Baker and Langmead Genome Biology (2019) 20:265
https://doi.org/10.1186/513059-019-1875-0

Dashing: fast and accurate genomic
distances with HyperLogLog

Daniel N. Baker” and Ben Langmead”

Abstract

Genome Biology

®

Check for
updates

Dashing is a fast and accurate software tool for estimating similarities of genomes or sequencing datasets. It uses the
HyperlLoglog sketch together with cardinality estimation methods that are specialized for set unions and
intersections. Dashing summarizes genomes more rapidly than previous MinHash-based methods while providing
greater accuracy across a wide range of input sizes and sketch sizes. It can sketch and calculate pairwise distances for
over 87K genomes in 6 minutes. Dashing is open source and available at https://github.com/dnbaker/dashing.

Keywords: Sketch data structures, Hyperloglog, Metagenomics, Alignment, Sequencing, Genomic distance

Background

Since the release of the seminal Mash tool [1], data
sketches such as MinHash have become instrumental in
comparative genomics. They are used to cluster genomes
from large databases [1], search for datasets with cer-
tain sequence content [2], accelerate the overlapping step
in genome assemblers [3, 4], map sequencing reads [5],
and find similarity thresholds characterizing species-level
distinctions [6]. Whereas MinHash was originally devel-
oped to find similar web pages [7], here it is being used
to summarize large genomic sequence collections such as
reference genomes or sequencing datasets. A collection is
reduced to a set of representative k-mers and ultimately
stored as a list of integers. The summary is much smaller
than the original data but can be used to estimate rele-
vant set cardinalities such as the size of the union or the
intersection between the k-mer contents of two genomes.
From these cardinalities one can obtain a Jaccard coeffi-
cient (J) or a “Mash distance,” which is a proxy for Average
Nucleotide Identity (ANI) [1]. These make it possible to
cluster sequences and otherwise solve massive genomic
nearest-neighbor problems.

MinHash is related to other core methods in bioinfor-
matics. Minimizers, which can be thought of as a special
case of MinHash, are widely used in metagenomics classi-
fication [8] and alignment and assembly [9]. More gener-
ally, MinHash can be seen as a kind of Locality-Sensitive

*Correspondence: dnb@cs.jhu.edu; langmea@cs.jhu.edu
Department of Computer Science, Johns Hopkins University, 3400 N Charles
St, 21218 Baltimore, USA

Hashing (LSH), which involves hash functions designed to
map similar inputs the same value. LSH has also been used
in bioinformatics, including in homology search [10] and
metagenomics classification [11].

Spurred by MinHash’s utility, other groups have pro-
posed alternatives using new ideas from search and data
mining. BinDash [12] uses a b-bit one-permutation rolling
MinHash to achieve greater accuracy and speed compared
to Mash at a smaller memory footprint. Other theoretical
improvements are proposed in the HyperMinHash [13]
and SuperMinHash [14] studies.

Some studies have pointed out shortcomings of Min-
Hash. Koslicki and Zabeti argue that MinHash cardinality
estimates suffer when the sets are very different sizes
[15]. This is not an uncommon scenario, e.g., when find-
ing the distance between two genomes of very different
lengths or when finding the similarity between a short
sequence (say, a bacterial genome) and a large collection
(say, deep-coverage metagenomics datasets).

Here we use the HyperLogLog (HLL) sketch [16] as an
alternative to MinHash that exhibits excellent accuracy
and speed across a range of scenarios, including when the
input sets are very different sizes and when the sketch data
structures are quite small. HLL has been applied in other
areas of bioinformatics, e.g., to count the number of dis-
tinct k-mers in a genome or data collection [17-19]. We
additionally use recent theoretical improvements in car-
dinality estimation for set unions and intersections [20],
the components needed to estimate / and other similarity
measures.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1875-0&domain=pdf
http://orcid.org/0000-0003-2437-1976
https://github.com/dnbaker/dashing
mailto: dnb@cs.jhu.edu
mailto: langmea@cs.jhu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Baker and Langmead Genome Biology (2019) 20:265

We implemented the HLL in the Dashing software tool
[21] (https://github.com/dnbaker/dashing), which is free
and open source under the GPLv3 license. Dashing sup-
ports the functions available in similar tools like Mash
[1], BinDash [12], and Sourmash [22]. Dashing can build
a sketch of an input sequence set (dashing sketch),
including FASTA files (for assembled genomes) or FASTQ
files (for sequencing datasets). Dashing has a sketch-based
facility for removing k-mers that likely contain sequenc-
ing errors prior to sketching. The dashing dist func-
tion performs all-pairwise distance comparisons between
pairs of datasets in a large collection, e.g., all the com-
plete genomes from the RefSeq database. Since Dashing’s
sketch function is extremely fast, Dashing can per-
form both sketching and all-pairs distance calculations in
the same command, obviating the need to store sketches
on disk between steps. Dashing is parallelized, and we
show that it scales efficiently to 100 threads. Dashing
also uses Single Instruction Multiple Data (SIMD) instruc-
tions on modern general-purpose computer processors
to exploit the finer-grained parallelism inherent in HLL
computations.

Results
Here we discuss Dashing’s design, then present simulation
results demonstrating HLL's accuracy relative to other
data structures. We then describe experiments demon-
strating Dashing’s accuracy and computational efficiency
relative to Mash and BinDash in a range of scenarios.
Unless otherwise noted, experiments were performed
on a Lenovo x3650 M5 system with 4 2.2 Ghz Intel E5-
2650 CPUs with 12 cores each and 512 GB of DDR4
RAM. Input genomes and sketches were stored on a
SAS-attached Lenovo Storage E1000 disk array with 12
8TB 7,200-RPM disks combined using RAID5. All exper-
iments were conducted using scripts available in the
dashing-experiments repository at https://github.
com/langmead-lab/dashing-experiments.

Design

Dashing uses the HyperLogLog (HLL) sketch to solve
genomic distance problems. Dashing takes one or more
sequence collections as input. These could be assem-
bled genomes in FASTA format or sequencing datasets
in FASTQ format. It then builds an HLL sketch for
each input collection based on its k-mer content. The
sketch can be written to disk or simply forwarded to
the next phase, which performs a distance compari-
son between one or more pairs of sketches. Dashing
prints a set of similarity estimates, including estimates
for Jaccard coefficient and ANIL It can operate on a
given pair of datasets, or can perform all-pairs compar-
isons across many datasets in a single invocation of the
tool.

Page 2 of 12

Dashing is written in C++14. It uses OpenMP for
multithreading, with both the sketching and distance
phases readily scaling to 100 simultaneous threads. It also
uses data-parallel SIMD instructions, including the recent
AVX512-BW extensions that have been effective at accel-
erating other bioinformatics software [23]. Dashing has
Python bindings that enable other developers to use the
HLL implementation.

