Cameron et al. Genome Biology (2020) 21:11
https://doi.org/10.1186/513059-019-1913-y

HIFI: estimating DNA-DNA interaction
frequency from Hi-C data at

Genome Biology

®

Check for
updates

restriction-fragment resolution

Christopher JF Cameron'-, Josée Dostie?” and Mathieu Blanchette!”

Abstract

Hi-C is a popular technique to map three-dimensional chromosome conformation. In principle, Hi-C's resolution is
only limited by the size of restriction fragments. However, insufficient sequencing depth forces researchers to artificially
reduce the resolution of Hi-C matrices at a loss of biological interpretability. We present the Hi-C Interaction Frequency
Inference (HIFI) algorithms that accurately estimate restriction-fragment resolution Hi-C matrices by exploiting
dependencies between neighboring fragments. Cross-validation experiments and comparisons to 5C data and known
regulatory interactions demonstrate HIFI's superiority to existing approaches. In addition, HIFI's restriction-fragment
resolution reveals a new role for active regulatory regions in structuring topologically associating domains.
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Background

Cells are complex, dynamic environments that require
constant regulation of their genes to ensure survival.
The advent of chromosome conformation capture (3C)
technologies [1], and recent advances in imaging tech-
niques [2], have led to an improved understanding of
genome organization and its role in gene regulation
[3, 4]. Hi-C [5], a high-throughput derivative of 3C, pro-
vides an unparalleled view of three-dimensional (3D)
genome organization by capturing all DNA-DNA con-
tacts found within a population of cells. Hi-C has revealed
different levels of genome organization, including the
topologically associating domains (TADs [6, 7], subTADs
[8,9]), and chromatin compartments [5]. Yet, the potential
for a more refined understanding of 3D genome organiza-
tion remains largely untapped [10].

In a Hi-C experiment, cross-linked chromatin is
digested into fragments using a restriction enzyme (RE).
Restriction fragments (RF) are then proximity-ligated to
obtain a library of chimeric circular DNA. Paired-end
sequencing and mapping of reads to a reference genome
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identifies interacting RFs and their frequency count. The
data is conventionally stored as a pairwise read count
matrix, RC, where RC;; is the number of observed interac-
tions (read-pair count) between genomic regions i and j.
Despite the great sequencing depth of typical Hi-C exper-
iments (200-500 million read pairs), RF resolution RC
matrices are extremely sparse, with most RF pairs being
observed either zero or one time. This sparsity makes
measurements of individual interaction frequencies (IFs)
between RF pairs inherently stochastic and unreliable.
Increasing sequencing coverage is a partial solution, but
without improved bioinformatics analyses, the depth of
sequencing needed to make reliable estimates of IFs for
individual RFs is unmanageable. For this reason, Hi-C data
is rarely studied at RF resolution, but instead binned at
fixed intervals (e.g., every 25 kb). Unfortunately, reduc-
ing the resolution of a Hi-C IF matrix leads to difficulties
in studying the interactions between fine-scale genomic
elements such as promoters and enhancers.

To improve the resolution of Hi-C data, recent protocols
suggest digesting DNA more finely, either with a 4-cutter
RE [10, 11] or DNAse I [12], followed by binning at 1 to
5 kb. While these methodologies increase the resolution
of a Hi-C IF matrix, they actually worsen the problem of
sparsity and stochastic noise. For example, using a 4-cutter
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RE instead of a 6-cutter results in a 16-fold increase in the
number of RFs and a 256-fold increase in RF pairs. This
problem can be alleviated by using DNA capture tech-
nologies to concentrate sequencing on a predefined set of
loci [13, 14], but this approach loses the ability to inter-
rogate the whole-genome conformation in a hypothesis-
free manner. Instead, new bioinformatics approaches have
been proposed to detect individual significant contacts at
high resolution from Hi-C data [15, 16], and a machine
learning method has been introduced to smooth Hi-C
matrices at 10-kb resolution [17]. Dynamic binning was
also proposed as a way to adjust bin size to ensure even
read coverage across the genome, enabling locally higher
resolution [18]. However, no approach currently exists to
obtain complete and accurate IF matrices at RF resolu-
tion. Such an approach would be valuable as it would
allow researchers to revisit existing datasets and get more
information out of them without having to change exper-
imental protocols or generate more experimental data.

Here, we introduce the Hi-C Interaction Frequency
Inference (HIFI) algorithms, a family of computational
approaches that provide reliable estimates of IFs at RF
resolution. HIFI algorithms reduce stochastic noise, while
retaining the highest possible resolution, by taking advan-
tage of dependencies between neighboring RFs. We vali-
date these algorithms via cross-validation and a compar-
ison to observations made by independent chromosome
conformation assays. We further demonstrate that HIFI
improves the detection of contacts between promoters
and enhancers. Finally, we illustrate additional benefits of
high-resolution Hi-C data analysis by using it to study how
active regulatory regions are involved in structuring TADs
and subTADs.

Results

HIFI algorithms aim to reliably estimate Hi-C contact fre-
quencies between all intra-chromosomal pairs of restric-
tion fragments. The output of a HIFI algorithm is an IF
matrix per chromosome, where each entry (i,j) corre-
sponds to the IF of RFs i and j. As REs do not digest DNA
uniformly along the genome, different rows/columns cor-
respond to regions of different sizes. Depending on the RE
used, the achievable resolution of Hi-C ranges on average
from 434 bp (for a four-cutter such as Mbol) to 3.7 kb (for
a six-cutter such as HindIII). The high-resolution analy-
sis of Hi-C data faces multiple challenges, of which the
sparsity of the observed read-pair data is the most signif-
icant. For example, a Hi-C experiment with a very high
sequencing depth of one billion read pairs will yield on
average approximately 0.1 read pairs per intrachromoso-
mal matrix entry for a six-cutter RE and less than 0.001
for a four-cutter RE. Even at a relatively short distance of
100 kb, the observed number of read pairs for a four-cutter
RE almost never exceeds 1. This sparsity results in the
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observed read-pair count for a given RF pair being a poor
(high-variance) estimator of the true IF, except for rare RF
pairs located in regions of the Hi-C contact map where
IF values are extremely high. All existing solutions to this
problem, including the methods introduced in this paper,
take advantage of the fact that IFs of neighboring entries
in the IF matrix are strongly correlated. In particular, the
most common approach to the resolution/accuracy trade-
off is to artificially reduce the resolution by binning the
raw data to fixed-size intervals (e.g., 25-kb bins). This
lower resolution increases the number of reads per bin
pair, and thus allows for a more reliable estimation of
IF, but at the cost of a loss in biological interpretabil-
ity. Importantly, no unique bin size is uniformly ideal for
an entire IF matrix. Portions of an IF matrix where high
IFs are present could support a high-resolution analysis,
whereas others, corresponding to lower IF values, may
require larger bins for accurate IF estimation.

