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Abstract

Background: Structural variations (SVs) account for about 1% of the differences among human genomes and play
a significant role in phenotypic variation and disease susceptibility. The emerging nanopore sequencing technology
can generate long sequence reads and can potentially provide accurate SV identification. However, the tools for
aligning long-read data and detecting SVs have not been thoroughly evaluated.

Results: Using four nanopore datasets, including both empirical and simulated reads, we evaluate four alignment
tools and three SV detection tools. We also evaluate the impact of sequencing depth on SV detection. Finally, we
develop a machine learning approach to integrate call sets from multiple pipelines. Overall SV callers’ performance
varies depending on the SV types. For an initial data assessment, we recommend using aligner minimap2 in
combination with SV caller Sniffles because of their speed and relatively balanced performance. For detailed
analysis, we recommend incorporating information from multiple call sets to improve the SV call performance.

Conclusions: We present a workflow for evaluating aligners and SV callers for nanopore sequencing data and
approaches for integrating multiple call sets. Our results indicate that additional optimizations are needed to
improve SV detection accuracy and sensitivity, and an integrated call set can provide enhanced performance. The
nanopore technology is improving, and the sequencing community is likely to grow accordingly. In turn, better
benchmark call sets will be available to more accurately assess the performance of available tools and facilitate
further tool development.
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Background
Structural variation (SV) is a major type of genomic vari-
ation. SVs are usually defined as genomic alterations that
are larger than 50 bp in size and include insertions, dele-
tions, duplications, inversions, and translocations. In
humans, SVs account for the majority of the differences
among individual genomes at the nucleotide level [1–3].
SVs have a profound impact on the genome architecture
and are associated with a variety of diseases, including
neurological diseases and cancer [4, 5]. Therefore, study-
ing SVs and their functional implications is critical to

understand the genomic architecture and the underlying
genetic factors for many diseases.
DNA sequencing became one of the primary methods

for SV identification in recent years [1–3]. Since 2005, a
cost-effective, high-throughput generation of sequencing
technology, termed next-generation sequencing, has been
widely used in genomic research [6, 7]. However, for SV
identification, the next-generation sequencing technology
has its limitations due to its short read length (usually less
than 200 bp), and most types of the evidence supporting
an SV event are indirect (e.g., read depth, mismatch read
pairs) [8].
The arrival of the third generation of sequencing tech-

nology, characterized by real-time, single DNA/RNA
molecule sequencing, allows for much longer read lengths,
opening new possibilities to address some of the limi-
tations of next-generation sequencing for studying
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repetitive regions and SVs in the genome [3]. The nano-
pore sequencing technology commercialized by Oxford
Nanopore Technologies (ONT) [9, 10] has gained popu-
larity in recent years. Unlike many other sequencing
methods, nanopore sequencing does not require the de-
tection of a fluorophore which typically indicates a prod-
uct of chemical or enzymatic reaction. Instead, single-
stranded DNA/RNA molecules are directly sequenced by
measuring the current disruption as a molecule passes
through a nanopore [9]. Long reads obtained from the
nanopore sequencing offer possibilities to detect SVs in a
single continuous read instead of being inferred through
indirect evidences from short reads. In the last several
years, new computational tools have been developed spe-
cifically for long-read data and several studies have identi-
fied SVs using the nanopore data [11–14]. However,
because the ONT sequencers were only recently launched,
the tools available for aligning long-read data and detect-
ing SVs have not yet been thoroughly evaluated.
In this study, we evaluated several aligners and SV callers

on the nanopore data using four human nanopore datasets,
including both empirical sequencing data and simulated
reads. By comparing SV calls from seven aligner-SV caller
combinations to established high-quality SV call sets, we
evaluated the performance of long-read aligners, SV callers,
and their overall combined performance. In addition, we
developed a machine learning approach to integrate mul-
tiple SV call sets to produce a high-confidence call set.

