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Abstract

Background: Resistance to enteric pathogens is a complex trait at the crossroads of multiple biological processes.
We have previously shown in the Drosophila Genetic Reference Panel (DGRP) that resistance to infection is highly
heritable, but our understanding of how the effects of genetic variants affect different molecular mechanisms to
determine gut immunocompetence is still limited.

Results: To address this, we perform a systems genetics analysis of the gut transcriptomes from 38 DGRP lines that
were orally infected with Pseudomonas entomophila. We identify a large number of condition-specific, expression
quantitative trait loci (local-eQTLs) with infection-specific ones located in regions enriched for FOX transcription
factor motifs. By assessing the allelic imbalance in the transcriptomes of 19 F1 hybrid lines from a large round robin
design, we independently attribute a robust cis-regulatory effect to only 10% of these detected local-eQTLs. However,
additional analyses indicate that many local-eQTLs may act in trans instead. Comparison of the transcriptomes of DGRP
lines that were either susceptible or resistant to Pseudomonas entomophila infection reveals nutcracker as the only
differentially expressed gene. Interestingly, we find that nutcracker is linked to infection-specific eQTLs that correlate
with its expression level and to enteric infection susceptibility. Further regulatory analysis reveals one particular eQTL
that significantly decreases the binding affinity for the repressor Broad, driving differential allele-specific nutcracker
expression.

Conclusions: Our collective findings point to a large number of infection-specific cis- and trans-acting eQTLs in the
DGRP, including one common non-coding variant that lowers enteric infection susceptibility.

Background
Deciphering the relationship between genomic and
phenotypic variation is a central goal in genetics.
Genome-wide association studies (GWAS) have been ex-
tensively used to address this challenge by looking for
variants that could explain a certain fraction of the gen-
etic variance of phenotypes [1, 2]. More often than not,
those variants are located in non-coding regions of the
genome, rendering the inference of their putative func-
tion difficult [3–6]. Therefore, the study of intermediate

molecular traits, such as gene expression levels, and how
they are affected by genomic variation is a powerful com-
plementary approach to linking geno- to phenotype [7, 8].
Since the first expression quantitative trait locus

(eQTL) report in yeast [9], it has become clear that
eQTLs could account for a substantial proportion of
variability in gene expression following a cellular or or-
ganismal response to external stimuli. These eQTLs in
turn advanced our understanding of the genetic basis of
disease susceptibility. Indeed, eQTL studies in both
mouse and human using monocytes, macrophages, den-
dritic cells, or other immune cells have been useful to
better understand how genetic regulatory effects affect
autoimmune disease [10–12], inflammatory bowel dis-
ease [13], resistance to Salmonella [14], and the molecu-
lar response to an infection stimulus [15–18]. These
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advances motivated the establishment of even larger-
scale projects such as DICE (Database of Immune Cell
Expression, eQTL, and Epigenomics) to characterize
gene expression in all human immune cell types and to
study how genetic variants affect these immune cell-
related transcriptomes [19]. However, eQTL-related
studies aimed at better understanding the genetic and
molecular basis underlying gut immunocompetence have
been lacking for practical and ethical reasons. Indeed,
human intestine eQTL studies have to our knowledge so
far been restricted to inflammatory bowel disease [13,
20–23].
A valuable alternative model to uncover the genetic

and molecular mechanisms underlying variation in gut
immunocompetence is Drosophila melanogaster given
that this organism is by now widely used to study the
biological processes mediating the response to enteric
infection [24–28]. Moreover, previous work including
ours has shown that gut immunocompetence is a highly
variable and heritable trait, not only in human [29] and
mouse [30], but also in Drosophila [31, 32]. Conse-
quently, population resources such as the Drosophila
Genetic Reference Panel (DGRP) can be effectively used
to study the molecular nature of enteric infection-
induced gene expression variation. In this study, we
therefore explored the effect of genetic variation on gene
expression and organismal phenotypes in the context of
in vivo enteric infection in the DGRP. Despite several
valuable eQTL studies in Drosophila involving the
DGRP [33–37] and the Drosophila Synthetic Population
Resource (DSPR) [38–40], none have so far focused on
the response to infection.
To do so, we generated a large set of Drosophila con-

trol and Pseudomonas entomophila (P.e.)-infected gut
transcriptomes to systematically investigate the link be-
tween gut gene expression levels and genetic variation.
We used P.e. because it is a severe pathogen [41] that,
along with other Pseudomonas species, is a natural
pathogen to the fly [42]. We showed that genotype is a
major determinant of global gene expression levels, re-
vealing a large number of both shared and condition-
specific local-eQTLs [43–45]. We then validated and
catalogued these local-eQTLs into cis and trans-acting
eQTLs using allele-specific expression on a set of F1 sib-
lings from crosses between isogenic DGRP lines. Import-
antly, we identified nutcracker (ntc) as a gene that is
differentially expressed between susceptible and resistant
DGRP lines. Through classical genetic analyses, we
found that it affects the immunodeficiency (Imd)-
dependent enteric immune response through the induc-
tion of the major effector Diptericin A (DiptA). We also
identified and in vivo validated a cis-regulatory variant in
a predicted transcription factor (TF) binding site respon-
sible for the difference in ntc expression between the

resistance classes and validated the effect of the SNP on
allele-specific gene expression in vivo. In this study, we
thus leveraged the genetic tractability of the fruit fly, the
ability to easily replicate experiments on the same gen-
etic backgrounds, and investigation at the whole-
organism level to characterize in depth the genetic and
molecular mechanisms that contribute to gut immuno-
competence variation in Drosophila.

Results
Nutcracker is the only gene that is significantly
differentially expressed between resistance classes
To study global gene expression variation between two
enteric infection resistance classes, we selected 38 DGRP
lines from the phenotypic extremes from our previous
study [31] with 20 being highly susceptible and 18 being
highly resistant to enteric infection by P.e. (Fig. 1a).
Adult female flies were infected and mRNA sequencing
(mRNA-seq) performed on dissected guts 4 h post infec-
tion. We chose this 4 h timepoint to detect acute gene
expression differences and thus to avoid indirect expres-
sion changes that may occur because of gut remodeling.
In parallel, for each line, we also sequenced guts of
sucrose-fed flies as controls. Each genotype and condi-
tion were replicated once. Since the DGRP lines are
highly polymorphic, we opted for analyses on individual-
ized genomes. To do so, we used the available genotype
data [33], including single nucleotide variants as well as
indels and structural variations, to generate individual-
ized genomes and gene annotations (see “Material and
methods”) which we used throughout the analyses.
Seven of the analyzed lines were already included in our
previous study [31], which allowed us to assess the bio-
logical reproducibility of the mRNA-seq experiment.
After combining the expression count data from the two
experiments and performing normalization and removal
of batch effects, we performed conventional hierarchical
clustering (Additional file 1: Figure S1a). This revealed
that the samples from the same line and condition al-
ways cluster together, indicating that genotypic differ-
ences mediate expression-level differences and that
batch effects are weaker than the infection or genotype
effects.
In a next step, we aimed to investigate how genetic

variation influences the molecular and phenotypic differ-
ences between resistance classes. To first gain an unbiased,
overall insight into the relatedness of the transcriptomes of
the homozygous lines, we performed PCA on gene expres-
sion levels (Fig. 1b and Additional file 1: Figure S1b-c).
While the infection effect is obvious and recapitulated by
the first principal component (PC), lines from different re-
sistance classes did not show any clear separation on the
first two PCs. This is in contrast to our previous study,
where we were able to see a modest separation on the
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second PC [31]. Furthermore, performing PCA on the ex-
pression levels within conditions yielded a similar result,
with no obvious separation of the resistance classes on the
first two principal components. A rationale for the dis-
appearance of any separation compared to our previous
study may include (i) our expansion of the number of lines
(from 8 to 20 per extreme), therefore reducing the pheno-
typic spread, or (ii) the fact that the separation observed
with the eight lines in our previous study may have been
dominated by genotypic rather than treatment effects.

