
RESEARCH Open Access

Common DNA sequence variation
influences 3-dimensional conformation of
the human genome
David U. Gorkin1,2†, Yunjiang Qiu1,3†, Ming Hu4*†, Kipper Fletez-Brant5,6, Tristin Liu1, Anthony D. Schmitt1,7,
Amina Noor2, Joshua Chiou8,9, Kyle J. Gaulton8, Jonathan Sebat2,10, Yun Li11, Kasper D. Hansen5,6 and
Bing Ren1,2,12*

Abstract

Background: The 3-dimensional (3D) conformation of chromatin inside the nucleus is integral to a variety of
nuclear processes including transcriptional regulation, DNA replication, and DNA damage repair. Aberrations in 3D
chromatin conformation have been implicated in developmental abnormalities and cancer. Despite the importance
of 3D chromatin conformation to cellular function and human health, little is known about how 3D chromatin
conformation varies in the human population, or whether DNA sequence variation between individuals influences
3D chromatin conformation.

Results: To address these questions, we perform Hi-C on lymphoblastoid cell lines from 20 individuals. We identify
thousands of regions across the genome where 3D chromatin conformation varies between individuals and find
that this variation is often accompanied by variation in gene expression, histone modifications, and transcription
factor binding. Moreover, we find that DNA sequence variation influences several features of 3D chromatin
conformation including loop strength, contact insulation, contact directionality, and density of local cis contacts. We
map hundreds of quantitative trait loci associated with 3D chromatin features and find evidence that some of these
same variants are associated at modest levels with other molecular phenotypes as well as complex disease risk.

Conclusion: Our results demonstrate that common DNA sequence variants can influence 3D chromatin
conformation, pointing to a more pervasive role for 3D chromatin conformation in human phenotypic variation
than previously recognized.

Introduction
Three-dimensional (3D) organization of chromatin is es-
sential for proper regulation of gene expression [1–3]
and plays an important role in other nuclear processes
including DNA replication [4, 5], X chromosome inacti-
vation [6–9], and DNA repair [10, 11]. Many recent in-
sights about 3D chromatin conformation have been
enabled by a suite of technologies based on Chromatin
Conformation Capture (3C) [12]. A high-throughput

version of 3C called “Hi-C” enables the mapping of 3D
chromatin conformation at genome-wide scale [13] and
has revealed several key features of 3D chromatin con-
formation including (1) compartments (often referred to
as “A/B compartments”), which refer to the tendency of
loci with similar transcriptional activity to physically seg-
regate in 3D space [13–15]; (2) chromatin domains
(often referred to as Topologically Associating Domains,
or TADs) demarcated by boundaries across which con-
tacts are relatively infrequent [16–18]; (3) chromatin
loops, which describe point-to-point interactions that
occur more frequently than expected based on the linear
distance between interacting loci, and often anchored by
convergent CTCF motif pairs [14]; and (4) Frequently
Interacting Regions (FIREs), which are regions of
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increased local interaction frequency enriched for tissue-
specific genes and enhancers [19, 20].
Previous studies have used Hi-C to profile 3D chroma-

tin conformation across different cell types [14, 16, 21],
different primary tissues [19], different cell states [22],
and in response to different genetic and molecular per-
turbations [23–27], producing a wealth of knowledge
about key features of 3D chromatin conformation. How-
ever, to our knowledge, no study to date has measured
variation in 3D chromatin conformation across more
than a handful of unrelated individuals. Several observa-
tions demonstrate that at least in some cases DNA se-
quence variation between individuals can alter 3D
chromatin organization with pathological consequences
[28]. Pioneering work by Mundlos and colleagues de-
scribed several cases in which rearrangements of TAD
structure lead to gene dysregulation and consequent de-
velopmental malformations [29, 30]. In cancer, somatic
mutations and aberrant DNA methylation can disrupt
TAD boundaries leading to dysregulation of proto-
oncogenes [31, 32]. Moreover, many genetic variants asso-
ciated with human traits by Genome-Wide Association
Studies (GWAS) occur in distal regulatory elements that
loop to putative target gene promoters in 3D, and in some
cases, the strength of these looping interactions has been
shown to vary between alleles of the associated SNP [33,
34]. Although these studies demonstrate that both large ef-
fects as well as more subtle aberrations of 3D chromatin
conformation are potential mechanisms of disease,
population-level variation in 3D chromatin conformation
more broadly has remained unexplored.
In the present study, we set out to characterize inter-

