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Abstract

We describe ReorientExpress, a method to perform reference-free orientation of transcriptomic long sequencing
reads. ReorientExpress uses deep learning to correctly predict the orientation of the majority of reads, and in
particular when trained on a closely related species or in combination with read clustering. ReorientExpress enables
long-read transcriptomics in non-model organisms and samples without a genome reference without using
additional technologies and is available at https://github.com/comprna/reorientexpress.

Background

Long-read sequencing technologies allow the systematic
interrogation of transcriptomes from any species. How-
ever, functional characterization requires knowledge of
the correct 5'-to-3" orientation of reads. Oxford Nano-
pore Technologies (ONT) allows the direct measure-
ment of RNA molecules in the native orientation [1],
but the sequencing of complementary-DNA (cDNA) li-
braries yields generally a larger number of reads [1, 2].
Although strand-specific adapters can be used, error
rates hinder their correct detection. Current methods to
analyze nanopore transcriptomic reads rely on the com-
parison to a genome or transcriptome reference [2, 3] or
on the use of additional technologies such as in “hybrid
sequencing” that employs long- and short-read data [4],
which limits the applicability of rapid and cost-effective
long-read sequencing for transcriptomics beyond model
species. To facilitate the de novo interrogation of tran-
scriptomes in species or samples for which a genome or
transcriptome reference is not available, we have devel-
oped ReorientExpress, a new tool to perform reference-
free orientation of ONT reads from a c¢cDNA library.
ReorientExpress uses deep neural networks (DNNs) to
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predict the orientation of cDNA long reads independ-
ently of adapters and without using a reference. Reorien-
tExpress predicts correctly the orientation of the
majority of cDNA reads, and in particular when trained
on a related species or in combination with read cluster-
ing, thereby enabling the reference-free characterization
of transcriptomes.

Results

Sequence-based prediction of read orientation
ReorientExpress approach builds on the hypothesis that
RNA molecules present sequence biases and motifs rele-
vant to their metabolism, generally related to protein
binding sites [5, 6]. Despite potential sequencing errors,
these signals may still be largely present in a long read and
therefore should enable the identification of the right
orientation of a cDNA read. ReorientExpress implements
two types of deep neural network (DNN) models to clas-
sify long reads as being in the forward (5'-to-3") orienta-
tion or in the reverse (3'-to-5') orientation (Fig. 1a, b).
The first DNN model is a multilayer perceptron (MLP)
(Additional file 1: Table S1). In this model, an input se-
quence is represented in terms of the frequency of short
motifs (k-mers). This ensures a fixed-size input for mole-
cules of different lengths and accounts for the fact that se-
quencing errors may not allow to correctly capture longer
sequence patterns. Furthermore, neural networks work
better with input values between 0 and 1. Accordingly, the
input of the MLP model is a matrix of normalized k-mer
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Fig. 1 ReorientExpress deep learning models. ReorientExpress implements two deep neural networks (DNNs) to predict the orientation of cDNA
long reads. a A multilayer perceptron (MLP) is trained on k-mer frequencies extracted from sequences of known orientation. For each test read,
the orientation is predicted using the k-mer frequencies of the read as input. b A convolutional neural network (CNN) is trained on 500-nt sliding
windows from sequences of known orientation, using one-hot encoding for each window. Prediction is performed by scoring all windows in a
test read and calculating the mean score independently for each orientation

counts from the input sequences, with k from 1 to any
length specified as parameter (default = 5) as shown in Fig.
la. Although MLPs are simpler and faster to train and
run, they do not capture the sequence context dependen-
cies. For this reason, ReorientExpress also implements a
convolutional neural network (CNN) that can capture the
spatial information (Additional file 1: Table S2). As input
for the CNN model, sequences were divided into overlap-
ping windows of fixed size, which were then transformed
using one-hot encoding. The orientation of a read is based
on the mean of the posterior probabilities for all windows
in a read for forward and reverse orientation and there-
after by selecting the one with the highest value (Fig. 1b).
Regardless of the DNN model, ReorientExpress can be
trained from any set of sequences with known

orientations, like a transcriptome annotation or ONT dir-
ect RNA sequencing (DRS) reads.

