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Abstract

Alignment-free methods, more time and memory efficient than alignment-based methods, have been widely used
for comparing genome sequences or raw sequencing samples without assembly. However, in this study, we show
that alignment-free dissimilarity calculated based on sequencing samples can be overestimated compared with the
dissimilarity calculated based on their genomes, and this bias can significantly decrease the performance of the
alignment-free analysis. Here, we introduce a new alignment-free tool, Alignment-Free methods Adjusted by Neural
Network (Afann) that successfully adjusts this bias and achieves excellent performance on various independent
datasets. Afann is freely available at https://github.com/GeniusTang/Afann.

Keywords: Alignment-free, Neural network regression, kmer, d∗
2 , d

s
2, NGS, Bias adjustment

Background
With the advent of next-generation sequencing (NGS)
technologies, enormous amounts of sequence data are
emerging rapidly. Although alignment-based approaches
for sequence comparison are generally accurate and pow-
erful, their applications are being challenged by the size of
sequence data that increases at an exponential rate. More
importantly, the application of alignment-based methods
in NGS analysis could also be limited when the sequenc-
ing depth is low so that assembled contigs might not
share long homologous regions that could be aligned.
Throughout the paper, the sequencing depth (fold cover-
age) is measured by the total number of sequenced bases
divided by the genome length. Therefore, alignment-
free methods, alternatives over alignment-based meth-
ods, have recently received increasing attention because
they are generally more memory and time efficient [1–9].
Moreover, alignment-freemethods, especially kmer-based
approaches that use the frequencies of kmers (k-words
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or k-grams) for sequence comparison can be natu-
rally adapted to shotgun NGS sequencing data without
assembly [4, 5, 8–12]. Recently, Zielezinski et al. [9] pub-
lished a comprehensive comparison over 74 alignment-
free methods for 5 research applications including
cis-regulatory module detection, protein sequence clas-
sification, gene tree inference, genome-based phylogeny,
and reconstruction of species trees under sequence
rearrangements.
Based on the rationale that similar sequences share sim-

ilar kmer frequency profile, also known as genomic signa-
ture [13], kmer-based alignment-free methods first count
the number of occurrences of kmers along a sequence
or in an NGS sample and characterize each sequence or
an NGS sample as a feature vector of length 4K . Sec-
ond, transformation can be applied to normalize the kmer
count vector or to remove the random background of
kmer counts using a Markov model [1, 2]. Alignment-
free methods that remove the random background are
also known as background-adjusted methods such as
CVTree[1], ds2[2], and d∗

2[2]. In addition, dissimilarity
measures such asManhattan distance, Euclidean distance,
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Mash (Jaccard distance) [5], and Cosine distance are used
to compare any pair of sequence-representing feature
vectors.
Since kmer frequency can be counted directly from

raw NGS samples , kmer-based alignment-free methods
can be easily adapted to compare NGS samples without
assembly. This adaptation relies on a strong assump-
tion that the sequence-representing feature vectors of
NGS samples can be used as alternatives of sequence-
representing feature vectors of their genomes, and thus,
the alignment-free dissimilarity calculated based on the
NGS samples should be close to the dissimilarity calcu-
lated based on their genomes. While this assumption is
reasonable when sequencing depth is high because of the
law of large numbers, it can nevertheless be compromised
by low sequencing depth, sequencing error, and sequenc-
ing bias. For example, for any alignment-free method, the
dissimilarity between a genome and itself should be 0
because their feature vectors should be exactly the same
whereas the dissimilarity between two NGS samples sam-
pled from the same genome will be greater than 0 since
their feature vectors will be different due to the stochas-
tic distribution of reads along the genomes. Therefore,
it is expected that the dissimilarity calculated based on
the NGS samples will most likely be overestimated than
the dissimilarity calculated based on their genomes, and
the overestimation will increase as the sequencing depth
decreases, which has also been revealed in several stud-
ies based on various alignment-free methods [4, 8, 12].
This bias, which refers to the overestimated dissimilar-
ity based on NGS samples, is a common problem for all
alignment-free methods since it results from the intrin-
sic stochastic distribution of short reads regardless of the
choice of dissimilarity measures.
The alignment-free dissimilarity between two NGS

samples A and B is determined by three factors which
are alignment-free dissimilarity estimated based on their
genomes, the bias caused by random sampling of NGS
sample A, and the bias caused by random sampling of
NGS sample B. Comparing NGS samples without bias
adjustment may thus be misguided and be prone to draw-
ing conclusions that are inconsistent with analysis based
on their genomes. This can be explained by the fact that
the high dissimilarity between two NGS samples does
not necessarily imply the high dissimilarity between their
genomes. It could also result from the large bias caused
by low sequencing depth. Therefore, the relative order of
pairwise dissimilarity between NGS samples and dissimi-
larity between genomes will be different if the sequencing
depths of NGS samples are different. For example, sup-
pose genome A is closer to genome B than to genome
C based on their complete genomes. All three genomes
are sequenced using NGS, and the sequencing depth
of genome B is lower than that of genome C. Since

the dissimilarity between two genomes using NGS data
increases as the sequencing depth decreases, it is possi-
ble that the dissimilarity between A and B is higher than
that between A and C based on NGS data, resulting in
incorrect relationships among the genomes A, B, and C.
One feasible solution is to downsample all NGS samples

to the same number of reads or the same total number
of sequenced bases if the lengths of reads are different
[12]. While biases are not adjusted, they can neverthe-
less be controlled at the same level after downsampling.
As a result, the dissimilarity between NGS samples is
affected by the same level of bias, and the relative order
of pairwise dissimilarity between NGS samples should be
determined only by their genome dissimilarity. However,
this method causes a huge waste of reads since all samples
will be downsampled to the same sequencing quantity as
the smallest sample, and thus, a vast majority of informa-
tive reads in other samples will be discarded, which could
have been included to improve the performance.
Another solution is to modify the formula of alignment-

free dissimilarity by considering sequencing depth and
sequencing error. To the best of our knowledge, AAF [4]
and Skmer [8] are the only existing methods that account
for sequencing depth and sequencing error and adjust the
alignment-free dissimilarity accordingly. AAF first infers a
phylogenetic tree of a group of genomes and then corrects
all branch lengths (tip correction) based on the average
fold coverage of all NGS samples. However, since sam-
ples of high sequencing depth tend to group together as
aforementioned, tip correction after phylogeny inference
is not capable of correcting the structure of the mislead-
ing phylogeny. In addition, AAF corrects every branch
length by the same amount, which does not solve the
problem caused by samples of different biases. Moreover,
this correction depends on the estimation of sequenc-
ing depth and sequencing error rate, which complicates
the problem. On the other hand, Skmer is able to adjust
the bias between any pair of NGS samples differently,
but it also requires to estimate sequencing depth and
sequencing error rate first and then adjust the formula
of Mash (Jaccard distance) [5] accordingly. Although this
bias adjustment method works for simple dissimilarity
measures such as Jaccard distance, adjusting the formula
of more complicated background-adjusted methods such
as CVTree[1], ds2[2], and d∗

2[2] can be a daunting, if not
impossible, task.
Therefore, a method that can adjust the bias for

alignment-free dissimilarity based on NGS samples with-
out downsampling and without introducing new esti-
mations such as sequencing depth or sequencing error
rate is necessary. Since background-adjusted dissimilarity
measures have been shown to outperform other meth-
ods for solving different problems ranging from evolu-
tionary distance estimation [14] to virus-host interaction
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prediction [15], geographic location prediction [12], hori-
zontal gene transfer detection [16], and metagenome and
metatranscriptome comparison [10, 17], we focused on
the bias adjustment for two background-adjusted dissim-
ilarity measures ds2 and d∗

2 in this study. Nevertheless, our
method can be naturally generalized to adjust the bias for
other alignment-free methods.