Taken together, our findings suggest that, while the mo-
lecular impact of infection is similar among all tested lines
and while the phenotypic differences are striking between
the two resistance classes, the underlying transcriptomic
differences are neither evident at the single gene- nor
transcriptome-wide level. This is in line with our previous
findings that higher-level modules related to specific bio-
logical processes such as stress response, ROS metabolism,
and intestinal homeostasis [31] could explain differences
between resistance classes.

Fig. 1 Expression profiling of phenotypic extremes does not reveal consistently differentially expressed genes between classes. a Study
design: 30 adult female flies from two phenotypic extremes (18 resistant and 20 susceptible) of the DGRP were infected orally with P.e.
or fed sucrose. Whole guts of ~ 30 flies were dissected per condition and line, then RNA sequencing was performed. Sequencing reads
were mapped to individualized genomes, and the number of reads was counted per gene. b Principal component analysis plots of all
the samples (left), the control condition (middle), and the infected condition alone (right). The R package FactomineR was used to obtain
the coordinates of each sample in the first two components, as well as the variance explained by each component (in parentheses). c
Infection leads to the differential expression of around 2400 genes (BH-corrected p value < 0.05, fold change > 2). d When lines of the
two resistance classes are compared within condition, no genes are significantly differentially expressed in the control condition, and only
one gene, ntc, in the infected condition
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Using standard gene-based differential expression ana-
lysis, we identified around 2400 genes that are either up-
or downregulated 4 h post P.e. infection (FDR < 0.05, log
fold change > 2, Fig. 1c). This is consistent with previous
RNA sequencing and microarray results [31, 46]. Next,
we explored gene expression differences between the re-
sistance classes in the two experimental conditions. In
our previous study, we had only found five and 34
mostly uncharacterized, differentially expressed genes in
the control and infected conditions, respectively. We
reasoned that this low number may reflect either the
underpowered nature of our previous study, involving
only four lines from each resistance class, or that there
are effectively few consistent differences between the re-
sistance classes at the single gene level. Strikingly, when
considering 38 lines, we found again no differentially
expressed genes in the control condition, and only one
gene, nutcracker (ntc), in the infected condition (Fig. 1d).
This observation supports the notion that the differences
between the classes, while being overt at the physio-
logical level (i.e., being alive vs. dead), cannot be fully ex-
plained at the single gene level using standard
differential expression approaches, at least at the sam-
pled 4 h post infection timepoint.

The gene nutcracker is involved in the gut immune
response
Because ntc had so far never been linked to the immune
response, we first explored whether ntc affects gut im-
munocompetence given that its only described role is in
sperm differentiation [47, 48]. To do so, we used a null
mutant line that harbors a point mutation in the F-box
domain of Ntc, ntcms771 and tested its susceptibility to
P.e. infection. Because flies homozygous for ntcms771 are
fragile and have a short lifespan in both control (Add-
itional file 1: Figure S2a, log-rank test, p < 0.0001) and
infected conditions (Additional file 1: Figure S2b, log-
rank test, p < 0,0001), we backcrossed the fly line to its-
background line (bw;st). We assessed the survival of F1
offspring compared to their control, i.e., we compared
the survival of bw;st,+/TM6B to bw;st,ntcms771/TM6B
and bw;st,+/+ to bw;st,+/ntcms771. We observed de-
creased survival in all offspring flies harboring the ntc
mutant allele. We also crossed the mutant line to w1118

and again scored survival, obtaining the same results. In
both crosses, the decrease in survival was stronger in the
balancer line compared to the one without a balancer
chromosome (Fig. 2a, p < 0.0001 with balancer and p =
0.081 without balancer, log-rank test, Additional file 1:
Figure S2d and S2e, cross with w1118, log-rank test p <
0.0001 with balancer, p = 0.9 without balancer). Further-
more, we performed RT-qPCR on dissected guts from
the lines crossed to bw;st and found that ntc expression
is, as expected, strongly reduced in mutant allele lines

compared to control. Concurrently, the expression of
the anti-microbial peptide DiptA was greatly reduced in
flies harboring the ntc mutant allele compared to con-
trols (Fig. 2b, c). We replicated these findings using two
lines harboring P-element-induced mutations, ntcf03797

and ntcf07259, in or around the ntc locus, showing a de-
crease in survivability (Additional file 1: Figure S2c) and
DiptA expression (Additional file 1: Figure S2f). Interest-
ingly, we also found that ntc is not expressed in the
RelE20 mutant line, which harbors a Relish loss of func-
tion which disrupts the Imd pathway, upon infection
(Additional file 1: Figure S2f). Furthermore, we observed
that ntc expression is induced in the gut after infection
(infection log2 fold change = 1.8, Benjamini-Hochberg
adjusted p value = 7.87e− 11) and resistant lines have
greater ntc expression than susceptible ones (log2 fold
difference = 1.26, Benjamini-Hochberg adjusted p value =
0.009) after infection, but not in the control condition
(Fig. 2d). Together, these results show that loss of ntc
leads to enhanced susceptibility to P.e. infection and sug-
gest that loss of or decreased ntc expression negatively
influences the enteric immune response through down-
regulation of Imd pathway effectors upon P.e. infection.

Genetic analysis reveals pervasive, condition-specific gene
expression variation
We next sought to uncover the molecular mechanisms
underlying differential ntc expression between resistant
and susceptible lines by cataloguing the effect of genetic
variation on gene expression levels including ntc for the
two treatment conditions. To do so, we used Matrix
eQTL [49] to identify local-expression Quantitative Trait
Loci (local-eQTLs) (i.e., within a window of 10 kb up-
and downstream of genes) whose alleles correlate with
the expression levels of nearby genes. To avoid artificial
inflation in the p values due to the correlation between
two samples of the same strain derived from the control
and infected conditions, we performed the analysis sep-
arately for the two experimental settings, while consider-
ing co-variates such as genetic relatedness and
Wolbachia infection status (“Material and methods”).
Using this model, we identified 6348 and 5904 local-
eQTLs (Benjamini-Hochberg adjusted p value < 0.05
corresponding to a raw p value of 1.6e−4 and 1.4e−4, re-
spectively) for 1038 and 1087 genes in the control and
infected conditions respectively (Fig. 3a).
Interestingly, while 22% of local-eQTL-associated