Sketch accuracy

To assess HLLs accuracy, we measured Jaccard-
coefficient estimation error across a range of set and
sketch sizes. We implemented both the HLL [16] and
MinHash [7] structures in Dashing v0.1.2. For HLL, we
used Ertl's Maximum Likelihood Estimator (MLE) to
estimate set cardinalities [20], though we explore alter-
nate methods in later sections. For MinHash, we used
a k-bottom sketch with a single hash function, follow-
ing Mash’s strategy [1]. In both cases, we used Thomas
Wang’s 64-bit reversible hash function [24]. In both cases,
the tools used canonicalized k-mers, so that a k-mer
and its reverse complement are treated as equal when
sketching. For details on the commands used to obtain
the results, see Additional file 1: Note S1.

We performed several experiments varying (a) the sizes
of the two input sets, (b) the degree of overlap between
the sets (to achieve a target /), and (c) the size of the sketch
data structures. Though the structures differ in charac-
ter, with the HLL storing an array of narrow integers and
the MinHash storing an array of wider integers, we can
parameterize them to use the same number of bytes of
storage. We populated each structure using its natural
insert operation; for the HLL, this involves hashing the
item and using the resulting value to identify the target
register and possibly update it according to the leading
zero count of the remainder bits (detailed below in the
“Methods” section). For the bottom-k MinHash, insert-
ing involves hashing the item and updating the sketch
if the hash is less than the current greatest sketch ele-
ment. We populated the input sets with random numbers,
thereby simulating an ideal hash function with uniformly
distributed outputs. Sets were constructed to have tar-
get Jaccard coefficients ranging from 0.00022 to 0.818.
Many set-size pairs were evaluated ranging from equal-
size sets to sets with sizes differing by a factor of 2!2.
In total, we evaluated 36 combinations of set size and J
were evaluated, with full results presented in Additional
file 2. Note that set size and jaccard coefficient are depen-
dent; if set A has cardinality c times greater than set B,
J(A,B) < 1.

Figure 1 shows Jaccard-coefficient estimation accuracy
results for two values of the true Jaccard coefficient
(0.0465 and 0.111) and five pairs of unequal-cardinality
input sets. HLL exhibited lower absolute error than

https://github.com/dnbaker/dashing
https://github.com/langmead-lab/dashing-experiments
https://github.com/langmead-lab/dashing-experiments

Baker and Langmead Genome Biology (2019) 20:265

Page 3 0of 12

5 0061 §006)
5 5 . PR el AL L E LT PN P
© e
£ 0.041 £ 0.04-
g & Set sizes (logy)
I] et sizes (logy
72 0.024 *ilveessis gresmmazzz | 7 (0,02
8 i 8 14,17
< A < s
0,00 ——— 0.00 — 17,20
10 12 14 16 18 20 22 10 12 14 16 18 20 22 ~— 20,23
log2(sketch bytes) log2(sketch bytes) — 23,26
0.0151 0.015 26, 29
S s
@ 00107 \ o 0.0104 Abs Jaccard error
B B
a 5] — HLL
8 0.005- S 0.005{ \\ .
© N © N + MinHash
vl el
8 M 3 \\,
< 0.000 —————— < 0.000 —
10 12 14 16 18 20 22 10 12 14 16 18 20 22
log2(sketch bytes) log2(sketch bytes)
Fig. 1 Jaccard-coefficient estimation error using HLL and MinHash. Left column shows experiments with the true Jaccard coefficient fixed at 0.111.
Right column shows the same for a coefficient of 0.0465. x axis shows the log, of the size of the sketch data structure in bytes. y axis shows the
absolute error of the JACCARD-COEFFICIENT estimate. The second row zooms further in with respect to the y-axis. Colors indicate the input set sizes,
and each pair of inputs differs in size by a factor of 2> = 8

MinHash in all cases. We also plotted accuracy for input
sets of equal size and for Jaccard coefficients of 0.33, 0.6,
and 0.82 (Additional file 1: Figure S1). There, HLL exhib-
ited lower absolute error in most but not all scenarios,
with HLL’s greatest advantage coming at smaller sketch
sizes.

We also compared HLL- and MinHash-based sketches
to a Bloom-filter-based approach [25]. Like HLL and Min-
Hash, a Bloom filter can represent an approximate set, and
filters can be compared to estimate union and intersection
cardinalities. We implemented and evaluated both a naive
(collision-agnostic) and a collision-aware method [26] for
estimating set cardinalities via Bloom filters in Dashing
v0.1.2. Results are plotted for unequal-cardinality input
sets (Additional file 1: Figure S2) and equal-cardinality
sets (Additional file 1: Figure S3). Details on our Bloom
filter implementation are presented in Additional file 1:
Note S2. Bloom-based methods achieved slightly lower
absolute error than HLL when the number of bits in the
filter approached and exceeded the set cardinality, reflect-
ing the fact that a Bloom-based method eventually con-
verges on error-free “linear counting” given a large enough
filter. But HLL exhibited lower error in most circum-
stances, especially for smaller sketches and larger input
sets.

A complete table of results, including all data structures
and reporting both absolute and squared errors, can be
found in Additional file 3. There we observed that even

in adverse scenarios (small data structures and very dif-
ferent set sizes) HLL’s absolute error never exceeded 3%
(compared to 8% for MinHash). Overall, the results rec-
ommend HLL as an accurate and memory-economical
sketch requiring no major assumptions about input set
sizes.

Accuracy for complete genomes

Encouraged by HLL’s accuracy, we measured the accuracy
of Dashing v0.1.2’s HLL-based Jaccard-coefficient esti-
mates versus those of Mash v2.1 [1] and BinDash v0.2.1
[12]. We repeated the HLL experiments for three HLL car-
dinality estimation methods: Flajolet’s canonical method
using harmonic mean [16], and two maximum-likelihood-
based methods (MLE and JMLE) proposed by Ertl [20].
We selected 400 pairs of bacterial genomes from Ref-
Seq [27] covering a range of Jaccard-coefficient values. To
select the pairs, we first used dashing dist withs =
16, k = 31 and the MLE estimation method on the full set
of complete bacterial RefSeq assemblies (latest versions).
We then selected a subset such that we kept 4 distinct
genome pairs per Jaccard-coefficient percentile. Our goal
was to test an even spread of Jaccard-coefficient values,
though some unevenness emerged later due to differences
between data structures and different selections of k. Of
the genomes included in these pairs, the maximum, mini-
mum, and mean lengths were 11.7 Mbp, 308 kbp, and 4.00
Mbp, respectively. For details on exact commands used

Baker and Langmead Genome Biology (2019) 20:265

to obtain and compare the genome pairs, see Additional
file 1: Note S3.