Result
Selection of benchmarking dataset
For benchmarking, it is preferable to use several different
datasets. In this study, we used four datasets: nanopore
sequencing of the human samples NA12878 (referred to as
NA12878 in the following text) and CHM13 (referred to as
CHM13), simulated nanopore reads using the human gen-
ome assembly CHM1 (referred to as CHM1), and simu-
lated nanopore reads using chromosome 20 of the human
reference genome GRCh38 with artificially introduced SV
events (referred to as Chr20).
NA12878 was sequenced at ~ 30× coverage by the

nanopore whole-genome sequencing consortium [13]. For
the corresponding SV true set, we used the SV call set
generated by the Genome in a Bottle Consortium using
the Pacific Biosciences (PacBio) platform [15]. CHM13
was a ~ 50× coverage whole-genome sequencing dataset
of the CHM13hTERT human cell line on the Oxford
Nanopore GridION [13]. The corresponding SV true set
was generated using the PacBio platform with the SMRT-
SV pipeline [16].
The CHM1 genome was assembled from a human

haploid hydatidiform mole using reference-guided assem-
bly [17]. Based on the CHM1 assembly, we simulated the
nanopore sequencing reads to ~ 50× coverage (see the

“Methods” section). Mapping the simulated nanopore
reads resembles mapping empirical sequencing reads from
an individual with a CHM1 genome. As a corresponding
true SV call set for this sample, we used a SV call set gen-
erated using the PacBio platform [18].
The SV true sets for NA12878, CHM13, and CHM1

samples are dependent on their respective analysis pipe-
lines and were filtered to select SVs with high accuracy.
Therefore, it is likely that these true sets are incomplete
which could affect the false-positive rate estimates for
SV calling pipelines. To address this issue, we simulated
chromosome 20 of the human reference genome GRCh38
with pre-defined SVs and generated nanopore sequencing
reads at ~ 50× coverage for pipeline evaluation.
To assess the overall properties of the true sets, we

collected several statistics of the true sets (Table 1). All
true sets have more insertions than deletions. CHM1
and CHM13 true sets have more than twofold higher
number of calls compared to the NA12878 set. SV size
distribution analysis showed that most SVs are less
than 500 bp in length (Additional file 1: Figure S1), and
only a small number of SVs were larger than 10,000 bp
(Additional file 1: Table S1, “true set”). For all sets, a peak
could be observed at ~ 300 bp, an expected size for Alu
transposable elements (Additional file 1: Figure S1).

Aligner and SV caller selection
Multiple aligners and SV callers were downloaded and
tested on the nanopore datasets (Table 2, Additional file 1:
Table S2). After initial testing, we excluded several tools
from downstream analysis for a variety of reasons (see
Additional file 1: Table S2 for details). As a result, we
examined four aligners (minimap2, NGMLR, GraphMap,
LAST) and three SV callers (Sniffles, NanoSV, Picky). We
selected these tools based on their usability, compatibility,
maintenance status, and popularity.

Aligner resource consumption and performance
First, we compared the computational resource consump-
tions of the four aligners: minimap2, NGMLR, GraphMap,
and LAST (Fig. 1a). Overall, each aligner performed simi-
larly across datasets. Among the four aligners, minimap2
was the fastest by a large margin compared to other
aligners, while GraphMap was the slowest. GraphMap also
consumed the most memory. The file system operations
were similar among all aligners (Fig. 1a, FS Operations).
Next, we compared the quality of the aligned reads, such
as the total mapped bases, mismatch rate, and genome
coverage (Table 3). LAST’s output was not included in
this analysis because its output was directly piped to the
Picky for SV detection. Mapping coverage for NA12878
was ~ 24× for all aligners, compared to the raw sequen-
cing coverage depth of ~ 30×. CHM13 had a higher cover-
age than NA12878, at ~ 42×. CHM13 also had a lower
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mismatch rate than NA12878, regardless of the aligner
used. This difference might reflect the longer read length
and the newer base-calling program used in the CHM13
dataset. The two simulated datasets, CHM1 and Chr20,
have ~ 40× and ~ 50× coverage, respectively (Table 3).

SV calling pipeline resource consumption and call set
evaluation
Next, we compared computational resource consump-
tion for three SV callers: NanoSV, Sniffles, and Picky
(Fig. 1b). NanoSV and Sniffles results were collected
based on the minimap2 alignment, and Picky results
were based on the LAST alignment. Time and memory
usage results highlighted that NanoSV consumed sub-
stantially more resources than the other two SV callers.
The main time-consuming step of the NanoSV analysis
was calculating the depth of coverage at the potential SV
breakpoints. Picky performed fewer file system opera-
tions partially because the “select representative reads”
step was already performed in combination with LAST
before the SV calling step.
Because the overall mapped bases and coverages were

similar for all aligners, we evaluated minimap2, NGMLR,
and GraphMap as aligners in combination with Sniffles and
NanoSV. The LAST alignment output format was not fully
compatible with Sniffles and NanoSV, so we only evaluated
LAST with Picky. LAST was chosen to run with Picky also
because of its claimed synergy with Picky, and it was incor-
porated in the default Picky workflow [24]. In total, we
tested seven SV calling pipelines: Minimap2-NanoSV,