genes were shared between the two treatment conditions,
the majority of detected local-eQTLs were condition-
specific, emphasizing the substantial contribution of cryp-
tic genetic variants to gene expression variation, especially
in the presence of a strong transcriptome-altering stimu-
lus such as infection. However, since the analyses were
performed on only 38 strains, it is possible that statistical
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power limitations may be inflating the number of
condition-specific local-eQTLs. To address this possibility,
we first characterized the allele frequency spectrum of all
significant local-eQTLs and found no systematic bias in
allele frequency with respect to the number of identified
local-eQTLs (Additional file 1: Figure S3a). For each local-
eQTL, we then calculated the percentage of variance ex-
plained by genotype, and again found no clear relationship
between allele frequency and the number of shared
local-eQTLs (Additional file 1: Figure S3b). Subse-
quently, we performed simulations under idealized
conditions for a wide range of allele frequencies and
genetic contributions to variance, following a strategy
described in [54] (Additional file 1: Figure S3c). These
analyses revealed that the power to detect a local-
eQTL has a broad range, implying that many
condition-specific and shared local-eQTLs are likely

not detected in our study at the lower bounds of the
allele spectrum or genetic contribution. For example,
the power to detect a local-eQTL with a MAF of 0.15
and a genetic contribution of 30% is 10% whereas it
reaches 100% when the MAF is 0.5 and genetic contribu-
tion is 50%. We also simulated the power of detecting a
shared local-eQTL by performing simulations in pairs that
share the same genetic components but with a random
environmental component. As expected, the power to
identify a shared local-eQTL increases sharply as a func-
tion of increasing allele frequency and genetic contribu-
tion to trait variance (Additional file 1: Figure S3c). These
simulations imply that if limited power leads to more
condition-specific local-eQTLs, we should observe a rela-
tively greater number of condition-specific local-eQTLs in
the lower allele-frequency spectrum. However, we did not
observe such a trend in our data. In fact, the odds of

Fig. 2 The gene nutcracker is involved in the gut response. a Survival of lines harboring a null mutant (yellow) allele ntcms771 with (top panel) and
without (bottom panel) TM6B balancer upon P.e. infection compared to control (black). Log ranked test p < 0.0001 and p = 0.081 for lines with
and without balancer chromosome, respectively. Shaded area represents the 95% confidence interval. b Gene expression of ntc (purple) and
DiptA (green) as measured by qPCR, normalized to RpL32 in control (left) and infected (right) conditions in ntcms771 mutant (yellow) and control
(black) lines with TM6B balancer. c Gene expression of ntc and DiptA as measured by qPCR, normalized to RpL32 in infected (right) and control
(left) conditions in ntcms771 mutant (yellow) and control (black) lines without TM6B balancer. Data presented in a–c are based on at least three
biological replicates. d Left panel: Expression level (in log2(cpm)) of the ntc gene by resistance class in control (gray) and infected (orange)
conditions. Right panel: Fold change of ntc expression by resistance class after infection. Green and red points represent resistant and susceptible
DGRP lines, respectively
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Fig. 3 (See legend on next page.)
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identifying condition-specific local-eQTLs versus shared
local-eQTLs did not change as a function of allele fre-
quency (Additional file 1: Figure S3d-f). Given these
observations, we conclude that limited power cannot
be a major reason for the observed, low number of
shared local-eQTLs. Furthermore, we found that the
meta-distribution of detected local-eQTLs around the
respective transcription start sites (TSSs) is similar
between the two conditions. The distribution also
followed the expected pattern in that their density
was highest around the TSS with a peak immediately
downstream of the TSS, also involving the most sig-
nificant associations (Fig. 3b). By defining genes that
are expressed in the gut as genes with at least five
reads in at least 38 samples out of 76, we further re-
vealed that 26% of them could also be linked to at
least one local-eQTL, reflecting pervasive genomic
variation-mediated gene expression differences. Of
particular interest is that we found 2 and 13 local-
eQTLs linked to ntc in control and infected condi-
tions respectively.
Because variation in the expression of ntc is unlikely

to explain all by itself the difference in susceptibility to
infection, we decided to use the generated local-eQTL
dataset to uncover pathways affected by genetic vari-
ation. To do so, we performed Gene Ontology analyses
on the control, infected, and shared set of local-eQTL
genes. This analysis revealed few enriched terms in
shared local-eQTL-associated genes. Genes linked to
control-specific, local-eQTLs tended to be in metabolic
processes, while infection-specific terms included terms
related to response to oxidative stress, cold, reactive ni-
trogen species metabolism, and mitochondrial fragmen-
tation (Fig. 3c). This suggests that genetic regulatory
variation in the infected condition might be affecting
distinct biological processes. To provide an additional
layer of characterization, we explored whether infection-
specific local-eQTLs are preferentially located in the
proximity of cis-regulatory features / TF motifs. We

considered a region of 200 bp around each eQTL and
used i-cistarget [52, 53] to test for TF motif enrichment
in infection- compared to control-specific regions. We
found that regions from both tested conditions feature a
similar enrichment of GATA TF motifs. Given the well-
established role of GATA factors in gut development
and homeostasis [55, 56], this result serves as a sanity
check for our approach. Interestingly, regions surround-
ing infection-specific local-eQTLs were differentially
enriched for motifs from the Forkhead box (FOX) TF
family (Fig. 3d). Given that FoxO signaling is activated
after oral bacterial infection and has been shown to be
required for survival, we speculate that infection-specific
local-eQTLs may be exposed by FoxO activation [57].
Taken together, our analyses catalogued a large set of
genomic loci that affect gene expression levels only in
the infected condition, collectively rendering them inter-
esting candidates for a role in influencing the overall
susceptibility of Drosophila to infection.

Large-scale in vivo local-eQTL characterization via allele-
specific expression
We have so far uncovered many shared and condition-
specific local-eQTLs, but our analyses did not inform
whether these local-eQTLs are cis- or trans-acting. For
example, while we identified 13 local-eQTLs linked to
ntc in the infected condition, we are at this point unable
to characterize their precise mode of action, preventing
insights into the underlying regulatory mechanisms. To
validate the effect of a particular variant on relevant
genes, eQTL studies have so far often resorted to clas-
sical molecular biology techniques such as chromatin
immunoprecipitation and small-scale reporter assays
[58, 59]. While the recent emergence of Massively Paral-
lel Reporter Assays allows for a much more systematic
analysis of the regulatory effect of variants in transcrip-
tional elements [60–62], these assays are still unable to
consider the complex interaction between genetic vari-
ation and gene expression.

