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Abstract

The spatial organization of chromatin in the nucleus has been implicated in regulating gene expression. Maps of
high-frequency interactions between different segments of chromatin have revealed topologically associating
domains (TADs), within which most of the regulatory interactions are thought to occur. TADs are not
homogeneous structural units but appear to be organized into a hierarchy. We present OnTAD, an optimized
nested TAD caller from Hi-C data, to identify hierarchical TADs. OnTAD reveals new biological insights into the role
of different TAD levels, boundary usage in gene regulation, the loop extrusion model, and compartmental domains.

OnTAD is available at https://github.com/anlin00007/0OnTAD.

Background

Previous studies have shown that the human genome is
spatially organized at different levels in the nucleus, with
each level of organization playing a role in gene regulation
[1]. Starting with the original Chromatin Conformation
Capture (3C) assay [2] for measuring chromatin inter-
action frequencies, many higher throughput, sequencing-
based methods such as 4C, 5C, ChIA-PET, Hi-C, and
Hi-ChIP have been developed to measure 3D interaction
frequencies at different resolutions [3—8]. These maps of
interaction frequencies between segments of chromatin
are interpreted in terms of chromatin structures. Among
the methods, Hi-C [9] obtains measurement of chromatin
interaction frequencies across the entire genome. Within
some local regions in a genome, interactions are signifi-
cantly higher than they are to adjacent regions; these
highly interacting regions are termed “topologically associ-
ating domains” (TADs) [10, 11]. The proteins CTCF and
cohesin are frequently enriched at TAD boundaries, and
they have been implicated in the formation of an isolated
local environment [11]. Furthermore, the positions of
many TADs are similar across different cell types and
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even conserved between species [11, 12]. As a result,
TADs have been widely interpreted as a basic architectural
unit within which many gene regulatory interactions
occur. To date, several computational methods have been
developed to locate TADs in the genome. For example,
Dixon et al. [11] developed a “directionality index” based
on the shift of interaction direction from upstream to
downstream to estimate the boundaries of TADs. Other
methods, such as TopDom [13] and Insulation Score [14],
convert the TAD boundary finding problem to a local
minimum identification problem by calculating the
average interaction frequency of the surrounding regions
at each locus.

While many earlier TAD calling methods treat TADs
as a single structure, recent high-resolution studies have
shown that TADs contain internal substructures, with
subTADs nested within larger TADs [15-19] (Add-
itional file 2). Several recently developed TAD calling
methods aimed to identify nested TAD structures. For
example, TADtree [15] identifies TADs based on a rela-
tionship between the enrichment of contact frequency
and TAD size and assembles TADs into a TAD tree that
best fits the contact matrix. rGMAP [16] assumes that
the interaction frequency in subTADs is different from
those in larger TADs and applies a Gaussian mixture
model to identify both types of TADs. Arrowhead [17]
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identifies corners of TADs at multiple sizes, allowing
TADs and subTADs to be detected simultaneously. 3D-
Net [18] utilizes a maximization of network modularity
to identify TADs at different levels. And finally, IC-
Finder [19] uses a hierarchical clustering method to
identify the TAD hierarchy.

Although the aforementioned methods provide useful
tools for identifying TADs and their internal substruc-
ture, we still lack a comprehensive understanding of the
functions of the hierarchical structures within TADs. Re-
cent work on low-resolution Hi-C data [20] has shown
that, at the large scale (> 1 Mb), TADs can form a hier-
archy of domains-within-domains (metaTAD) through
TAD-TAD interactions, and the successive levels of
metaTAD organization correlate with key epigenomic
and expression features. This raises the natural question:
Do the hierarchical levels within TADs also correlate
with distinctive functional roles in chromosome organi-
zation and gene regulation? However, most existing
TAD callers focus on identifying the locations of TADs
and subTADs, rather than the hierarchical organization
within TADs, making them less suitable for investigating
the biological functions of the TAD hierarchy. Further-
more, many existing callers are computationally ineffi-
cient for high-resolution Hi-C data and often lack a
principled approach to choosing algorithmic parame-
ters [16]. These issues limit the utility of existing TAD
callers for investigating finer TAD structures using
high-resolution data.

We present OnTAD, an optimized nested TAD caller
that efficiently and robustly uncovers hierarchical TAD
structures from Hi-C data. Our approach first identifies
candidate TAD boundaries by scanning through the
genome with a sliding window at a series of different
window sizes. Then, the candidate boundaries are as-
sembled into the optimized hierarchical TAD structures
using a recursive dynamic programming algorithm based
on a scoring function. Our systematic evaluation shows
that OnTAD substantially outperforms existing TAD
callers for both TAD boundary identification and hier-
archical TAD assembly. Using OnTAD, we uncovered
novel insights on the potential biological functions of
TAD structures. In particular, we observed that active
epigenetic states are substantially more enriched in inner
TADs than in outer TADs. OnTAD results revealed two
categories of TADs, those with or without hierarchical
structures, that appear functionally distinct. Compared
to non-hierarchical TADs, the boundaries of TADs with
hierarchical structures show a higher CTCF enrichment,
more active epigenetic states, and a higher level of gene
expression. In addition, we observed an apparent asym-
metry in TAD boundary sharing, supporting the asym-
metric loop extrusion model for the formation of TADs
[21]. Together, these results demonstrate that OnTAD is

Page 2 of 16

a powerful tool for inferring different levels of chromatin
organization across a genome in high-resolution Hi-C
data, which should facilitate improved investigations into
the roles of chromatin organization in gene regulation.