We ran the three tools to obtain Jaccard-coefficient esti-
mates for the 400 pairs and plotted the results versus
true J, as determined using a full hash-table-based k-mer
counter. Results for kK = 16 and k = 21 and for sketches of
size 210 and 2!* bytes are shown in Fig. 2. The horizontal
axis is divided into 10 J partitions, each containing about
40 pairs (see Additional file 3 for number of pairs per
partition). The vertical axis shows the difference between
tool-estimated and true Jaccard coefficient. For Dashing,
we used the MLE estimation method. We made a minor
change to the Mash software to allow it to output esti-
mated Jaccard coefficient, as it typically emits only Mash
distance.

Dashing’s estimates were consistently near the true /.
Mash shows a pattern of bias whereby its estimates are
somewhat too low at low Jaccard-coefficients then too
high at higher coefficients. This is sometimes combined
with an overall bias shifting estimates too high (in the

Page 4 of 12

case of k = 16, sketch size = 214) or low (in the case of
k = 21, sketch size = 2!%). BinDash and Dashing exhibit
less J-specific bias.

Additional file 3 shows mean squared Jaccard-
coefficient estimation error (meanSE) for a range of
sketch sizes and for k € {16,21,31}, also including the
two alternate cardinality estimation methods for Dashing
(Original and JMLE). In short, BinDash and Dashing
consistently achieve lower meanSE than Mash, with
BinDash achieving the lowest meanSE at smaller /’s and
both BinDash and Dashing achieving similar meanSE
at intermediate and larger J's. Among the Dashing esti-
mation methods, JMLE consistently achieves the lowest
meanSE. For computational efficiency reasons (discussed
later), Dashing’s default estimation method is the MLE,
which had only slightly higher error than JMLE.

Computational efficiency
To assess computational efficiency and scalability in a
realistic context, we used Dashing v0.1.2, Mash v2.1

k = 16, log,(sketch bytes) = 10 k = 16, log,(sketch bytes) = 14
0.050
0.1+
- — 0.025-
3 g o
= 0‘0--|1-_[— A [e e R =
I |
- — 0.000 T HH-AAH M 1 —$—$-
k7] k7]
w 014 o d L
LJ -0.025 1 °
024 "
DD A RN A A A D N N A D A D N A D N N
g,\\p‘} N Q‘?VQ‘P O pﬁ ISR 9} PN AN AN AP NS AP gf\
< & \Q‘J/ \Q’b EARNARN AR RS < \Q\U AR NN RN ARSI Q
True J True J
k =21, log,(sketch bytes) = 10 k = 21, log,(sketch bytes) = 14
0.3
0.064
0.2
- = 0.03 3
$ o01- g
= = $
I | REALE, b LS Rl L
S 0.0__$_‘$_ _&_ i’ _%_ _%_ 5 0.00 % $
k7] k7]
w w N °
—0.1- —0.034
®
O T T T T e L L L | | |
N
N P P R P P @4@\ NP N o P P B B NGB PN
RN AR RN AR AR AR AN TGN g™ ®
True J True J
Mash EBinDash Dashing (MLE)
Fig. 2 Estimated versus true Jaccard coefficients (Js) for various methods across a range of true J. Each point is one pair from an overall set of 400
pairs of genomes, selected to evenly cover the range of true Js

Baker and Langmead Genome Biology (2019) 20:265

and BinDash v0.2.1 to sketch and perform all-pairs dis-
tance calculations for 87,113 complete genome assem-
blies. We obtained the assemblies from Refseq, filtering
to include only assemblies marked “latest” and “Com-
plete genome” and without “contig” in the name. The
set included genomes from various taxa, spanning viral,
archaeal, bacterial and eukaryotic. Genome lengths var-
ied from 288 bases to 4,502,951,408 bases with mean
and median lengths of 9.8 Mb and 3.8 Mb, respectively.
The total number of genome-pair distance calculations
required for 87,113 assemblies was over 3.79 billion. We
repeated the experiment for a range of sketch sizes and k-
mer lengths. All experiments were performed on a Lenovo
x3850 X6 system with 4 2.0 Ghz Intel E7-4830 CPUs, each
with 14 processor cores. After hyperthreading, the sys-
tem supports up to 112 simultaneous hardware threads.
The system had 1 TB of DDR4 RAM and ran CentOS
7.5 Linux, kernel v3.10.0. The system was located at and
maintained by the Maryland Advanced Research Comput-
ing Center (MARCC).

For Dashing, we used dashing sketch for sketch-
ing and dashing dist for pairwise distance calcu-
lations. For Mash, we used mash sketch and mash
triangle for the two stages respectively. For BinDash,
we used bindash sketch and bindash dist. We
also ran each tool in a way that performed sketching
immediately followed by all-pairs distance calculations.
For Mash, this involves running its dist and triangle
commands but specifying the sequence files (rather than
their sketches) as input. In the case of dashing dist,
this combined invocation avoids writing any sketches to
disk. Mash provides support for this functionality as well,
but we were unable to run it successfully for our large
experiment.

All tools were configured to use up to 100 simultaneous
threads of execution (Dashing: -p 100, Mash: -p 100,
BinDash: -nthreads=100). Since the system supports
a maximum of 112 simultaneous threads, 100 was cho-
sen to achieve high utilization while avoiding excessive
contention. We used the GNU time utility to measure
the average number of CPUs utilized, wall time, and peak
memory footprint for each tool invocation. For details on
the exact commands used, see Additional file 1: Note S4.

For Dashing, we repeated the experiment for each of its
three cardinality estimation methods: Flajolet’s canonical
method (“Original”), Ertl's Maximum Likelihood Estima-
tor (“Ertl-MLE”), and Ertl’s joint MLE (“Ertl-J]MLE”).

Results for k = 21 and k = 31 are summarized in Fig. 3,
and a tabular version of the results for k = 31 is shown
in Table 1. Full tabular results including CPU utilization
measurements are shown in Additional file 4.

We observed that Dashing is the fastest tool in the
Sketch phase, running 3.3—4.3 times faster than BinDash
and 3.8-5.0 times faster than Mash. As shown in

Page 5 of 12

Additional file 4, Dashing also achieves excellent CPU
utilization in the Sketch phase.

BinDash achieves the lowest memory footprint among
the tools in the Sketch phase, requiring 140 Mb for the
1-kb sketch and 5.5 GB for the 64-kb sketch. By contrast,
Dashing required about 12 GB across all sketch sizes. This
is largely because of how Dashing is parallelized; Dashing
threads simultaneously work on separate sequence collec-
tions, each filling a buffer of size sufficient to hold the
largest sequence yet parsed by that thread. Mash had the
highest memory footprint, ranging from 17-25 GB.