To test ReorientExpress, we first trained the MLP
model on 50,000 random transcripts from the human
annotation using k-mers from k=1 to k=5. To enable
the accuracy evaluation with ONT cDNA reads with un-
known orientation, we first mapped human ONT ¢cDNA
reads to their respective transcriptomes using minimap2
[7]. Thereafter, we selected only uniquely mapped reads
with maximum quality (MAPQ =60), and assigned to
each read the strand from the matched annotated tran-
script. Using these orientations as ground truth, the
MLP model trained on human transcriptome yielded an
average precision of 0.84 and a recall of 0.83 in human
c¢DNA reads (Fig. 2a) (Additional file 1: Table S3). The
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Fig. 2 ReorientExpress accuracy analysis. @ Receiving operating characteristic (ROC) curves, representing the false positive rate (x axis) versus the
true positive rate (y axis) for the prediction of the orientation of human ONT cDNA reads with the multilayer perceptron (MLP) and convolutional
neural network (CNN) models trained on either the human (Hs) or the mouse (Mm) transcripts. b ROC curves for the prediction of the orientation
of yeast ONT cDNA reads with the MLP and CNN models trained on either the S. cerevisiae (Sc) or C. glabrata (Cg) transcripts. ¢ Number of clusters (y axis)
according to the proportion of human ONT cDNA reads in the cluster with orientation correctly predicted by ReorientExpress (x axis) with the MLP model
trained on the human transcriptome (left panel) (Hs-MLP) or the S. cerevisiae transcriptome (right panel) (Sc-MLP). Clusters with > 2 reads are shown. Similar
plots for all clusters (> 1 read) and for the CNN model are given in Additional file 1: Figure S1. d Comparison of the proportion of human (Hs) or S. cerevisiae
(Sc) cDNA reads correctly oriented in three cases: taking the default orientation from the FASTQ file (Default) in blue, using the CNN and MLP ReorientExpress
models in green, and using a majority vote in clusters to predict the orientation of all reads in each cluster (ReorientExpress and clustering) in yellow. Clustering
and predictions in (c) and (d) were performed with all labeled cDNA reads (see the “Methods” section). Models used to on the total set of labeled cDNA reads
in this figure were trained on 50,000 randomly selected transcript sequences from the annotation, or all of them if there were less (S. cerevisiae and C. glabrata)

CNN model trained on the human transcriptome
showed slightly better results on the human ¢cDNA reads
(Fig. 2a) (Additional file 1: Table S3). We proceeded in a
similar way with S. cerevisiae cDNA reads [1], as de-
scribed above for human cDNA reads. ReorientExpress
trained on the S. cerevisiae annotation yielded an average
precision and recall of 0.93 in ONT cDNA reads from S.
cerevisiae (Fig. 2b) (Additional file 1: Table S3). Similar
to the above observation in human ¢cDNA, the accuracy
of the CNN model on the S. cerevisiae reads was slightly
better than the MLP model (Fig. 2b) (Additional file 1:
Table S3). Application of the MLP or CNN models
trained on human transcriptome to direct RNA sequen-
cing (DRS) reads yielded better accuracy for human DRS
reads compared to human cDNA reads. However, the
accuracy decreased for both MLP and CNN model
trained on S. cerevisiae transcriptome and tested on S.

cerevisiae DRS reads compared to S. cerevisiae cDNA
reads (Additional file 1: Table S3).

To demonstrate the suitability of ReorientExpress to
predict the orientation of cDNA reads from samples
without a genome or transcriptome reference available,
we mimicked this situation by building DNN models in
one species and testing them on a related species. We
thus trained an MLP model (k= 1,...,5) with the mouse
transcriptome. This model tested on human ONT ¢cDNA
reads showed a precision of 0.79 and recall of 0.71,
which is comparable to the MLP model trained on hu-
man data (Fig. 2a) (Additional file 1: Table S4). Interest-
ingly, this model showed a higher accuracy (precision
and recall = 0.87) when tested on human DRS reads as
compared to human cDNA reads (Additional file 1:
Table S4). We also trained an MLP model (k=1,...,5)
with the transcriptome annotation for Candida glabrata
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and tested it on S. cerevisiae ONT cDNA reads. This
model yielded accuracy values as high as for the previous
S. cerevisiae model (precision and recall = 0.94) (Fig. 2b)
(Additional file 1: Table S4). As observed before for S.
cerevisiae DRS reads, the model accuracy dropped when
tested on DRS reads (precision and recall = 0.87) (Add-
itional file 1: Table S4). We obtained similar results for
the cross-species comparisons with the CNN model,
with an improvement in accuracy for the mouse model
applied to human DRS reads, and a drop for the C. glab-
rata model applied to S. cerevisiae DRS reads (Add-
itional file 1: Table S4).