Results
The OnTAD algorithm
OnTAD takes a Hi-C contact matrix as the input and
calls TADs in two steps. In the first step, the method
finds candidate TAD boundaries using an adaptive local
minimum search algorithm. Specifically, it scans along
the diagonal of a Hi-C matrix using a W by W diamond-
shaped window (Fig. 1a), calculating the average contact
frequency within each window. The locations at which
the average contact frequency reaches a significant local
minimum (1.96 standard deviations less than local max-
imum) are identified as candidate TAD boundaries (see
the “Methods” section for the details of the search algo-
rithm). Because the sizes of TADs are unknown, OnTAD
repeats the above steps using a series of window sizes,
wW=1, 2, ..., K, to uncover all possible boundaries for
TAD:s in different sizes. Here, K depends on the resolution
of the Hi-C matrix and the maximum TAD size that the
user aims to call. For instance, for a 10-kb resolution Hi-C
matrix and a maximum TAD size of 2 Mb, K =2000/10 =
200. The union of the candidate boundaries of all window
sizes is used to assemble TADs in the next step (Fig. 1b).
In the second step, OnTAD assembles TADs by select-
ively connecting pairs of candidate boundaries using a
dynamic programming algorithm (Fig. 1c, see the
“Methods” section). To form a TAD between a pair of
boundaries, OnTAD requires the mean contact fre-
quency within the potential TAD area between the
boundaries to exceed that of the surrounding area out-
side of the TAD by a user-defined margin (1); otherwise,
no TAD is formed between the boundaries. The dy-
namic programming algorithm is formulated to recur-
sively identify the optimal partition of the genome for
yielding the largest rightmost subTADs within each
identified TAD according to a score function (Add-
itional file 1: Figure S1) that de-convolutes the contact
frequency signals across the TAD hierarchy (Add-
itional file 1: Figure S2). At the end of the recursive
procedure, the optimized solution that maximizes the
score function is obtained (defined in the “Methods”
section), producing a hierarchical TAD organization
that best fits the observed Hi-C contact matrix. The
locations of the identified TADs are provided to the
users as a plain text file and a bedgraph file ready for
visualization on genome browsers.

Comparison with existing TAD calling methods
We compared OnTAD with two representative non-
hierarchical TAD calling methods (DomainCaller,
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Fig. 1 Overview of the OnTAD pipeline. a OnTAD uses a sliding diamond-shaped window to calculate the average contact frequency within the
window at each locus on the genome. The five loci marked by letters “a’~"e” are examples being evaluated as potential TAD boundaries, with “d”
being a clear false positive. b Identification of candidate TAD boundaries in OnTAD. Blue curve—the average contact frequency of the diamond-
shaped windows, calculated at different window sizes (W) and different loci. Red arrows—the location of significant local minimums of the
average contact frequency, i.e, candidate TAD boundaries. ¢ OnTAD assembles candidate boundary pairs using a dynamic programming
algorithm (see the “Methods” section) d Visualization of the final output from OnTAD. In the genome browser, the identified hierarchical TAD is
displayed as a series of horizontal bars, where each (sub) TAD is represented as a horizontal bar colored according to its TAD level

TopDom) and three representative hierarchical TAD
calling methods (rGMAP, Arrowhead, and TADtree)
(Additional file 2), using the Hi-C data in GM12878
from Rao et al. [17]. Each method was run using the set-
tings recommended in its manual (see Additional file 2
for the version and parameters for each method). All the
evaluations were performed using 10-kb resolution for
the normalized genome-wide Hi-C data, unless specified
otherwise. We also tested OnTAD on raw data, and the
results obtained were similar to those observed for nor-
malized data (Additional file 1: Figure S9). The number
of TADs, the distribution of TAD size, and the percent-
age of genome covered by TADs called by each method
are summarized in Additional file 1: Figure S11.

Accuracy of TAD boundary detection

We first evaluated the accuracy of TAD boundary de-
tection. It has been reported that chromatin domain
boundaries are frequently occupied by genome archi-
tectural protein CTCF [10] and cohesion complex [21];
thus, these proteins are expected to be enriched at real
TAD boundaries. We computed the average CTCF
ChIP-seq signal in the boundaries identified by each
TAD calling method as well as their neighborhood re-
gions (+100 kb). As shown in Fig. 2a (left panel), all
methods showed enrichment of CTCF signal in the
identified TAD boundaries over that in the surrounding
regions (fold change > 1.63). Among them, OnTAD had
the highest CTCF enrichment (mean signal 1.22x grea-
ter than that of the second-highest method, ¢ test p

value = 1.91e-28). A similar result was obtained for the
enrichment of the RAD21 and SMC3 subunits of the
cohesin complex. The boundaries identified by OnTAD
showed a significantly higher enrichment of RAD21 and
SMC3 signals than those identified by other methods
(mean signal 1.14x and 1.04x greater than that of the
second-highest method, ¢ test p value =9.34e-16 and
1.91e-12, respectively) (Fig. 2a, middle and right
panels).

Accuracy of TAD assembly

We next evaluated the accuracy of TAD calling. If TADs
are accurately called, one would expect that a high pro-
portion of the variation in the contact frequencies in the
Hi-C matrix is explained by TAD calls. We developed a
metric called TAD-adjR?, which is a modified version of
the adjusted R? (see the “Methods” section), to measure
the proportion of Hi-C signal variation explained by
TAD calls. Because contact frequencies decay over the
genomic distance between a pair of interacting loci, we
stratified the contacts by their genomic distance and cal-
culated TAD-adjR* within each stratum. As shown in
Fig. 2b, OnTAD has a higher TAD-adjR* than that of
the other methods across almost the entire span of
genomic distances examined (0-1.5Mb) (average TAD-
adjR* OnTAD 0.33, Arrowhead 0.26, DomainCaller
0.26, rtGMAP 0.23, TopDom 0.08, and TADtree 0.06).
This high level of explained Hi-C variance indicates that
OnTAD produces a better classification between TADs
and non-TAD regions compared to other methods.
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Fig. 2 Evaluation of TAD calling methods. a Average ChiIP-seq signal at TAD boundaries and surrounding regions (+ 10 bins) (from left to right,
CTCF, SMC3, and RAD21). b Proportions of Hi-C signal variability explained by the called TADs (measured by TAD-adjR?) at a different genomic
distance between two interacting loci (average T/—\D—adeZ: ONnTAD 0.33, Arrowhead 0.26, DomainCaller 0.26, tGMAP 0.23, TopDom 0.08, and
TADtree 0.06). c-e Reproducibility of TAD boundaries (Jaccard index): ¢ between two biological replicates (GM12878, 10 kb), d between
resolutions 5 kb vs 10 kb) and 10 kb vs 25 kb, and e across different down-sampled sequencing depths (GM12878, original vs 1/4, 1/8, 1/16, and
1/32 of the original sequencing depth, raw data was used). Note: TADtree was not included in d, because it has difficulty handling data with 5-kb
resolution due to its large memory consumption. It also has difficulty for chr1-3 at 10-kb resolution either. Thus, these three chromosomes were
excluded for all TAD callers in all comparisons. All p values are calculated based on two-sided t test