More specifically, the problem addressed here is the fol-
lowing: consider a Hi-C dataset H produced with a given
restriction enzyme e. For a given chromosome, the raw
outcome is stored in an # x n intrachromosomal matrix
RC, where n is the number of RFs produced by e, and
RC;; contains the number of read pairs mapped to RF pair
(i,/). Our goal is to estimate as accurately as possible the
true RF-level interaction frequency matrix, IF e, which
is the theoretical # x n IF matrix one would obtain if one
were to sequence an infinitely large version of H to infinite
depth (scaled for the total number of read pairs). [Fy. is
affected by a number of library, sequencing, and mapping
biases that would need to be corrected in order to allow
for proper biological interpretation; many such normal-
ization techniques already exist for this task [19-21]. Our
goal here is not to improve upon these techniques, but to
work upstream and provide the most accurate estimate of
Il:true-

Four approaches are introduced and assessed (see the
“Methods” section for details), each taking as input matrix
RC and producing as output an estimate of IFye:

1 The commonly used fixed-binning approach, where
the genome is first partitioned into bins containing a
fixed number of kilobase (or, alternatively, a fixed
number of RFs) and the estimated IF for a given bin
pair is the total number of reads whose end points
fall within that pair of genomic intervals.

2 A simple kernel density estimation (HIFI-KDE)
approach, where the IF estimate at a given matrix
entry is obtained as the average of surrounding
entries, weighted using a two-dimensional Gaussian
distribution with a fixed standard deviation
(bandwidth).

3 An adaptive kernel density estimation (HIFI-AKDE)
approach, where the bandwidth is chosen
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dynamically for each matrix entry in order to ensure
that a sufficient number of read pairs is available for
reliable IF estimation, while maximizing the
resolution.

4 An approach based on Markov random fields
(HIFI-MRF) where dependencies between
neighboring cells are modeled and used to identify
the maximum a posteriori estimate of IFyye.

Assessing the accuracy of high-resolution IF infer-
ence algorithms is challenging because IFyye is unknown,
as Hi-C datasets of infinite sequencing depths are not
achievable. Instead, we consider two surrogates. First, we
use a cross-validation approach from existing Hi-C data.
Second, we assess the predictions against data produced
by Chromosome Conformation Capture Carbon Copy
(5C [22]), a targeted amplification protocol that achieves
a much higher read count per RF pair compared to Hi-C.

Cross-validation of HIFI algorithms

We used cross-validation to assess the accuracy of HIFI
algorithms genome-wide. Here, a Hi-C read-pair dataset
of high sequencing depth produced by Rao et al. [23] from
GM12878 cells using HindIII was first filtered to retain
only high-confidence intrachromosomal read pairs. These
read pairs were then randomly partitioned into an input
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set (containing 80% of the set of filtered read pairs, or
607,587,043 read pairs) and a test set (20%, or 151,979,454
read pairs) (Fig. 1a). The input set is then further down-
sampled into 7 subsets ranging in size from 1 to 100% of
the full input set. Mapping and tabulating read pairs at
REF-level resolution yields a family of read count matrices:
Rcinput_l: RCinput_Z, cen RCinput_lOOr and RCies.

Each of the four inference algorithms are evaluated by
their application to each of the downsampled input matri-
ces to obtain a predicted IF matrix, IFpreq, which is then
compared to the test matrix RCiest to obtain the sum of
squared errors:

SSE(IFpred, RCtest) = ) (Fpred;; — RCrest;,)?

i<j

Although RCie is clearly not equal to IFyye, because
RCtrain and RCiest are sampled independently, the infer-
ence approach that minimizes SSE(IFpred, RCrest) is also
the one that minimizes SSE(IFpred, IFtrue), and hence, this
serves as a valid basis for comparison.

Figure 1b and Additional file 1: Figure S1A show that the
accuracy of fixed-binning strategies improves with input
set size, and that the optimal accuracy is obtained at dif-
ferent bin sizes for different input set sizes: large bins are
ideal for low-coverage training data, whereas smaller bins
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Fig. 1 Cross-validation of fixed-binning and HIFI methodologies. a Schematic representation of cross-validation methodology to assess the
accuracy of fixed-binning and proposed HIFI methodologies. b Cross-validation error for canonical fixed-binning approaches, for different bin sizes,
as a function of coverage, see also Additional file 1: Figure S1 for similar analyses of RF fixed binning, HIFI-KDE, and HIFI-AKDE. € Analysis of canonical
fixed-binning error (relative to error with one RF per bin) across genomic distance between RF-pairs. No singular bin size performs best for all
genomic distances. d Comparison of errors for different approaches. For fixed binning and HIFI-KDE, the optimal bin size or bandwidth was chosen
separately for each coverage level. Nonetheless, HIFI-MRF outperforms all other approaches. @ Comparison of errors (relative to error obtained with
fixed binning using two RFs per bin) by genomic distance of RF pairs, using as input a set of 304M read pairs (50% of total training set). HIFI-MRF
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are better with high-coverage data. More importantly, the
fact that read pairs are highly non-uniformly distributed in
RC matrices means that the ideal bin size differs depend-
ing on the local RC density. In particular, short-range con-
tacts, which typically have higher RC values, can support
high-resolution analyses (smaller bins), but those at longer
ranges are best estimated with larger bins (Fig. 1c and also
Additional file 1: Figure S1B for similar analyses for bin-
ning based on number of RFs rather than sequence size).
The HIFI-KDE approach with a fixed bandwidth generally
obtains better results (Fig. 1d and Additional file 1: Figure
S1C), but suffers from the same type of problem, where
optimal results are obtained with large bandwidth values
for low-coverage regions and lower bandwidth values for
high coverage regions. The HIFI-AKDE approach, where
different bandwidth values are chosen at each cell based
on the surrounding signal density, outperform the first
two approaches (Fig. 1d and Additional file 1: Figure S1D),
with optimal performance obtained using a Minimum-
Count value of 100 (see the “Methods” section) through-
out various coverage levels. HIFI-MRF performs the best
overall (Fig. 1d and Additional file 1: Figure S1E), except at
extremely low sequencing depths (i.e., 6-12M read pairs).
Indeed, for typical sequencing depths (100-250M read
pairs), HIFI-MRF improves IF estimation accuracy over
the entire range of genomic distances (Fig. le) produc-
ing estimates that are 5-40% more accurate than those
obtained by fixed-binning approaches and 5% more accu-
rate than HIFI-KDE and HIFI-AKDE, see Additional file 1:
Figure S2 for an example of a HIFI-MRF-processed HiC
matrix and comparison to fixed-binning analysis. We
attempted to use the same strategy to evaluate HiCPlus
[17], a machine learning technique for high-resolution
analysis of Hi-C data, but found that the model did not
perform well on non-bias-corrected Hi-C data for this
analysis. Finally, to further demonstrate the robustness of
HIFI-MRF’s IF estimates, 2 replicates of the mouse embry-
onic stem cell (mESC) Hi-C data produced by Bonev
et al. (2017) [24] were processed separately. HIFI-MRF
produced contact maps that yielded improved correla-
tions between replicates when compared to fixed-binning
approaches (Additional file 1: Figure S3).