NGMLR-NanoSV, GraphMap-NanoSV, Minimap2-Sniffles,
NGMLR-Sniffles, GraphMap-Sniffles, and LAST-Picky.
Each SV caller called different types of SVs with differ-

ent abundance as shown in Additional file 1: Table S3.
Deletion was the most abundant category, followed by
insertion and duplication. The other categories, includ-
ing inversion and translocation, all contained a small
number of calls. Because only a small number of dupli-
cations were called and some SV true sets only contain
insertions and deletions, the SV calls were grouped into
two main categories: deletions and insertions (indels). As
such, duplications were merged with insertions. The fol-
lowing analyses are performed on indels. Other types of
SVs (e.g., inversions, translocations) from the call sets
were not included in the evaluation.
The size distribution of the call sets showed more

small indels than large indels, a pattern also observed
among the true sets (Fig. 2, Additional file 1: Table S1).
NanoSV called more insertions and deletions than Snif-
fles and Picky. In the simulated Chr20 dataset, Picky
called more small deletions than any other pipeline. This
is likely due to the Picky’s goal to maximize sensitivity
and the high coverage of the Chr20 dataset resulted in a
high false-positive rate.
To evaluate the quality of the indel calls, we calculated

the precision, recall, and F1 score for each call set (Add-
itional file 1: Table S1). The precision-recall graph showed
that the four datasets occupy distinct areas (Fig. 3). The
calls from the Chr20 dataset clustered on the right side of
the plot, indicating that all call sets have high recall rates,
although the precision was much higher for insertions

Table 1 Summary statistics of the SV true sets

NA12878
deletion

NA12878
insertion

CHM13
deletion

CHM13
insertion

CHM1
deletion

CHM1
insertion

Chr20
deletion

Chr20
insertion

SV count 4352 5783 10,671 20,497 10,784 15,158 96 181

Median size (bp) 312 300 304 318 69 103 318 296

Longest size (bp) 97,696 41,311 26,862 32,727 18,511 71,339 10,937 41,310

Shortest size (bp) 34 32 50 51 31 32 50 40

Table 2 Evaluated aligners and SV callers

Name Type Version Release year Threads Language Description Citation

GraphMap Aligner 0.5.2 2016 16 C++ Aligns nanopore long reads with circular genome handling [19]

LAST Aligner 941 2011 16 C++ Modified BLAST, outputs MAF format [20]

minimap2 Aligner 2.1 2017 16 C Aligns error-prone long reads, faster and more accurate than BWA [21]

NGMLR Aligner 0.2.6 2017 16 C++ Works with nanopore long reads to generate high-quality SV calls [22]

NanoSV SV caller 1.2.0 2017 16 Python Identifies and clusters split reads based on genomic positions and
orientations to identify breakpoint junctions of SVs

[23]

Picky SV caller 0.2.a 2017 16 Perl “Pick”-and-stitch segments from LAST alignments into representative
alignments with a greedy algorithm

[24]

Sniffles SV caller 1.0.8 2017 16 C++ Detects all types of SVs using split-read alignments, high-mismatch
regions, and depth of coverage

[22]
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than deletions. LAST-Picky deletion call set had the most
false-positive calls (precision rate 11%), while NGMLR-
Sniffles insertion calls had the lowest recall (73%). The
NA12878 call sets, especially insertions (Fig. 3, cyan color),
are in the central area of the graph and have the widest
spread among different pipelines. The observed spread
suggests that different pipelines had different precision
versus recall advantages. As such, NanoSV call sets dem-
onstrated highest recall rates (Fig. 3, cyan-colored circle,
square, and cross), with Minimap2-NanoSV being the
highest (Fig. 3, cyan-colored circle). Sniffles and Picky, on
the other hand, had better precision rates, with the highest
being GraphMap-Sniffles (Fig. 3, cyan-colored diamond).
The CHM13 dataset clustered in the center area (Fig. 3,
orange and yellow colors), suggesting different pipelines
performed more consistent in this dataset. For CHM13,
Minimap2-NanoSV had the highest recall rate and
GraphMap-Sniffles had the highest precision. Finally, the
CHM1 insertion call sets occupied the bottom-left area,