Reproducibility of TAD calls and boundaries

Another important criterion for TAD calling is the re-
producibility of the identified TADs and their boundar-
ies. We performed this analysis for the hierarchical
callers of comparison. To measure the reproducibility of
TAD boundaries, we calculated the agreement of bound-
aries (Fig. 2c—e) between two TAD calling results using
the Jaccard index. To measure the reproducibility of
TADs, we treated each region covered by a TAD as a
cluster of bins in the genome and then measured the
agreement of cluster assignments between two TAD
calling results using the adjusted Rand index (Add-
itional file 1: Figure S3a-c). We evaluated the reproduci-
bility in three scenarios: (1) between biological replicates
(GM12878, 10 kb) (Fig. 2c, Additional file 1: Figure S3a),
(2) across different resolutions (5 kb, 10 kb, 25 kb)
(Fig. 2d, Additional file 1: Figure S3b), and (3) at differ-
ent sequencing depths (original sequencing depth vs 1/4,
1/8, 1/16, and 1/32 of the total number of reads) (Fig. 2e,
Additional file 1: Figure S3c). As shown in Fig. 2c—e and
Additional file 1: Figure S3b, both the boundaries and
the TADs identified by OnTAD were fairly reproducible,
consistently having either the highest or the second-
highest Jaccard index or adjusted Rand index in all
scenarios.

Run time comparison

We recorded the run time of different methods on the
same high-performance computing cluster (Xeon E5-
2680CPU and 72 GB RAM). OnTAD ran notably faster
than all the other methods (Additional file 1: Table S1).
For example, it took OnTAD 655s to analyze 10-kb
resolution data for the whole genome, which was 2.6x
faster than TopDom, 3x faster than Arrowhead, 24x
faster than DomainCaller, 28x faster than rGMAP, and
263x faster than TADtree.

Level of TAD hierarchy is related to gene activity and
epigenomic states

We systematically studied the biological features of the
TAD hierarchy, again using the Hi-C data in GM12878
from Rao et al. [17]. Overall, 75.7% of the genome was
covered by the TADs identified by OnTAD; the rest of
the genome was not assigned to any TADs, and we refer

to these TAD-free regions as gaps. Among all TADs
identified by OnTAD, the majority (92.2%) contained or
belonged to hierarchical structures, while a small frac-
tion had no hierarchical structure. We referred to the
former as “hierarchical TADs” or “nested TADs” and the
latter as “singletons” (Fig. 3a). We hypothesized that
chromatin organized into these two types of TADs may
be playing distinctive roles in regulation, and thus, we
examined their association with various epigenetic
marks.

Boundaries of hierarchical TADs have a higher CTCF
enrichment

We first compared the CTCF enrichment (see the
“Methods” section) at the boundaries of the two types of
TADs. Indeed, the boundaries of hierarchical TADs were
substantially more enriched with CTCF signal than
singleton boundaries (Fig. 3b) (mean CTCF signals are
3.51 and 2.25, respectively, ¢ test p value = 1.52e-18).
This enrichment of CTCF signal arose from a higher
average number of CTCF peaks at the boundaries of
hierarchical TADs. The mean number of CTCF peaks
per boundary of a hierarchical TAD was 0.451, whereas
it was only 0.181 for boundaries of singleton TADs
(¢t test p value = 4.52e-30).

Hierarchical TADs have a stronger association with active
epigenetic states

Chromatin interactions are strongly associated with
local, active epigenetic profiles [12, 17, 22]. We thus
expected to observe a positive association between the
enrichment of active epigenetic states and the levels of
TADs. Starting with the 36 epigenetic states defined by
IDEAS segmentation [23] on 6 ENCODE cell lines, we
evaluated the association between active epigenetic
states and TAD hierarchies. We classified hierarchical
TADs into 5 levels, with level 1 being the outermost
TADs, level 2 being the immediate subTADs nested
under 1 layer of level 1 TAD, and so forth until level 5,
which contains the subTADs nested under 4 or more
layers of TADs in the hierarchy. We observed that the
proportion of active epigenetic states increase along the
levels of TADs (Fig. 3c, d). In contrast, singletons are
notably less active compared with hierarchical TADs
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(especially when level > 2). In fact, singleton TADs showed
enrichments similar to those for the gap regions. A similar
pattern of enrichment for active states in hierarchical
TADs was also observed in other cell types (K562 and
HUVEC) (Additional file 1: Figure S4). Taken together,
our results showed that hierarchical TADs are on average
more active than singletons, and within hierarchical
TADs, inner TADs (e.g., subTADs) are more active than
outer TADs.

Hierarchical TADs have more active gene expression

We further investigated how gene expression is associ-
ated with TAD hierarchies. Using the RNA-seq data of
GM12878 from the ENCODE consortium (https://www.
encodeproject.org/) [24], we defined expressed genes as
those with FPKM > 5. Then, within TADs at each level,
we computed the density of expressed genes (the num-
ber of expressed genes per bin, i.e., 10-kb region). If a
gene was covered by more than one TAD, we
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associated it with the innermost TADs. We found that,
as the TAD level increases, the density of expressed
genes also increases, i.e., genes are more frequently ac-
tivated within inner TADs than outer TADs (ANOVA
test p value of <2.2e-16) (Fig. 3e). Similarly, we ob-
served the same trend of positive association between
density of expressed genes and the TAD level (ANOVA
test p value < 2.2e-16) in the K562 cell line (Fig. 3f).

Shared TAD boundaries are asymmetric and more active
than other boundaries

It has been reported that TAD boundaries are enriched
with actively expressed genes [11]. We also observed
that, for TADs at all levels, the number of expressed
genes and the enrichment of active epigenetic states are
significantly higher at the TAD boundaries than at the
internal regions of TADs (all ¢ test p values <0.001)
(Additional file 1: Figure S5a&b). Thus, we undertook an
additional analysis of TAD boundaries.