(See figure on previous page.)
Fig. 3 local-eQTL analysis links natural variation to gene expression levels. a Infection leads to the differential expression of around 2400 genes
(BH-corrected p value < 0.05, fold change > 2). b Metaplot of the location of local-eQTLs with respect to their associated genes’ transcription start
sites (TSS). The gray, blue, and orange lines represent the control, shared, and infected conditions respectively. Since SNP density is not uniform in
the genic windows, the black lines represent the density of random samples of SNPs drawn from the pool of all SNPs that were included in the
local-eQTL scan. Specifically, they are 100 samples of 5904 SNPs, which is equal to the number of detected local-eQTLs in the infected condition.
c Graphical representation of enriched biological process gene ontology terms based on the lists of genes with significant cis-eQTL associations.
The GO analysis was performed using the GOstats [50] R package (hypergeometric test p value < 0.005), and REVIGO [51] was used to reduce
redundancy in the ontology groups and plot them by semantic similarity (allowed similarity = 0.7). The size of the circle indicates the number of
genes belonging to a certain GO category, and the color indicates enrichment significance. The log10(p value) is the hypergeometric test FDR-
corrected p value enrichment result. The X/Y space is the multidimensional scaling (MDS) of the pairwise semantic similarity measures (simRel).
Closer terms in this 2D space imply closer GO terms (based on their similarity). d Differential enrichment of TF motifs around condition-specific
local-eQTLs. Separate analyses were performed on i-cisTarget using regions of 201 bp centered around local-eQTLs specific to the control or
infected condition. The difference between the infected and control normalized enrichment scores (NES) from the two analyses was calculated
for each tested motif/feature. The color of the motif indicates the source database [52, 53]. The top 15 motifs from each side as well as the 15
motifs closest to 0 are labeled
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We therefore decided to exploit our experimental set-
ting to thoroughly validate the detected local-eQTLs and
explore their putative cis-regulatory nature by investigat-
ing their effect in a different genetic background. Specif-
ically, by implementing a large-scale allele-specific
expression analysis, we aimed at examining whether local-
eQTLs induce the expected imbalance in expression be-
tween maternal and paternal alleles in an F1 cross [63,
64]. To achieve this, we selected 19 DGRP lines and
crossed them in a round robin scheme (Fig. 4a and Add-
itional file 1: Figure S4a) to maximize the number of F1
offspring that feature heterozygous genotypes for our set
of predicted local-eQTLs, including those linked to ntc,
such that we could assess allele-specific gene expression
and infer cis-regulatory effects. Using the F1 individuals,
we infected two to three- day-old adult females for 4 h
and extracted RNA from their dissected guts. As a control,
a similar number of female adults were fed sucrose and
processed in similar fashion. We replicated this experi-
ment to obtain two biological replicates and subsequently
used BRB-seq, a high-throughput and cost-effective

transcriptomics approach developed by our lab [65], to de-
rive gene expression profiles for each of the processed
samples (see “Material and methods”). Along with the F1
offspring, we also processed and sequenced four homo-
zygous lines. We assessed the quality of the F1 off-
spring replicas after removing a sample for which
downstream sequencing failed (Additional file 1: Fig-
ure S4b) by performing PCA and correlation analysis
on the gene count matrix. The latter analysis revealed
no major batch effects between replicate experiments
and strong separation between infected and control
samples (Additional file 1: Figure S4c-S4d). To bench-
mark our transcriptomic approach, we compared the
four lines sequenced by both TruSeq and BRB-seq.
We found that the two methods highly correlate on
the number of counts for each gene in control (Add-
itional file 1: Figure S5a-S5d, Pearson r > 0.82) and in-
fected conditions (Additional file 1: Figure S5e-S5 h,
Pearson r > 0.82) and on the fold change of differen-
tially expressed genes (Additional file 1: Figure S5i,
Pearson r = 0.795), consistent with previous results

Fig. 4 local-eQTL characterization by allele-specific expression reveals few cis-acting variants and a comparable distribution between cis- and non
cis-eQTLs. a Schematic of the round robin design: isogenic parental lines (blue) were crossed to two different lines and heterozygote F1 female
offspring (gray) were used for infection and further processing. b Distribution of the number of heterozygous crosses per eQTL in control (gray)
and infected (orange) conditions. The distribution of cis-eQTLs (dark gray and dark orange) is not affected by the number of heterozygous crosses
that are available to perform the calculations. c Number of eQTLs passing the data cutoff for cis-characterization (light green) and rejected (red) in
control (19%) and infected (18%) conditions. cis-eQTLs are indicated in dark green with 9.7% and 7.5% of local-eQTLs in infected and control
conditions respectively. d, e Correlation between local-eQTL p values (x-axis, −log10(Benjamini-Hochberg adjusted p value)) compared to cis-eQTL
calculated p values (y-axis, −log10(Benjamini-Hochberg adjusted p value)). Vertical and horizontal lines represent the 0.05 cutoff in control and
infected conditions. f Number of eQTLs passing the data cutoff for trans- characterization (light green) and rejected (red) in control (30.2%) and
infected (31.2%) conditions. Trans-eQTLs are indicated in dark green with 6.6% and 9.3% of local-eQTLs in infected and control
conditions, respectively
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[65]. Together, these analyses demonstrate that our
BRB-seq approach is able to recapitulate the original
dataset at a raw level with similar read counts and in-
formation level with matching fold change.
We selected a subset of 15,851 eQTLs from the con-

trol condition and 15,923 ones from the infected condi-
tion among our detected local-eQTLs, with an FDR < 0.1
for further validation. To detect differential allele expres-
sion as driven by an eQTL-linked variant, we required at
least one cross whose offspring would be heterozygous
for the selected variant to assess allelic expression imbal-
ance. To identify those crosses, we used the DGRP
freeze 2 genomic data resource [33]. Even though we
used only 19 DGRP lines, our design allowed us to com-
prehensively interrogate the majority of detected local-
eQTLs on the subset of 38 lines. We thereby note that
for an eQTL to be “testable,” the focal SNP must have
lines that are heterozygous at this locus. Plotting the dis-
tribution of the number of lines that are heterozygous
for one locus revealed that the average number of het-
erozygous crosses per local-eQTL variant is 6.5 for both
the control and infected conditions, with only 70 and 72
local-eQTLs from the control and infected conditions
(0.45% of local-eQTLs in both conditions) being not
testable due to the absence of any F1 that is heterozy-
gous at these loci (Fig. 4b). Although one local-eQTL is
linked to one gene, it is possible that one gene may be
affected by multiple local-eQTLs. The distribution of the
number of local-eQTLs linked to each gene revealed that
most genes are linked to one or two variants, with a
maximum of 115 local-eQTLs linked to one gene. More-
over, we did not detect any difference in the distribution
of local-eQTLs per gene between control and infected
condition-linked local-eQTLs (Additional file 1: Figure
S4f), indicating that having multiple local-eQTLs linked
to one gene is unlikely to significantly influence our
results.
To detect cis-eQTL variant-driven allele-specific ex-

pression (ASE) over several different genetic back-
grounds, we applied a generalized linear mixed model
(GLMM) with the response modeled by a binomial
test of maternal vs. paternal reads and crosses as ran-
dom effect. The binomial test has been widely used
to detect allelic imbalance [66–69] and by adding the
genetic background as a random effect, we can detect
consistent allelic imbalance over multiple crosses.
Thus, variants validated by our model are able to
drive allelic imbalance across several genetic back-
grounds. We applied strict cutoff parameters to the
samples that were passed to the GLMM which elimi-
nated approximately 19% and 18% of the local-eQTLs
from the control and infected conditions respectively
because those variants did not have sufficient reads
or samples to be considered in the analysis (Fig. 4c,

red bars). At the end, our model allowed us to un-
cover 9.7% of the control (1250 local-eQTLs with
FDR < 0.05) and 7.5% of the infected (1301 local-
eQTLs with FDR < 0.05) condition-linked local-eQTLs
across all tested genetic backgrounds as cis-acting
eQTLs (Fig. 4c, dark green bar). We next assessed if
an increased number of F1 hybrids would result in a
higher probability for a local-eQTL to be validated,
but found no evidence for this (Fig. 4b). Interestingly,
when we compared the adjusted p values computed
by Matrix-eQTL for the local-eQTLs to the adjusted
p values from the F1 data, we observed no correlation
(Pearson r = 0.04 for the control condition and r <
0.01 for the infected condition), indicating that a low
p value for a local-eQTL is not necessarily a good
predictor of an actual cis effect across mixed genetic
backgrounds (Fig. 4d, e). Furthermore, we found no
correlation between the computed effect size and the
measured effect size in both control and infected con-
ditions (Additional file 1: Figure S6a and S6d). How-
ever, we observed that when a local-eQTL is found to
act in cis, there is a high probability that the effect
size calculated by Matrix-eQTL (called beta) accur-
ately predicts the direction of the measured effect
(Additional file 1: Figure S6b – S6c and S6e – S6f).
We subsequently tested for a difference in the meta-
distribution around the TSS between local- and cis-
eQTLs and found that both distributions were com-
parable, with a greater density of non cis-eQTLs up-
stream of the gene and a greater density of cis-eQTLs
downstream of the gene (Additional file 1: Figure S6 g
and S6 h).
We then tested if local-eQTLs that were not char-