Fig. 1 Resource consumption. a Aligner. b SV caller. The computing time (Wall Time), maximum memory usage (Max Memory), and file system
operations (FS Operations) are shown. LAST’s Wall Time included Picky’s representative read selection step because Picky requires a specific
output format from LAST in place of the default output. SV callers are noted with respect to the aligner used to map the reads. The CHM13
dataset was analyzed under multiple cluster configurations and therefore was not included in the computational resource evaluation

Table 3 Alignment statistics

Aligner Dataset Bases mapped (Gb) Mismatch rate Coverage

minimap2 NA12878 77.5 1.97E−01 24.4

NGMLR NA12878 73.6 1.92E−01 23.4

GraphMap NA12878 80.2 2.17E−01 25.1

minimap2 CHM13 144.7 1.12E−01 43.7

NGMLR CHM13 137.3 1.05E−01 42.0

GraphMap CHM13 139.6 1.24E−01 42.7

minimap2 CHM1 128.6 1.35E−01 39.6

NGMLR CHM1 127.6 1.35E−01 39.5

GraphMap CHM1 130.4 1.52E−01 39.7

minimap2 Chr20 3.3 1.35E−01 48.5

NGMLR Chr20 3.2 1.34E−01 47.4

GraphMap Chr20 3.3 1.54E−01 49.1
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Fig. 2 Insertion and deletion call set size distribution. The number of insertions and deletions in six size categories is shown for the true sets and
calls from seven SV calling pipelines for the four datasets
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which made it the worst call set given the true set, espe-
cially for the recall rates. CHM1 deletions were called with
a small recall advantage over insertions (Fig. 3, red and
magenta colors, respectively).
We next determined the rates of true-positive, false-

negative, and false-positive calls in each call set stratified
by indel size (Additional file 1: Figure S2). All pipelines
performed the best for insertions in the Chr20 dataset,
achieving a high-true positive rate (Additional file 1: Figure
S2B). For deletions, all Chr20 call sets contained many
false-positive calls, especially the LAST-Picky call set. Indi-
vidual call datasets also showed different performance in
different size distributions. In the NA12878 dataset, most
pipelines identified many false-positive calls for SVs smaller
than 200 bp, especially for deletions (Additional file 1:
Figure S2). One possible reason for the high false-positive
rates of the small SVs could be that nanopore sequencing
reads have a high error rate at homopolymer and low-
complexity regions. To test the effect of these repetitive
regions, we subsequently excluded SVs overlapping simple
repeats and low-complexity regions in the reference
genome. The NA12878-filtered call sets indeed showed
improvements for precisions, especially for deletions.
However, filtering calls in the repetitive region also
reduced the recall rates of the call sets (Additional file 1:
Figure S3). For the CHM13 call sets, all pipelines generally
had more false-negative calls when calling small SVs.
CHM1 dataset displays a similar pattern to the CHM13
dataset, but showing a slightly lower true-positive rate,
especially for insertions.
To evaluate the overall performance of each pipeline

and select the best pipeline, we calculated F1 score for
insertions and deletions called by each pipeline in each
dataset. F1 scores were comparable among all pipelines
for a given dataset and SV type (i.e., insertion or deletion),

but varied greatly among datasets and between insertion
and deletion (Fig. 4, Additional file 1: Table S1). The best
pipeline varied depending on the dataset and the type of
SVs. Out of the eight dataset-SV type combinations,
NanoSVs and Sniffles each had the highest F1 score in
four combinations. In contrast, LAST-Picky had the low-
est F1 scores in six combinations.
To evaluate the impact of the sequencing depth on

indel calls, we created subsets of each dataset by ran-
domly selecting reads to achieve 50×, 40×, 30×, 20×, or
10× sequencing coverages and calculated the F1 score of
the Minimap2-Sniffles pipeline at different coverages
(Fig. 5). In all datasets, F1 scores stayed relatively con-
stant until 20× coverage and dropped dramatically at
10× coverage. One possible reason for the F1 score
drop-off below 20× coverage could be that all SV callers
apply a minimum number of supporting reads cutoff
(e.g., we used 10 for Sniffles and Picky) and other quality
requirements. Therefore, the coverage close to or lower
than the cutoff would dramatically affect the perform-
ance of the callers.