Results
Alignemt-free methods overestimate distance between
NGS samples
The bias caused by NGS samples can be illustrated by a
simplified example in Fig. 1. Figure 1a shows two ficti-
tious 12-bp genomes that differ by 1 bp (A-T ↔ G-C),
and Fig. 1b shows two 12-bp genomes that are exactly
the same. The dissimilarity measured by any reasonable
alignment-free method between two genomes in Fig. 1b
should be 0 and is thus smaller than the dissimilarity
between two genomes in Fig. 1a. However, the dissimilar-
ity between their NGS samples can show opposite results.
For example, if the short reads (red arrows) in NGS sam-
ples fully cover the two genomes in Fig. 1a whereas the
short reads (blue arrows) only partially cover the two
genomes in Fig. 1b, it is clear that the dissimilarity based
on the two NGS samples in Fig. 1b is greater than the
dissimilarity based on the two NGS samples in Fig. 1a.
This apparent contradiction can be explained by differ-
ent biases of NGS samples caused by different sequencing
depths.
Although Fig. 1 illustrates this bias by a simplified

and extreme example, we used a real dataset of 21 pri-
mates from [18] and simulated NGS samples to show this
bias. In our previous study [14], we calculated pairwise
ds2 and d∗

2 using K = 5 to K = 14 where K is the
length of the kmer with Markovian order M = K − 2
for the background sequences between these 21 primate

genomes and compared them with their pairwise evolu-
tionary distances estimated by alignment-based methods.
Our results showed that pairwise ds2 and d∗

2 with K = 14
and M = 12 are highly correlated with their evolution-
ary distances based on the alignments with Spearman
correlation coefficients 0.979 for ds2 and 0.970 for d∗

2
(Additional file 1: Figures S1–S4).
To study the influence of sequencing depths on ds2 and

d∗
2, we simulated 8 NGS samples of different numbers of

150-bp Illumina reads (1 M, 3 M, 5 M, 7 M, 9 M, 11 M,
13 M, and 15 M) for each primate genome, correspond-
ing to sequencing depths from 0.05× to 0.75× (see the
“Methods” section). A total 8 × 21 = 168 NGS sam-
ples with different sequencing depths were generated and
mixed together. We then calculated their pairwise ds2 and
d∗
2 values and compared them with the pairwise ds2 and d∗

2
calculated based on their complete genomes. The result
of ds2 using K = 14 and M = 12 is shown in Fig. 2.
The results of ds2 using other kmer lengths and Marko-
vian orders are shown in Additional file 1: Figure S5. The
results of d∗

2 using different kmer lengths are shown in
Additional file 1: Figures S6–S7. Both ds2 and d∗

2 have been
transformed to their corresponding similarity measures
where ss2 = 1 − 2 × ds2 and s∗2 = 1 − 2 × d∗

2.
As shown in Fig. 2a–h, it is clear that ss2 estimated from

NGS samples is lower than ss2 estimated from genomes
as all scatter points are below the dashed blue line across
the diagonal and the bias, visualized as the gap between
the scatter points and the diagonal, decreases when the
sequencing depth increases. In addition, Fig. 2a–h clearly
illustrate that ss2 calculated based on NGS strongly corre-
lates with ss2 calculated based on the whole genomes if all
samples have the same sequencing depth even when the
sequencing depth is as low as 0.05× (1 M). The Spear-
man correlation coefficients between ss2 based on NGS
samples of 1 M reads and ss2 based on genomes is as

Fig. 1 Bias caused by NGS sampling. a Two genomes that differ by only 1 bp, marked in red. Both of their NGS samples (red arrows) perfectly cover
their genomes. b Two genomes that are exactly the same. Their NGS samples (blue arrows) only partially cover their genomes
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Fig. 2 Relationship between pairwise ss2 estimated by primate genomes and NGS samples using K = 14 andM = 12 of different numbers of reads
without bias adjustment. X-axis is the pairwise ss2 estimated by genomes, and Y-axis is the pairwise ss2 estimated based on NGS samples. a–h
Relationship between ss2 estimated by primate genomes and ss2 estimated based on NGS samples of only 1 M, 3 M, 5 M, 7 M, 9 M, 11 M, 13 M, or
15 M reads, respectively. i Pairwise ss2 estimated based on mixed NGS samples. NGS samples of different numbers of reads are colored accordingly.
“Mix” means two NGS samples have different numbers of reads (e.g., between 1 and 5 M or between 7 and 11 M) and is colored in gray. The root
mean squared error (RMSE) and Spearman correlation coefficients (SPC) between pairwise ss2 estimated based on NGS samples and genomes are
shown on each subplot

high as 0.969. However, if not all samples have the same
sequencing depth, the Spearman correlation coefficient
dropped significantly even when we analyzed more num-
ber of reads in total, supported by comparing Figs. 2a and
i. In Fig. 2a, all samples have only 1 M reads whereas
in Fig. 2i, each sample has a different number of reads

ranging from 1 to 15 M. The most likely reason is that
if ss2 calculated between two NGS samples A and B of
15 M reads (Fig. 1h) is greater than ss2 calculated between
two NGS samples C and D of 1 M reads (Fig. 1a), it
does not necessarily mean the genome ss2 between A and
B is greater than that between C and D. The reason is
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that samples of 15 M reads have smaller bias than sam-
ples of 1 M reads and thereby ss2 calculated from samples
of 15 M reads will be generally greater than samples of
1 M reads regardless of their genome ss2. This observa-
tion supports our argument that bias caused by different
sequencing depths markedly decrease the performance of
alignment-free analysis based on NGS sequencing data.
The same observation can be made for ds2 using differ-
ent kmer lengths (Additional file 1: Figure S5) and for d∗

2
(Additional file 1: Figures S6–S7). A more detailed results
of the “Mix” label in Fig. 2i was reported in Additional file
1: Figure S8a in which “Mix” was divided into more spe-
cific labels such as “1 M and 5 M”, “1 M and 15 M,” and
“5 M and 15 M.”
To show that this bias is a common problem for all

alignment-free methods, we did the same analysis for
another state-of-the-art alignment-free method Mash [5]
which is based on Jaccard distance. We first calculated
pairwise Mash distances based on 21 primate genomes
using K = 14 (the same kmer length as we used for ds2 and
d∗
2), K = 21 (default kmer length forMash),K = 31 (max-

imum kmer length allowed by Mash), and sketch sizes
s = 103, s = 105, and s = 107 and compared themwith the
pairwise evolutionary distances estimated by alignment-
based methods. Additional file 1: Figure S9 shows that the
pairwise Mash distances and the evolutionary distances
have the highest Spearman correlation coefficient of 0.984
when using K = 21 and s = 107.
We then chose the kmer length K = 21 and sketch

size s = 107 and compared Mash distances estimated
from primate genomes and Mash distances estimated
from primate NGS samples. The results are shown in
Additional file 1: Figure S10, and Mash distance has been
transformed to the corresponding Mash similarity that
equals to 1 - Mash distance. Similar to s∗2 and ss2, Mash
similarity estimated from NGS samples is also lower than
Mash similarity estimated from genomes, and this bias
increases as the sequencing depth decreases as shown in
Additional file 1: Figure S10a–h. As a consequence, the
Spearman correlation coefficient (0.860) between Mash
similarity based on genomes and Mash similarity based
on NGS samples of 1 M to 15 M reads (Additional file 1:
Figure S10i) is even lower than the corresponding Spear-
man correlation coefficient (0.943) based on NGS samples
of only 1 M reads (Additional file 1: Figure S10a).
As aforementioned, one solution is to downsample all