acterized as cis could have a measurable trans-effect
instead. To do so, we applied a linear mixed model
to the crosses that were homozygous for each variant,
using the crosses as a random effect (see “Material
and methods”). We were able to detect a trans-effect
for 6.6% of control and 9.3% infected condition non-
cis local-eQTLs (727 and 1019 trans-eQTLs with
FDR < 0.05 in control and infected conditions, re-
spectively) (Fig. 4f). However, due to the restricted
number of available homozygous crosses, we could
only test 69.8% and 68.8% of the non-cis local-eQTLs
in control and infected conditions respectively, while
also being relatively underpowered. In summary, we
detected a large number of local-eQTLs across condi-
tions, but the majority of those cannot be defined as
cis-eQTLs in a mixed heterozygous background. Ra-
ther, we found that, even within a conservative and
underpowered analytical framework for trans-effect
analysis, already a non-negligible portion of these
non-cis local-eQTLs feature a robust, measurable
trans-effect.
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Determining the cis-regulatory mechanism underlying
differential ntc expression among resistant and
susceptible DGRP lines
Next, we exploited the generated datasets to specifically
elucidate the regulatory mechanisms underlying ntc ex-
pression variation given that it is the only differentially
expressed gene between the resistant and susceptible
lines (Fig. 1d), that it is linked to several local-eQTLs,
and that resistant lines tend to have greater ntc expres-
sion than susceptible ones (Fig. 2d). Mining of our local-
eQTL data revealed five infected condition-specific
local-eQTLs belonging to two SNP clusters, one group
consisting of two eQTLs 7.6 kb upstream and the other
group composed of three 4.5 kb downstream of its TSS
(Fig. 5a). These observations raised the question whether
putative cis-regulatory variation of ntc expression could
be one of the likely several mechanisms that contribute
to resistance class stratification.
To test this postulate, we first performed a TF

motif scanning analysis of the ntc locus. This revealed
several potential TF binding sites (TFBS) that over-
lapped with the ntc-linked local-eQTL SNP clusters,
including Broad Complex and Daughterless sites for
upstream local-eQTLs, and a Relish/NF-kB one for a
downstream local-eQTL. The alleles at both sites
showed a high correlation with ntc expression for the
studied 38 lines. But when associated with enteric in-
fection susceptibility variation among the 140 DGRP
lines, the allele at the Broad/Daughterless site was
more significant than the Relish/NF-κB binding site
one (Fig. 5a, GWAS p value of 6.1 × 10–5 vs. 0.024
respectively), even though both failed to pass the
stringent, implemented nominal 1 × 10–5 p value [31].
In addition, since the gene IntS10 is physically closer
to these variants than ntc, we would not intuitively
have linked these variants to ntc.
Because a SNP in a TFBS could disrupt binding of the

respective TF [75], we next investigated the impact of
the local-eQTL variant on the binding activity of the
four different TFs predicted to bind the sites overlapping
ntc-linked local-eQTLs: Broad, Daughterless, Sage, and
Relish. To do so and given the difficulty in performing
line-specific ChIP on these TFs, we used our in-house
MITOMI setup [73] to measure in vitro the binding af-
finity of the selected TFs to double-stranded 20-mers
that encompassed the respective binding site and that
represented either the reference or alternate alleles.
These analyses showed that among all four tested TFs,
only Broad, a protein able to act both as a repressor and
an activator [76, 77], exhibited a differential binding ac-
tivity (Fig. 5b and Additional file 1: Figure S7, Welch’s t-
test p value = 0.0063), showing substantially reduced
binding to the alternate compared to the reference bind-
ing site allele.

Because the increase in ntc expression upon infection
is substantially higher in DGRP lines harboring the alter-
nate Broad binding site allele and because the alternate
allele has a weaker affinity for Broad, we hypothesized
that Broad, in our study, acts as a repressor on ntc. Con-
sequently, a decrease in Broad binding affinity would
lead to less repression and thus increased ntc expression.
To verify this hypothesis in vivo, we again turned to the
round robin F1 BRB-seq data to measure the ASE at
each variant, with 14 F1 lines being heterozygous for the
focal ntc variant (Fig. 5c). In our genome-wide ASE ana-
lysis, we used a stringent threshold defined as the mini-
mum number of total reads superior to the maximum
value between 6 or the 25th quantile of the total of reads
assigned to the lineage lines in each sample (see “Mater-
ial and methods”). We used this threshold to eliminate
false positives due to low read mapping issues, in par-
ticular for genes that are lowly expressed. However,
since the lowest number of reads mapping to ntc was 35,
implementation of this stringent threshold was no longer
required. Hence, we applied the same generalized mixed
model used for our genome-wide ASE analysis on all ntc
heterozygous samples, but without any threshold, con-
sistent with comparable analyses in previous studies [69,
78, 79]. Using this analytical strategy, we found a signifi-
cant effect of the variant on allelic imbalance for the in-
fected condition, with higher counts to the alternate
over the reference allele (Fig. 5d, p value = 0.042). These
findings suggest that the variant in the Broad TF binding
site is a cis-acting eQTL that affects ntc expression. To-
gether, these results present a compelling mechanism
explaining how a variant located in a TFBS contributes
to variation in gut immunocompetence by altering the
expression level of a particular gene that itself influences
an organism’s resistance to infection.

Discussion
This study aimed to elucidate the effect of genetic vari-
ation on gene expression and organismal phenotypes in
the context of in vivo enteric infection in the DGRP.
One of the major findings that emerged is that DGRP
lines with diametrically opposite resistance to infection
all have a similar response after ingestion of a patho-
genic bacterium, at least at an early timepoint after in-
fection (Fig. 1). We show that this is not due to our
inability to detect genotype-specific differences, since
lines of the same genotype cluster together at the tran-
scriptional level (Additional file 1: Figure S1). It is there-
fore clear that genomic variation imparts line-specific
systemic differences on the transcriptome, yet only a
small subset of those differences appears to be relevant
in determining resistance.
To directly assess the effect of genomic variation on

gene expression levels, we catalogued the possible local-
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eQTLs around all expressed genes. We found that in
both the control and infected conditions, around a third
of all associations are unchanged, confirming that geno-
typic variation indeed drives gene expression differences.