Reference-free interpretation of long-read transcriptome
data generally involves some form of clustering [8, 9].
Thus, to further demonstrate the utility of ReorientEx-
press for reference-free interrogation of transcriptomes
with long-reads, we performed clustering of the cDNA
reads (see the “Methods” section). For the majority of
clusters in human (> 81%) and S. cerevisiae (> 85%), Reor-
ientExpress predicted correctly more than 50% of the
reads in the cluster (Fig. 2c) (Additional file 1: Figure S1)
(the proportion of clusters for each model can be found in
Additional file 1: Table S5). That is, for most clusters,
more than half the reads in those clusters can be correctly
oriented. Accordingly, by taking the orientation of the
cluster to be determined by that of the majority of reads,
we could improve the overall orientation. To test this, we
applied a majority vote per cluster to set the orientation of
all reads in the cluster to be the majority label predicted
by ReorientExpress. With this, ReorientExpress estab-
lished the right orientation for the majority of cDNA reads
for human and yeast, with up to 96.2% of human reads
and up to 98% of S. cerevisiae reads correctly oriented
(Fig. 2d) (Additional file 1: Table S6).

Comparisons with other models and inputs

Interestingly, inverting the procedure and training with
ONT cDNA reads yields good accuracy when testing on
annotated transcripts, but when training on ONT DRS
reads the accuracy decreases (Additional file 1: Table
S7). This could be a consequence of a higher proportion
of base-calling errors in DRS reads due to the presence
of RNA modifications, leading to a decrease in the iden-
tification of relevant sequence motifs learned by the
model. To test this, we trained the MLP model with
DRS reads from in vitro transcribed (IVT) RNA [2] and
obtained slightly better accuracy than with DRS reads
when testing on ¢cDNA reads (Additional file 1: Table
S7). Additionally, we observed no dependency with the
base-caller used to obtain the sequence of reads. In par-
ticular, using Guppy-rapid or Guppy-high accuracy to
base-call the IVT RNA reads did not show any differ-
ences in the accuracy of the MLP model (Additional file
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1: Table S8). This indicates that DRS errors may prevent
accurate training of sequence-based models.

We also observed dependency of the accuracy with the
length of the reads. The prediction accuracy decreased
for shorter reads (Additional file 1: Table S8), which sug-
gests that either short molecules or partial reads may
pose a limitation for the accurate prediction of orienta-
tion. To further test the effect of read length on the pre-
diction accuracy, we trimmed a number of nucleotides
from both ends of the cDNA reads in the test set. The
accuracy was not significantly impacted performing
trimming up to 200nt (Additional file 1: Table S9).
Similarly, when we trimmed the training set by different
amounts up to 200 nt, leaving fixed the test set, the ac-
curacy did not change significantly (Additional file 1:
Table S10). Thus, incomplete annotations can still be
valid to train a model, and complete annotations can
yield accurate results on partial reads. This is relevant
for the application to cDNA reads, which may be frag-
mented due to internal priming [10]. These results also
indicate that DNN models are able to capture predictive
features beyond the presence of adapters or poly-A tails
to predict the 5'-to-3" orientation of RNA molecules.