NGS samples to have the same number of reads as the
smallest sample, which is 1 M reads in this example, as
shown in Fig. 2a. This method does not adjust the bias
of ss2 calculated based on NGS samples, but it controls
that all samples have similar biases. The performance
after downsampling is acceptable with Spearman corre-
lation coefficient 0.969 (Fig. 2a) and is better than the
performance without bias adjustment or downsampling

(Fig. 2i). However, the vast majority of reads are discarded
by downsampling, and thereby, much information is lost.
For instance, in order to downsample a sample of 15 M
reads to 1 M reads, we need to discard 93.3% of the reads
in this sample.

Bias adjustment by a neural network regression model
We characterize the bias adjustment process as a regres-
sion problem that predicts the dissimilarity based on
genomes from the dissimilarity based on NGS samples
and their biases. It can be clearly seen in Fig. 2 and
Additional file 1: Figures S8a and S10 that the alignment-
free dissimilarity between any pair of NGS samples
d(ANGS,BNGS) is determined by the alignment-free dis-
similarity based on their genomes d(AG,BG) and the bias
caused by each NGS sample Bias(ANGS) and Bias(BNGS):

d(ANGS,BNGS) = F(d(AG,BG), Bias(ANGS), Bias(BNGS))

In other words, if we know the function F, alignment-
free dissimilarity between a pair of NGS samples, and
their corresponding biases, then the alignment-free dis-
similarity based on their genomes which is not biased
by the sequencing depths in NGS samples can be pre-
dicted. Although it is hard to infer a closed-form for-
mula for function F for background-adjusted methods
such as CVTree[1], ds2[2], and d∗

2[2], a neural network
regression model can be trained to approximate it, see
the “Methods” section for more details about the defini-
tion of Bias(ANGS), Bias(BNGS), and model training and
evaluation.

The correlation between the adjusted dissimilarity
measures based on NGS samples and genomes of 21
primates is markedly increased
Two neural network regression models were trained using
the 21 primate dataset for ds2 and d∗

2 separately and used
to adjust the bias of primate NGS samples (see the “Meth-
ods” section). Using the resulting neural network model,
we adjusted the pairwise ds2 and d∗

2 dissimilarity measures
described in the above section. We then calculated the
Spearman correlation between the adjusted dissimilarity
measures with the corresponding values using the whole
genomes. The correlations between adjusted ds2 (adjusted
d∗
2) and their genome ds2 (d∗

2) were calculated, and the
results of ds2 using K = 14 andM = 12 were transformed
to ss2 and shown in Fig. 3 and Additional file 1: Figure
S8b in which “Mix” was divided into more specific labels
such as “1 M and 5 M.” The results of bias adjustment
for ds2 using other kmer lengths and Markovian orders
were shown in Additional file 1: Figure S11. The results of
bias adjustment for d∗

2 using different kmer lengths were
transformed to s∗2 and shown in Additional file 1: Figures
S12–S13. By comparing Figs. 2 and 3, we can conclude
that our model successfully adjusted the bias between
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Fig. 3 Relationship between pairwise ss2 estimated by primate genomes and NGS samples using K = 14 andM = 12 of different numbers of reads
with bias adjustment. X-axis is the pairwise ss2 estimated by genomes and Y-axis is the pairwise ss2 estimated based on NGS samples after bias
adjustment. a–h show the relationship between ss2 estimated by primate genomes and adjusted ss2 based on NGS samples of only 1 M, 3M, 5 M, 7M,
9 M, 11 M, 13 M or 15 M reads, respectively. i shows pairwise adjusted ss2 based on mixed NGS samples. NGS samples of different numbers of reads
are colored accordingly. ‘Mix’ means two NGS samples have different numbers of reads (e.g., between 1 M and 5 M or between 7 M and 11 M) and is
colored in gray. The root mean squared error (RMSE) and Spearman correlation coefficients (SPC) between pairwise ss2 estimated based on NGS
samples and genomes are shown on each subplot

NGS ss2 and genome ss2, supported by the observation that
most scatter points fall on the diagonal in Fig. 3. In addi-
tion, the root mean squared error was decreased, and the
Spearman correlation coefficient was increased after bias
adjustment. More importantly, Fig. 3 and Additional file 1:
Figures S8 and S11–13 revealed that our bias adjustment

method works for both ds2 and d∗
2, regardless of the cho-

sen kmer length, Markovian order, or sequencing depth. It
should be noticed that our bias adjustment model is capa-
ble of increasing the Spearman correlation coefficients
even when all samples have the same number of reads
by comparing Fig. 3a–h to the corresponding Fig. 2a–h.



Tang et al. Genome Biology          (2019) 20:266 Page 7 of 17

A possible explanation could be that the same number
of reads cannot guarantee the same sequencing depth if
genome lengths are different. Moreover, the bias might
also be caused by other factors such as sequencing errors
and sequencing bias that cannot be controlled by down-
sampling. Therefore, we suggest always using our model
to adjust the bias in the alignment-free analysis based on
NGS sequencing data evenwhen each sample has a similar
number of reads to achieve better performance.
We also evaluated the performance of Skmer [8] on

the same primate dataset using kmer length K = 21
and sketch size s = 107, which is a recent alignment-
free method that corrects the formula of Mash dis-
tance based on NGS samples by estimating the sequenc-
ing depth and sequencing error rate. The relationship
between the Skemr distances using the whole genomes
and the Skmer distances using the NGS samples are
shown in Additional file 1: Figure S14, and Skmer dis-
tance has been transformed to the corresponding Skmer
similarity that equals to 1 - Skmer distance. By compar-
ing Additional file 1: Figure S10a–h to the corresponding
Additional file 1: Figure S14a–h, we can see that Skmer
adjusted Mash similarity by increasing its value estimated
from NGS samples to compensate for the low sequenc-
ing depths and sequencing errors as more points fall
on diagonals in Additional file 1: Figure S14. However,
Skmer decreased the Spearman correlation coefficients,
especially when NGS samples have different sequenc-
ing depths by comparing the coefficient of Mash (0.860)
in Additional file 1: Figure S10i and the coefficient of
Skmer (0.766) in Additional file 1: Figure S14i. A possi-
ble explanation could be that the formula that Skmer used
in [8] to correct Mash distance by estimating sequenc-
ing depth and sequencing error rate is not accurate when
two NGS samples have different sequencing depths. As
a comparison, Fig. 3 and Additional file 1: Figures S10
and S12 demonstrated that adjusted ds2 and d∗

2 outperform
Mash and Skmer in all circumstances, especially when the
sequencing depth is low (< 9 M reads) or samples have
different sequencing depths.