In the distance phase, we noted that the estimation
method had a major effect on Dashing’s speed, with
JMLE performing 5.9-7.4 times slower than MLE. This
is because the JMLE performs significantly more cal-
culations, as described in the “Methods” section. This
result, together with the relatively small accuracy differ-
ence noted earlier, led us to chose the Ertl-MLE method
as Dashing’s default. (In a separate experiment, we found
that the JMLE inner loop could be made about 20% faster
using AVX512BW instructions, as discussed later and
detailed in Additional file 1: Note S5 and Table S1.)

BinDash was the fastest tool in the distance phase,
running 25-70% faster than Dashing’s MLE mode. But
Dashing is 2—19 times faster than Mash, with the largest
speed gap observed at the smallest (1 kb) sketch size.

When we compared tools based on combined perfor-
mance in both the sketch and distance phases, BinDash
again had the lowest memory footprint (always below
6 GB), with Dashing’s footprint at 12—-18 GB and Mash’s at
17-25 GB. Dashing was the fastest among the three tools
at all sketch sizes, though BinDash achieves similar speed
at the largest (64 kb) sketch size. Mash was the slowest
of the tools in all cases. Since small sketch sizes tend to
be used in practice (Mash’s default is 4 kb or 2!? bytes),
we expect Dashing to be the fastest overall tool—certainly
for sketching, but also combined sketching and distance
calculations—in typical situations.

Thread scaling

We also compared the tools’ speed and memory foot-
print when run with 4, 8, and 16 threads. We found
that all three tools achieved excellent thread scaling in
the sketching phase, where Dashing achieves the highest
throughput. We also found that, for the distance esti-
mation phase, Dashing exhibited better thread scaling
compared to Mash and BinDash. See Additional file 1:
Note S6 and Figure S4 for details.

Discussion

Genomics methods increasingly use MinHash and other
locality-sensitive hashing approaches as their computa-
tional engines. We showed that the HyperLogLog sketch,
combined with recent advances in cardinality estimation,

Baker and Langmead Genome Biology (2019) 20:265 Page 6 of 12
Distance Sketch Both
10000 A
0)
o 1000 4
]
8]
3
— 1004
[0)
£
'_
104
1 -
N A 2o Q A 2o N N © N N K Q A 2o Q A 2o
ri\ﬁ q;\\ ri\\ rb'\ﬁ ‘_b\s ‘b\\ (i\\ ri\« q:\s ‘b\s (b\\ rb'\ﬁ ri\ﬁ q;\s (_i\\ rb'\ﬁ (_b\s ‘b\s
k, logo (sketch size)
Distance Sketch Both
. 100004
m
=3
€ 1000
s
o
£ 100+
Py
o
IS
[0} 101
=
1 -
N I I N N NN R G\ NN\ I\ N
PR T Y P P Y gy PR T Y
k, logy (sketch size)
. Mash . BinDash D HLL (Orig) . HLL (Erti-MLE) . HLL (Erti—JMLE)
Fig. 3 Computational efficiency of Mash, BinDash and Dashing. Results for k = 21, k = 31 and sketches of size 2'° (1 kb), 2'? (4 kb), 2'* (16 kb), and
216 (64 kb). "Both” results obtained either by using a combined Sketch+Distance mode (for Dashing) or by combining results from separate
sketching and distance-calculation invocations (for Mash and BinDash). Dashing was assessed using three estimation methods: Flajolet’'s method
using the harmonic mean (“Orig”) and Ertl's MLE and JMLE methods

offers a superior combination of efficiency and accuracy
compared to MinHash. This is true even for small sketches
and for the challenging case where the input sets have very
different sizes. While HLL has been used in bioinformat-
ics tools before [17—19], this is the first application to the
problem of estimating genomic distances, the first imple-
mentation of the highly accurate MLE and Joint-MLE
estimators [20], and the first comprehensive comparison
to MinHash and similar methods. The combination of
HLL and JMLE is also notable since it directly estimates
the cardinality of an intersection, a meaningful quantity
independent of its use in the Jaccard coefficient.

We implemented HLL-based sketching and distance
calculations in the Dashing software tool. Dashing can

sketch and calculate pairwise distances for over 87K Ref-
seq [27] genomes in around 6 min using its MLE esti-
mation method, 1 kb sketch size, and 100 simultaneous
threads of execution (Table 1).

Dashing’s speed advantage is clearest in the sketch-
ing step. Notably, re-sketching from scratch is not much
slower than loading pre-made sketches from disk. Thus,
Dashing users can forgo the typical practice of saving
sketches to disk between steps. Dashing’s accuracy with
smaller sketches (Fig. 1) justifies a lower default sketch size
(1 kb) compared to Mash’s default of 4 kb (or 8 kb for long
k-mers).

It is interesting to observe that Dashing’s accuracy
is comparable to that of BinDash across the Jaccard-

Baker and Langmead Genome Biology (2019) 20:265 Page 7 of 12
Table 1 Comparison of computational efficiency of Mash, BinDash, and Dashing at k = 31 and various sketch sizes
Dashing Dashing Dashing
Phase Measure k log 2(size) Mash BinDash Original Ertl-MLE Ertl-JMLE
Sketch Wall clock (s) 31 10 1345 1157 273 271 277
12 1349 1157 273 274 270
14 1356 1159 286 289 278
16 1400 1226 359 367 299
Peak mem (MB) 31 10 17,720 141 12,683 12,721 12,644
12 18,296 399 12,723 12,430 12,726
14 19,706 1426 12,630 12,877 12,853
16 25,127 5542 12,888 12,412 12,933
Distance Wall clock (s) 31 10 1901 74 80 100 601
12 2368 188 286 308 2139
14 3446 672 113 1137 8308
16 8777 3603 6172 4251 30,506
Peak mem (MB) 31 10 1120 409 116 116 116
12 1380 673 371 371 372
14 2785 1,709 1392 1392 1392
16 10,776 5816 5476 5476 5476
Both Wall clock (s) 31 10 3246 1,231 345 365 870
12 3717 1,345 557 579 2407
14 4801 1,831 1390 1,408 8574
16 10,177 4,829 4394 4453 30433
Peak mem (MB) 31 10 17,720 409 12,468 12,950 12,988
12 18,296 673 12,958 13,042 13,020
14 19,706 1709 13,951 13,782 14,205
16 25,127 5816 18,320 18,081 18,011

The log 2(size) column reports the log, of the sketch size in bytes. “Both” results obtained either by using a combined Sketch+Distance mode (for Dashing) or by combining
results from separate sketching and distance-calculation invocations (for Mash and BinDash). Dashing was assessed using three estimation methods: Flajolet’s method using
the harmonic mean (“Original”) and Ertl's MLE and JMLE methods. ltalicized entries indicate the lowest space or time for a given experiment

index deciles in Table 1. Though Dashing is faster—both
at sketching and at combined sketching-and-distance—
BinDash’s speed approaches that of Dashing at the high-
est sketch size tested. As we continue to investigate the
HyperLoglog sketch, the b-Bit Minwise Hashing tech-
nique underlying BinDash is clearly a close competitor,
and it will be important to continue to study it as well. In
particular, b-Bit Minwise Hashing is also more amenable
to SIMD acceleration, providing a trade-off between reso-
lution as runtime as vector size grows.