Validation against 5C data

5C has been used to study the conformation of moderate-
size genomic regions (100 kb-5 Mb), including the beta-
globin locus [22, 25], the HOX clusters [8, 26, 27], the
CFTR locus [28, 29], and the Xist locus [7]. 5C allows for
a high sequencing depth measurement of the IF of each
RF pair within given genomic regions, which improves
the accuracy of RF-level IF estimates. As such, 5C data
constitutes an excellent benchmark to compare different
inference approaches. We analyzed data from two cell
types for which both 5C and Hi-C data are available: (i)
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a 4-Mb region around the Xist gene (Fig. 2a, b) in mouse
embryonic stem cells (mESC; Hi-C data from Dixon et al.
[6]; 5C data from Nora et al. [7]), and (ii) a 2.7-Mb region
around the CFTR gene (Additional file 1: Figure S4A,B)
in human GM12878 cells (5C data from Smith et al. [29];
Hi-C data from Rao et al. [23]). In the GM12878 dataset,
which has higher Hi-C sequencing depth (760M mapped
read pairs genome-wide), the correlation between raw
Hi-C and 5C data is moderate (Spearman p; = 0.45;
Additional file 1: Figure S4C), but it is improved by the
application of HIFI-MRF (ps = 0.71; Additional file 1:
Figures S4D,E and S5). In the mESC dataset, with lower
Hi-C sequencing coverage (122M read pairs), the corre-
lation of raw 5C against raw Hi-C data is relatively weak
(ps = 0.27; Fig. 2c) but improves to nearly the same level as
in the first dataset from the application of HIFI-MRF (p,
= 0.69; Fig. 2d, e and Additional file 1: Figure S6). Strata-
adjusted correlation coefficients (SCC) [30], which factor
out correlations induced by genomic distance dependen-
cies, are also improved by the application of HIFI-MRE.
Also note how, in both cases, the intricate structure of
TADs, as well as some of the finer looping events, become
apparent in the HIFI-MRF-processed Hi-C data (Fig. 2d
and Additional file 1: Figure S4D). The accuracy of HIFI-
MRF estimates was found to be largely independent of
the fragment bias correction algorithm applied, with the
four normalization algorithms implemented in Juicer [31]
yielding similar results (see Additional file 1: Figure S7).

Indeed, the application of HIFI-MRF to Hi-C data
allows for the detection of regulatory contacts that could
previously only be observed using 5C. For example, Nora
et al. [7] used 5C to observe a long-range interaction
between Tsix and its transcriptional regulator—a large
intervening non-coding RNA called “Linx”—occurring in
female mice as a component of X inactivation. This inter-
action is very clearly observed in the HIFI-MRF-processed
Hi-C data (Dixon et al. [6]), whereas it is difficult to dis-
tinguish from background in raw or binned Hi-C data
(Fig. 3a, b). These results demonstrate that HIFI-MRF can
be used to analyze existing Hi-C datasets and potentially
lead to novel discoveries at finer genomic scales.

Validation against externally predicted chromatin contacts
To more fully assess the extent to which HIFI-MRF-
processed Hi-C data can be used to identify biologically
relevant contacts, we asked whether it can also con-
firm chromatin interactions found through alternative
approaches. Specifically, we considered a set of con-
tacts identified by chromatin interaction analysis with
paired-end tag sequencing (ChIA-PET [32]) in GM12878
cells, bound either by CTCF (92,114 contacts [33]),
RNA polymerase II (Polll—192,394 contacts [33]), or
RAD21 (38,952 contacts [34]). A set of computationally
inferred contacts identified by correlation of DNAse I
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hypersensitivity signals across multiple cell types [35], as
well as cohesin-mediated interactions in GM12878 cap-
tured by Hi-C chromatin immunoprecipitation (HiChIP
[36] — 10,254 contacts), were also considered. For each
set of contacts, a set of negative (control) fragment
pairs were chosen by randomly re-pairing the same RFs.
We then measured, for each range of genomic distance,
the extent to which positive contacts could be distin-
guished from negative contacts on the basis of normal-
ized HIFI-MRF Hi-C data, by measuring the area under
the receiver operating characteristic curve (AUROC) of
a univariate predictor using the RF pair’s inferred IF
value as a predictive variable. Higher AUROC values
indicate improved ability to distinguish positive from
negative contacts. We observe that HIFI-MRF-processed
Hi-C data allows significantly better detection of vali-
dated contacts compared to fixed-binning approaches,
for all 5 datasets, across all genomic distance ranges,
and both at low (61M read pairs obtained by downsam-
pling; Fig. 4a—c and Additional file 1: Figures S8A-C,
S9A,B, S10A,B) and high (608M read pairs; Fig. 4d-f
and Additional file 1: Figures S8D-F, S9C,D, S10C,D)