We observed that the boundaries of hierarchical TADs
were frequently shared by multiple TADs. We hypothe-
sized that the boundary usage may play an important role
in maintaining hierarchical structures and regulating gene
activities. To investigate this hypothesis, we classified
boundaries into five categories, according to the max-
imum number of TADs that use a boundary on one of the
two sides of the boundary (Fig. 4a). A boundary is classi-
fied as level 1 if it is used by no more than one TAD on ei-
ther side, level 2 if it is used by exactly two TADs on one
side and less or equal to two TADs on the other side, and
so forth to level 5 if it is used by five or more TADs on ei-
ther side. For example, a boundary shared by two TADs
to its left and three TADs to its right was classified as level
3. The number of boundaries assigned to each category is
shown in Additional file 1: Figure S7.

Epigenetic and genomic profiles

We examined the enrichment of active epigenetic states
at different boundary levels. We observed a significant
positive correlation between the enrichment (fold change)
of active epigenetic states and the number of times each
boundary is shared (e.g., Tss state: Pearson coefficient =
0.89; TssCtcf state: Pearson coefficient = 0.92) (Fig. 4b).
We further studied the relationship between gene expres-
sion level and boundary sharing. Again, we observed a sig-
nificant positive association between the number of times
a boundary was shared and the gene expression level
(ANOVA test p value = 1.97e-05). In particular, the gene
expression level at the boundaries that were shared by five
or more TADs was substantially higher than that at
boundaries that were shared by fewer TADs (Fig. 4c). At a
higher-level boundary, multiple genomic loci (the bound-
ary plus the other ends of the TADs) must be in proximity
in 3D space. This situation is reminiscent of
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chromatin hubs, and thus, we call the boundaries
shared by five or more TADs “hub-boundaries.” We
posited that hub-boundaries are more active in gene
regulation than boundaries that are shared by fewer
TADs.

The asymmetric loop extrusion model

Interestingly, we also observed some asymmetry in bound-
ary usage and TAD formation in hierarchical TADs. Spe-
cifically, we have observed (1) a significant difference in
boundary usage between the left and the right boundaries
of the same outer TAD (Z test p value < 2.2e-16), (2) a
significant difference in the numbers of TADs formed
by a boundary on its left and right sides (Z test p value
< 2.2e-16) (Additional file 1: Table S2).

We therefore asked if the observed asymmetry is re-
lated to the mechanism of loop formation. A recent
study in yeast suggested that loops are formed in an
asymmetric process, where the loop extrusion complex
anchors on one side and DNA reels through from the
other side [25]. We here hypothesize that loop ex-
truders are preferentially loaded at or near a specific
TAD boundary. Then, the asymmetric loop extrusion
would start from this site on one end, and it could
stop at different sites on the other end. Thus, the
TADs formed by multiple stops of loop extrusion in
this process would all share the anchor site as the
boundary on one side, but each has a different bound-
ary on the other side, leading to the observed asym-
metric boundary usage (Fig. 4d). Another recent study
in Drosophila Schneider 2 (S2) cells showed that pro-
moters prefer to interact with enhancers downstream
of the transcriptional unit [26], leading to a directional
preference in TAD formation. Indeed, as shown in
Fig. 4b, the boundaries shared by multiple TADs are
highly enriched with promoters; thus, the observed
orientation asymmetry in TAD formation around these
boundaries could reflect this interaction preference in
promoters.

While some proteins (e.g., Ycgl HEAT-repeat and
Brnl kleisin subunits) have been found to be related to
the anchor sites in yeast [27], little is known about the
proteins supporting the anchor sites in humans. We
therefore performed a transcription factor (TF) enrich-
ment analysis using 161 TF ChIP-seq data from the EN-
CODE consortium [28-30]. By comparing the fold
enrichment of each TF signal in hub-boundary (level 5)
with the ones at low level (level 1), we found a group of
TFs that were highly enriched in hub-boundaries (fold
change > 2 in either GM12878 (1 = 8) or K562 (n = 37))
(Fig. 4e). These hub-boundary-enriched TFs were strongly
associated with chromosome organization function in
Gene Ontology (GO) analysis (FDR=1.33e-06 from
PANTHER). They were also shown to be highly
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(See figure on previous page.)

Fig. 4 Hub-boundaries are highly active in gene regulation. a An illustration of the TAD boundary levels. The boundary levels are defined
as the maximum number of TADs that use a boundary on either its left or right side. The yellow, purple, and red dots refer to the
boundaries of levels 1, 2, and 3, respectively. b Enrichment of epigenetic states at different levels of TAD boundaries. Hub-boundaries (i.e,
boundaries with level =5) are enriched in active epigenetic states (marked in orange), especially the states associated with Tss (e.g., TssF,
Tss, and TssCtcf). ¢ Distribution of gene expression levels for genes whose transcription start sites overlap with TAD boundaries. Genes
are classified by the level of TAD boundaries. d Illustration of hierarchical TAD and asymmetric loop extrusion. The red boundary denotes
the “anchor” site that starts the loop extrusion in the asymmetric loop extrusion model. Boundaries in other colors are the stopping sites
of the loop extrusion. The hierarchical TADs are formed by multiple stops of the loop extrusion which share the same start site. e TFs
enriched (fold change >2) at hub-boundaries in GM12878 and K562 cell lines. The fold change of ChIP-seq TF peaks at hub-boundaries
(level =5) against level 1 boundaries is shown
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Fig. 5 subTADs exhibit distinctive epigenetic profiles. The captured region is chr19, 11.3-12.2 Mb in mouse G1E-ER4. The Hi-C heatmap
(generated by the 3D Genome Browser [43]) shows a nested TAD structure in this region. OnTAD results are displayed in the genome browser
track: blue line denotes level 1 TAD, green line denotes level 2 TAD, purple denotes level 3 TAD, and orange denotes level 4 TAD. The two
subTADs (orange lines) exhibit distinctive epigenetic features, with one enriched with repressive signals (H3K27me3) and silenced expression (low
RNA-seq signal) and the other enriched with active signals (H3K27ac, H3K4me3, and H3K36me3) and expression (high RNA-seq signal). The

shared boundary (marked by dash box) between these two subTADs has no CTCF peak, indicating the formation of these two subTADs may not
involve loop extrusion
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connected (p value < 1.0e-16) in the protein-protein inter-
action database, STRING (Additional file 1: Figure S7),
suggesting that they may potentially form a protein com-
plex. Together, these results suggest that the enriched TFs
may play an important role in forming the anchor sites in
the asymmetric extrusion process.