Consensus call set analysis and machine learning
prediction
Next, we compared the SV calls among different pipe-
lines. Overall, call sets from different pipelines each had
many unique calls. As shown in the Venn diagrams of
deletion calls in the NA12878 dataset, a large number of
calls did not overlap between pipelines (Additional file 1:
Figure S4). Even for pipelines using the same aligner or
the same SV caller, the discrepancies remained large
(Additional file 1: Figure S4).
The large proportion of unique calls in each pipeline

suggested there is a potential to improve SV calling
quality by integrating calls from multiple pipelines. To

Fig. 3 Precision-recall graph of SV calling pipelines. Pipelines are represented by shapes, and datasets are represented by colors as specified in
the legend
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evaluate the effect of integrating multiple call sets, we
merged all call sets for each dataset, while tracking the
number of call sets for each merged SV call. For dele-
tions, requiring evidence from multiple pipelines im-
proved the F1 scores of the call sets (Fig. 6a). The F1
scores for deletions in all four datasets reached a peak

when requiring overlaps of six or seven pipelines. For in-
sertions, applying the consensus pipeline filter also in-
creased the F1 scores, and calls shared among two or
three pipelines resulted in the best F1 scores (Fig. 6a).
Overall, selecting calls supported by multiple pipelines

showed improvement of F1 scores, but the improvement

Fig. 4 F1 scores for SV calling pipelines. F1 scores for the seven pipelines are shown for insertion and deletion calls of each dataset
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patterns were not consistent. Thus, we applied a more
sophisticated call set integration approach by training a
machine learning model based on the random forest al-
gorithm. We selected seven SV features provided in the
output of the SV callers, such as SV length, number of
supporting reads, mapping quality, and confidence inter-
val of the breakpoint (Table 4). Using the CHM13 data-
set as a test set, we achieved F1 scores of 0.79 for
deletions and 0.81 for insertions, a substantial improve-
ment over the best simple integration method (0.47 for
deletion and 0.67 for insertion). Unlike the simple inte-
gration method, the machine learning approach was able
to improve recall rate without sacrificing the precision
(Fig. 6b). Among the seven features, the most important
contributing feature was SV length, which accounted for
~ 50% of the evidence, followed by the depth P value,
read support, and mapping quality (Table 4). Similar to
CHM13, the machine learning approach also produced
improvement for most other data sets (Additional file 1:
Table S4). Because the depth P value is only provided by
NanoSV, while the read support was provided by Sniffles
and Picky (Table 4), the machine learning approach
allowed us to consider additional information provided
by different callers to produce a high-confidence call set.

Discussion
Improvements in our ability to detect and evaluate SVs
in the genome are crucial to improve our understanding
of the functional impact of SVs. While next-generation
sequencing technologies have revolutionized genomics,
their short read length has hindered the ability to reli-
ably detect SVs. Recently, ONT released its nanopore-

based sequencers that are capable of generating long
reads, potentially improving our ability to detect SVs.
Using public high-coverage nanopore sequencing data
and simulated data, we evaluated multiple aligners and
SV callers to assess SV identification performance using
nanopore long-read sequencing data.
We benchmarked four aligners: an older and estab-

lished aligner LAST and three more recently developed
long-read aligners (minimap2, NGMLR, and Graph-
Map). Alignment time and memory usage varied widely
between the four aligners while differences with respect to
the mapped reads were moderate. Minimap2 was the fast-
est aligner tested with the most mapped bases. Therefore,
we recommend minimap2 as a default aligner for general
use. Unlike the newer aligners, which output the align-
ments in Sequence Alignment Map (SAM) format, LAST
uses Multiple Alignment Format (MAF) format. Although
we tested converting the MAF format to SAM format, the
resulting alignments are not fully compatible with SV cal-
lers expecting a SAM format input (data not shown).
Therefore, we only evaluated the LAST-Picky pipeline.
The SV call sets differed dramatically among the pipe-

lines, for both deletions and insertions. Unless the user
is limited by specific requirements for SV calling, we
recommend using minimap2 paired with Sniffles for the
initial assessment of the data. This combination of tools
showed the fastest processing time and a balanced over-
all performance in detecting both deletions and inser-
tions. Our results are similar to a recent study on a
different human sample [12]. On the other hand, for a
specific project, the choice of the pipeline could depend
on the need of the user for either high recall rate or high