The correlation between the adjusted dissimilarity
measures based on NGS samples and genomes of 28
mammals is markedly increased
We tested our model for ds2 bias adjustment on an inde-
pendent dataset of 28 mammals from [19]. In our pre-
vious study [14], we have calculated pairwise ds2 using
K = 14 and M = 12 between these 28 mammalian
genomes and showed that their pairwise ds2 are highly
correlated with their pairwise evolutionary distances esti-
mated by alignment-based methods with Spearman cor-
relation coefficient of 0.927, and the result is shown in
Additional file 1: Figure S15. We simulated 3 NGS sam-
ples of different numbers of 150-bp Illumina reads (1 M,

5 M, and 15 M) for each mammalian genome, corre-
sponding to sequencing depths from 0.05× to 0.75×,
resulting in a total of 28 × 3 = 84 samples (see the
“Methods” section). We then calculated pairwise ds2
between all 84 NGS samples, adjusted them using our
neural network model and then compared them with the
pairwise ds2 calculated from their complete genomes. The
result was transformed to ss2 and shown in Fig. 4. It can
be clearly seen in Fig. 4a that pairwise NGS ds2 was over-
estimated before adjustment since all scatter points were
below the diagonal whereas most scatter points after bias
adjustment in Fig. 4b fall on the diagonal, which proved
that our model has successfully adjusted the bias of ds2. In
addition, the root mean squared error was decreased, and
the Spearman correlation coefficient was increased after
bias adjustment.
We next tested the performance of Mash and Skmer

on the same mammalian dataset. We first calculated pair-
wiseMash distances based on the 28mammalian genomes
using K = 14, K = 21, and K = 31 and sketch
size s = 103, s = 105, and s = 107 and compared
them with the pairwise evolutionary distances estimated
by alignment-based methods. Additional file 1: Figure S16
shows that pairwise Mash distances and the evolutionary
distances have the highest Spearman correlation coeffi-
cient of 0.943 when using K = 31 and s = 107. We
then chose kmer length K = 31 and sketch size s = 107
and compared Mash distance and Skmer distance esti-
mated from mammalian genomes and estimated from
NGS samples. The results are shown in Additional file 1:
Figure S17. The Spearman correlation coefficient (0.967)
between adjusted ds2 based on NGS samples and genomes
is significantly higher than that for Mash (0.789) and
Skmer (0.688).

The accuracy on predicting continental origins of white
oak NGS samples using k-NN is markedly increased
We tested our model for d∗

2 bias adjustment on a dataset
of 92 white oak NGS samples collected from 3 conti-
nents (North America, Asia, and Europe). In our previous
study [12] , we downsampled each sample to 3 different
sequencing quantities (50 Mbp, 100 Mbp, and 300 Mbp),
corresponding to sequencing depths from 0.07× to 0.42×.
At each sequencing quantity, samples were randomly
divided into reference and query set, and for each sam-
ple in the query set, we found its k-nearest neighbors
(k-NN) measured by d∗

2 with K = 12 and M = 10 in
the reference set and predicted its continental origin by a
majority vote approach (see the “Methods” section). k-NN
accuracy at all these 3 sequencing quantities is shown in
Additional file 1: Table S1, and it can be clearly seen that
the accuracy increases with sequencing quantity.
We randomly selected 30 samples from 50Mbp dataset,

31 samples from 100 Mbp dataset, and 31 samples from
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Fig. 4 Relationship between pairwise ss2 estimated using K = 14 andM = 12 based on 28 mammalian genomes and NGS samples of different
numbers of reads. a shows the relationship before bias adjustment. b shows the relationship after bias adjustment for NGS ss2. The root mean
squared error (RMSE) was decreased and the Spearman correlation coeffient (SPC) between pairwise genome ss2 and NGS ss2 was increased after bias
adjustment

300 Mbp dataset and mixed them together to build a new
dataset of NGS samples with different sequencing quanti-
ties. We predicted the continental origins of the samples
in the query set using the same method, and results are
shown at the top of Table 1. Unsurprisingly, the accuracy
was lower than even when we downsampled all samples
to 50 Mbp (Additional file 1: Table S1) because a sam-
ple from Asia might have smaller d∗

2 to a sample from
Europe of 300 Mbp than another sample from Asia of
50 Mbp, and it is likely to be misclassified. We used our
model for d∗

2 to adjust the bias and predicted their con-
tinental origins again based on the dissimilarity after bias
adjustment, and the prediction accuracy is shown at the
bottom of Table 1. It is clear that our bias adjustment
model was capable of increasing the accuracy markedly,
especially when the reference size is small. It should be
noticed that the accuracy after bias adjustment is higher
than the accuracy by downsampling all samples to 50Mbp
or 100 Mbp, and it is comparable to the accuracy when all
samples are of 300Mbp, which shows that bias adjustment
can achieve better performance than downsampling since
the vast majority of reads are discarded by downsampling
whereas bias adjustment still analyzes all the reads.
The prediction accuracy of Mash and Skmer was tested

on the same oak dataset using K = 12, K = 21, and
K = 31 and sketch size s = 103, s = 105, and s = 107,

and results are shown in Additional file 1: Tables S2
and S3, respectively. It is clear that the adjusted d∗

2 has
higher prediction accuracy than Mash and Skmer, espe-
cially when the reference size is small. For instance, when
there are only 15 samples in the reference set, the adjusted
d∗
2 can still achieve an average prediction accuracy of

0.96 whereas the highest average prediction accuracies of
Mash and Skmer using K = 31 and s = 107 are 0.64 and
0.73, respectively.

The prediction accuracy of geographic origin at finer scales
for white oak NGS samples is markedly increased
Without downsampling, we calculated the pairwise d∗

2
using K = 12 and Markovian order M = 10 between
all 92 white oak tree NGS samples with sequencing quan-
tity ranging from 379 to 1852 Mbp, corresponding to
sequencing depths from 0.53× to 2.59×. For each sam-
ple, we first found its closest sample according to d∗

2 and
linked them together as shown in Fig. 5a. Although the
most similar sample to each sample according to d∗

2 is
from the same continent-of-origin, it does not perform
well at finer geographic scales. It is clear that there are
2 sink nodes SRR2053099 (blue arrow) and SRR2053115
(orange arrow) in Fig. 5a. According to d∗

2, SRR2053099
was predicted as the most similar sample to 19 out of
31 Asian samples, and SRR2053115 was predicted as the
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Table 1 Prediction accuracy using k-NN on 92 white oak datasets of mixed sequence quantity based on d∗
2 before and after bias

adjustment for different query sizes, reference sizes, and different numbers of neighbors k used

Query size Reference size k = 1 k = 2 k = 3 k = 4 k =5 k = 6 k = 7 k = 8 k = 9 k = 10