individual variation in 3D chromatin conformation by
performing Hi-C on lymphoblastoid cell lines (LCLs) de-
rived from individuals whose genetic variation has been
cataloged by the HapMap or 1000 Genomes Consortia
[35]. LCLs have been used as a model system to study
variation in several other molecular phenotypes includ-
ing gene expression, histone modifications, transcription
factor (TF) binding, and chromatin accessibility [36–42].
These previous efforts provide a rich context to explore
variation in 3D chromatin conformation identified in
this model system. Through integrative analyses, we
found that inter-individual variation in 3D chromatin
conformation occurs on many levels including com-
partments, TAD boundaries, FIREs, and looping inter-
actions. Moreover, we found that variation in 3D
chromatin conformation coincides with variation in
activity of the underlying genome sequence as evi-
denced by transcription, histone modifications, and
TF binding. Although our sample size is small, we
observed reproducible effects of DNA sequence vari-
ation on 3D chromatin conformation and identify
hundreds of quantitative trait loci (QTLs) associated

with features of 3D chromatin conformation. Our
results demonstrate that variation in 3D chromatin
conformation is readily detectable from Hi-C data,
often overlaps with regions of transcriptomic and epi-
genomic variability, and is influenced in part by gen-
etic variation that may contribute to disease risk.

Results
Mapping 3D chromatin conformation across individuals
To generate maps of 3D chromatin conformation suit-
able for comparison across individuals, we performed
“dilution” Hi-C on LCLs derived from 13 Yoruban indi-
viduals (including one trio), one Puerto Rican trio, and
one Han Chinese trio (19 individuals total; Add-
itional file 2: Table S1). We also included published Hi-
C data from one European LCL (GM12878) generated
previously by our group using the same protocol [43],
for a total of 20 individuals from four different popula-
tions. Many of these same LCLs have been used in previ-
ous genomic studies [38, 40, 42], allowing us to leverage
multiple transcriptomic and epigenomic datasets in our
analysis below (Additional file 2: Table S1). Importantly,
18 of these individuals have had their genetic variation
cataloged by the 1000 Genomes Consortium [35, 44]
(Additional file 2: Table S2), which allowed us to exam-
ine the influence of genetic variation on 3D chromatin
conformation. Two replicates of Hi-C were performed
on each LCL, with each replicate performed on cells
grown independently in culture for at least two passages
(Additional file 2: Table S3).
All Hi-C data were processed using a uniform pipeline that

incorporates the WASP approach [40, 45] to eliminate allelic
mapping biases (see the “Alignment with WASP” section).
For each sample, we mapped a series of well-established Hi-
C-derived features including 40-Kb resolution contact matri-
ces, compartmentalization [13], directionality index (DI) [16],
and insulation score (INS) [7] (Fig. 1a; Additional file 1: Fig-
ure S1a-c). Compartmentalization is standardly measured by
the first principal component (PC1) of Hi-C contact matri-
ces, and thus, we use the acronym “PC1” below to refer to
this measure of compartmentalization. DI and INS are both
related to TAD boundaries (Additional file 3: Table S4), but
they represent different quantitative phenotypes. INS mea-
sures the abundance of interactions spanning a given region
of interest, whereas DI measures imbalance in the direction-
ality of contacts from a given region of interest (i.e., upstream
or downstream). TAD boundaries show a signature of strong
insulation reflected by low INS values, as well as an abrupt
shift from strong upstream to strong downstream DI. How-
ever, strong DI values can occur elsewhere in the genome.
We also identified FIREs and their corresponding