Hierarchical TAD calling unveils distinct epigenetic
features of inner TADs
It has been reported that genomic loci within the same
TADs tend to possess similar epigenetic features [22],
while loci in different adjacent TADs may show different
epigenetic features [17]. However, it remains unclear if
the divergence of epigenetic profiles also takes place at
the subTAD level. To explore the possible answer to this
question, we performed OnTAD on Hi-C data from the
mouse G1E-ER4 cell [31]. We observed that the majority
of TADs (87.1%) are in active compartments. As shown
in the OnTAD genome browser track in Fig. 5, the re-
gion of chr19 (11.3-12.2 Mb) contains multiple nested
TADs. Among them, two adjacent subTADs (11.8-11.9
Mb and 11.9-12.0 Mb) that belong to the same outer
TAD (chrl9, 11.6-12.0 Mb) exhibit distinct epigenetic
features, with enriched repressive epigenetic signal
(H3K27me3) in the left subTAD and enriched active epi-
genetic signal (H3K27ac, H3K4me3, and H3K36me3) in
the right subTAD. This demonstrates that, although
TADs were traditionally considered to be a fundamental
unit of chromatin organization, epigenetic features can
be distinctively different between subTADs. Our results
show that the subTADs identified by OnTAD better
represent homogeneous units associated with epigenetic
functions, capturing distinct functional features within
subTADs. By identifying these subTADs, OnTAD enables
a finer investigation of the hierarchy of chromatin
organization and its functionally homogeneous structures.
Interestingly, we observed that whereas the outer TAD
(11.8-12.0 Mb) had clear CTCF signals at its boundaries,
the shared boundary between the two subTADs (11.8—
11.9Mb and 11.9-12.0 Mb) had no CTCF signals from
the CTCF ChIP-seq data. This indicates that the forma-
tion of these two subTADs is probably independent of
CTCEF. Furthermore, we performed a high-resolution
compartment analysis (see the “Methods” section). It
showed that the two subTADs fall in different compart-
ments. These results can be interpreted within the frame-
work of recently proposed “compartmental domains” [32,
33], which are hypothesized to be formed by A/B com-
partment without the involvement of CTCF. We will dis-
cuss this mechanism further in the “Discussion” section.

Discussion
While hierarchical structures in TAD formation have
been reported [15, 16, 18, 19], the involvement of these

Page 10 of 16

hierarchies in gene regulation mechanisms remains
poorly understood. This is partly due to the lack of a
method that systematically identifies TAD hierarchies
from Hi-C data and investigates the association of TAD
hierarchies with epigenetic features. Here, we introduce
OnTAD, a new method to uncover the hierarchical
TAD structures from Hi-C data. Based on a dynamic
programming procedure that recursively finds the best
domain partition of the Hi-C contact matrix in a hier-
archical manner, OnTAD identifies the hierarchy of
TADs and their boundaries. It produces a convenient
output for visualizing the hierarchy in a genome
browser, greatly facilitating the investigation of the inter-
play between hierarchical TADs and other epigenetic
features in gene regulation. Our comprehensive evalu-
ation shows that OnTAD substantially outperforms the
existing TAD calling methods in both accuracy and
computational efficiency. These results demonstrated
the effectiveness of OnTAD for identifying TAD hier-
archies and investigating their biological functions.

Using the results from OnTAD, we investigated how
hierarchies within TADs were associated with features
related to function. In particular, we observed that, on
average, hierarchical TADs were significantly more ac-
tive than TADs without hierarchies (i.e., singletons). The
active epigenetic states and active genes were also sig-
nificantly more enriched in the boundaries shared by
multiple TADs (e.g., hub-boundaries) than those used
exclusively by a single TAD. These observations echo
those on the hierarchy of metaTADs, which also showed
a positive association between the enrichments in pro-
motor activity and gene density and boundary usage [20].
Interestingly, we also observed a significant asymmetry in
boundary usage between the left and right boundaries in
the hierarchical TADs and an asymmetry in the orienta-
tion of TAD formation around hub-boundaries, support-
ing the asymmetric loop extrusion model [25] and
preferential orientation of promoter interaction [26].
Further experimental investigation is warranted to test
these hypotheses.

Our results pose several interesting questions about
the mechanisms utilized to form these structures. First,
how are these hierarchical TAD structures formed? Are
they produced by hierarchical chromatin folding in sin-
gle cells, or does the nesting reflect a collection of differ-
ent interaction patterns in individual cells that looks like
a hierarchy when the data from a population of cells is
aggregated in bulk cell Hi-C data? Single-allele chroma-
tin interactions do reveal regulatory hubs [34], support-
ing the interpretation that these complex interactions
occur in individual cells. A recent single-cell analysis of
high-throughput Oligopaint labeling and imaging on
Chr21 of A549 cell showed that both TAD and subTAD
structures exist in single cells [35]. Furthermore, nested
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TAD structures could be formed by multi-site interac-
tions in a single cell [35]. However, as acknowledged by
the authors, it is still possible that some other domain
structures resulted from population averaging. In prin-
ciple, OnTAD can also be applied to single-cell Hi-C
data to explore this question. However, the genome
coverage in current single-cell Hi-C data is still low and
can only support the analysis at the resolution of
~100 kb, limiting the detection of finer domain structures
(typically ~50 kb for subTADs we identified). Future
studies with higher resolution single-cell Hi-C data will be
valuable for addressing this question at a genome-
wide scale.

Second, what are the mechanisms to form the hier-
archical structures? As observed in our analyses (Fig. 5),
though the majority of the outer TAD boundaries were
bound by CTCF, some subTADs appear to be formed
without CTCF binding at their boundaries. The forma-
tion of the latter can be explained by the recently pro-
posed “compartmental domains” mechanism [33], which
forms domains by establishing A/B compartments with-
out the involvement of CTCF or loop extrusion. Because
OnTAD does not rely on CTCF information for TAD
identification, it can capture all domain structures, re-
gardless of the formation mechanisms. The example in
Fig. 5 could be explained by joint processes of loop ex-
trusion (for the outer TAD) and establishment of “com-
partmental domains” [33] for the inner TADs.