However, the majority of local-eQTLs proved to be
condition-specific, including the local-eQTLs at the ntc
locus. Since we demonstrate that limited power cannot
adequately explain this observation, our data suggest

Fig. 5 Broad binding affinity and ntc expression is lowered for the alternate allele. a Top panel: schematic of the ntc gene with specific
annotations: cis-eQTLs around the ntc locus, and their overlap with predicted TF binding sites (TFBS). TFBS prediction was done using FIMO [70]
and motifs from the Fly Factor Survey [71] and OnTheFly [72] databases. The expression fold change of ntc by resistance class and two of those
alleles (termed the broad/daughterless allele (left panel), and the relish allele (right panel)) is plotted, as well as the survival percentage of 140
DGRP lines [31]. Green and red boxplots represent resistant and susceptible DGRP lines, respectively. b Measure of the binding affinity between
Broad and the reference or alternate allele as measured by MITOMI [73, 74] in three different replicates. c Repartition of lines in the round robin
scheme based on reference or alternate broad TFBS alleles. d Ratios of read count mapping to the alternate over the reference allele reveal no
difference in control condition (t-test, p value = 0.21) but is significant in the infected condition (t-test p value = 0.04). e Proposed model of ntc-
mediated variation in gut immunocompetence: an enteric immune challenge increases ntc expression, while Broad acts as a repressor of ntc
expression. The SNP in the Broad binding site decreases the binding affinity for Broad and thus the extent of ntc repression, resulting in greater
ntc expression, which in turn increases DiptA expression and overall gut immunocompetence
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that cryptic variation has an important contribution to
infection resistance [80, 81]. Furthermore, our study
allowed us to acquire unique insights into the regulatory
nature of detected local-eQTLs. Most notable is that our
study, to our knowledge the most comprehensive and
systematic in vivo local-eQTL characterization effort to
date, indicates that we tend to vastly overestimate the
frequency of cis-eQTLs. This conclusion is in line with a
previous study on mice in which only 17% of local-
eQTLs could be defined as cis-eQTLs [44]. Moreover,
while we were able to still classify many local-eQTLs as
trans, the majority of local-eQTLs remained unvalidated
in variable genetic backgrounds. Of course, it is possible
that the cis effect of a local-eQTL may be masked by
other trans-acting eQTLs affecting the same gene [5].
Indeed, when several eQTLs were predicted to affect
one gene, we were not able to disentangle their effects.
In addition, a single polymorphism may drive differential
expression and the other eQTLs may be merely in link-
age disequilibrium (LD) with the effector SNP. It is also
possible that a given variant is able to affect a gene only
in a small set of genetic backgrounds and thus even
more crosses would be required to increase the number
of testable heterozygous genomic sites. Several con-
founding factors may also influence these validation
numbers, including the fact (i) that some variants may
affect different target genes that are located farther away
(e.g., in the case of intergenic variants) or that are even
separated from the variant by other genes and (ii) that
some variants only affect a gene in combination with
other variants [82]. Importantly though, even if only
considering the validated cis-eQTLs, our earlier state-
ment of pervasive, condition-specific gene expression
variation between genotypes remains intact, since 10% of
the validated cis-eQTLs were condition-specific. Inter-
estingly, we found that highly significant local-eQTLs
were not necessarily more likely to act in cis. However,
when a variant was characterized as a cis-eQTL, then
the local-eQTL measured effect directionality was a
good indicator of the cis-eQTL measured one.
Strikingly, we found only one gene that is differentially

expressed between the resistant and susceptible lines,
nutcracker (ntc). This gene was initially identified in a
screen for mutants that failed to undergo sperm
individualization due to their inability to activate cas-
pases [47]. Through its F-box domain, Ntc interacts with
other partners to form an SCF (Skp, Cullin, F-box) ubi-
quitin ligase (E3) complex that controls caspase activity
in Drosophila [48]. Caspases play important roles in in-
sect immunity and homeostasis through both apoptotic
and non-apoptotic pathways. For instance, Dredd, the
homolog of human Caspase-8, is required for Relish
cleavage and activation [83]. Furthermore, activation of
the IKK complex is dependent on ubiquitination [84],

and studies in mammals have shown that commensal
bacteria can affect ROS levels, leading to modification of
the activity of the SCF complex, thus affecting NF-κB
signaling [85]. While there are therefore several possible
functional scenarios, the exact function of Ntc in the gut
and specifically enteric infection remains unclear and
should be the subject of a more mechanistic, follow-up
study. However, we were able to demonstrate that im-
paired ntc expression and null mutants of ntc negatively
impact the survival of flies harboring these mutations.
Intriguingly, low ntc expression does not correlate with
susceptibility in the DGRP lines. This could be inter-
preted as a result of the sum of several different factors
that are, when taken individually, not impactful, but lead
to an increase in susceptibility when combined, as is
suggested by our RNA-seq results not displaying strong
separation between resistant and susceptible lines. More-
over, we were able to show that DiptA expression is se-
verely reduced in the absence of ntc, showing a direct
impact of ntc expression on potent immune response
effectors.
We thereby uncovered how a SNP in a TFBS proximal

to ntc may impact its expression upon enteric infection.
It is by now well-established that variants in TF binding
sites can impact binding affinity and in turn the expres-
sion of the respective target gene [8, 86]. Here, we found
that only one mutated binding site out of two possible
local-eQTL sites displays variable binding affinity to a
TF, namely Broad. Furthermore, allele-specific expres-
sion of F1 hybrids carrying the two alleles showed that
the two copies of ntc are being induced differently, dem-
onstrating a cis effect of the SNP on the expression of
ntc. These results suggest a causal relationship between
the binding site variant and variable ntc expression
through potential differential binding of the TF Broad,
constituting to our knowledge a rare example of an
eQTL that modifies an ecologically relevant complex
trait through its effect on binding of a specific TF in a
particular environmental condition. That said, it is un-
likely that the extreme phenotype observed for ntc mu-
tants reflect all of the underlying molecular mechanisms
differentiating the resistant and susceptible DGRP lines
since the difference in ntc expression between suscep-
tible and resistant lines is not as severe as those mea-
sured in the mutants.
Together, these observations support the following

model regarding how the ntc locus mediates variation in
enteric infection susceptibility (Fig. 5e): upon infection,
the expression of ntc is increased, together with that of
broad as well as several other immune response genes,
as inferred from [46, 87]. Given Broad’s role as a repres-
sor in metamorphosis [88], we hypothesize that this TF
may also act as a negative (feedback) regulator of ntc ex-
pression. Consequently, in flies harboring the alternate
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allele showing diminished affinity for Broad binding, ntc
repression is reduced, resulting in greater ntc expression.
This in turn positively affects the expression of DiptA
through an as yet unknown mechanism, resulting in
greater infection resistance compared to susceptible
lines.

Conclusions
Our study shows the advantage of allele-specific experi-
ments as a complement to standard eQTL approaches
to identify causal variants as well as the power of sys-
tems genetics to assign novel roles to genes in biological
processes unrelated to their originally discovered roles.
During our research, we did not consider the fact that
the gut is a highly regionalized organ [89, 90] that con-
sists of multiple cell types [91]. It is possible that some
eQTLs could therefore be restricted to a certain cell type
or environment, which cannot be detected using our
current strategy, but could be investigated in a follow-up
study.

Material and methods
Fly stocks
DGRP lines were obtained from the Bloomington stock
center and reared at room temperature on a standard fly
medium with 12-h light dark cycle. The fly medium we
used is composed of (for 1 L water): 6.2 g Agar powder
(ACROS N. 400,400,050), 58.8 g Farigel wheat
(Westhove N. FMZH1), 58.8 g yeast (Springaline BA10),
100 ml grape juice, 4.9 ml Propionic acid (Sigma N.
P1386), 26.5 ml of methyl 4-hydroxybenzoate (VWR N.
ALFAA14289.0) solution (400 g/l) in 95% ethanol. We
used w1118 and bw;st flies as wildtype. Various DGRP
lines, ntcf03797 and ntcf07259 stocks were obtained from
the Bloomington Stock Center. The bw;st,ntcms771/
TM6B mutant stock was a kind gift from the Hermann
Steller lab.