For comparison, we run pychopper (https://github.
com/nanoporetech/pychopper), which can identify the
orientation of cDNA reads by virtue of detecting the se-
quencing adapters (see the “Methods” section). We ana-
lyzed all cDNA reads whose orientation was labeled
previously. For the human cDNA reads, only ~23.5%
were classified accurately by pychopper. We also com-
pared the accuracy of ReorientExpress with primer-chop
(https://gitlab.com/mcfrith/primer-chop), which pro-
duced the correct orientation for ~54% of all reads
tested. These results justify the use of more sophisticated
models to predict orientation. Additionally, we trained
and tested a support vector machine (SVM) and a Ran-
dom Forest (RF), using as inputs the same k-mer fre-
quencies. Both methods showed worse accuracy
compared to the MLP model for the same test data.
However, for S. cerevisiae the accuracy of both models
trained with the S. cerevisiae annotation was high (preci-
sion and recall 0.86 for the RF, and 0.95 for the SVM)
(Additional file 1: Table S10). Finally, we also tested
ReorientExpress with PacBio ¢cDNA reads from sorghum
[11]. We trained two MLP models, one with the
Ensembl ¢cDNA annotations from sorghum and another
with maize. Both models showed high accuracy when
tested against Sorghum PacBio reads (precision and re-
call ~0.95) (Additional file 1: Table S12).

Association of RNA types and sequence motifs with read
orientation prediction

Since we mapped long reads unambiguously to the tran-
scriptome annotation for the purpose of benchmarking,
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we can use this information to investigate the accuracy
of ReorientExpress according to the transcript type as
provided by the Gencode annotation: protein-coding,
processed transcript, lincRNA, etc. Applying the human
CNN and MLP models to all labeled human ¢cDNA
reads, we observed that reads assigned to protein-
coding transcripts, including transcripts from
immunoglobulin-related genes, showed the highest ac-
curacy with more than 85% correctly predicted (Fig. 3a,
b). In general, both models showed similar results, ex-
cept for long non-coding RNAs (IncRNAs). Reads asso-
ciated with IncRNAs from bidirectional promoters
presented the same accuracy of the intergenic IncRNAs
for the CNN model, but this was higher for the MLP
model. Interestingly, even though “sense overlapping”
and “sense intronic” transcripts were not used for train-
ing, reads assigned to them were correctly predicted in
high proportion. In contrast, reads unambiguously as-
sociated with antisense or TEC (To be Experimentally
Confirmed) transcripts showed smaller accuracies com-
pared with the rest of annotation types. TEC transcripts
are based on EST clusters and may lack the sequence
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properties from other transcript types. Finally, antisense
transcripts appear difficult to predict correctly as they
share sequence with transcripts annotated in the oppos-
ite strand. Nonetheless, inspection of the built clusters
showed that the majority of clusters with antisense
reads had all reads of type antisense. Indeed, 201 (78%)
of clusters with at least one antisense read had 100%
reads of type antisense, which corresponded to 90%
(882) of the total of 976 antisense reads (Additional file
1: Figure S2).

To investigate whether ReorientExpress captures
recognizable RNA motifs, we took advantage of the pos-
sibility to use the convolutional filters of the CNN to
identify sequence motifs captured by the model as done
previously [12, 13] (see the “Methods” section). From
these filters, we found 32 candidate motifs (Add-
itional file 2), which we compared with known protein-
RNA binding motifs [14]. This method detected motifs
similar to those described for the RNA binding proteins
PCBP1, ELAVL1 (HuR), and RBM42 (Fig. 3c), among
others (Additional file 3). Thus, sequence motifs that are
relevant to predict molecule orientation recapitulate
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Fig. 3 Read types and sequence motifs. The proportion of cDNA reads that were unambiguously mapped to each transcript type (y axis) and
classified as correct (True) or incorrect (False) (x axis) by the CNN model (a) and the MLP model (b). All transcript type annotations from the
autosomes and sex chromosomes with more than 10 reads mapped are represented in the plot. ¢ The motifs derived from three CNN filters with
significant matches to previously described RNA-binding motifs (Additional file 3): filter M24 (RBM42, g-value = 0.0165997), filter M17 (HuR, g-
value =0.0312701), and filter M9 (PCBP1, g-value = 0.0426708). As information content (y axis) is low, the axis scale is shown between 0 and 1
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some of the binding specificities of proteins that control
the metabolism of the RNA.