Before bias adjustment

1 91 0.97 0.97 0.97 1.00 1.00 1.00 0.98 0.95 0.91 0.91

17 75 0.98 0.98 0.96 0.99 0.96 0.98 0.96 0.95 0.91 0.91

32 60 0.97 0.97 0.94 0.96 0.94 0.95 0.91 0.92 0.88 0.89

47 45 0.95 0.95 0.93 0.94 0.91 0.91 0.88 0.89 0.87 0.88

62 30 0.93 0.93 0.88 0.89 0.85 0.87 0.83 0.84 0.82 0.81

77 15 0.84 0.84 0.77 0.78 0.75 0.74 0.69 0.70 0.67 0.65

After bias adjustment

1 91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

17 75 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

32 60 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99

47 45 1.00 1.00 0.99 1.00 0.99 0.99 0.98 0.99 0.97 0.98

62 30 0.99 0.99 0.97 0.97 0.94 0.95 0.92 0.93 0.90 0.91

77 15 0.96 0.96 0.92 0.93 0.87 0.87 0.81 0.79 0.74 0.70

For each query sizes and reference sizes, the dataset was randomly split 100 times and an average prediction accuracy was calculated over 100 splits

most similar sample to 8 out of 16 European samples. The
reason is that SRR2053099 (1414Mbp) is one of the largest
samples among all samples from Asia and SRR2053115
(1852 Mbp) is the largest sample among all samples from
Europe, so they have the smallest biases in the samples

from Asia and Europe, respectively. Therefore, they are
more likely to be predicted as the closest samples to other
samples according to d∗

2.
We adjusted the biases of d∗

2 using Afann, and the results
are shown in Fig. 5b. It can be clearly seen that there is

Fig. 5 The circular plots of 92 white oak tree samples based on d∗
2 with K = 12 andM = 10 before and after bias adjustment. Different sectors

correspond to different continents, with North America (NA) in red, Europe (EU) in orange, and Asia (AS) in blue. Within each sector, samples are
sorted by their longitude, so that samples that are geographically close are also close to each other in the figure. The most similar tree sample to
each sample is linked
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no sink node such as SRR2053099 and SRR2053115 in
Fig. 5a, which proves that the adjusted d∗

2 is not biased by
sequencing depth. In order to show that bias adjustment
can improve the prediction accuracy at finer geographic
scales, we calculated the average distance between each
sample and its closest sample according to d∗

2 before and
after bias adjustment. In Fig. 5, all samples are sorted by
their longitude, so we define the distance between each
sample and its closest sample based on their distance in
the circular plots. For each sample, the minimum distance
should be 1 if and only if its closest sample according to
d∗
2 is next to it in the circular plots. The average distances

between all 92 samples and their closest samples are 7.42
before bias adjustment and 5.85 after bias adjustment. A
paired sample t test showed that the average distance after
bias adjustment is significantly lower than before adjust-
ment with a p value of 0.023. Therefore, although d∗

2 based
on NGS samples without downsampling or bias adjust-
ment can successfully predict their continental origins,
we proved that bias adjustment can further increase the
prediction accuracy at finer geographic scales.

The correlation between the adjusted dissimilarity
measures based on NGS samples and genomes of 67
vertebrates is markedly increased
Since our previous datasets all consist of sequencing reads
coming from closely related species, we constructed a

dataset that contains samples from 67 vertebrates to eval-
uate the performance of our method on diverse datasets.
It contains vertebrate genomes of 67 species from 5 dif-
ferent classes including fish, amphibians, reptiles, birds,
and mammals. Among these 67 vertebrate genomes, we
randomly selected 23, 22, and 22 genomes and simulated
their NGS samples of 1 M, 5 M, and 15 M 150-bp Illu-
mina reads, respectively, and mixed all 67 NGS samples
together. The sequencing depths of all NGS samples range
from 0.024× to 3.49×.
We then calculated pairwise d∗

2 and ds2 using K = 14
and M = 12 between all 67 NGS samples with and with-
out bias adjustment and compared themwith the pairwise
d∗
2 and ds2 calculated from their complete genomes. The

result of d∗
2 was transformed to s∗2 and shown in Fig 6.

It can be demonstrated from Fig. 6 that our method
markedly decreased the root mean squared error and
increased the Spearman correlation coefficient from 0.727
to 0.959. The result of ds2 was transformed to ss2 and shown
in Additional file 1: Figure S18, and the bias adjustment
of ds2 increased the Spearman correlation coefficient from
0.701 to 0.935.
The performance of Mash and Skmer using K = 31

and s = 107 was tested on the same vertebrate dataset
and shown in Additional file 1: Figure S19. The Spear-
man correlation coefficients between adjusted d∗

2 (0.959)
and adjusted ds2 (0.935) based on vertebrate NGS samples

Fig. 6 Relationship between pairwise s∗2 estimated using K = 14 andM = 12 based on 67 vertebrate genomes and NGS samples of different
numbers of reads. a The relationship before bias adjustment. b The relationship after bias adjustment for NGS s∗2 . The root mean squared error was
decreased, and the Spearman correlation coefficient between pairwise genome s∗2 and NGS s∗2 was increased after bias adjustment
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and genomes are significantly higher than that for Mash
(0.747) and Skmer (0.735).

Running time andmemory
Although background-adjusted alignment-free methods
such as CVTree [1], ds2 [2], and d∗

2 [2] have been shown
to achieve better performance than simple Manhattan
and Euclidean distances [10, 12, 14, 16, 17], their applica-
tions have been limited due to the high time and memory
cost in the random background removing step. To over-
come this bottleneck, we improved the speed andmemory
usage of background-adjusted methods in Afann by hash-
ing, multi-threading, and vectorization and compared it
with our previous program Cafe [14].
Both tools were used to calculate the pairwise ds2, d∗

2,
and CVTree among the white oak datasets of 92 NGS
samples with 300 Mbp sequencing quantity using K =
12 and M = 10 and among the primate dataset of 21
genomes using K = 14 and M = 12. Comparisons of
time and memory based on white oak datasets and pri-
mate dataset were shown in Table 2 and Additional file
1: Table S4, respectively. The total time was divided into
kmer counting time and dissimilarity calculation time. It
can be clearly seen in Table 2 that the total speedup ratio
of Afann is around 100× for all 3 background-adjusted
methods whereas the memory usage is only one fifth of

Table 2 kmer counting time, dissimilarity calculation time, and
total time as well as memory usage used by Cafe and Afann to
calculate the pairwise ds2, d

∗
2 , and CVTree using K = 12 and

M = 10 among a dataset of 92 white oak NGS samples of
300 Mbp

Counting
(min)

Calculation
(min)

Total time
(min)

Memory
(Mb)

Cafe-ds2 450.2 4260.2 4710.4 1916

Afann-ds2 21.9 31.2 53.1 449

Cafe-d∗
2 450.2 4224.1 4764.3 1928

Afann-d∗
2 21.9 14.2 36.1 304

Afann-d∗
2 -fast 21.9 0.3 22.2 11953

Cafe-CVTree 450.2 4295.4 4745.6 1960

Afann-CVTree 21.9 14.1 36.0 304

Afann-CVTree-fast 21.9 0.3 22.2 11953

Mashmin 21.5 0.1 21.5 3

Mashopt 125.6 25.5 151.1 20830

Skmermin NA NA 111.9 565

Skmeropt NA NA 656.9 2556

Afann-d∗
2 -fast and Afann-CVTree-fast stand for the fast mode of d∗

2 and CVTree
supported in Afann. Running time and memory usage of Mash and Skmer were also
included. Mashmin and Skmermin used K = 12 and s = 103 which require the
minimum computing power. Mashopt and Skmeropt used K = 31 and s = 107

which have the optimal performance among Mash and Skmer using different
combinations of kmer lengths and sketch sizes as shown in Additional file 1: Table
S2 and Table S3