Fig. 5 Impact of the sequencing coverage on the F1 score. For each dataset, subsampling was performed on the original dataset to generate
lower coverage datasets. Solid line, deletions; dashed line, insertions. The data is based on the Minimap2-Sniffles pipeline
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precision. Sniffles call sets showed the highest precision
for most of the datasets tested, while NanoSV call sets
generally had a higher recall rate, largely attributed to
the higher number of SVs identified by NanoSV. There-
fore, Sniffles should be used when high precision is the
priority, while NanoSV should be considered if high

sensitivity is desired and additional false-positive calls
can be tolerated.
All four datasets we used in this study have their own

advantages and limitations for SV caller evaluation. For the
Chr20 simulation dataset, we incorporated SVs based on
the SV distribution from a real call set and used empirical

Table 4 SV features and their contributions in the random forest classifier for CHM13

Feature Description SV caller Contribution

Sniffles NanoSV Picky Deletion (%) Insertion (%)

SVLEN Length of the SV Yes Yes Yes 52 55

DEPTHPVAL P value of the significance test of the depth of coverage
at possible breakpoint junctions

No Yes No 20 15

RE Read support Yes No Yes 7 14

MAPQ Median mapping quality of read pairs Yes Yes No 10 8

CIEND Confidence interval around the END position No Yes Yes 3 3

CIPOS Confidence interval around the POS position No Yes Yes 2 2

PRECISE Precise structural variant Yes Yes Yes 5 1

“Yes/No” under SV callers indicates whether a feature is provided by an SV caller

Fig. 6 SV call set integration. a Consensus approach. Solid line, deletions; dashed line, insertions. F1 scores for insertions and deletions identified
by a specified number of pipelines are shown. b Precision-recall graph of call sets from SV calling pipelines and integration approaches. Blue,
deletions; red, insertions. Results from individual pipelines and the machine learning approach are represented by shapes as specified in the
legend. Results from the consensus approach are represented by numbers. For example, “2” represents the consensus call set from two callers
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error profile from an ONT sequencing run to simulate
reads that resemble a true human sample. The advantage
of such a simulated dataset is that we know the true SVs
that can be used to evaluate different pipelines. Neverthe-
less, the simulated reads are based solely on chromosome
20 and are unlikely to capture the true heterogeneity of the
entire human genome. This could in part explain the better
performance of the Chr20 call sets compared to call sets
from the other three datasets. For the NA12878, the
CHM13, and the CHM1 genome, we evaluated our SV
calls against high-coverage datasets (40–60× coverage)
generated using the PacBio sequencing technology [15, 18].
These three datasets are among the few available long-read
datasets that attempt to produce high-confidence SV calls
by employing several different SV calling pipelines and the
de novo assembly approach. Although SV calls in the three
PacBio datasets are likely to have a high accuracy, these
datasets are limited in several ways. For example, some of
the benchmark datasets only include deletions and inser-
tions, whereas SV callers we employed also generated other
types of SV calls. In addition, these datasets are based on
the PacBio sequencing platform, which has its own limita-
tions in terms of both sequencing technology and analysis
tools. For example, one of the SV callers used to generate
the benchmark, PBHoney [25], is an older SV caller and it
is not actively maintained at the moment. Indeed, the vast
majority of NA12878 deletions that are called by all seven
pipelines were absent from the SV true set. One such dele-
tion region is chr1:117,029,131-117,029,278, for which
minimap2 alignment shows multiple nanopore sequencing
reads with evidence of a deletion, while the PacBio BLASR
alignment showed only low-quality alignments in the
region (i.e., with a large number of mismatches) (Add-
itional file 1: Figure S5). Therefore, some of these SVs are
likely to be real in the nanopore data but false negative in
the benchmark set. As long-read sequencing technology
matures, more comprehensive true SV call sets will
become available and improve the evaluation. More im-
portantly, experimental validation of some SV calls is
necessary to empirically assess the accuracy of the calls.
With the different datasets, we also assessed the im-

pact of genome coverage on the SV identification among
the SV callers. We sought to determine the minimum
depth of coverage required to obtain a reasonable SV
calling quality, given the limitation of budget and com-
putational resources in research projects. For all three
datasets, 20× coverage appeared to be the minimum
coverage required to maintain the performance of the
tools as judged by the F1 score. Given both the sequen-
cing technology and the computational tools are under
active development, we expect the coverage requirement
will also be reduced in the future.
The SV calling results from the pipelines tested here