In summary, we have demonstrated that the hierarchies
of TAD structures are associated with gene regulation and
have provided a powerful tool for exploring this associ-
ation. Though previous results based on low-resolution
data suggest that the majority of TAD structures are
similar across cell lines [11], recent analyses found
that certain locally frequent interaction regions within
TADs are cell type specific [36]. It will be particularly
interesting to use OnTAD to systematically investigate
how the finer domain structures within TADs differ
across cell types, for example, how the levels of hier-
archy differ across cell types, and how the changes in
the hierarchy are associated with differential gene
regulation. The biological insights generated by ana-
lyses of the finer domain structures should help im-
prove our understanding of the role of chromatin
conformation in gene regulation.

Methods

Notations and data preprocessing

Let X denote a symmetric Hi-C matrix, where each entry
(4, j) in the matrix is a value quantifying the strength of
the chromatin interaction between bins i and j. The Hi-
C matrix can be a raw contact matrix or a normalized
matrix produced by normalization procedures such as
ICE [37] and KR [17]. Let X [a:b, c:d] ={(i, j): a<i<b,
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c<j<d} denote a submatrix of X. A candidate TAD be-
tween bins a4 and b corresponds to a diagonal block
matrix X, ;) = X [a:b, a:b], where the mean of the entries
in X, is expected to be higher than that in its neigh-
boring matrices. Because of the distance dependency in
Hi-C data, i.e., the dependence of contact frequency on
the proximity of the interaction loci, we normalize the
Hi-C matrix before TAD calling by subtracting the mean
counts at each distance.

Identification of candidate TAD boundaries

We identify candidate TAD boundaries using an ap-
proach modified from the boundary detection procedure
in the TopDom method [13], a non-hierarchical TAD
caller. Specifically, the TopDom boundary detection pro-
cedure scans the diagonal of the Hi-C matrix, using a
square submatrix that slides its bottom corner on the di-
agonal (Fig. 1a). At each location, it computes the mean
Hi-C signal within the submatrix, which will be referred
to as the TopDom statistic thereafter. When the corner
of the submatrix lands on a TAD boundary, the Top-
Dom statistic reaches a local minimum. Thus, the local
minimums of the TopDom statistic can be used as
candidate boundaries for constructing TADs. As de-
monstrated in [13], the boundaries obtained from this
procedure at an optimal window size show enriched
epigenetic characteristics of TADs boundaries.

However, the above procedure can only identify
boundaries at a fixed window size; thus, it is unable to
capture the TADs of different sizes on the TAD hier-
archy. To identify all candidate TAD boundaries in the
entire TAD hierarchy, OnTAD calculates the TopDom
statistics at a series of window sizes (W), ranging from 1
to a maximum TAD size (d) specified by users. Here, we
set the minimum size = 3 bins, because structures smaller
than 3 bins are too small to form a domain. We set the
maximum size = 200 for 10-kb Hi-C data, because TADs
are known to be smaller than a few megabytes.

For each window size W, we first obtained a set of
local minimums of the TopDom statistics, which are
defined as the smallest value in the neighborhood of [i -
Lsize, i + Lsize]. To reduce false positives due to noise,
the local minimums that are not significantly smaller
than the local maximums in the same neighborhood are
pruned. Here, we required the local minimums to be at
least 1.96S smaller than the local maximums to be quali-
fied as a candidate boundary, where S is the standard de-
viation of the TopDom statistic in the entire matrix. The
parameter 1.96 is chosen based on the 95% confidence
level of a normal distribution, which reasonably approxi-
mates the distribution of the TopDom statistic.

Figure 1b shows examples of the local minimums on
the genome at different window sizes. Because different
window sizes capture the information of TADs in different
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sizes, we took the union of the pruned local minimums
over all window sizes and used the corresponding bins as
candidate TAD boundaries. We selected z according to
the procedure described in the “Parameter selection” sec-
tion. For all the analyses in this work, we used Lsize = 5. It
can be adjusted by users.

Recursive TAD calling algorithm

We developed a TAD calling algorithm to assemble
TADs from the candidate boundaries. Several issues
need to be considered in the design of the algorithm in
order to produce biologically meaningful TADs. First,
because a region may be shared by multiple TADs, the
scores of these TADs can be strongly correlated. Second,
in the TADs with nested structures, the scores of the
TADs and their nested subTADs are convoluted. Third,
some boundaries may be shared between TADs. Last,
the algorithm needs to be computationally efficient to
call TADs on the genome scale.

To address these issues, we developed a recursive
algorithm to identify the TADs that give the optimal
partition of the genome according to a scoring function
related to the strength of Hi-C signals (see the
“Evaluation of the violation of the hierarchical TAD
assumption” section). Our algorithm assumes that any
given two TADs are either disjoint (but can share one
boundary) or nested (i.e., one TAD is completely within
the other). This assumption is required for the dynamic
programming to find an optimal solution in polynomial
time. While this assumption sometimes may not be true,
it greatly reduces the complexity of the problem while
still enabling us to (1) de-convolute nested TAD struc-
tures, (2) impose shared boundaries, and (3) obtain an
efficient algorithmic solution. Our evaluation showed
that the majority of the genome follows this assumption
(see the “Evaluation of the violation of the hierarchical
TAD assumption” section). Even when it is violated, i.e.,
the boundaries of the TADs cross each other, our
method can still produce a reasonable approximation
(Additional file 1: Figure S1C).

Briefly, the algorithm works as follows. Given a matrix
Xap) the algorithm starts at the root level to first find
the best bin i (a <i<b) to partition the matrix into two
submatrices, X, and X;;}, such that X|; ;) is the largest
right-most TAD in X, .. Since X|,; and X, are dis-
jointed, the TADs within each submatrix can be called
separately in a recursive manner. At each recursive step,
the parent matrix is partitioned into two submatrices,
and TADs are called within each submatrix using the
same recursive formula (Additional file 1: Figure S2A).
The recursion stops when i =g, i.e, the submatrix X,
contains no TAD. After a recursive step is completed, it
identifies the best TADs in the current branch according
to the scoring function, de-convolutes the TAD signals
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in the parent matrix by removing signals of inner TADs,
and evaluates if the parent matrix itself is a TAD. This
process is repeated until the recursion returns to the
root level (Additional file 1: Figure S2B). Note that,
because every TAD is the largest right-most TAD of a
parent matrix in a recursive branch, this recursive pro-
cedure guarantees to traverse all TADs, even though
only the largest right-most TAD is called at each step.