sequencing depths. Notably, the ability to distinguish pos-
itive from negative ChIA-PET contacts is relatively poor
at short distances (<50 kb) because nearly all pairs have
very high IF values, but improves considerably at longer
range (300-500 kb). In contrast, contacts inferred based
on DHS correlations are more difficult to identify over-
all (AUROC <0.6), becoming increasingly so at longer
ranges. We speculate that this loss in detection power may
be due to an increased error rate present in this bench-
mark dataset. Remarkably, the application of HIFI-MRF
to low-coverage Hi-C data yields predictive power that
is nearly as good as in the high-coverage dataset (com-
pare panels Fig. 4a—c to 4d—f), suggesting that HIFI-MRF
is able to identify functional contacts even in Hi-C data
of moderate depth. Figure 4 also includes the results for
HiCPlus [17] and HMRFBayes [15], an approach for the
detection of significant contacts at RF resolution (see the
“Methods” section). Overall, HIFI-MRF clearly outper-
forms these two approaches, although HMRFBayes per-
forms nearly equally well for some low-coverage datasets
(Fig. 4a—c). The advantage of HIFI-MRF is particularly
noticeable at short- to medium-range distances (< 200 kb).
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Taken together, these results show that using HIFI-MRF to
process Hi-C data improves the ability to delineate indi-
vidual chromatin contacts.

HIFI allows new insight into fine-level genome organization
The high accuracy and resolution afforded by HIFI
enables researchers to answer questions that are diffi-
cult to address with lower-resolution analyses of Hi-C

Page 6 of 15

data. Here, we illustrate one such application: the high-
resolution analysis of TAD and subTAD boundaries. We
used a modified directionality index (DI) score, originally
introduced by Dixon et al. [6] (see the “Methods” section),
to identify 5000 TAD boundaries in the HindIII-GM 12878
Hi-C data. Boundary predictions were performed at two
resolutions: (i) RF resolution using HIFI-MRF-processed
data (3.7 kb on average; Fig. 5a, top heatmap) and (ii)
classical fixed-binning approach (16 RF = 50 kb per
bin; Fig. 5a, bottom heatmap). Using ENCODE ChIP-
seq datasets [37], we quantified the occupancy of DNA-
binding proteins relative to TAD boundaries. Consis-
tent with previously reported observations and models
[23, 38, 39], CTCF (Fig. 5b) showed a remarkable enrich-
ment immediately outside of these boundaries, with sites
on the plus strand sharply peaking at upstream TAD
boundaries and those on the minus strand peaking at
downstream boundaries. Similar enrichments at TAD
boundaries are observed for RAD21, SMC3 (cohesin com-
plex), YY1, and ZNF143 (Additional file 1: Figure S12),
consistent with previous reports [6, 40—45]. Although
the same phenomenon is visible in fixed-binning data,
the peaks are much sharper (narrower and higher) in
HIFI-MREF data, indicating that RF resolution allows more
accurate calls of TAD boundaries.

We next studied the role of TAD boundaries in gene
regulation, by looking at the distribution of active regu-
latory regions, as annotated by ChromHMM [46] based
on cell type-specific histone marks and DNA accessibility
data. We observe a moderate enrichment for active pro-
moters immediately outside TAD boundaries (only visible
in HIFI-MRF processed data) and for strong enhancers
within TADs. This trend is partially reflected in the occu-
pancy profiles of several transcription factors (Fig. 5d and
Additional file 1: Figure S13). These transcription factors
(in particular EBF1, EP300, IKZF1, MEF2A, MEF2C, and
NFIC) exhibit a gradual enrichment toward the middle of
TADs, together with a small but well-defined, CTCF-like
peak just outside TAD boundaries. Some (e.g., FOXM1,
IRF4, and RUNX3) show a more prominent peak at TAD
boundaries (Additional file 1: Figure S14A-C), while oth-
ers (e.g., GABPA, MYC, and SIX5) demonstrate a deple-
tion of occupancy within TADs (Additional file 1: Figure
S14D-F). Notice that in many cases, the enrichment at
TAD boundaries is only apparent based on HIFI-MRF
data and would likely be missed using data binned at 50 kb
resolution.

We then repeated the analysis (HIFI-MRF followed by
TAD boundary calls) on Hi-C data generated on the same
cell line using the 4-cutter Mbol restriction enzyme, with
cut sites every 434 bp on average. Due to the size of
the 4-cutter IF matrices involved, analyses were limited
to RF pairs within a maximum distance of 1 Mb. The
extremely high resolution of this dataset (Fig. 5e) provides
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Fig. 4 Positive/negative RF contact delineation analysis. The ability of different HiC data analysis approaches to distinguish positive from negative
(control) contacts is measured, for various data sets, using the area under the receiver operating characteristic curve (AUROC) for univariate
predictors using as input the predicted IF values. a, d CTCF-mediated contacts identified by ChIA-PET [33]. b, e RNAPII-mediated contacts identified
by ChIA-PET [33], ¢, f Inferred enhancer-promoter linkages based on DHS correlation [35]. To allow for the comparison with HiCPlus and HMRFBayes
only contacts occurring on chromosomes 9 to 22, X, and Y, and within a distance of 1 Mb, are analyzed. Top (a-¢) and bottom (d-f) rows represent
the performance of the classifiers applied to Hi-C data of size 60.8M (10% of input set) and 608M (100% of input set), respectively. Genome-wide
results for HIFI are shown in Additional file 1: Figure S8. Similar results are observed for ChIA-PET RAD21 (Additional file 1: Figure S9)

I

opportunities to study fine structures such as subTADs [8,  similar enrichment is found in the inter-subTAD regions
9], which are difficult to study at lower resolutions. We  for FOXM1 and NFIC (Fig. 5h), and nearly all transcrip-
used the HIFI-MRF Mbol-GM12878 data, and the same tion factors studied. These results are consistent with a
modified DI approach to identify a set of 25,000 domain  model where active regulatory regions play a key role in
boundaries, of which approximately 2500 matched a  partitioning TADs into subTADs.