“FIRE scores” [19], which measure how frequently a
given region interacts with its neighboring regions
(15~200 Kb). The concept of FIRE is based on the
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observation that the frequency of contacts in this dis-
tance range is not evenly distributed across the genome,
but rather, tends to peak in regions showing epigenomic
signatures of transcriptional and regulatory activity
(Additional file 1: Figure S1d-e, S2). As we have shown

previously [19, 46], FIRE regions often overlap putative
enhancer elements (Additional file 1: Figure S1d-e). We
did not call “chromatin loops” in this study because our
data was not of sufficient resolution, but we used a set
of loops previously reported in the LCL GM12878 [14]

Fig. 1 Biological variability in multiple aspects of 3D chromatin conformation. a Browser view to illustrate the Hi-C-derived molecular phenotypes examined
here: contact matrices, FIRE, DI, INS, and PC1 (chr8:125,040,000-132,560,000; hg19). Only 4 individuals shown here for illustrative purposes. The full set of
individuals is shown in Additional file 1: Figure S1. b Boxplots show correlation between biological replicates from the same cell line (Individuals = “within”, N=
20), and between replicates from different cell lines (Individuals = “between”, N=760). Statistical significance calculated by two-sided Wilcoxon rank-sum test.
See Additional file 1: Figure S4a for schematic of shuffling strategy. These and all boxplots in this manuscript show median as a horizontal line, interquartile
range (IQR) as a box, and the most extreme value within 1.5*IQR or − 1.5*IQR as whiskers extending above or below the box, respectively. c The Pearson
correlation coefficient between quantile normalized Hi-C matrix replicates from the same cell line (solid line) or different cell lines (dotted line) is plotted as a
function of genomic distance between anchor bins. Distances between 0.1 and 1Mb are highlighted in the magnified sub-panel to the right. d Significance of
the difference between the “within” and “between” values in c was calculated at multiple points along the distance-correlation curve by two-sided Wilcoxon
rank-sum test. Note that the scale of contact distance here is linear. Yellow bars indicate significance exceeding a Bonferroni-corrected significance threshold
(dotted line)

Gorkin et al. Genome Biology          (2019) 20:255 Page 3 of 25



to examine variation in loop strength among the LCLs
in our study. Aggregate analysis shows that these pub-
lished LCL loops are generally reproduced in our data
(Additional file 1: Figure S3).

3D chromatin conformation variations between
individuals
After uniformly processing all Hi-C data (see the “Hi-C
data processing” section), we compared chromatin con-
formation across LCLs at the level of contact matrices
and multiple derived features (PC1, DI, INS, and FIRE).
From a genome-wide perspective, each of these 3D chro-
matin features shows a signature consistent with repro-
ducible inter-individual variation whereby replicates
from the same individual (i.e., same LCL) are more
highly correlated than datasets from different individuals
(PC1 p = 3.5e−12, INS p = 5.6e−9, DI p = 2.1e−8, FIRE
p = 2.6e−4 by two-sided Wilcoxon rank-sum test;
Fig. 1b–d, Additional file 1: Figure S4a-e). The Hi-C data
also cluster by population (Additional file 1: Figure S4f-g).
We note that this inter-individual and population vari-
ation is consistent with an influence from genetic back-
ground, but can also be caused by other factors such as
sample acquisition [47], batch effects, and other differ-
ences between the LCLs.
Despite generally high correlations of Hi-C data across

individuals, we frequently observed regions where 3D
chromatin conformation varies reproducibly between in-
dividuals (example shown in Fig. 2a, Additional file 1:
Figure S5a). To more systematically identify regions of
variable 3D chromatin conformation, we used a linear
normal model with an empirical Bayes variance estima-
tor (as implemented in the “eBayes” function in limma
[48]) to identify regions where variation between individ-
uals was significantly higher than variation between two
replicates from the same individual. We applied this ap-
proach to DI, INS, FIRE, and PC1. For each metric, we
first defined a set of testable 40-Kb bins across the gen-
ome by filtering out bins with low levels of signal across
all individuals or near structural variants that can appear
as aberrations in Hi-C maps [49] (see the “F test for vari-
able bins” section). We then applied a false discovery
rate (FDR) threshold of 0.1 and merged neighboring
variable bins, resulting in the identification of 2318 vari-
able DI regions, 2485 variable INS regions, 1996 variable
FIRE regions, and 7732 variable PC1 regions (Fig. 2b,
Additional file 1: Figure S5b, Additional file 4: Table S5).
We note that there is strong overlap between the vari-
able DI, INS, FIRE, and PC1 regions detected across all
20 LCLs and those detected using only the 11 unrelated
YRI LCLs, which suggests that potential confounding
effects of variation between different populations are not
driving the identification of these variable regions
(Additional file 1: Figure S5c). Although each metric has