Because the HLL can be used to estimate intersections
and unions directly, it can be applied to readily estimate
not just Jaccard coefficient but containment (|A N B|/|A])
or overlap (|A N B|/ min(|A|, |B|)) coefficients.

The Dashing software also supports several features not
supported by Mash or BinDash, including spaced seeds,
PHYLIP-based output format, TSV, binary output, asym-
metric distances, and a hash-set-based mode that can

calculate exact Jaccard coefficients (as we did in one of
our experiments) at the cost of memory footprint. Further,
Dashing contains its own implementation of MinHash
and b-Bit and so is a flexible tool for future situations
where a combination of approaches is warranted.

HLL also comes with drawbacks. As shown in Fig. 3
and Table 1, Dashing is slower than BinDash at distance
calculations. This is expected; the b-bit Minwise Hashing
approach consists primarily of comparisons of bit-packed
suffixes of minimizers, which can be effectively vector-
ized. By contrast, the distance calculation between two
HLL sketches is relatively expensive, requiring exponen-
tiations, divisions, harmonic means, and—for the MLE-
based methods—iterative procedures for finding roots of
functions. The trade-off between accuracy and computa-
tional cost is underlined by Ertl’s Joint MLE [20] method,
which is both the slowest (even compared to MinHash)
but the most accurate of the HLL-based methods. It will

Baker and Langmead Genome Biology (2019) 20:265

be important to continue to refine and accelerate the
cardinality-estimation algorithms at the core of dashing
dist.

HLL lacks another advantage of MinHash; when Min-
Hash is used in conjunction with a reversible hash func-
tion, it can be used not only to calculate the relevant
set cardinalities but also to report the k-mers common
between the sets. This can provide crucial hints when the
eventual goal is to map a read to (or near) its point of ori-
gin with respect to the reference, as is the goal for tools
like MashMap [5].

Past efforts have considered how to extend MinHash
to include information about multiplicities, essentially
allowing it to sketch a multiset rather than a set. This
can improve accuracy of genomic distance measurements,
especially in the presence of repetitive DNA. Finch [28]
works by capturing more sketch items than strictly needed
for the k-bottom sketch, then tallying them into a multi-
set. More theoretical studies have proposed ways to store
multiplicities, including BagMinHash [29], and Super-
MinHash [14]. In the future, it will be important to seek
similar multiplicity-preserving extensions—and related
extensions like ¢f-idf weighting [3, 30]—for HLL as well.

As we consider how HLL can be extended to improve
accuracy and handle multiplicities, an asset is that our cur-
rent design uses only 6 out of the 8 bits that make up
each HLL register. (The LZC of our hash cannot exceed
63 and therefore fits in 6 bits.) Thus, 25% of the structure
is waiting for an appropriate use. One idea would be to
use the bits to store a kind of striped, auxiliary Bloom fil-
ter. This would add an alternate sketch whose strength lies
in estimating low-cardinality sets. Since we observed that
Bloom filters have superior accuracy when the bitvector is
large enough to simulate linear counting (Additional file 1:
Figures S2 and S3), we could potentially populate the aux-
iliary filter with the input items (or a sample thereof) and
recover some of the accuracy advantage enjoyed by Bloom
filters.

While HLL was used by the KrakenUniq [17] tool for
metagenomics read classification, KrakenUniq’s imple-
mentation allows for a sparse representation of the reg-
isters, with O-count registers omitted and non-0-count
registers stored in a sparse array. Sparsity is a reason-
able assumption in KrakenUnigq, since some taxa have few
associated k-mers due to relatedness of the genomes at
the leaves. The sparsity assumption is less valid in Dash-
ing’s typical usage scenarios, though it can be valid if one
input set has few elements compared to the number of
HLL registers. In the future, it will be important to inves-
tigate whether Dashing can be extended to exploit sparsity
where it exists.

Though we compared to Mash and BinDash here, an
alternative approach is used by the Kmer-db software [31].
Kmer-db’s data structure captures the k-mer content of

Page 8 of 12

many input datasets at once. The underlying data struc-
ture is a compressed bit matrix with bits indicating mem-
bership relationships between k-mers (rows) and input
datasets (columns). Once a matrix is built, a second phase
can perform individual or all-pairwise distance calcula-
tions over the samples. Since distinct k-mers are repre-
sented explicitly—which can take considerable space—the
tool gives the option of subsampling the input k-mers
using a MinHash-based method.

HLL's accuracy even when using a small sketch makes
it appropriate for search and indexing. It can be seen
as performing a similar function as the Sequence Bloom
Tree [32]. Additionally, because any items which can be
hashed can be inserted in a HyperLogLog, dashing could
be generalized or extended to other applications, such as
comparing text documents by their #-grams, or images by
extracted features.

Methods

HyperLoglLog

The HyperLogLog sketch builds on prior work on approx-
imate counting in O(log, log, (1)) space. Originally pro-
posed by Morris [33] and analyzed by Flajolet [34],
this method estimates a count by possibly incrementing
a counter with exponentially decaying probability. The
probability is typically halved after each increment, so the
counter approximates the log, of the true count. While
the estimator is unbiased, it has high variance. The hope
is that needing only log, log, () bits to store a summary—
compared to the log,(n) needed for a MinHash—allows
us to store more summaries total and, after averaging,
achieve a better estimate.

The HLL combines many such counters into one sketch
using stochastic averaging [35]. Given a stream of data
items, we partition them according to the most significant
bits (“prefix”) of their hash values. That is, if o is an input
item and % is the hash function, the value /(o) is parti-
tioned so that 4(0) = p@®q for bit-string prefix p and suffix
q. To insert the item, we use p as an offset into an array of
8-bit “registers” We update the register to equal either its
current value or the leading zero count (LZC) of suffix ¢,
whichever is greater (Fig. 4a). Note that the LZC of a bit
string x of length ¢ is related to log, (x):

q x=0
L2C@) = { q—1— llog,®)] x>0
Each register ultimately stores a value related to
mingeq log,(g) where Q is the set of suffixes mapping to
the register (Fig. 4b). We can combine estimates across
registers by taking their harmonic mean and applying a
correction factor, as detailed below. The estimator has a
standard error of % [16].
While the HLL is conceptually distinct from MinHash
sketches and Bloom filters, it is related to both. Informally,