Evaluation of the violation of the hierarchical TAD
assumption

To investigate the frequency of the violation of the hier-
archical TAD assumption, we ran OnTAD on high-
resolution (10 kb) in situ Hi-C data in GM12878. We
segregated the regions around the corner of each TAD
into four 5 x 5 quadrants and calculated the average con-
tact frequency of each quadrant (Additional file 1: Figure
S8). If this assumption holds, the interaction frequency
is expected to be high in the quadrant within TAD
(quadrant 1) and relatively low in at least one of the two
quadrants (2 and 3) on the two sides outside of TAD
corner. As shown in Additional file 1: Figure S8, the
mean frequency patterns of the four quadrants for most
of the TAD corners are consistent with our expectations.
This suggests that this assumption holds for a majority
of the genome. The violation can be remedied by remov-
ing the signals from the called TADs and then rerunning
OnTADs on the de-clumped Hi-C data to identify add-
itional TADs.

The scoring function
Our scoring function h(X, ;) for matrix X, is
defined as:

h(X(ap) = §(X(ap) + A(X |4 [subTADs) (1)

0 i=a
{ max(0, £(X5) + t(Xjip)))

and ¢(X(z) = max(g(X), 1(X()))

i=a+1,..b-1

Here, g(X,,5) is the score of TADs within X}, not
including the score for X|,;; itself being a TAD. It is cal-
culated by finding the best left boundary of the largest
right-most TAD in X, ). #(X|; 5)) is the score of the lar-
gest right-most TAD in X|, . It is the sum of the score
of TADs within X|; ,; and the score of X, ,; itself being a
TAD, namely A(X; ;| subTADs). For any diagonal block
matrix to be called a TAD, its mean signal is required to
be greater than the means of its neighboring regions on
both sides. We therefore define:
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A(X[M,]\subTADs) = m(X[,v_b]|subTADS)— max( X[(i=(b=i+ 1)) : (b—(b=i +1)),i: b, X[i:b,(i+ (b-i+1)): (b+ (bi+ 1))})4

where m(X;;;|subTADs) denotes the mean of X[;;), ex-
cluding the TADs within X[}, returned by the recursion;
A is a user-specified non-negative penalty parameter; X[(i
-(b-i+1):(b-(b-i+1)),i:b] and X[i:b,(i+(b-i+
1)):(b+(B-i+1))] are the two (b-i+1) by (b-i+1)
off-diagonal matrices in the adjacent flanking regions of
Xiipp; and finally, X denotes the mean of X. The parameter
A serves as a threshold for TAD calling. That is, a TAD
will be called only when the mean contact frequency
within the potential TAD area between the boundaries ex-
ceeds that of the surrounding area outside of the TAD by
the margin of 1. The procedure for selecting A is described
in the “Parameter selection” section.

When the score of a candidate TAD is <0, it is likely
not a real TAD. We therefore set all negative scores as 0's
after finishing the score calculation for the entire contact
matrix and only output the TADs with positive scores.

Parameter selection

We selected the value of A based on the false discovery
rate (FDR) of TAD identification. The FDR is calculated
as follows. First, the entries in the real Hi-C matrix are
permuted within each genomic distance. This results in
a null Hi-C matrix that has the same marginal signal dis-
tribution as the original Hi-C matrix but without bio-
logically meaningful TAD structures. Next, OnTAD is
run on both the original and the permuted Hi-C matri-
ces for a series of 1. The TADs identified from the ori-
ginal Hi-C matrix are treated as “discoveries” (R), which
is a mixture of false and true discoveries, and those from
the permuted Hi-C matrix are treated as “false discover-
ies” (V), which is used to approximate the proportion of
false discoveries in R. Recall that OnTAD assigns each
TAD a score according to the scoring function (1).
Given a TAD size, the magnitude of the score reflects
the strength of evidence to call TAD. Because larger
TADs tend to have a lower mean contact frequency after
removing their inner TADs, the score is usually smaller
for larger TADs. Therefore, we computed the FDR ac-
counting for TAD size. Specifically, for a given value of
A, the identified TADs are first stratified by their sizes
and scores. Let # be the total number of TADs identified
on the original matrices, and R; and V; be the numbers
of TADs in the ith stratum from the original and the
permuted matrices, respectively. Then, if a TAD (j) is
in the ith stratum, the probability for the TAD to be
a false discovery (a.k.a. local false discovery rate [38]
isp; = min(%i", 1).

The overall FDR for the TAD identification is computed
as the average of the probability to be a false discovery
over all TADs identified on the original matrix, based on
the relationship between local fdr and FDR [38]:

FDR:M
n

The above FDR calculation is repeated for each value
of A, and the A corresponding to the FDR cutoff of 0.05
is selected.

In our analysis, the stratum is formed by dividing the
TAD calls into 25 equal shares according to the ranking
of TAD size (or TAD score) on the real matrix. This
leads to 25 x 25 = 625 strata in total. As shown in Add-
itional file 1: Table S3, the FDR is close to 0.05 at A =0.1
for the GM12878 dataset (10 kb). To test the robustness
of the tuned parameter, we also performed the same
procedure on the mouse G1E-ER4 Hi-C data from Hsu
et al. [31] at 10-kb resolution. The FDR was also con-
trolled at the 0.05 level when A =0.1 (Additional file 1:
Table S4). Therefore, we used A = 0.1 as the default value
in our analyses. In the OnTAD software, we allow users
to specify the value of A to offer more flexibility.