Discussion

Here, we have shown that deep neural network (DNN)
models trained on transcript sequences are able to pro-
vide an accurate orientation of cDNA long reads. We
hypothesized that sequence motifs that are specific to
RNA metabolism would be identifiable in long sequen-
cing reads despite the presence of errors, and found that
some of the sequences relevant to predict molecule
orientation are similar to known motifs involved in
RNA-protein binding. We described how DNN models
maintained good accuracy despite using trimmed reads,
and worked well on nanopore as well as on PacBio
reads. ReorientExpress provides a crucial aid in the in-
terpretation of transcripts using ¢cDNA long reads in
samples for which the genome reference is unavailable,
as it is the case for many non-model organisms. In this
context, identifying the right strand of cDNA reads helps
in the accurate detection of open reading frames as well
as sequence motifs relevant for RNA metabolism,
thereby enabling gene regulation studies despite not hav-
ing a genome reference available.

ReorientExpress can also be relevant in general for the
study of human and model organisms beyond the avail-
able references. Direct analysis of the long reads from
unstranded libraries is not only cost- and time-effective
but also can accurately identify antisense transcripts that
are known to play important regulatory roles. Accurate
identification of read orientation can provide better esti-
mates of expression levels of sense and antisense genes,
which in turn will improve our understanding of the
transcriptome and of gene evolution [15]. Establishing
the orientation of cDNA long reads without relying on a
particular genome reference is also relevant to determine
gene sequence variability between individuals at different
genomic scales, for instance in terms of short variations
in exons [16] or differences in gene content [17].

Our analyses show that ReorientExpress can be very
valuable in combination with long read clustering [8, 9]
to facilitate more accurate downstream analyses of tran-
scriptomes. The ability to predict the 5'-to-3" orienta-
tion of cDNA long reads using models trained on
related species makes ReorientExpress a key processing
tool for the study of transcriptomes from non-model or-
ganisms with long-reads.

Methods

Training and testing ReorientExpress

ReorientExpress (https://github.com/comprna/reorientex-
press) implements deep neural network (DNN) models
using keras (https://github.com/keras-team/keras) and
Tensorflow (https://github.com/tensorflow) [18]. All input
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data is preprocessed to discard reads that contain N’s. For
reads from direct RNA-seq experiments, uracil (U) is
transformed into thymine (T). Input reads can be option-
ally trimmed, and this is done for the same length on both
sides of each input sequence. For training purposes, a ran-
dom selection of half the sequences is reverse-
complemented to obtain a balanced training set. Option-
ally, all sequences can be reverse-complemented to double
up the training input. ReorientExpress implements two
different DNN models, a multi-layer perceptron (MLP)
and a convolutional neural network (CNN). The MLP
model has 5 hidden layers, with the last layer providing
the probability that a read is not in the correct orientation,
and with dropout layers to reduce overfitting (Additional
file 1: Table S1). In the MLP model, sequences are proc-
essed to build a matrix of k-mer frequencies, from k=1
up to a specified k-mer length (default k=1,..,5). The
normalization is performed per input sequence and per k-
mer length. That is, for a fixed k, each k-mer count is di-
vided by the total number of k-mers in the sequence of
length L, so that frequency(k-mer) = count(k-mer)/(L-k +
1). Using the k-mer frequencies ensures that the input size
is the same for all transcripts regardless of the transcript
length. MLPs are simpler than CNNS, so they are faster to
train and run. On the other hand, CNNs can model rela-
tive spatial relationships; hence, they can take sequence
context into account. For this reason, we also included a
CNN model in ReorientExpress. For the CNN model, we
used an architecture similar to lenet [19], with 3 convolu-
tional layers, 3 pooling layers, and 3 dense layers, with dif-
ferent filter sizes (Additional file 1: Table S2). For the
CNN model, each input sequence was divided into over-
lapping sequences of 500 nt, overlapping by 250 nt. For
transcripts of length between 250 and 500, we added Ns
at the end of the sequence. We used one hot encoding as
input for each one of the 500-nt windows.