Baker and Langmead Genome Biology (2019) 20:265 Page 9 of 12
(a) 00101110 (b)
10101111 Size=4=22
00011011 Max LZC =3 Cardinality
00010001 Input items Register 000 HLL Estimate
-~ - RLLY 01001 10001 9 D 22 :
Size = 16 = 2* Size = 64 = 2° eery 10161 10110 : :
Max LZC =5 Max LZC =6 ce8e 00100
10010010 10001101 00010000 11100110 11111000 -
00110111 10101010 00010010 00010000 10111100 Register 001
01000111 10101000 10100010 00000011 10100111 - /
10001110 11101601 00101001 00110001 11010101 Hash Take gg;?? 121;2 3 HEPCE
00100100 10100000 01110100 10010011 00111110 prefix | D CREHEL : : Overall
00111111 11100001 10100001 01000110 10111111 g, SRR : :| — | Estimate
11111101 00100010 00010111 11110011 01001000 B
00101010 01111000 01011101 10001001 10110000 . . Do : /
00111001 00011000 10001001 11110101 11000001 Register 010 ; N
10611101 01101100 10101101 00111160 01001001 —_l i : :
10111010 10000110 10010111 11011101 00101010 ; Register @11
10000110 10101101 10011010 00011011 01011101 110 00001 ;
00000111 10110011 01000011 11111111 01001101 P 4 :
10000001 10010111 11011010 00110110 01110001 Hash values
00100110 01001100 10111101 11100111 eeeeiler | : VL~ | |0
10000001 \00110001 00011101 00001101 11111110
(c) (d) e
HLL HLL HLL HLL HLL () HLL HLL Comparison
tallies
A < = >
_ Lzc -
= |A| =|B| | max(,)= =|A U B|i compare(,)= =|ANB|
B < = >
Lzc
Fig. 4 a Relationship between maximum leading zero count (Max LZC) and set size for three randomly-generated sets of 8-bit numbers. The Max
LZC roughly estimates the log, of the set size, though with high variance; here, two of three estimates are off by 2-fold. b Schematic of HyperLoglLog
sketch. Input items are hashed and hash value is partitioned into prefix p and suffix g. p indexes into the array of HLL registers. A register contains the
maximum leading zero count among all suffixes g that mapped there. Register-level estimates are then combined to obtain an overall cardinality
estimate. ¢ Estimating cardinalities of sets A and B, and d estimating the cardinality of their union. For intersection cardinalities using
inclusion-exclusion principle, estimated set and union cardinalities are combined. e Direct estimation of intersection cardinality with Ertl's JMLE

an HLL modified so that the summary stored in each reg-
ister is a simple minimum (without the log,) is similar to a
MinHash sketch. Similarly, a Bloom filter with a single hash
function and 2% bits is essentially an HLL with an x-bit hash
prefix and with registers consisting of a single bit each.

Estimation methods

The original HLL cardinality estimation method [16]
combines the register-level estimates by taking a corrected
harmonic mean:

oyym®

E = m

> 2

j=1
where «,, is a correction factor equal to ﬁ and M;is 1 +
the maximum LZC stored in register j. But the estimator’s
accuracy suffers at low and high extremes of cardinality.
This has spurred various refinements starting with the
original HLL publication [16], where linear counting is
used to improve estimates for low cardinalities and careful
treatment of saturated counters improves high-cardinality
estimates.

Ertl proposed further refinements [20]. The “improved
estimator” uses the assumptions that (a) the hash func-
tion produces uniformly distributed outputs and (b)
register values are independent. It then models reg-
ister count as a Poisson random variable. Estimat-
ing the Poisson parameter yields an estimate for the
cardinality.

Ertl's MLE method again uses the uniformity and Pois-
son assumptions of the improved method, but the MLE
method proceeds by finding the roots—e.g., using New-
ton’s method or the secant method—of the derivative of
the log-likelihood of the Poisson parameter given the reg-
ister values. Ertl shows that the estimate is lower- and
upper-bounded by harmonic means of the per-register
estimates. Ertl suggests using the secant method, which
uses inexpensive instructions and avoids derivative cal-
culations. We follow this suggestion in Dashing. Ertl
also argues that the MLE generally converges in a small
number of steps; we confirm that our implementation
converges in at most 3 steps in every case we have tested.

Ertl’s Joint MLE method, unlike those described so far,
can directly estimate the cardinality of set intersections.
We say “directly” to contrast it with methods that use

Baker and Langmead Genome Biology (2019) 20:265

the inclusion-exclusion principle to estimate intersection
cardinality indirectly via cardinalities of sets (Fig. 4c) and
their unions (Fig. 4d). The JMLE method again adopts
the Poisson model, but two sketches, A and B, are mod-
eled as a mixture of three components, one with elements
unique to A, another with elements unique to B and a third
with elements in their intersection A N B. The method
then jointly estimates the Poisson parameters for the three
components. The procedure operates on a set of tallies of
how often registers having a certain value in A are less
than, equal to, or greater than their counterparts in B (and
vice versa) (Fig. 4e).

As discussed in the “Results” section, the JMLE as
implemented in Dashing is substantially slower than MLE.
This is partly because of the increased complexity of
the numerical optimization, as there are more optimiza-
tion problems and each requires roughly twice as many
iterations as for MLE. However, our profiling indicates
the added time is chiefly spent on tallying the <, =, >
relationships between the sketch registers. This tallying
work grows linearly with the sketch size. This highlights
the importance of efficient, SIMD-ized inner loops for
comparing HLLs.

We considered but did not include Ertl’s Improved Esti-
mator or the HyperLogLog++ estimator [36] in this study
as they performed worse than Ertl's MLE in preliminary
comparisons.

Optimizing speed

Dashing takes advantage of the fine-grained parallelism
inherent in HLLs. Union and intersection cardinalities are
the key components of similarity measures like the Jaccard
coefficient. For two HLLs having the same number of reg-
isters and the same hash function, a sketch of their union
is simply the element-wise maximum of their registers.
Thus, one fundamental need is to perform element-wise
maximum over long vectors of 8-bit registers. Finding the
cardinality of an individual set—or of the intersection of
two sets using the JMLE—requires tallying statistics over
the register array. Thus, another need is to perform tallies
(e.g., counting the registers having a particular value) over
long vectors of 8-bit registers.

For set unions, Dashing’s inner loops use Single-
Instruction Multiple Data (SIMD) instructions, which are
capable of performing fast arithmetic and bitwise opera-
tions on vectors of many adjacent operands. These vectors
are substantially wider (up to 512 bits) than the typi-
cal 32-bit or 64-bit machine words used to store scalar
operands. Speedups can be attained by converting impor-
tant loops to use only or mostly SIMD instructions and to
avoid loops with scalar instructions. The more operands
per SIMD vector, the greater the potential benefit [23].
The ideal would be to use vectors consisting of 8-bit
operands, since this matches the HLL register width.