Another important tuning parameter is Lsize, which is the
span of the interval (i.e., the interval size = 2 x Lsize + 1) for
searching local minimums of the TOPDOM statistics. This
parameter affects the selection of candidate boundaries. If
Lsize is too large, some potential boundaries will be missed.
If Lsize is too small, the candidate boundary set may include
many false positives, increasing the computational burden
for the assembly step and the quality of the final results. We
chose Lsize in a similar way as for choosing A on GM12878
data (10 kb). Specifically, we ran OnTAD for different values
of Lsize (range = 3—10), corresponding to the interval size of
7-21 bins. We chose this range because it is sufficient to
cover various TAD sizes. As shown in Additional file 1:
Table S5, Lsize =5 (i.e., interval size = 11) renders an FDR
close to 0.05. Therefore, we chose Lsize =5 for all analyses.
To evaluate the robustness of this choice, we evaluate the
similarity of the identified TAD structures between Lsize = 5
and Lsize = 6-10 and found that they are similar, with the
median of the adjusted rand indices > 0.75 (Additional file 1:
Figure S10). It indicates the result is relatively insensitive to
the value of Lsize when Lsize = 5~10.

Computation complexity of the TAD calling algorithm
We performed an analysis on the computational com-
plexity for our recursive algorithm. For an /x/ Hi-C
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matrix, if all bins are potential boundaries, then the re-
cursion needs to visit /(/ + 1)/2 diagonal block subma-
trices. As there are [ size 1 diagonal block matrices, the
computation complexity for computing the scores of all
size 1 matrices is O(/). Given the scores of size 1 matri-
ces, we can calculate the scores of size 2 matrices. There
are (/- 1) of them, each enumerating through (2-1) par-
titions. Hence, the time complexity is O((2-1)({ - 1)).
Following the same calculation, the scores of one sub-
matrix of size k will be computed by enumerating (k - 1)
partitions. As there are (/-k+1) of them, the time
complexity is O((k—1)(I-k+1)). A similar calculation
can be done for the mean of submatrices. As a result,
the total complexity to obtain the scores of all sub-
matrices from size 1 to [ is O().

Empirically, the computational complexity is much
lower than the above due to some further reductions.
First, because potential TAD boundaries are limited to
the TOPDOM local minimums, this substantially re-
duces the number of partitions from O(P) to O(m),
where m is the number of candidate boundaries. Second,
because TADs usually are smaller than 2 Mb, the max-
imum TAD size to be called (d) typically is much
smaller than /. This constraint effectively reduces the
time complexity of our algorithm from O(m®) to O(md>).
Furthermore, because TADs usually are formed between
neighboring boundaries, we set a constraint in the recur-
sive procedure to limit the TADs to be formed only
between candidate boundaries that are no more than five
neighbors apart.

TAD-adjR? for assessing accuracy of TAD calling

Because TADs are regions with frequent local interac-
tions, a reasonable TAD caller is expected to classify the
regions with high contact frequencies as TADs and the
regions with low contact frequencies as non-TADs, i.e.,
gaps between TADs. At any given genomic distance, the
variation between Hi-C signals should be largely explained
by the classification of TADs. How well the variation can
be explained by the classification of TADs can reflect the
accuracy of TAD calling. Based on this intuition, we devel-
oped a metric similar to the R* in regression models to
evaluate the accuracy of TAD calling. Let Y; denote the
contact frequency of the ith bin, n denote the number of
bins at the same genomic distance as this bin, and p de-
note the number of called TADs whose sizes are greater
than or equal to the genomic distance. For bins within
TAD, Y; denotes the average contact frequency at a given
genomic distance within that TAD, excluding regions cov-
ered by higher level TADs. For those bins not in any

TADs, Y; is the average of contact frequency in the gap

region at that genomic distance. And Y denotes the over-
all mean contact frequency across all the bins at a given
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genomic distance. For each genomic distance, the TAD-
adjR? is defined as:

1 n a2
E _ (vi-7y)
RZrAD = 1—n_€_1 -

-1 Z?:l (Yi_?) ’

This quantity essentially measures the proportion of
variance in the Hi-C signal that is explained by the clas-
sification of TADs, adjusting for the number of TADs
and genomic distance.

Enrichment of expressed genes

To evaluate the activity of gene expression, we down-
loaded the RNA-seq data from ENCODE (see Data),
merged the biological replicates of RNA-seq data, and
computed the average FPKM for each gene. Genes with
FPKM >5 were deemed as expressed genes. For each
TAD level, we compute the density of expressed gene as
the number of expressed genes per 10 kb. For TADs
with nested structures, genes covered by the inner level
TADs are excluded in the calculation of gene density for
outer TADs.

Enrichment of CTCF or cohesin protein signals

To compute the enrichment of CTCF (or cohesin pro-
tein) signals at the identified boundaries and their
surrounding regions, we computed the average CTCF
(or cohesin proteins) signals from ChIP-seq data at the
identified boundaries and the bins within their 10 bins
flanking regions. The processed signals in bigwig file
were used in this process.

Epigenetic state enrichment

We downloaded the IDEAS segmentation (see Data),
which segments the genome into 36 epigenetic states
based on 10 epigenomic marks [23]. We used it to evalu-
ate the enrichment of epigenetic state in the identified
(sub) TADs and boundaries. Let n; denote the total
number of 200-bp windows that have IDEAS-assigned
epigenetic states at a TAD boundary i, and #, ; denote
the number of 200-bp windows annotated as state s at a
TAD boundary i. For a given state s, its enrichment in a
set of M boundaries is computed as:

_ 2?11”18,1' +1
By = it
Bszizlni +1

where B is the proportion of state s in the whole
genome. The 1’s in the formula of E(s) are added to
avoid dividing by 0.
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A/B compartment calling

We used CscoreTool [39] to infer A/B compartments
from mouse G1E-ER4 Hi-C data (10-kb resolution, de-
fault parameter). The A/B compartments are determined
by the correlation coefficient between compartment
score and ATAC-seq signal. If a positive correlation
coefficient is observed, then regions with score > 0 are in
compartment A. Otherwise, if the correlation coefficient
is below 0, the regions with score <0 are in compart-
ment A. We reversed the compartment scores on the
chromosomes that have correlation coefficient < 0. Thus,
compartment A is shown with a positive score, and
compartment B is shown with a negative score.

GO enrichment analysis

We performed GO enrichment analysis for hub-boundary-
abundant TFs using PANTHER [40] (http://pantherdb.
org/), which computes the false discovery rate (FDR) for
each gene set based on the p value of statistical over-
representation of “biological process” obtained from the
Fisher’s exact test. The FDR of the gene set for the hub-
boundary-abundant TFs was reported in our analysis
section.
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