the memory of Cafe. Afann also supports fast calculation
mode for d∗

2 and CVTree which further increases the cal-
culation speed by usingmorememory. Thememory usage
is O(4K ) for normal mode and O(N × 4K ) for the fast
mode where K is the kmer length and N is the number
of samples. It should be noticed that the counting time is
O(N × 4K ) whereas the calculation time is O(N2 × 4K );
the total speedup ratio will thereby be close to the speedup
ratio of dissimilarity calculation as the number of samples
N increases. We suggest using fast mode when memory
allows. For example, it is common to compare the pairwise
dissimilarity among thousands of bacterial genomes using
small kmer length 5 or 6 which does not require much
memory, then the speedup ratio of fast mode can be more
than 5000×.
The running time and memory usage of other fast

alignment-free tools Mash [5] and Skmer [8] on the same
oak NGS and primate genome datasets were also calcu-
lated and reported in Table 2 and Additional file 1: Table
S4, respectively. The running time and memory usage of
an alignment-free genome comparison tool FFP [3] on the
primate genome dataset using K = 16 as suggested in
[3] were reported in Additional file 1: Table S4. It should
be noticed that the running time of Mash and Skmer
using K = 12 nad s = 103 for oak NGS dataset and
K = 14 and s = 103 for primate genome dataset was
only included to test their speed when using the same
kmer length as d∗

2 and ds2. In practice, kmer length shorter
than 21 is not recommended for Mash and Skmer [8].
We can see in Table 2 and Additional file 1: Table S4
that Cafe calculates ds2, d∗

2, and CVTreemuch slower than
Mash, Skmer, and FFP whereas Afann is capable of cal-
culating ds2, d∗

2, and CVTree in a comparable amount of
time as Mash, Skmer, and FFP. The pairwise dissimilarity
measures among primate genomes calculated by different
methods were compared with their evolutionary distances
estimated by alignment-based methods in [18] and shown
in Additional file 1: Figure S20. All dissimilarity measures
except FFP are highly correlated with the evolutionary dis-
tance with Spearman correlation coefficients higher than
0.95 which demonstrated the applicability of alignment-
free methods in genome comparisons. However, our eval-
uations based on different independent datasets in previ-
ous sections showed that Afann significantly outperforms
others in comparing NGS samples.

Discussion
Alignment-free sequence comparison methods, especially
kmer-based methods have been widely used in NGS
analysis without assembly or alignment. However, sev-
eral studies have revealed that the alignment-free dis-
similarity calculated based on NGS samples tends to
be over-estimated compared to the alignment-free dis-
similarity calculated based on their genomes caused by
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the stochastic distribution of short reads [4, 8, 12].
In this study, we showed that this bias could signifi-
cantly decrease the performance of alignment-free analy-
sis based on NGS samples of different sequencing depths
by investigating four independent datasets. For the pri-
mate, mammalian, and vertebrate datasets, the correlation
between pairwise NGS dissimilarity and pairwise genome
dissimilarity dropped markedly if NGS samples of differ-
ent numbers of reads were mixed together. For the white
oak dataset, the k-NN prediction accuracy of their conti-
nental origins based on a dataset of samples with 50 M,
100M, and 300M sequencing quantity is evenmuch lower
than the accuracy based on a dataset of all samples with
only 50 M sequencing quantity.
This problem was previously solved by downsampling

[12] or modifying the specific dissimilarity formula by
estimating the sequencing depth and sequencing error
rate [4, 8]. However, the first method discards the vast
majority of reads that could have been informative, and
the secondmethod depends on the estimation of sequenc-
ing depth and sequencing error rate and cannot be gener-
alized to adjust the bias for other alignment-free methods
calculated by a different formula. In addition, it can be
extremely hard to adjust the formula of several compli-
cated background-adjusted methods such as CVTree[1],
ds2 [2], and d∗

2[2].
Therefore, we introduced a de novo method in this

study to adjust bias without estimating the sequenc-
ing depth or sequencing error rate explicitly by defining
Bias(ANGS) = d(ANGS,AR

NGS). This bias estimator will
increase as the sequencing depth decreases or sequencing
error rate increases and thus implicitly capture informa-
tion from sequencing depth and sequencing error rate.
Therefore, bias adjustment could be characterized as a
regression problem that uses d(ANGS,BNGS), Bias(ANGS),
and Bias(BNGS) to predict d(AG,BG). Two neural net-
work regression models were trained for ds2 and d∗

2 sepa-
rately using the primate dataset. Our results showed that
bias was successfully adjusted for NGS samples of differ-
ent sequencing depth and calculated by using different
kmer length, supported by the large improvement of root
mean squared error and Spearman correlation coefficient
between dissimilarity based on NGS samples after bias
adjustment and dissimilarity based on genomes.
Without changing any parameters, the performance of

our models was tested on 3 independent datasets. A 28
mammalian dataset was used to test our bias adjustment
model for ds2. Each genome was simulated to 3 NGS sam-
ples of 1 M, 5 M, and 15 M Illumina 150-bp reads and
mixed together. Pairwise ds2 values using K = 14 and
M = 12 between all 84 samples were calculated with-
out and with bias adjustment and compared with pairwise
genome ds2. The results showed that our method success-
fully adjusted the bias and greatly improved both root

mean squared error and Spearman correlation coefficient.
A 92 white oak dataset was used to test our bias adjust-
ment model for d∗

2. We randomly selected 30 samples
from the 50 Mbp dataset, 31 samples from the 100 Mbp
dataset, and 31 samples from the 300 Mbp dataset and
mixed them together. Pairwise d∗

2 values usingK = 12 and
M = 10 between all 92 samples were calculated without
and with bias adjustment, and k-NN was used to predict
the continental origins of test samples based on d∗

2. Our
result showed that the prediction accuracy of the mixed
dataset using k-NN is even lower than that using a dataset
of all 50 Mbp samples before bias adjustment. After bias
adjustment, the k-NN accuracy markedly increased and
was comparable to the accuracy based on a dataset of all
300 Mbp samples. In addition, we proved that bias adjust-
ment could increase the accuracy of prediction not only
at continental level but also at finer geographic scales. At
last, a 67 vertebrate dataset consisting of species from 5
different classes was used to demonstrate the reliability of
ourmethod on datasets composed of diverse species. In all
datasets, our method outperformed other alignment-free
methods including Mash [5] and Skmer [8] in terms of the
Spearman correlation coefficient and prediction accuracy.
It should be noticed that while our bias adjust-

ment method is capable of successfully predicting the
alignment-free dissimilarity based on genomes regardless
of the chosen kmer length, it is, nevertheless, important
to choose a proper kmer length so that the alignment-free
dissimilarity based on genomes is highly correlated with
their evolutionary distance. For instance, while Additional
file 1: Figure S11 shows that our model successfully
adjusted the bias of ds2 using K = 5 to K = 13
based on primate NGS samples, it can be clearly seen in
Additional file 1: Figure S4 that the correlation between
ds2 based on primate genomes and their evolutionary dis-
tance is lower than 0.90 when K < 10 is used. Therefore,
even if our model can adjust the bias of K < 10, the
performance might not increase as we expected. There
have been several investigations into the choice of optimal
kmer length [2, 3, 20, 21]. In practice, shorter kmers are
optimal when sequences are short or obviously different,
whereas longer kmers should be used when sequences are
from very closely related species in order to reduce the
probability that a kmer commonly appear in a sequence
by chance [2, 3, 5, 20].
In conclusion, our study showed that bias adjust-

ment is a necessary step to increase the performance of
alignment-freemethods based onNGS samples. Although
our models were trained only on the primate dataset, it
was able to adjust the bias for independent mammalian,
vertebrate, and white oak datasets, which proved that our
model is generalizable to adjust the bias of NGS samples
from different species, sequencing depths using differ-
ent kmer lengths. Future work could train our models
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using more samples from different species with more
variant sequencing depths to further improve the per-
formance. In addition, since our bias adjustment method
only relies on the alignment-free dissimilarity calculated
between ANGS and AR

NGS without estimating sequenc-
ing depths and sequencing error rates or considering the
actual formula of the dissimilarity measures, it can be
easily generalized to adjust the bias of all alignment-free
dissimilarity measures by training their own regression
models. In this paper, we showed the success of our bias
adjustment model for two background-adjusted methods
ds2 and d∗

2; the framework developed in this paper can
be easily adapted to adjust bias in other alignment-free
dissimilarity measures.