showed that there is room for improvement for the tools

in terms of both recall and precision. In the meantime,
one potential way to improve the performance of the
currently available SV callers is to use an integrative ap-
proach and combine calls from multiple pipelines. We
evaluated the integration principle using two approaches:
one simple consensus approach and one machine learn-
ing approach using the random forest algorithm that
uses seven features from the SV caller outputs. Our
results showed that both approaches can improve the F1
scores of the call sets. However, when combining the
quality features provided by multiple call sets, the
machine learning approach provided a much better over-
all performance compared to the simple consensus ap-
proach (Fig. 6b). This result suggests that when a true set
is available for training, a machine learning approach can
be a good way to produce high-quality call set from mul-
tiple callers. In general, these results demonstrated the
value of an integrative approach and further supported the
need for the systematic evaluation and development of in-
tegrative approaches. Several SV integration tools with a
more sophisticated integration algorithm, such as MetaSV
[26], svclassify [27], and Parliament [28], have been devel-
oped for integrating SV calling results from multiple
sequencing technologies and SV callers, including single-
molecule sequencing technologies. A similar algorithm
can be applied to single-molecular sequencing SV callers
and generate a high-quality consensus SV call set.

Conclusions
Nanopore sequencing is a rapidly developing technology
in terms of both sequencing technology and data ana-
lysis. For SV analysis, several new aligners and SV callers
have been developed to leverage the long-read sequen-
cing data. In addition, assembly-based approaches can
also be used for SV identification. We have established a
workflow for evaluating mappers and SV callers. We
found that SV callers’ performance diverges between SV
types. Therefore, our recommendations are tailored to
the specific applications. For an initial analysis, we rec-
ommend minimap2 and Sniffles due to their high speed
and relatively balanced performance calling both inser-
tions and deletions. For more detailed analysis, we rec-
ommend running multiple tools and integrating their
results for the best performance. When a high-quality
true set can be defined, a machine learning approach,
such as the one we proposed here, can be used to further
improve the call set. Most analysis tools for nanopore se-
quencing are recently developed, and both accuracy and
sensitivity can be improved. We expect resources from
ONT and the nanopore sequencing community to accu-
mulate as the technology improves and its user base
grows. With more data being generated, better benchmark
call sets will be available to more accurately assess the tool
performance and facilitate future tool development.
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Methods
Data set generation
The nanopore sequencing data of NA12878 in FASTQ
format was obtained from the release 3 of the nanopore
whole-genome sequencing consortium repository (https://
github.com/nanopore-wgs-consortium/NA12878/blob/mas
ter/nanopore-human-genome/rel_3_4.md) [13]. The data
was sequenced on the Oxford Nanopore MinION using
1D ligation kit. The SV call set for NA12878 was down-
loaded from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
NA12878/NA12878_PacBio_MtSinai/NA12878.sorted.vcf.
gz [15]. This call set was based on the whole-genome se-
quencing data of NA12878 at about 44× coverage using
the PacBio platform. The SV call set was generated using
three SV detection methods, including a local assembly
pipeline [18]. Only SV calls with a “PASS” flag in the “FIL-
TER” field was included in the analysis. This dataset was
lifted over from human reference genome GRCh37 to
GRCh38 using liftOver (https://genome.ucsc.edu/cgi-bin/
hgLiftOver).
The CHM13 genome nanopore sequencing reads were

downloaded from the release 2 of the nanopore whole-
genome sequencing consortium (https://s3.amazonaws.
com/nanopore-human-wgs/chm13/nanopore/rel2/rel2.fa
stq.gz). The SV calls were obtained from dbVar (ftp://
ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_
study/vcf/nstd137.GRCh38.variant_call.vcf.gz).
The CHM1 genome assembly was downloaded from

NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000
/306/695/GCA_000306695.2_CHM1_1.1/GCA_0003066
95.2_CHM1_1.1_genomic.fna.gz). The nanopore se-
quence reads were simulated from the CHM1 assembly
using NanoSim (ver 2.1.0) [29]. To generate a training
dataset for nanopore sequencing read profile, DNA sam-
ple of the individual HuRef [30] was purchased from
Coriell (NS12911, Camden, NJ, USA). The HuRef sam-
ple was sequenced in our lab to about 1× coverage with
an ONT MinION sequencer (Additional file 1: Supple-
mental Text: HuRef Sequencing). The sequencing reads
were then used to generate the read profile by NanoSim
read_analysis.py command [29]. Using the read profile
and the CHM1 genome as the input, NanoSim simula-
tor.py command simulated in silico reads to about 50×
target coverage (50,000,000 sequences) from the CHM1
genome. A high-quality SV dataset for CHM1 was gen-
erated using the PacBio technology by the local assembly
approach [18]. This data was downloaded from http://
eichlerlab.gs.washington.edu/publications/chm1-structural-
variation/data/GRCh37/insertions.bed, and http://eichlerlab
.gs.washington.edu/publications/chm1-structural-variation/
data/GRCh37/deletions.bed. The dataset was lifted over
from GRCh37 to GRCh38 using liftOver.
The R package RSVSim (ver. 1.24.0) [31] was used to