HindIII-GM12878 TAD boundary (within 25 kb). The

remaining ~ 22,500 boundaries are not detected in the Discussion and conclusions

HindIII data and likely correspond to subTAD boundaries.  Hi-C has become a commonly used approach to map 3D
Repeating the occupancy analysis against subTAD bound-  chromatin organization genome-wide. Since its introduc-
aries, the same enrichment for convergent CTCF sites is  tion in 2009, the method has been updated many times to
observed (Fig. 5f), but a very different picture emerges improve upon accuracy and resolution, or to target spe-
with respect to regulatory regions. Most notably, active  cific types of contacts. However, to date, using Hi-C data
promoters, and to a lesser extent strong enhancers, have  to accurately and systematically identify fine-scale chro-
a clear tendency to occupy regions that lie immediately ~mosome contacts remains challenging, mostly because
outside subTADs (Fig. 5g; see also example in Fig. 5e).  the sequencing depth required to achieve high-resolution
Indeed, the density of active promoters is approximately ~ contact maps is too great. To overcome the sparsity of
30 times higher in the 1-kb region that precedes a sub-  contact information and increase the signal-to-noise ratio,
TAD boundary than in the 1-kb region that follows one. A Hi-C data is traditionally binned at fixed intervals along
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Fig. 5 Analysis of RF resolution TAD and subTAD boundaries in GM12878. Analyses were performed on both Hi-C data resulting from a Hindlll

(3.4 kb per RF on average (a-d)) and a Mbol restriction digest (434 bp per RF on average (e-h), from Rao et al. [23]). TAD and subTAD boundary
predictions were made on IF matrices produced either by HIFI-MRF or a fixed-binning approach (16 RF per bin, i.e., approx. 50 kb per bin for Hindlll
and 7 kb per bin for Mbol). a IF matrices produced by HIFI-MRF (top) and fixed binning (bottom) for a 4-Mb locus surrounding the NEK6 locus
(chr9:124999244-128993971). b, f CTCF occupancy as a function of distance to the nearest TAD (b) or subTAD (f) boundary, separately for sites on
the forward and reverse strands. Convergent CTCF sites are enriched at both TAD and subTAD boundaries. Shaded band indicate 95% confidence
intervals of the estimate of the mean occupancy. ¢, g Coverage of active promoters (red) and strong enhancers (green) identified by ChromHMM, as
a function of the distance to the nearest TAD () or subTAD (g) boundary. These regions are very strongly enriched just outside of SubTAD
boundaries, but less so around TAD boundaries. d, h Occupancy of two transcription factors, FOXM1 and NFIC, as a function of distance to the
nearest TAD (b) or subTAD (f) boundary. While most TFs have an occupancy peak at TAD and subTAD boundaries, the extent of the enrichment
within TADs varies from low (e.g., FOXM1) to high (e.g., NFIC). e IF matrices produced by HIFI-MRF (top) and fixed binning (bottom) for the 200-kb
NEK6 locus (chr9:126879748-127079891). Regulatory regions identified in Huang et al. [62] are marked SE (super enhancer), CE1 (conventional
enhancer), and NEK6-TSS1 and NEK6-TSS2 (alternative promoters). Notice how all these regions lie between visible subTADs
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chromosomes to produce lower-resolution matrices [10].
This lower-resolution representation of Hi-C data limits
its application in studies of genomic regulatory networks
or mechanisms of disease, which require robust, high-
resolution 3D genomics data.

Here, we introduced HIFI, a family of density estima-
tion algorithms that allow for the observation of high-
resolution (at the restriction-fragment scale) genomic
contacts from Hi-C data of various sequencing depths.
Our results show that HIFI algorithms, and in particu-
lar those based on Markov random fields (HIFI-MRF),
provide highly accurate estimates of Hi-C interaction fre-
quency at RF resolution and outperform classical fixed-
binning approaches. We demonstrate that HIFI-MRF
recapitulates contact data obtained by 5C and also cap-
tures interactions detected by ChIA-PET (Fig. 4) better
than HiCPlus and HMRFBayes [15]. Unlike the former,
HIFI is easy to use and does not require special equip-
ment (GPUs) to run within a reasonable time frame. HIFI
also runs more than 100 times faster than the HMREF-
Bayes. The high resolution and accuracy provided by
HIFI allows analyses and discoveries that could not be
made with lower-resolution Hi-C data. For example, HIFI
allows for the identification of TAD boundaries at RF res-
olution, which provides a unique opportunity to finely
delineate the role of different DNA-binding proteins. Ben-
efiting from the RF resolution achieved with HIFI-MRF,
we show that CTCF, RAD21, SMC3, and ZNF143 are
enriched just outside both TAD and subTAD bound-
aries, and their sharp depletion within TADs may be a
major contributor to the formation of TAD boundaries
(Fig. 5). In addition, we detail a set of transcription fac-
tors (based on ENCODE ChIP-seq data) that are found
to be enriched at RFs labeled as TAD boundaries (Fig. 5b,
c). Finally, we highlight the new observation that active
enhancers and promoters appear to provide structure to
TADs, whereby DNA located between consecutive active
regulatory regions form subTADs. This is obviously just
an illustration of insights that can be gained from the
analysis of Hi-C at high resolution. Others would include
the use of HIFI-processed Hi-C data to further dissect
the mechanisms of genome organization and to prior-
itize non-coding variants obtained from genome-wide
association (GWAS) or expression quantitative trait loci
(eQTL) studies, as is starting to be done with capture
Hi-C data [47].

Our work also addresses the extent to which the accu-
racy of IF estimates degrade in response to lowering
sequencing depths of a Hi-C library. The accuracy of
HIFI (specifically KDE, AKDE, and MRF algorithms) was
shown to reduce gracefully as coverage decreased (see
Fig. 1d—where the SSE drops logarithmically to the size
of input data). The impact of coverage depth vs. accu-
racy of IF estimates depends on the biological question at
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hand. For example, TADs can clearly be identified quite
accurately at low sequencing depth (although pinpointing
their precise boundaries requires higher depth), while the
detection of enhancer-promoter loops may require depths
much higher than those made possible by HIFI. The
results presented in Fig. 4 and Additional file 1: Figures S8-
S10 demonstrate that, using HIFI, a low-coverage Hi-C
data set (61M reads) can be used quite effectively to reca-
pitulate ChIA-PET and HiChIP data, obtaining results
only 3-5% worse (in terms of AUC) compared to a high-
coverage data set (608M reads).

We next studied the extent to which loop calling is facili-
tated by HIFI. To this end, we developed and incorporated
into HIFI a simple loop-calling program based on the
algorithm used in HICCUPS [23]. This program operates
directly on HIFI-processed IF matrices rather than canon-
ical binned normalized data, which HICCUPS may only
be applied to. Additional file 1: Figure S11 demonstrates
that HIFI-processed Hi-C data results in a higher fraction
of predicted loops supported by ChIA-PET data (CTCF
and RNAPII) compared to HICCUPS. This increase is
especially notable within a distance range of 250 kb.