Once a model is trained, or given an already available
model, ReorientExpress can predict the orientation of a
set of unlabeled reads in prediction mode. ReorientEx-
press feeds the normalized k-mer counts for each read
for the MLP model, or the sliding windows for the CNN
model to predict the orientation. In the MLP model, the
last layer has only one node, which applies a sigmoid
function to approximate a probability from the score it
receives. The probability can be interpreted as the cer-
tainty that the input read is not in the correct orienta-
tion. So, a read with a score greater than 0.5 is predicted
to be in the wrong orientation and is reverse-
complemented. For the CNN model, for each window
tested, the output is a posterior of the orientation given
that window. To provide a prediction for each input
read, ReorientExpress takes the mean value for both ori-
entations independently and outputs the orientation
with the greatest mean.


https://github.com/comprna/reorientexpress
https://github.com/comprna/reorientexpress
https://github.com/keras-team/keras
https://github.com/tensorflow

Ruiz-Reche et al. Genome Biology (2019) 20:260

The test mode is aimed at evaluating the accuracy of a
model using as input sequences with known orientation.
The program generates predictions for the input reads
and compares them with the provided labels, returning a
precision (proportion of the predictions that are correct),
a recall (true positive rate, proportion of labeled cases
that are correctly predicted), an Fl-score (harmonic
mean of precision and recall), and the total number of
input reads. As input for any of the three modes, train,
predict, and test, one can use three types of datasets: ex-
perimental, annotation, or mapped. Experimental data
refers to any kind of long-read data for which the orien-
tation is known, such as direct RNA-seq, and reads are
considered to be given in the 5'-to-3" orientation. Anno-
tation data refers to the transcript sequences from a ref-
erence annotation, such as the human transcriptome
reference. Annotation is considered to be in the right 5'-
to-3" orientation and can include the transcript type,
such as protein coding and processed transcript.
Mapped data refers to sequencing data, usually cDNA,
whose orientation has been annotated by an independ-
ent method, e.g., by mapping the reads to a reference. In
this case, a PAF file for the mapping, together with the
FASTA/FASTAQ file, is required. The labeled data is used
for training or testing. In predict mode, the data does
not require labeling and ReorientExpress provides a pre-
diction. More details are provided at https://github.com/
comprna/reorientexpress.

Deep neural network (DNN) models tested

Models used for the analyses described in the manu-
script are provided at https://github.com/comprna/reor-
ientexpress. The human model was trained using the
Gencode annotation release 28, and the mouse model
was built using the mouse Gencode release M19. The
Ensembl annotation (https://fungi.ensembl.org/) was
used to train the Saccharomyces cerevisiae (R64-1-1) and
the Candida glabrata (ASM254v2) models. Ensembl an-
notations (http://plants.ensembl.org) were used from
sorghum (Sorghum bicolor NCBIv3) and from maize
(Zea mays B73_RefGen_v4) to build models to test on
PacBio data. From the annotation files, we only used the
most frequent transcript annotation types: protein cod-
ing, lincRNA, processed transcripts, antisense, and
retained intron. We trained the models using 50,000
randomly selected transcript sequences from the annota-
tion, or all of them if there were less than 50,000 (S. cer-
evisiae and C. glabrata). The results did not change
when running the analysis with different sets of 50,000
transcripts.

Test datasets
To test ReorientExpress on cDNA reads, we first calcu-
lated a set of cDNA reads for which orientation could be
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determined unambiguously in an independent way. We
used human c¢DNA from the Nanopore consortium
(cDNA 1D pass reads from JHU run 1) [2] (available from
https://github.com/nanopore-wgs-consortium/NA12878/
blob/master/nanopore-human-transcriptome/fastq_fast5_
bulk.md) and S. cerevisiae cDNA reads [1] from SRA
(SRR6059708). We mapped the cDNA reads to the corre-
sponding transcriptome annotation using minimap2 (7]
without secondary alignments (minimap2 -cx map-ont -t7
--secondary=no). We kept only reads with maximum
mapping quality (MAPQ =60) and that were uniquely
mapping. For human, 899,431 out of 962,598 reads were
mapped in this way, 282,444 of which had MAPQ = 60.
After removing the ~ 4% multimapping cases, we finally
obtained 270,296 reads with orientation unambiguously
assigned. For S. cerevisiae, 4,000,698 out of a total of 5,
045,243 reads were mapped, 3,089,543 of which had
MAPQ=60. After removing the ~3% multimapping
cases, we finally obtained 2,984,873 reads with orientation
unambiguously assigned. Additionally, we used direct
RNA sequencing (DRS) for human (JHU Run 1 available
from https://github.com/nanopore-wgs-consortium/NA12
878/blob/master/nanopore-human-transcriptome/fastq_
fast5_bulk.md) and for S. cerevisiae from SRA
(SRR6059706) [1]. We also tested ReorientExpress with
PacBio cDNA reads from sorghum [11] (data available at
https://zenodo.org/record/49944# XCkXQC-ZN24). We
trained two MLP models with the Ensembl cDNA annota-
tions (http://plants.ensembl.org) from sorghum (Sorghum
bicolor NCBIv3) and maize (Zea mays B73_RefGen_v4).