Page 10 of 12

While past iterations of the SIMD instruction set operated
on 128- and 256-bit vectors of 8-bit operands, only with
the recent introduction of Intel's AVX-512BW instruc-
tion set did it become possible to operate on 512-bit
vectors of 8-bit operands. We created AVX-512BW ver-
sions of inner set-union loops and confirmed that these
deliver the greatest distance-estimation throughput, pro-
viding 20% speed boost compared to loops based on
the older SSE2 SIMD instruction set (Additional file 1:
Note S5 and Table S1). For compatibility with older
systems, Dashing supports older SIMD instruction sets
back to SSE2.

The process of tallying statistics for set cardinalities and
set intersection cardinalities is harder to SIMD-ize in this
way. Dashing uses manual loop unrolling to speed up
these inner loops, but no SIMD instructions. A question
for future work is whether these loops can be rewrit-
ten using, for example, a combination of SIMD gather,
increment, and scatter operations.

Dashing also supports use of many simultaneous
threads of execution using the OpenMP v4.5 library.
The dashing sketch function is parallelized across
input files, with distinct threads reading, sketching,
and writing sketches for distinct inputs. In dashing
dist, threads work in parallel on elements in a row
of the upper-triangular matrix while a distinct thread
writes out the results. To minimize the overhead asso-
ciated with global memory-allocation locks, each thread
allocates from a private memory buffer. The all-pairs
distance calculation uses multiple output buffers and
asynchronous I/O to avoid blocking and output-lock
contention.

Another concern is load balance; having many simulta-
neous threads is beneficial only if we can avoid “straggler”
threads that run long after the others have finished. We
eliminated an important source of stragglers by performing
an up-front large-to-small ordering of the inputs to be
sketched. This minimizes the chance that the thread with
the largest genome will still be working when others are
finishing.

Sketching sequencing data

While Dashing supports both FASTA and FASTQ inputs,
input data from sequencing experiments require special
consideration due to the presence of sequencing errors.
Following the strategy of Mash [1], Dashing uses an auxil-
iary data structure at sketching time to remove infrequent
k-mers that are likely to contain errors. Dashing does this
in a single pass. Each k-mer in a sequencing experiment
is added to a Count-min Sketch (CMS) [37], and only if
the estimated count for the k-mer is sufficiently high is it
added to the HLL. The CMS can provide count estimates
using an amount of space that grows sublinearly with the
number of items.

Baker and Langmead Genome Biology (2019) 20:265

Hash function

We compared clhash, Murmur3’s finalizer, and the Wang
hash across a set of synthetic Jaccard index estimates and
found that Wang’s had the lowest error (8.20 x 10~2) and
bias (—2.14 x 10~%), compared to 8.27 x 1073 and 2.30 x
10~* for Murmur3 and 8.21 x 10~3 and —2.66e x 10~* for
clhash. In addition to providing the best results, the Wang
hash was also much faster than clhash, which is meant for
string inputs rather than specialized for 64-bit integers.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/513059-019-1875-0.

Additional file 1: Supplementary notes and figures. All supplementary
notes and figures appear in this additional file.

Additional file 2: Full results for sketch accuracy. Full results from the
experimental comparison of MinHash, Bloom, Bloom-+, and HyperLoglLog
methods for Jaccard-coefficient estimation on synthetic data. Results are
presented in a spreadsheet.

Additional file 3: Full results for accuracy for complete genomes. Jaccard
coefficient estimation accuracy across a range of true Jaccard values for

BinDash, Mash and 3 HyperLoglLog estimation algorithms in tabular format.
Experiments were repeated for all combinations of k € {16,21,31} and log,
sketch size € {10,11,12,13,14,15}. Results are presented in a spreadsheet.

Additional file 4: Full results for computational efficiency. Space and time
efficiency benchmark for all pairwise comparisons between 87,113
genomes for k € {16,21,31} and log, sketch size € {10, 14, 16} between
BinDash, Mash, and 3 HyperlLoglLog estimation algorithms. Results are
presented in a spreadsheet.

Peer review information
Anahita Bishop was the primary editor on this article and managed its editorial
process and peer review in collaboration with the rest of the editorial team.

Acknowledgements

We thank Florian Breitwieser for HLL implementation discussions and Nikita
Ivkin for insights with regard to sketch data structure theory and
implementation. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), supported by National Science Foundation
grant number ACI-1548562.

Authors’ contributions

DNB conceived the method and implemented the software. DNB and BL
designed the experiments and wrote the paper. Both authors read and
approved the final manuscript.

Authors’ information
Twitter handles: Daniel N. Baker @dnb_hopkins and Ben Langmead
@BenlLangmead.

Funding

BL and DNB were supported by National Science Foundation grant IIS-1349906
to BL and National Institutes of Health/National Institute of General Medical
Sciences grant RO1GM 118568 to BL. Experiments on the Intel Skylake system
used the XSEDE Stampede 2 resource at the Texas Advanced Computing
Center (TACQ), accessed using XSEDE allocation TG-CIE170020 to BL.

Availability of data and materials
® Dashing source code is available under the open source GPLv3 license
[211.
® The particular version of Dashing evaluated here is included in this
permanent archive: [38]
e Scripts and code used to perform the experiments described in this
study are available under the open-source GPLv3 license [39].

Page 11 of 12

® The particular version of the scripts and code used to perform the
experiments described in this study is included in this permanent
archive [38].

e Accessions of genomes compared in the “Accuracy for complete
genomes” subsection of the “Results” section are listed at: https://github.
com/langmead-lab/dashing-experiments/blob/master/accuracy/
genomes_for_exp.txt.

e Accessions of genomes compared in the “Computational efficiency”
subsection of the “Results” section are listed at: https://github.com/
langmead-lab/dashing-experiments/blob/master/timing/filenames.txt.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 5 February 2019 Accepted: 1 November 2019
Published online: 04 December 2019

References

1. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
Phillippy AM. Mash: fast genome and metagenome distance estimation
using MinHash. Genome Biol. 2016;17(1):132.

2. Schaeffer L, Pimentel H, Bray N, Melsted P, Pachter L. Pseudoalignment
for metagenomic read assignment. Bioinformatics. 2017;33(14):2082-8.

3. KorenS, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 2017;27(5):722-36.

4. BerlinK, Koren'S, Chin CS, Drake JP, Landolin JM, Phillippy AM.
Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nat Biotechnol. 2015;33(6):623-30.

5. JainC, Koren'S, Dilthey A, Phillippy AM, Aluru S. A fast adaptive
algorithm for computing whole-genome homology maps.
Bioinformatics. 2018;34(17):748-56.

6. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High
throughput ANI analysis of 90K prokaryotic genomes reveals clear species
boundaries. Nat Commun. 2018;9(1):5114.

7. Broder AZ. On the resemblance and containment of documents. In:
Compression and Complexity of Sequences 1997. Proceedings.
Piscataway, NJ 08854-4141 USA: IEEE Operations Center; 1997. p. 21-9.

8. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15(3):46.

9. LiH.Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics. 2016;32(14):2103-10.

10. Buhler J. Efficient large-scale sequence comparison by locality-sensitive
hashing. Bioinformatics. 2001;17(5):419-28.

11. LuoY, YuYW, ZengJ, Berger B, Peng J. Metagenomic binning through
low-density hashing. Bioinformatics. 2018;35(2)..

12. Zhao X. Bindash, software for fast genome distance estimation on a
typical personal laptop. Bioinformatics. 2018;35(4):651.

13. Yu YW, Weber G. Hyperminhash: Jaccard index sketching in loglog space.
CoRR. 2017;abs/1710.08436.. arXiv. http://arxiv.org/abs/1710.08436.

14. Ertl O. Superminhash - A new minwise hashing algorithm for jaccard
similarity estimation. CoRR. 2017;abs/1706.05698:. arXiv. http://arxiv.org/
abs/1706.05698.

15. Koslicki D, Zabeti H. Improving min hash via the containment index with
applications to metagenomic analysis. bioRxiv. 2017. https://doi.org/10.
1101/184150.

16. Flajolet P, Fusy £, Gandouet O, Meunier F. HyperLogLog: the analysis of
a near-optimal cardinality estimation algorithm. In: Jacquet P, editor.
AofA: Analysis of Algorithms. DMTCS Proceedings. Juan les Pins, France:
Discrete Mathematics and Theoretical Computer Science; 2007. p.
137-56. https://hal.inria.fr/hal-00406166.

17. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast
metagenomics classification using unique k-mer counts. Genome Biol.
2018;19(1):198.

18. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R,
Charbonneau A, Constantinides B, Edvenson G, Fay Sea. The khmer
software package: enabling efficient nucleotide sequence analysis.
F1000Res. 2015;4:900.

https://doi.org/10.1186/s13059-019-1875-0
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt
http://arxiv.org/abs/1710.08436
http://arxiv.org/abs/1706.05698
http://arxiv.org/abs/1706.05698
https://doi.org/10.1101/184150
https://doi.org/10.1101/184150
https://hal.inria.fr/hal-00406166

Baker and Langmead Genome Biology

20.

21

22.

23.

24.

25.

26.

27.

28.
29.
30.
31
32.
33
34.
35.

36.

37.

38.

39.

(2019) 20:265

Georganas E, Bulug A, Chapman J, Oliker L, Rokhsar D, Yelick K. Parallel
de bruijn graph construction and traversal for de novo genome assembly.
In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC '14. Piscataway: IEEE
Press; 2014. p.437-48.

Ertl O. New cardinality estimation algorithms for hyperloglog sketches.
CoRR. 2017;abs/1702.01284.. arXiv. http://arxiv.org/abs/1702.01284.
Baker DN. Dashing: fast and accurate genomic distances using
HyperLoglog. 2019. https://github.com/dnbaker/dashing. Accessed 18
Jan 2019.

Brown CT, Irber L. sourmash: a library for MinHash sketching of DNA. J
Open Source Softw. 2016;1(5)-.

Rahn R, Budach S, Costanza P, Ehrhardt M, Hancox J, Reinert K. Generic
accelerated sequence alignment in SegAn using vectorization and
multi-threading. Bioinformatics. 2018;34(20):3437-45.

Wang T. Integer Hash Function. 1997. http://web.archive.org/web/
20071223173210/http://www.concentric.net/Ttwa%ng/tech/inthash.
htm. Accessed 31 Jul 2017.

Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Commun ACM. 1970;13(7):422-6.

Swamidass SJ, Baldi P. Mathematical correction for fingerprint similarity
measures to improve chemical retrieval. J Chem Inf Model. 2007;47(3):
952-64.

O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R,
Rajput B, Robbertse B, Smith-White B, Ako-Adjei Dea. Reference
sequence (RefSeq) database at NCBI: current status, taxonomic expansion,
and functional annotation. Nucleic Acids Res. 2016;44(D1):733-45.
Bovee R, Greenfield N. Finch: a tool adding dynamic abundance filtering
to genomic minhashing. J Open Source Softw. 2018;3(22):.

Ertl O. Bagminhash - minwise hashing algorithm for weighted sets. arXiv.
2018. http://arxiv.org/abs/1802.03914.

Chum O, Philbin J, Zisserman A, et al. Near duplicate image detection:
min-hash and tf-idf weighting. In: BMVC; 2008. p. 812-5.

Deorowicz S, Gudys A, Dlugosz M, Kokot M, Danek A. Kmer-db: instant
evolutionary distance estimation. Bioinformatics. 2019;35(1):133-6.
Solomon B, Kingsford C. Fast search of thousands of short-read
sequencing experiments. Nat Biotechnol. 2016;34(3):300-2.

Morris R. Counting large numbers of events in small registers. Commun
ACM. 1978;21(10):840-2.

Flajolet P. Approximate counting: a detailed analysis. BIT Num Math.
1985;25(1):113-34.

Flajolet P, Martin GN. Probabilistic counting algorithms for data base
applications. J Comput Syst Sci. 1985;31(2):182-209.

Heule S, Nunkesser M, Hall A. Hyperloglog in practice: algorithmic
engineering of a state of the art cardinality estimation algorithm. In:
Proceedings of the 16th International Conference on Extending Database
Technology. EDBT "13. New York: ACM; 2013. p. 683-92.

Cormode G, Muthukrishnan S. An improved data stream summary: the
count-min sketch and its applications. J Algo. 2005;55(1):58-75. https://
doi.org/10.1016/j,jalgor.2003.12.001.

Baker DN, Langmead B. Dashing software used in manuscript
experiments. 2019. https://doi.org/10.5281/zenodo.3402234. https://
zenodo.org/record/3402234.

Baker DN, Langmead B. Dashing software used in manuscript
experiments. 2019. https://github.com/langmead-lab/dashing-
experiments.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 12 of 12

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

® rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

http://arxiv.org/abs/1702.01284
https://github.com/dnbaker/dashing
http://web.archive.org/web/20071223173210/http://www.concentric.net/Ttwa%ng/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/Ttwa%ng/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/Ttwa%ng/tech/inthash.htm
http://arxiv.org/abs/1802.03914
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.5281/zenodo.3402234
https://zenodo.org/record/3402234
https://zenodo.org/record/3402234
https://github.com/langmead-lab/dashing-experiments
https://github.com/langmead-lab/dashing-experiments

	Abstract
	Keywords

	Background
	Results
	Design
	Sketch accuracy
	Accuracy for complete genomes
	Computational efficiency
	Thread scaling

	Discussion
	Methods
	HyperLogLog
	Estimation methods
	Optimizing speed
	Sketching sequencing data
	Hash function

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s13059-019-1875-0.
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Peer review information
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	References
	Publisher's Note