a unique set of testable bins, we found significant en-
richment for bins that are variable in more than one
metric (Fig. 2c, Additional file 1: Figure S5d), indicating
that the same regions often vary across multiple features
of 3D chromatin conformation.
We next used fluorescent in situ hybridization (FISH)

to examine whether variable regions detected by Hi-C
are consistent with distance measurements from imaging
data. Focusing on a variable DI region on chromosome
15 (Fig. 2a, Additional file 1: Figure S6a-b), we per-
formed FISH in LCLs from four individuals that showed
different levels of DI at the variable region being evalu-
ated (YRI-4 and YRI-8 showing high upstream contact
bias; YRI-3 and YRI-5 showing no upstream contact
bias). We used three BAC probes that hybridize respect-
ively to the variable DI region (“center”, probe covers
chr15:96715965-96898793), a region approximately
668 Kb upstream (“upstream”, probe covers chr15:
95897555-96047720), or a region approximately 590 Kb
downstream (“downstream”, probe covers chr15:
97488414-97648104). We found that distances between
the center probe and flanking probes vary significantly
between individuals with strong upstream contact bias
as measured by DI and individuals without this upstream
contact bias (Fig. 2d, e, center-upstream distance
p = 0.017, center-downstream distance p = 1.7e−5 by
two-sided Wilcoxon rank-sum test). In the two individ-
uals with strong upstream DI signal at the central vari-
able DI region, we found that the center probe is closer
to the upstream than the downstream probe, as expected
(p = 3.2e−3 for YRI-3, p = 1.5e−4 for YRI-5 by one-sided
Wilcoxon rank-sum test). However, in individuals with-
out upstream DI signal, the center probe is closer to the
downstream probe (p = 0.021 for YRI-4, p = 0.1 for YRI-
8 by one-sided Wilcoxon rank-sum test) (Additional
file 1: Figure S6c).
We also sought to identify variable entries in the Hi-C