Other models for comparison

We tested a Random Forest model and an SVM model
using Scikit-learn [20]. The models were trained using 50,
000 random annotated transcripts. The features used as
training input were the normalized k-mer frequencies for
each sequence and the orientation as classification label.
Further details are provided in Additional file 1. We also
run pychopper (https://github.com/nanoporetech/pychop-
per) (cdna_classifier.py command), and primer-chop
(https://gitlab.com/mcfrith/primer-chop) on the 270,296
human cDNA reads that we had labeled previously and
using the full list of barcodes provided by pychopper.
Pychopper made predictions for 24% of the reads, from
which 98% were correctly classified, i.e., ~23.5% (63520)
of the total reads. Primer-chop made predictions for 175,
539 (65%) reads, from which 83% were correctly classified,
i.e, ~ 54% of all reads tested.

Testing the dependency with base-callers

We used Guppy rapid and Guppy high accuracy (v2.2.3)
with the signal files from the in vitro transcript RNA
sequenced with MinION by the Nanopore Consortium
(available from https://github.com/nanopore-wgs-consortium/


https://github.com/comprna/reorientexpress
https://github.com/comprna/reorientexpress
https://github.com/comprna/reorientexpress
https://github.com/comprna/reorientexpress
https://fungi.ensembl.org/index.html
http://plants.ensembl.org/Sorghum_bicolor/Info/Index
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://zenodo.org/record/49944#.XCkXQC-ZN24
http://plants.ensembl.org/Sorghum_bicolor/Info/Index
https://github.com/nanoporetech/pychopper
https://github.com/nanoporetech/pychopper
https://gitlab.com/mcfrith/primer-chop
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md

Ruiz-Reche et al. Genome Biology (2019) 20:260

NA12878/blob/master/nanopore-human-transcriptome/fastq_
fast5_bulk.md). As this is direct RNA sequencing, the orienta-
tion of the reads can be readily used to test the accuracy of
our models.

Clustering and majority vote

We performed clustering of the human and S. cerevisiae
c¢DNA reads using IsONclust [9]. Only cDNA reads that
had been assigned an orientation by mapping as described
above were used for clustering. We predicted the read 5'-
to-3’ orientation for the same reads with ReorientExpress
and calculated for each cluster the proportion of reads
that were correctly orientated. As IsONclust does not give
clusters with oriented reads, the orientation of all cDNA
reads was taken from the mapping described above. In
each cluster, we then predicted the read orientation with
ReorientExpress and selected the majority label to assign
all reads in the cluster: if the majority (>50%) of reads
were predicted to be already in 5'-to-3" orientation (for-
ward), we set all reads to forward. Otherwise, all reads
were reverse-complemented. The accuracy of all reads
was then calculated by comparing our predictions with
the predetermined orientations.

Motif analysis

We studied the 32 filters from the first layer of the CNN
to obtain the sequences that are most informative for pre-
dicting the orientation, using an approach similar to [12,
13]. To explore exhaustively all potential motifs, we used
activations above 0 and converted the associated se-
quences to position weight matrices (PWMs). The derived
32 motif matrices (Additional file 2) were then compared
against the CISBP-RNA database (http://cisbp-rna.ccbr.
utoronto.ca/) [14] using the TOMTOM algorithm (http://
meme-suite.org/doc/tomtom.html) [21] for the compari-
son of PWM-based motifs and selecting matches with p
value < 0.05 (Additional file 3).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513059-019-1884-z.

Additional file 1. Additional figures and tables referenced in the article.
Additional file 2. Motif file for the 32 filters from the CNN model.

Additional file 3. Matches of the 32 motifs from Additional file 2 to RBP
motifs from CISBP-RNA database.

Additional file 4. Review history.
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