Conclusion
Afann is a fast tool to calculate background-adjusted
alignment-free dissimilarity measures CVTree, d∗

2, and ds2
between genome sequences and NGS samples. In addi-
tion, it can adjust the biases caused by NGS samples of
different sequencing depths for d∗

2 and ds2 without down-
sampling or estimating the sequencing depth. Our results
showed that the adjusted d∗

2 and ds2 are not biased by
sequencing depth and can significantly increase the per-
formance of studies based on NGS samples.

Methods
See Appendix A of Additional file 1 for more details about
different alignment-free dissimilarity measures including
CVTree[1], ds2 [2], and d∗

2[2].

Genomic datasets and simulation of NGS samples
The primate dataset consists of 21 complete primate
genome sequences downloaded from NCBI. In [18], the
author estimated the evolutionary distances among 186
primates based on the alignment of 54 nuclear gene
regions. In our previous study [14], we found 21 com-
plete representative genomes on NCBI among these 186
primates and demonstrated that their pairwise ds2 and d∗

2
with K = 14 and M = 12 are highly correlated with
their evolutionary distances estimated in [18]. The species
names, assembly accession numbers, and total sequence
lengths of these 21 primate genomes are shown in Addi-
tional file 1: Table S5. For each genome, we used ART
[22] to simulate different numbers of Illumina HiSeq 2500
reads of length 150 bp with default sequencing error pro-
file. We produced 8 different datasets with 1 M, 3 M, 5 M,
7 M, 9 M, 11 M, 13 M, and 15 M reads for each NGS sam-
ple. We then mixed all 21 × 8 = 168 NGS samples to
generate a new dataset of primate NGS samples.
Similarly, the mammalian dataset consists of 28 com-

plete vertebrate genome sequences downloaded from
NCBI, with evolutionary distances calculated by the
alignment-based method in [19]. The species names,

assembly accession numbers, and total sequence lengths
of these 28 mammalian genomes are shown in Additional
file 1: Table S6. For each genome, we used ART [22] to
simulate different numbers of Illumina HiSeq 2500 reads
of length 150 bp with default sequencing error profile. We
produced 3 different datasets with 1 M, 5 M, and 15 M
reads for each NGS sample.We thenmixed all 28×3 = 84
NGS samples to generate a new dataset of mammalian
NGS samples.
The white oak tree dataset consists of whole-genome

shotgun (WGS) sequencing data of 92 white oaks from
North America, Europe, and Asia with sequencing quan-
tity ranging from 379 to 1852 Mbp from NCBI BioProject
PRJNA269970 [23]. The run accession numbers, number
of bases, and continental origins for these 92 samples are
shown in Additional file 1: Table S7. We downsampled all
92 samples to produce 3 different datasets with 50 Mbp,
100 Mbp, and 300 Mbp, for each sample, respectively.
Then, we randomly chose 30 samples from the 50 Mbp
dataset, 31 samples from the 100 Mbp dataset, and 31
samples from the 300 Mbp and mixed them together to
generate a new dataset of 92 NGS samples with differ-
ent sequencing quantities. All samples were divided into 3
geographic categories (North America, Europe, and Asia)
based on their continental origins.
The vertebrate dataset consists of 67 complete verte-

brate genome sequences downloaded from NCBI. The
species are from 5 different classes, including 15 fish, 7
amphibians, 15 reptiles, 15 birds, and 15 mammals. All
15 species were randomly selected from the correspond-
ing classes except for amphibian where there are only
7 amphibian complete genome sequences available on
NCBI, and thereby, they were all included in the dataset.
The species names, classes, assembly accession numbers,
and total sequence lengths of these 67 vertebrate genomes
are shown in Additional file 1: Table S8. Among these 67
vertebrate genomes, we randomly selected 23, 22, and 22
genomes and simulated their NGS samples of 1 M, 5 M,
and 15 M 150 bp Illumina reads, respectively, by ART
[22] and mixed them together to generate a dataset of 67
vertebrate NGS samples.

Developing a bias adjustment model
For any pair of NGS samples, their alignment-free dis-
similairty d(ANGS,BNGS) is determined by three variables,
which are the alignment-free dissimilairty based on their
genomes d(AG,BG) and the bias caused by each sample
Bias(ANGS) and Bias(BNGS):

d(ANGS,BNGS) = F(d(AG,BG), Bias(ANGS), Bias(BNGS))

(1)

We define the bias of an NGS sample A by the following
equation:
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Bias(ANGS) = d
(
ANGS,AR

NGS
)

(2)

where ANGS is the original NGS sample and AR
NGS is a

mapped NGS sample that each read in it is a reverse com-
plementary mapping of a read in the original NGS sample.
For example, the NGS sample in the left of Fig. 1a has
reads {AACT, GACG, TTAT, ATAA, CGTC, AGTT}, and
its corresponding AR

NGS can be inferred by mapping each
read in ANGS to its reverse complementary read and thus
is {AGTT, CGTC, ATAA, TTAT, GACG, AACT}, which
is exactly the same as ANGS. The NGS sample in the left
of Fig. 1b has reads {ACTG, GTTA, ATAA}, and its AR

NGS
should be {CAGT, TAAC, TTAT} accordingly, which is
apparently different from ANGS.
Given an dissimilarity measure, such as ds2 or d∗

2, the
Bias(ANGS) can then be calculated between ANGS and
AR
NGS. We expect that Bias(ANGS) will increase as the

sequencing depth of ANGS decreases or the sequencing
error rate increases, as shown in Fig. 1b. The advantage
of defining Bias(ANGS) in this way is that we do not need
to estimate sequencing depth or sequencing error rate
explicitly, but this information has already been implicitly
considered when we compare ANGS with AR

NGS.
Given d(AG,BG), d(ANGS,BNGS) will increase as

Bias(ANGS) or Bias(BNGS) increases, as shown in Fig. 2i
that samples of high sequencing depth and thus low bias
(red points) have higher NGS ss2 (lower NGS ds2) than sam-
ples of low sequencing depth and thus high bias (blue
points) even when their genome s of interest are the same.
In addition, if Bias(ANGS) and Bias(BNGS) do not change,
d(ANGS,BNGS) will increase as d(AG,BG) increases, as
shown in Fig. 2a–h. Since NGS samples in the same sub-
plot have the same number of reads and thus have similar
Bias(ANGS) and Bias(BNGS), their pairwise d(ANGS,BNGS)
value increases with d(AG,BG).
Because of this partial monotonic relationship between

d(ANGS,BNGS) and d(AG,BG) given Bias(ANGS) and
Bias(BNGS), Eq. (1) can be rewritten as:

d(AG,BG) = G(d(ANGS,BNGS),Bias(ANGS), Bias(BNGS))