Importantly, applying HIFI to a given Hi-C matrix is
akin to simulating the sequencing of the same Hi-C
library at extremely high depth. Several aspects of the
Hi-C experimental protocol may introduce biases in the
library, including the choice of restriction enzyme or lig-
ation/fixation approach. In fact, our initial plan was to
use Rao et al’s very deeply sequenced, Mbol-digest Hi-
C data [23] as a basis to evaluate the processing of their
HindIII data for the same cell type GM12878. This plan
was thwarted by the relative lack of similarity between
the two data sets at high resolution. Nonetheless, while
HIFI does not aim to correct these types of biases, it may
actually help to reveal and study them.

While HIFI provides a significant improvement over
previous methodologies for handling Hi-C matrix spar-
sity, there remains several directions for possible improve-
ments. First, HIFI is relatively slow, requiring roughly an
hour per chromosome (at HindIII resolution), due to the
size of the matrices analyzed and the complexity of MRE-
based inference. Improved algorithms, multi-threading,
and GPU-based computation are expected to provide
significant speedups and are under development. These
improvements will also allow the calculation of confi-
dence intervals for estimated contacts frequencies, using
Markov chain Monte Carlo sampling. Machine learn-
ing (ML) approaches, such as convolutional neural nets
(CNN), offer an alternative to probabilistic approaches
like HIFI-MRE. In recent work by Zhang et al. [17], the
authors showed that CNNs can be trained on Hi-C data
to increase the resolution from 40 to 10 kb. Being model-
free, ML approaches have the potential to discover and
take advantage of unsuspected dependencies in the data.
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However, these models have yet to produce RF resolution
data and thus remain limited in their ability to provide bio-
logical support as shown in this manuscript. In addition,
being intrinsically complex models, prediction errors may
occur in unexpected manners.

The impact of fragment-specific biases on RF resolution
Hi-C data also deserves further studies [19, 48]. Although
HIFI is not by itself a bias correction approach, improve-
ments to RF resolution bias estimation, based for example
on the work of Gilgenast and Phillips-Cremins [49], will
contribute to improving HIFI’s accuracy.

In conclusion, the HIFI algorithms and software
described in this manuscript allow for accurate, high-
resolution analyses of 3D genome organization using Hi-C
data. RF resolution Hi-C data allows for the recapitula-
tion of observations made by 5C, a better separation of
positive and control/background contacts, RF resolution
TAD and subTAD boundary calling, and the identification
of potential DNA-DNA contacts and TF enrichments that
drive changes in chromatin architecture and gene regula-
tion. By operating upstream of many Hi-C data analysis
tools (e.g., loop, TAD, and compartment predictors as
well as fragment bias normalization), HIFI can easily be
inserted in a number of Hi-C data analysis pipelines, and
we believe that the research community will be quick to
take advantage of this family of new algorithms.

Methods

Hi-C read-pair pre-processing

The publicly available Hi-C User Pipeline (HICUP [50])
v0.5.3 was used to process raw sequencing reads. HiICUP-
mapped reads to the human (hgl9) genome are also fil-
tered to remove expected artifacts resulting from the son-
ication and ligation steps (e.g., circularized reads, reads
with dangling ends) of the Hi-C protocol. Mapped reads
were further filtered for a Mapping Quality Score (MAQ)
greater than 30 [19]. BAM/SAM-mapped read files were
then converted (by our 'BAMtoSparseMatrix.py’ script) to
a raw read-pair count matrix RC, stored using a sparse
matrix TSV file format, before use with HIFIL.

HIFI algorithms

The HIFI package is available at https://github.com/
BlanchetteLab/HIFI [51] and https://doi.org/10.5281/
zenodo.3556842 [52] under the GNU Lesser General Pub-
lic License. It consists of a C++ program for IF estimation,
together with Python scripts for input data formatting and
the true-size IF matrix visualization. This section provides
algorithmic details.

Fragment-specific bias calculation

Factors such as fragment size, GC content, and mappa-
bility affect the observed read count matrix RC. For each
fragment i of chromosome ¢, we estimate this bias as:
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Y, RC;;

bias; = ———— : Ny
gments>
Zi’,}" RC,'/J‘/

where 7fragments is the number of RFs on that chromo-

some. Computed biases are used to obtain a normalized
. RC;;

read count matrix nRC, where nRC;; = Wb’m}

Fixed-binning approach

In the fixed-binning approach, the user specifies the value

binSize, which is the number of consecutive RFs to be

binned together. Defining bin; = {j : [j/binSize] =

Li/binSize|}, we then obtain the following estimate of

interaction frequency for RF pair (i, j):

Zaebini Zbebinj nRCﬂ,b

binSize?

IFf}g =

Fixed kernel density estimation

This approach follows the standard two-dimensional ker-
nel density estimation (KDE) procedure [53, 54], where
predicted IF for RF pair (i, /) is obtained as a weighted sum
of the entries of RC surrounding (i, /), parameterized by
bandwidth parameter /. Specifically, we set:

217314 221731«1 W(ﬂ, b; h) . nRCi+q,j+b
3h 3h
e—3h 2be—3p W(@, b3 )

a24p?
- 2
e 2 —. Near the edges of the matrix,

V2mh
values of 4 and b such that indices (i + a4,/ + b) fall out-

side the matrix are excluded from the sums of both the
numerator and denominator.