simulate deletions and insertions in chromosome 20 of

the human reference genome GRCh38. The number and
size of each simulated SV were set to be identical to the
NA12878 true set above (181 insertions and 96 deletions
on chromosome 20). NanoSim was used to simulate reads
to about 50× target coverage (1,200,000 reads) based on
the same read profile trained by the HuRef reads.

Read mapping and SV identification
The aligners and SV callers (Table 2) were downloaded
and compiled on a high-performance computing cluster
based on the Ubuntu 14.04 system. Each node has 2
AMD Opteron 6272 2.1 GHz 16-core processors and
256 Gb RAM. The CHM13 dataset contains a large
number of long reads (e.g., more than 500,000 kb) that
caused long-running time for some aligners. To optimize
the alignment performance for CHM13, reads longer
than 500 kb in length were excluded from the dataset
when an alignment program stalled. For running LAST
on the CHM13 dataset, reads that are larger than 300 kb
were filtered out, and 39,911 reads that consistently
caused memory shortages were excluded. The CHM13
dataset was analyzed under multiple cluster configura-
tions and therefore was not included in the computa-
tional resource evaluation. The computational resource
consumptions were recorded using GNU command
“/usr/bin/time –v.” The depth of coverage of an align-
ment file was calculated by SAMtools depth command
(ver. 1.6) [32]. The percentage of mapped reads, number
of mapped bases, and mismatch rate of an alignment file
were calculated by SAMtools stats command (ver. 1.6).
Evaluation of insertions and deletion call sets for each

dataset was performed using BEDTools (ver. 2.27.1) [33].
Deletions were compared with the SV true sets using
BEDTools intersect command requiring at least 50%
overlap between the two regions. Because insertions
were represented by a single base pair position in the
reference genome, insertions were compared with the
SV true sets using BEDTools window command where
two insertions were considered an overlap if they were
within 100 bp of each other. Precision rate, recall rate,
and F1 score were calculated for each SV call set against
their respective SV true set. Plots were generated using
the matplotlib and seaborn library in Python3.

Call set filtering
For both true sets and call sets, several filtering and pro-
cessing steps were performed to generate comparable
datasets. First, SV calls from unincorporated contigs and
the mitochondrial genome were filtered out to generate
call sets for SVs on autosomes (chromosomes 1–22),
chromosome X, and chromosome Y. In each call set, inser-
tions, duplications, and deletions were selected. Insertion
and duplication calls were combined as one category (re-
ferred to as “insertions”) for comparison. SVs were then
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filtered for size between 30 and 100,000 bp. The resulted
SV calls were sorted using BEDTools sort command and
merged using BEDTools merge command.

Coverage analysis
Random subsampling of the FASTA files in each analysis
was performed using the seqtk toolset (https://github.
com/lh3/seqtk) based on the minimum number of reads
needed to reach an expected coverage depth ranging
from 10× to each dataset’s original coverage, increasing
by 10× each time. Subsampled reads at each coverage
depth were mapped by minimap2, and SVs were called
by Sniffles. The call sets were evaluated with the respect-
ive SV true set, and F1 score was calculated for each
coverage depth in each comparison category.

Consensus call set
To generate a consensus call set for each dataset, call sets
from all pipelines for each dataset were concatenated to a
single file. BEDTools merge function [33] was then used to
merge the concatenated calls into a consensus call set. The
number of pipelines identified each consensus SV was
stored. The consensus SVs were then filtered based on the
number of pipelines that identified them, ranging from two
to seven, and compared to their respective true sets.

Random forest classifier
SV calls from all seven pipelines for each pipeline were
combined and labeled “true” or “false” based on whether
they overlapped with the corresponding true set. The
combined call set was randomly split into a training set
(20% of the calls) and a testing set (80% of the calls) using
the python package scikit-learn (v0.21.3, parameter “train_
size=0.2”). The labeled SVs were learned and predicted by
XGBoost (v0.90) random forest classifier [34] using the
features selected from the “INFO” tag in the VCF files
(Table 4). Precision and recall rate of the predictions were
calculated by scikit-learn metrics.
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