(3)

where G is a general function. Therefore, the bias adjust-
ment process can be characterized as a regression prob-
lem that is capable of predicting the real genome dissim-
ilarity d(AG,BG) between any pair of NGS samples. To
solve this supervised learning problem, we can first train
our regression models on datasets of known d(AG,BG),
d(ANGS,BNGS), Bias(ANGS), and Bias(BNGS). Then, for
any new pair of NGS samples, we first calculate their
d(ANGS,BNGS), Bias(ANGS), and Bias(BNGS) and use our
model to predict its d(AG,BG). After bias adjustment,
our sequence comparison can be based on the predicted
unbiased d(AG,BG) instead of biased d(ANGS,BNGS).

Model training and evaluation
Creating training samples
We trained 2 neural network regression models that are
widely used to solve nonlinear regression problems for ds2
and d∗

2 separately using the 21 primate dataset. Instead of
training on NGS samples we generated previously to plot
Fig. 2, we generated a new dataset by simulating 8 NGS
samples of different number of reads (1 M, 3 M, 5 M, 7 M,
9 M, 11 M, 13 M, and 15 M) for each genome again and
mixed them together. The samples are denoted from P1NGS
to P168NGS, respectively. We describe how we trained the
bias adjustment model for ds2 in the following section. The
same training method was used for d∗

2 and can be easily
generalized for other alignment-free methods.
For each pair of NGS samples PiNGS and PjNGS, we

calculated their NGS dissimilarity
(
ds2

(
PiNGS,P

j
NGS

))
,

their genome dissimilarity
(
ds2

(
PiG,P

j
G

))
, Bias

(
PiNGS

)
,

and Bias
(
PjNGS

)
using kmer length from 5 to 14 and

Markovian order = k − 2. For each kmer length, there
are 168 × 167 = 28, 056 pairs, so that Xk will be a
matrix of dimension 28, 056 × 3 and yk will be a vec-
tor of length 28,056 as shown below. To ensure that our
model can train Bias

(
PiNGS

)
and Bias

(
PjNGS

)
symmet-

rically, both ds2
(
PiNGS,P

j
NGS

)
and ds2

(
PjNGS,P

i
NGS

)
were

included in the training samples, which was verified after
model training and shown in Additional file 1: Figure S21.
In order to build a regression model that is capable of
adjusting the bias for different kmer lengths, we concate-
nated Xk from X5 to X14 vertically and concatenated yk
from y5 to y14. Therefore, our final X = [

XT
5 ,X

T
6 . . .XT

14
]T

is a 280, 560 × 3 matrix and y = [
yT5 , y

T
6 , . . . y

T
14

]T is a
280, 560 × 1 vector.
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︸ ︷︷ ︸
yk

Training samples augmentation
A data augmentation technique based on prior knowledge
was used to further increase the training samples. If there
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is no bias in NGS samples, then the alignment-free dis-
similarity based on NGS samples should be equal to the
dissimilarity based on their genomes (d(ANGS,BNGS) =
d(AG,BG) ⇐⇒ Bias(ANGS) = Bias(BNGS) = 0).
Therefore, we defined a hyperparameter augmentation
ratio as r, and randomly simulated d1 to dm (di ∼ U(0, 1))
and concatenated XA and yA shown as below to our train-
ing samples X and y, respectively, to fit our model. The
sizes of XA and yA were determined by the size of training
samples and augmentation ratio r wherem = |X| × r.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d1 0 0
d2 0 0
d3 0 0
...

...
...

dm 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
XA

∼

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d1
d2
d3
...
dm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
yA

Hyperparameter tuning and evaluation
A neural network regression model with ReLU activation
(sklearn.neural_network.MLPRegressor), was trained and
a grid search algorithm was implemented to find the opti-
mal combination of hyperparameters such as hidden layer
sizes, regularization term, and augmentation ratio. The
workflow is described below and also shown in Fig. 7.

1. Twenty-eight thousand fifty-six (10%) samples were
randomly selected as a held-out test set. The
remaining 252,504 (90%) samples were used as a
training set.

2. A given combination of hyperparameters was chosen.
Steps 3–4 were repeated 10 times, and the average R2

under this combination of hyperparameters were
calculated (10-fold cross-validation).

3. Ten percent of the samples from the training set
were randomly chosen as a validation set, the other
90% of the samples were first augmented as
aforementioned and then used to fit our model.

4. The trained model was used to predict d(AG,BG) for
the validation set, and R2 was calculated.

5. Repeat steps 2–4 with different hyperparameters,
and the optimal combination of hyperparameters
with the highest average R2 was chosen
(hyperparameter tuning).

6. The optimal combination of hyperparameters was
chosen, and trained on all training set, and the final
model was used to predict d(AG,BG) for the held-out
test set and R2 was calculated (evaluation).

Finally, the combination of hyperparameters with the
highest cross-validation score was chosen (1 hidden layer
with 2000 neurons, regularization term 0.0001, and aug-
mentation ratio 2) and tested on the held-out test data

Fig. 7 Diagram of hyperparameter tuning and evaluation. (1) Trainig set is augmented. (2) Training set after data augmentation is used to fit the
model. (3) The trained model is used to predict d(AG , BG) for the validation set. For each combination of hyperparameters, we repeated steps 1–3
ten times to calculate the average R2, and the combination of hyperparameters with the highest average R2 was chosen. (4) After hyperparameter
tuning, the final model is tested on the test set



Tang et al. Genome Biology          (2019) 20:266 Page 16 of 17

with an R2 value 0.98 for ds2 and 0.99 for d∗
2. The final

models for ds2 and d∗
2 were then used to adjust the bias

for primate, mammalian, vertebrate, and white oak NGS
datasets. It should be mentioned that altough d(AG,BG)

and d(BG,AG) were almost identical as shown in Addi-
tional file 1: Figure S21, we take the average of d(AG,BG)

and d(BG,AG) as the final predicted dissimilarity between
A and B to strictly satisfy the symmetry property.

White oak continental origin prediction by k-NN and d∗
2

For each sequencing quantity (50, 100, and 300 Mbp), we
first calculated the pairwise d∗

2 using K = 12 andM = 10
between each pair of samples in the dataset. Then, 92
samples were randomly divided into the reference set and
query set. The number of samples in the reference set
ranges from 91 (leave-one-out), 77, 60, 45, and 30 to 15.
For each sample in the query set, we found its k-nearest
(k=1–10) neighbors measured by d∗

2 in the reference set
and predicted its continental origin by a majority vote.
For each reference size, we split 100 times and the pre-
diction accuracy was averaged over 100 splits and shown
in Additional file 1: Table S1. We then randomly selected
30 samples from the 50 Mbp dataset, 31 samples from the
100 Mbp dataset, and the 300 Mbp dataset as a mixed
dataset. The same prediction method was used, and accu-
racies with and without bias adjustment were shown in
Table 1.
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