Oral infection
Oral infection was performed as previously described
[92]. Briefly, 1-day-old females were transferred to 29 °C
rearing conditions. When the female flies were 2–3 days
old, they were starved for 2 h and then transferred to a
tube containing bacteria and allowed to feed on the bac-
teria for a maximum of 24 h. To prepare the P.e. bacter-
ial pellet, bacteria were plated from glycerol stocks on a
standard LB-agar plate supplemented with 1% milk and
grown overnight at room temperature. Two days prior
to infection, one single colony was transferred to a 50-
ml Erlenmeyer with 12.5 ml LB and incubated for 8 h at
29 °C with 180 rpm shaking. The pre-culture was then
transferred to a 1-L Erlenmeyer with 200 ml LB and the
culture was incubated overnight using the same condi-
tions as the pre-culture. The culture was then

centrifuged at 2500g at 4 °C for 20 min. The remaining
LB was discarded, and the pellet was resuspended by
pipetting up and down. The OD600 was measured using
a CO8000 Cell density meter. The pellet was then di-
luted to a final OD600 of 100 with distilled water and
supplemented with Sucrose to a final volume/volume of
1.25%. A control solution contained only Sucrose at the
same concentration. A disc of Whatman paper was lay-
ered on top of the food and 225 μl of the bacterial or
control solution was added to the paper.

Survival
Flies were infected as described previously. Four hours
after infection, surviving flies were scored. After 24 h of
feeding on bacteria, flies were transferred to fresh tubes
and survivors were scored. Then, every 24 h, survivors
were scored and flies were transferred to fresh tubes
every 48 h. The R package Survival was used to compute
the log-rank test to assess statistical differences between
genotypes. The analysis was performed in R 3.5.1.

qPCR
RNA was extracted using the same method as for the
BRB-seq library preparation described above. cDNA was
synthesized from 500 ng total RNA using SuperScript II
enzyme (Thermo Fisher 18064014). qPCR experiments
were performed on a StepOnePlus Real-Time PCR sys-
tem (Applied Biosystems) using the Power SYBR® Green
PCR Master Mix (Applied Biosystems). Gene expression
relative to the housekeeping gene RpL32 was calculated
separately for each biological replica.
List of primers used:

ntc Forward GATCAGGTGGGGAAAAAGCAG

ntc Reverse GTTGTTCGCTCAGGATTCGC

DiptA Forward GCTGCGCAATCGCTTCTACT

DiptA Reverse TGGTGGAGTGGGCTTCATG

RpL32 Forward GACGCTTCAAGGGACAGTATCTG

RpL32 Reverse AAACGCGGTTCTGCATGAG

RNA sequencing on DGRP lines, differential gene
expression, and local-eQTL analysis
RNA extraction
Guts from 30 adult female flies were freshly dissected in
PBS after 4 h of infection with a pellet of Pseudomonas
entomophila at OD100. The guts were then transferred
to 1000 μl Trizol Reagent (Invitrogen) with 10 μl plastic
beads, then homogenized in a Precellys 24 Tissue
Homogenizer at 6000 rpm for 30 s. RNA extraction was
performed using the manufacturer’s protocol. The RNA
pellet was resuspended in 8 μl of RNAse-free water prior
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to Nanodrop quantification and quality verification,
followed by final dilution to a concentration of 500 ng/μl.

Library preparation and sequencing
Standard Illumina Truseq libraries were prepared from 1 μg
total RNA as measured by a Nanodrop 1000 device
(Thermo Scientific) by the Lausanne Genomic Technologies
Facility. Single end sequencing was performed for
100 cycles. Initially, 80 samples from 40 lines were
sequenced but we excluded 4 samples from two lines.
One of the lines was contaminated, as its reads were
derived from two genotypes and another DGRP line
had a smaller library size in one condition, with led
to its elimination from the analysis.

Mapping to individualized genomes
To avoid bias in estimating gene expression levels due to
known genetic variation, we generated an individualized
fasta genome sequence for each DGRP strain based on
homozygous variants in the published Freeze 2 DGRP
genotypes and the Release 5 reference genome. We
chose homozygous variants since any variants called as
heterozygous at the time of DNA sequencing may either
have remained heterozygous or may have become fixed
in our stocks. Any heterozygous locus was assumed to
carry the reference allele. We also generated individualized
gene annotations by applying the offsetGTF tool included
in the mmseq package [93] on the Ensembl BDGP5.25. For
each sample, reads were mapped to the respective genome
using STAR aligner. Reads for each gene were counted
using HTseq-count.

Normalization and differential expression
We used the edgeR package to perform TMM
normalization, followed by conversion to Counts Per
Million using Voom with quantile normalization.
When we combined samples from this study and the
previous study, we used the same approach, starting
from combined gene counts, with the addition of the
removeBatchEffect function in the limma package.
Differential expression was performed in limma using the
weights obtained by Voom while adjusting for intra-line
correlations using the duplicate correlation function with
the DGRP lines as the blocking factor. The following
model was used: y = treatment + class + treatment:class
with “treatment” being the infected status and “class” the
resistant or susceptible status. For each predictor variable,
genes having a fold change of 2 and a Benjamini-
Hochberg corrected adjusted p value of 0.05 were deemed
differentially expressed.

Principal component analyses
The FactoMineR package was used to perform the
principal component analyses on log2 count per million

data as normalized by Voom after keeping expressed
genes (count > 5 in more than 38 samples). PCA was
performed with scaling and centering to avoid biases
from differences in gene average expression or length.

local-eQTL analysis
We performed separate analyses for each infected
condition with Matrix-eQTL using a linear model that
accounts for genetic relatedness and Wolbachia infec-
tion status [49]. Variants that are within 10 kb of an
expressed gene and whose minor allele frequency
(MAF) is greater than 5 in the 38 tested lines were
kept in the analysis. MAF here is actually the number
of lines carrying the less prevalent allele in the sam-
pled strains divided by 38. This translates to a mini-
mum of 6/38 = 15.8%. To account for genetic
relatedness, we calculated the three genotype principal
components using the SNPrelate R package using a
pruned set of SNPs from the DGRP freeze 2 geno-
types (ld threshold = 0.2). Wolbachia infection status
was obtained from the DGRP2 resource website
(http://dgrp2.gnets.ncsu.edu/). Associations with a p
value less than 0.001 were kept, followed by FDR esti-
mation using the Benjamini-Hochberg procedure as
implemented in Matrix-eQTL. Each gene’s expression
level was transformed to a standard normal distribu-
tion based on rank. Local-eQTL associations with an
FDR-corrected p value lower than 0.05 were consid-
ered significant. Metaplots were plotted in R. The GO
analysis was performed using the GOstats [50] R
package (hypergeometric test p value < 0.005), and
REVIGO [51] was used to reduce redundancy in the
ontology groups and plot them by semantic similarity
(allowed similarity = 0.7). For each pair of significant
GO terms, Revigo calculates Resnik’s and Lin’s se-
mantic similarity (simRel) [94]. The two-dimensional
representation is the result of multidimensional scal-
ing (MDS) applied to the terms’ semantic similarity
matrix.