KDE __
™ =

where w(a, b; h) =

Adaptive kernel density estimation

This approach is similar to the fixed KDE, except that the
value of the bandwidth parameter / is chosen separately
for each pair (i,). Specifically, we choose /;; to be the
smallest value such that:

3h 3h
covyj = Z Z RCi 4j+» = MinimumCount,
a=—3hb=-3h

where “MinimumCount” is a user-defined parameter (we
find the MinimumCount = 100 works well in practice and
use this value as the default). In other words, the regions of
the matrix that tend to have larger RC values are estimated
using smaller bandwidths (i.e., higher resolution), whereas
those that are more sparse use larger bandwidths. HIFI-
AKDE results in a fine resolution in dense regions and a
lower resolution in sparser areas of the matrix. In order to
speed up the computation of /;;, we use a pre-computed
cumulative matrix, cumRC, where:

i
cumRC;; = Z Z RC, 5,

a=1 b=1
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which allows the calculation of cov;; in constant time:

covij = cumRCi 3,431 — CumRCyy3p3p
— CllmRCl;gh,jJrgh + CumRCl;th;gh

Markov random field estimation

A Markov random field (MRF) describes a set of random
variables interconnected via a lattice of dependencies. Let
us denote by IFZ.[RF the latent IF value we aim to esti-
mate at position (i,j). We model dependencies between
the neighboring cells using a log-normal distribution:

log(IF%lRF) ~N (u = log(MedNeighi’j),Ufj> , (1)

where MedNeigh; ; is the median of the eight IFMEE cells
surrounding cell (i, j). We chose to model this depen-
dency using the median instead of the mean of the neigh-
bors because it allows for sharper transitions regions
such as TAD boundaries. The value of 03» is set to « -
log MedNeigh; ;). « determines the level of dependency
between adjacent cells. A small o value results in a pre-
dicted IF matrix that is very smooth, whereas larger values
result in bumpier or less smooth matrices. The value used
here (@ = 0.2) was chosen via a grid search to maximize
the likelihood of a left-out subset of the training data (vali-
dation set). However, HIFI-MRF is quite insensitive to this
hyperparameter as the prior it defines is weak compared
to the data itself.

We model the dependency between the observed read
count RC;; and the estimated true IF value [FMRE ij using
a Poisson distribution:

RC;; ~ Poisson <A. = IFMRFI',]' - bias; - biaS]‘> .

HIFI also supports the use of a negative binomial dis-
tribution to model RC from IF, to allow for increased
dispersal of RC values via a user-defined multiplier of
variance. We then seek the matrix IFMRF that maximizes
Pr[RC, IFMRF] = pr[IFMRF].pr[RC | IFMRF], We first
initialize the IFMRF matrix using the output of the HIFI-
AKDE algorithm. We then optimize IFMRF using iterated
conditional mode (ICM) [55] algorithm. Each iteration
involves revising the value of each entry IFMRF;; 50 as to
maximize the joint probability of IFMRF and RC. Revising
the value of IFMRF; j only alters the probability calculation
at position ,j and the eight neighboring cells (because
their median may have changed), and thus probability cal-
culations can be limited to that portion of the matrix.
Because of the use of the median (rather than the mean),
the joint probability function is not differentiable. Instead,
the update to IFMRFL,- is performed by grid search over
a small range of multiplicative factors. Convergence is
usually achieved in five to ten iterations over the entire
matrix.

Despite using the median rather than the mean to model
inter-cell dependencies, some bleed-in effect is observed
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at TAD boundaries. To prevent those, we designed an
approach where the nRC matrix is first scanned to iden-
tify sharp horizontal or vertical transitions characteristic
of TAD boundaries. Horizontal boundaries are defined by
a row index i and a pair of column indices j and ;' and will
be set if the distribution of nRC values in nRC;; ; differs
significantly from that in nRC;; 1, ;, as determined by a
Kolmogorov-Smirnov test. More precisely, boundaries are
set greedily, starting with the most significant boundary
matrix-wide, and iteratively adding more boundaries, pro-
vided they do not overlap previously set boundaries, until
the KS statistic falls below a user-defined threshold (the
value of 1.5 was used here). Vertical boundaries are sym-
metrical to horizontal boundaries. Boundaries are then
used in the HIFI-MRF model to prevent certain neigh-
bors from contributing to the neighborhood median of a
given cell. Specifically, cells (/,;) that sit on the opposite
side of a boundary from cell (i, /) are excluded from the
neighborhood of (i, j).

Output matrices

HIFI can produce either a normalized or non-normalized
output. Non-normalized outputs are obtained as IF%\;RR
bias; - bias;. In this manuscript, normalized outputs
were used throughout, except for the cross-validation
experiment.

Conversion between fixed and restriction fragment
resolutions

HIFI operates at RF resolution, whereas other approaches
operate at fixed resolutions (e.g., 5, 25, or 50 kb). To con-
vert from fixed to RF resolution, we tested three alterna-
tives: the “direct” scheme, which assigns each restriction
fragment the frequency of the fixed bin that their 3’ end
resides within; (ii) the “counts” scheme, which divides a
fixed bin’s interaction frequency by the number of 3’ frag-
ment ends found within it and then assigns this value
to each of those fragments; (iii) the “weighted” scheme,
which determines the proportion of each fragment that
overlaps with a given fixed bin, then assigns each fragment
its relative proportion of that bin’s interaction frequency.
The “direct” conversion scheme was found to be the most
robust and perform more consistently across datasets and
is the one that was used throughout the paper.

Alternative approaches

The source code for HiCPlus [17] was obtained from
https://github.com/zhangyan32/HiCPlus. Models were
trained on Hi-C data from chromosomes 1-8 at 10 kb res-
olution, within a range of 2 Mb, as recommended. Input
and target contact frequencies were obtained from input
set and test RC matrices, respectively. Models were pro-
vided 100 epochs (10 times more than recommended) to
converge while ensuring overfitting did not occur.


https://github.com/zhangyan32/HiCPlus
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HMRFBayes [15] was obtained from http://www.unc.
edu/~xuzheng/HMRFHiCFast/tutorial.php. The HMRE-
Bayes program was provided the observed and expected
contact frequencies for paired restriction fragments
within 1-Mb bins along chromosomes 9-X, where the
expected contact frequency was calculated as follows:

TotalReadRow; - TotalReadColumn;
TotalReadPairInMatrix

Expected;; =

Chromatin loop calling using HIFI data

Loop calling of HIFI-processed Hi-C data was performed
using an algorithm similar to HICCUPS [23]. We refer
the reader to Fig. 3a and Supplementary material section
VILa.3 of Rao et al. [23]. Here, authors of [23] define a
distance-normalized IF matrix IFnorm as:

