN-
CODE TSSs (with problematic annotations removed) or
use of only protein-coding GENCODE TSSs. To evalu-
ate performance, we calculated the overall precision and
recall for each BENGI dataset (Script: Closest-Gene-
Method.sh).

Distance method
For each cCRE-gene pair, we calculated the linear dis-
tance between the cCRE-ELS and the gene’s nearest
TSS. To rank these pairs, we took the inverse (1/dis-
tance) and calculated the area under the precision-recall
curve (AUPR) using a custom R script that uses the
PROCR library (Script: Run-Distance-Method.sh).

DNase-DNase correlation method
We used the same DNase-seq datasets as Thurman et al.
employed for their DNase-DNase method. We down-
loaded these legacy datasets generated during ENCODE
Phase 2 from the UCSC genome browser. For each
cCRE-gene pair, we curated a set of cCREs-TSS by de-
termining the closest cCRE for each TSS of the gene.
We then calculated the average DNase signal across the
nucleotide positions in the cCRE-ELS and cCRE-TSS for
each DNase dataset. For similar cell types, as determined
by Thurman et al., we averaged the DNase signal among

these similar cell types in each of the 32 groups to gen-
erate 32 values for each cCRE-ELS and cCRE-TSS. We
then calculated the Pearson correlation coefficient (PCC)
for each cCRE-ELS and cCRE-TSS pair. If a gene was
annotated with multiple TSSs, we selected the highest
PCC among all the cCRE-ELS and cCRE-TSS compari-
sons. We ranked the predictions by their PCC and
calculated the AUPR using the PROCR library (Script:
Run-Thurman.sh).

DNase-expression correlation method
To match the legacy data and normalization methods
originally used by previous investigators [23], we down-
loaded normalized counts across 112 cell types for
DNase-hypersensitive sites or DHSs (dhs112_v3.bed) and
genes (exp112.bed) from http://big.databio.org/papers/
RED/supplement/. We intersected each cCRE-ELS with
the DHSs previously curated [23]. If a cCRE overlapped
with more than one DHS, we selected the DHS with the
strongest signal for the cell type in question (i.e., the
DHS with the strongest signal in GM12878 for
GM12878 cCREs-ELS). For each cCRE-gene pair, we
then calculated the Pearson correlation coefficient using
the 112 normalized values provided in each matrix.
cCRE-gene pairs that did not overlap with a DHS or did
not have a matching gene in the expression matrix were
assigned a score of − 100. (Script: Run-Sheffield.sh).

PEP-motif
We reimplemented PEP-motif to run on our cCRE-gene
pairs with chromCV. Similar to Yang et al., we calcu-
lated motif frequency using FIMO [36] and the HOCO-
MOCO database (v11 core, [37]). We also added ± 4 kb
of padding to each cCRE-ELS as originally described.
We concatenated cross-validation predictions and
calculated AUPR values using PROCR (Script: Run-
PEPMotif.sh).

TargetFinder
We reimplemented TargetFinder to run on our cCRE-
gene pairs with chromCV. For features, we used the
identical datasets described by Whalen et al. for each cell
type. We concatenated the cross-validation predictions
and calculated AUPR values using PROCR (Script: Run-
TargetFinder-Full.sh).
To dissect features contributing to TargetFinder’s high

performance on ChIA-PET pairs, we created four sub-
sets of pairs for the GM12878 RNAPII and CTCF ChIA-
PET datasets.

1. A subset with a 1:2 ratio of positives to negatives
which was created by subsampling 1 positive link
for each cCREs and 2 negative links for each cCRE.
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This was analogous to the 1:4 fixed ratio method
described above.

2. A “promoter-matched” subset that only includes
pairs from promoters that are in at least one
positive and one negative pair. We then subsample
to achieve a fixed 1:2 ratio of positives to negatives.

3. A “distance-matched subset for which we define 5
distance quantiles based on the distribution of
positive pairs and sample equally from each bin
maintaining a 1:2 ratio of positives to negatives.

4. A “promoter-distance-matched” subset for which
we match for promoter use as described in (2) and
distance as described in (3). Once again, we
maintained a 1:2 ratio of positives to negatives.

Cross-cell-type performance
To test the cross-cell-type performance of TargetFinder,
we generated core4 and core3 models for each cell type
and then evaluated the models in other cell types. To
prevent any overfitting, we assigned the chromCV of the
test sets to match those of the training sets.
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