TF motif enrichment
To determine TF motif (regulatory feature) enrichment
in regions around condition-specific eQTLs, we gener-
ated a BED file of the genomic coordinates of a window
of 201 bases centered around each local-eQTL. We then
submitted this file to i-cisTarget [52, 53] with the follow-
ing settings: analysis type = Full analysis; Species =Dros-
ophila melanogaster (dm3); database version 5.0, and all
features selected. After performing the two analyses, we
used the comparison tool on the website to determine
differential TF motif enrichment between the infected
and control-specific local-eQTL genomic regions.
All analyses were performed in R version 3.5.0.
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Round Robin BRB-seq and allele-specific expression
analysis
RNA extraction
Flies were killed in cold 70% ethanol, the ethanol was
wiped and replaced with cold RNAse-free 1× PBS sup-
plemented with 0.02% Tween-20. Ten guts were dis-
sected for each sample and placed in a screw cap
Eppendorf tube containing 350 μl Trizol and 10 μl plas-
tic beads. Samples were homogenized in a Precellys 24
Tissue Homogenizer at 6000 rpm for 30 s. Samples were
then transferred to liquid nitrogen for flash freezing and
stored at − 80 °C. For RNA extraction, tubes were
thawed on ice, supplemented with 350 μl of 100% etha-
nol before homogenizing again with the same parame-
ters. We then used the Direct-zol™ RNA Miniprep
R2056 Kit, with the following modifications: we did not
perform DNAse I treatment, we added another 2 min
centrifugation into an empty column after the RNA
wash step, finally elution was performed by adding 10 μl
of RNAse-free water to the column, incubation at room
temperature for 2 min, and then centrifugation for 2
min. RNA was transferred to a low-binding 96-well plate
and stored at − 80 °C.

BRB-seq library preparation
RNA quantity was assessed using picogreen. Samples
were then diluted to an equal concentration in 96-
well plates. RNA was then used for gene expression
profiling using the bulk RNA barcoding and sequen-
cing (BRB-seq) approach recently developed by our
lab [65]. This protocol is able to provide high-quality
3′ transcriptomic data by implementing an early mul-
tiplexing scheme as in single-cell protocols and at a
fraction of the cost of its competitors (e.g., 10-fold
lower than Illumina Truseq Stranded mRNA-seq). In
short, the BRB-seq protocol starts with oligo-dT bar-
coding, without TSO for the first-strand synthesis (re-
verse transcription), performed on each sample
separately. Then all samples are pooled together after
which the second-strand is synthesized using DNA
PolII Nick translation. The sequencing library is then
prepared using cDNA tagmented by an in-house pro-
duced Tn5 transposase preloaded with the same
adapters (Tn5-B/B) and further enriched by limited-
cycle PCR with Illumina compatible adapters.
Libraries are then size-selected (200–1000 bp), profiled
using a High Sensitivity NGS Fragment Analysis Kit
(Advanced Analytical, #DNF-474), and measured
using a Qubit dsDNA HS Assay Kit (Invitrogen,
#Q32851). Finally, 6–8 pg of libraries was sequenced
twice with Illumina NextSeq 500 with 21 cycles for
read 1 (R1) and 101 cycles for read 2 (R2), only for
the second sequencing.

Alignment
We first aligned the two libraries, only the R2 file, to the
Drosophila reference genome release 3 and the BDGP5.25
release annotation using STAR 2.5.3a [95] with the
following relevant parameters: --twopassMode Basic
--outFilterMultimapNmax 1 --outSAMmapqUnique 60.
Then we used an in-house built software (https://github.
com/DeplanckeLab/BRB-seqTools) to annotate the two
aligned BAM files with the R1 info (Barcode and
UMI if the latter exists), generating read groups for
each libraryXsample. Then the two BAM files were
merged into a unique BAM file that was further
sorted. Picard was then used to remove the duplicates
using the read group information and the barcode tag
(options BARCODE_TAG = BC READ_ONE_BAR-
CODE_TAG = BX). One of the samples failed due to
a very low amount of reads and was removed from
further analysis (Additional file 1: Figure S2b). We then
used PicardTools (http://broadinstitute.github.io/pic-
ard) to add read groups, sort, index, and remove dupli-
cates using the UMI information (parameter
BARCODE_TAG = BC READ_ONE_BARCODE_TAG =
BX). We then used GATK [96] to split N cigars reads
and realign the reads following the GATK best prac-
tices [96]. Finally, we used an in-house built software
that assigns the reads to the maternal or paternal lines
based on the variants present in the read, using the
DGRP Freeze 2.0 VCF file [33].

Allelic imbalance measurement
For each local-eQTL and its linked gene, we used the
variant information from the vcf file to select only
crosses that were heterozygous for the respective
variant. Using the same file, we further characterized
each parental or maternal line as alternate or
reference for each SNP. We then constructed a
matrix with the raw number of reads mapping to the
gene linked to the eQTL and classify them as either
reference or alternate. We then applied a generalized
linear mixed model (GLMM, R package lme4::glmer,
binomial (alternate read count, reference read count)
~ (1|cross)) with the response modeled by a binomial
distribution based on the number of reads mapping
to each parental line with the crosses as random
effects and no fixed effect. For each local-eQTL, we
only selected samples with a minimum number of
reads superior to the maximum value between 6 or
the 25th quantile of the total of reads assigned to the
lineage lines in each sample. The obtained p values
were then adjusted using the Benjamini-Hochberg
method. The effect size was computed as the inverse
logit of the estimated intercept computed by the
GLMM function.
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Trans-effect measurement
For each local-eQTL and its linked gene, we used the
variant information to select only crosses that were
homozygous for the variant. We used the log2 count per
million of total read count normalized using Voom after
correction for batch effect and assigned them as
alternate or reference variant. We then applied a linear
mixed model (GLMM, R package lme4::lmer, log2(cpm)
~ variant + (1|cross)) using the normalized count as a
response and modeled by the allele (reference or
alternate) and the crosses as random effects. For each
local-eQTL, we only selected samples with at least two
homozygous crosses for each variant. The obtained p
values were then adjusted using the Benjamini-Hochberg
method.
All analyses were performed in R version 3.5.1.

Comparison between TruSeq and BRB-seq data
We selected only the homozygous lines that were
sequenced along with the F1 offspring. We followed the
same steps as the ones performed on the TruSeq samples,
namely we used the edgeR package to perform TMM
normalization, followed by conversion to counts per
million using Voom with quantile normalization. We then
used the removeBatchEffect function from the limma
package. Differential expression was performed in limma
using the weights obtained by Voom while adjusting for
intra-line correlations using the duplicate correlation
function with the DGRP lines as the blocking factor. The
following model was used: y = treatment + genotype.

MITOMI
All target DNA fragments were obtained as single-
strand oligonucleotides from IDT. These oligonucleo-
tides were subsequently used to generate labeled double-
stranded oligonucleotides as described previously [73].
TFs were expressed in vitro using the TnT SP6 High-
Yield Wheat Germ protein expression system (Promega)
with a C-terminal eGFP tag. The surface chemistry,
MITOMI, and image acquisition were performed as de-
scribed previously [73, 74]. We quantified the amount of
each mutated sequence that is bound to the respective
TF at the equilibrium state by means of fluorescence in
a range of six input DNA concentrations. The obtained
kinetic binding curves for each sequence were then fitted
with the non-linear regression function according to the
Michaelis-Menten law.
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