IEG, /)

o —
mean{IF(a, b) : Lpos(l())yoggs(“” = \_POSOI)OO%OS(’)J}

I[Fnorm(i, j) =

where pos(a) is the genomic position at the end of RF
a. Like HICCUPS, HIFI’s loop-calling algorithm involves
two parameters p (peak size) and w (window size), both
measured in bp, with p < w. For each cell (i, j) in the HIFI-
processed IF matrix at RF resolution, the peak around (i, )
is defined as the submatrix encompassing region [ pos(i) —
p.-pos(i) + p] x[ pos(j) — p..pos(j) + p]. Note that since the
size of this submatrix is expressed in bp, the number of
cells it contains can vary, depending on the size of the RFs.
The average IFnorm value P(i, ) in the peak is then calcu-
lated. As with HICCUPS, P(i, j) is compared to the average
IF value found in several types of flanking regions, includ-
ing (i) D(i, j)—the average I[Fnorm in the “donut” of size w
around (i, ), (ii) H(i,j)—the average IFnorm in the left and
right flanks of (i, j), (iii) V' (i, j)—the average I[Fnorm in the
top and bottom flanks of (i, ), and (iv) BL(i, j)—the aver-
age score in the region to the bottom left of (i, j). The score
of (i, /) is then defined as:
PG, ))
max(D(, /), H(I, /), V (i, j), BL(i, )

score(i,j) =

If score(i,j) > minScore, where minScore is a user-
defined threshold (we use minScore = 1), fragment pair
(@,j) = argmax{IFnorm(a,b) : a,b € peak(i,j))} is
identified, and repr(i,j) = (i,j) is set as the representa-
tive RF pair of the peak. Finally, candidate peaks located
within a minimum distance minDist (20 kb used here) of
another higher scoring candidate peak are eliminated. The
remaining peaks are reported by HIFIL

A false discovery rate (FDR) is assigned to each peak by
repeating the peak-finding procedure on a randomly per-
muted IF matrix (diagonal-wise, i.e., preserving fragment
distances). For each distance bin of 10 kb, the observed
score values are fit to a gamma distribution and used to
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estimate the FDR of each predicted peak found in the
non-permuted data. Similar to HiCCUPS, several pairs
of values p and w were considered to enable the cap-
ture of small, sharp peaks as well as broader peaks. Both
(p = 30 kb, w = 60 kb) and (p = 50 kb, w = 100 kb) were
used here. The resulting HIFI chromatin loop calls were
combined and sorted based on FDR values.

Evaluation of chromatin loop-calling approaches

All 3 HindIII-digest GM12878 Hi-C replicates (HIC034,
HIC035, and HIC037) from Rao et al. [23] were combined
using Juicer [31] (MAPQ value > 30 and Knight-Ruiz
matrix balancing [21]) to obtain Hi-C matrices at 10-kb
resolution (in .hic format). HICCUPS was then applied to
these matrices using default parameters, yielding a list of
21,940 potential chromatin loops genome-wide.

The top 100 scoring HIFI- and HiCCUPS-predicted
chromatin loops (based on FDR values) were identified at
each distance bin of 10 kb (Additional file 1: Figure S11).
The validity of predicted loops was determined by avail-
able CTCF and RNAPII ChIA-PET GM12878 libraries
[33]. A predicted loop was considered correct if a proxi-
mal ChIA-PET contact was present (allowing up to 10 kb
of tolerance for each anchor of the loop).

Directionality index and TAD boundary prediction

The directionality index (DI) was first described by Dixon
etal. [6] to detect directionality bias for interactions across
a Hi-C IF matrix. For RF i, the DI is usually calculated as
follows:

DI(}) — sien(B — A (A—E*  (B—E)
() = sign( )~< 7t —F )
where A= Zi—5§j<i IF]',I‘, B = Zi<j§i+5 IFL]’, E = (AerB),
and § is set to 500 kb. Due to the low coverage at RF
resolution Hi-C data, the DI formula yields very noisy pre-
dictions. We thus used the following modified version:

2 2
DI’:sign(B—A)-((A E) +(B E)>.

E?2 E?2

This modification transforms terms present in the right
parentheses to relative rates and helps to scale the magni-
tude of the DI. TAD boundaries are defined as RFs whose
DI’ value is a local maximum or minimum in a window of
21 RFs (51 for Mbol analyses) centered around it. In the
case of the fixed-binning (b = 16) analysis, only RFs at the
center of their bin are considered. Due to their low cov-
erage, regions within 2 Mb of a centromere or telomere
were excluded. TAD boundaries are then sorted by their
absolute DI values and the top 5000 and 25,000 bound-
aries were selected for HindIII and Mbol RF resolutions,
respectively.
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Data sources and pre-processing
The following Hi-C datasets were used: from Dixon et
al. [6], mESC with HindIII digest (GEO:GSE35156); from
Rao et al. [23], GM12878 with HindIIl and Mbol digest
(GEO:GSE63525); and from Bonev et al. [24], mESC
with Dpnll digest (GEO:GSE96107). For 5C compar-
isons, the following datasets were used: from Smith et
al. [29], GM12878 with HindIII digest (GEO:GSE75634),
and from Nora et al. [7], mESC with HindIII digest
(GEO:GSE35721). For comparisons to ChIA-PET, the
following datasets were used: from Tang et al. [33],
CTCF-mediated contacts (GEO:GSM1872886) and
RNAPII-mediated contacts (GEO:GSM1872887), and
from Fullwood et al. [32], RAD21-mediated contacts
(GEO:GSM1436265; replicates averaged). Paired-end
tag clusters were binned to hgl9 HindIII RFs to ensure
comparability with other datasets. Enhancer-promoter
(EP) pairs from Thurman et al. [35] were obtained
from ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/
integration_data_jan2011/byDataType/openchrom/
jan2011/dhs_gene_connectivity/genomewideCorrs_
above0.7_promoterPlusMinus500kb_withGeneNames_
32celltypeCategories.bed8.gz. Enhancers and promoters
were then binned to their respective RFs. Cohesin-
mediated chromatin contacts identified by HiChIP were
taken from Supplementary Table 3 of Mumbach et al. [36]
and then binned to expected HindIII-digest RFs.
ChIP-seq data from ENCODE [37] and ChromHMM
[46] predictions were downloaded from the UCSC
Genome browser [56] and binned to HindIII and Mbol
RFs. For ChromHMM (Fig. 5¢, g), only states 1 and 4 were
used (to reduce redundancy). CTCF motifs and orienta-
tion were identified in a similar manner to Fundenberg
et al. [57] using HOMER [58] and the “CTCF_knownl”
PWM [59]. CTCF peaks, identified by ChIP-seq, were
assigned forward or reverse strand orientations based on
the orientation of overlapping CTCF muotifs. If both ori-
entations were found to reside within a peak, then one
orientation would be randomly chosen. Peaks with no
overlapping CTCF motif were discarded.
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