contact matrix itself (“Hi-C contact matrix cells”). To fa-
cilitate this search, we used a method called Bandwise
Normalization and Batch Correction (BNBC) that we re-
cently developed to normalize Hi-C data across individ-
uals (Fletez-Brant et al. Pre-print: https://doi.org/10.
1101/214361). BNBC takes contact distance into account
as a covariate because batch effects in Hi-C data can be
distance-dependent. To identify variable matrix cells, we
performed a variance decomposition on Hi-C contact
matrix cells, resulting in a measure of biological variabil-
ity for each bin in the contact matrix (see example in
Fig. 2a and Additional file 1: Figure S5a). To identify
matrix cells with significant levels of biological variability,
we estimated FDR using the IHW framework [50] to in-
clude the distance between anchor bins as an informative
covariate. At an FDR threshold of 0.1, we identified 115,
817 matrix cells showing significant variability between
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Fig. 2 Variable regions of 3D chromatin conformation. a Example of a variable region (chr15:93,040,000-100,560,000; hg19). Triangular heatmaps
from top to bottom: Four Hi-C contact heatmaps from individuals showing variable 3D chromatin architecture, a heatmap in blue showing the
degree of variation measured across LCLs, and a second heatmap in blue showing variable cells in the matrix at IHW-FDR < 0.1 (var = variable,
ns = not significant). Standard tracks from top to bottom (zoomed in on chr15:95,482,152-98,025,591; hg19): BAC probes used for FISH experiment
in panels d and e, variable DI regions called using all 20 LCLs, variable DI regions called using just 11 YRI LCLs, 12 DI tracks from four different
individuals. For each individual, DI tracks are shown from two biological replicates and from Hi-C data merged across both replicates. As indicated
to the right of the tracks, two individuals have strong upstream contact skew in the boxed regions (YRI-4, YRI-8), while the other two individuals
have weak or no upstream contact skew in that region (YRI-3, YRI-5). b The number of testable bins and significantly variable regions for each 3D
chromatin phenotype examined here. c Significance of pairwise overlap between different sets of variable regions. p values calculated by chi-
square test. Additional details in the “Methods” section and Additional file 1: Figure S5 and S6. d Boxplots showing the distance between
indicated probe sets in four different LCLs. Probe labels same as in panel a. p values calculated by two-sided Wilcoxon rank-sum test. Number of
nuclei measured for each LCL and probe pair, from left to right, are 140, 91, 111, 70, 128, 124, 219, 70. e Representative images of nuclei
corresponding to panel d. f Blue line shows the fraction of variable matrix cells distributed across a range of interaction distances. Black shows
the fraction of all matrix cells distributed across the same range of interaction distances. g Top panel shows the percentage of all variable matrix
cell anchor bins that overlap variable INS, FIRE, INS, or PC1 regions, respectively. Middle panel is similar to top, but only including variable matrix
cell anchor bins that were also tested for INS, FIRE, INS, or PC1 variability. The shade of blue is scaled with overlap percentage. Bottom panel
shows the statistical significance of overlaps as calculated by chi-square test, and plotted with same color scale as (c)
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samples (Additional file 5: Table S6). These variable bins
are skewed toward shorter contact distances (Fig. 2f, Add-
itional file 1: Figure S6d-e), likely due in part to higher
read counts and thus increased power to detect biological
variability at these distances. We observed that the anchor
regions of variable matrix cells overlap with variable regions
of DI, INS, FIRE, and PC1 more often than would be ex-
pected by chance (Fig. 2g; Additional file 1: Figure S6f). We
also found that variable matrix cells tend to occur in groups
(Figs. 2a and 3a; Additional file 1: Figure S6 g), suggesting
that variation in 3D chromatin conformation often affects
more than one adjacent genomic window. We did not find
evidence that variable matrix cells are skewed toward inter-
TAD or inter-compartment interactions (Additional file 1:
Figure S6 h-i).

Coordinated variation of the 3D genome, epigenome, and
transcriptome
To investigate the relationship between variation in 3D
chromatin conformation and gene regulation, we ana-
lyzed multiple published datasets including RNA-seq,
ChIP-seq, and DNase-seq data generated from some of
the same LCLs in our study (Additional file 2: Table S2).
Strikingly, for all external datasets examined here, we
see an enrichment for regions where 3D chromatin con-
formation across individuals is correlated with measures
of genome activity in the same 40-Kb bin (see example
in Fig. 3a and Additional file 1: Figure S7a). To assign a
level of statistical significance to these observations, we
approximated the null distribution by randomly permut-
ing the sample labels of external datasets, thus disrupt-
ing the link between Hi-C and ChIP/RNA/DNase-seq
data from the same individual, but not changing the
underlying data structure (see schematic in Additional
file 1: Figure S7b). We used these permutations to calcu-
late the bootstrap p values in Fig. 3b and Additional
file 1: Figure S8.
Among variable PC1 regions, we observed a significant

enrichment for regions at which PC1 values across individ-
uals are positively correlated with histone modifications in-
dicative of transcriptional activity including H3K27ac,
H3K4me1, and H3K4me3 (Bootstrap p < 0.0001; Fig. 3b).
The correlations between PC1 and marks of transcriptional
activity occur in the expected direction, i.e., higher PC1
values are associated with higher gene expression and more
active histone modifications. Similar correlations were ap-
parent in two distinct sets of ChIP-seq data generated by
different groups [40, 42], and observed whether we use vari-
able regions identified across all 20 LCLs or only across the
11 unrelated YRI LCLs (Additional file 1: Figure S8). At
variable FIRE regions, we similarly found an abundance of
regions where FIRE score is positively correlated with
marks of cis-regulatory activity including H3K27ac and
H3K4me1 (Bootstrap p < 0.0001; Fig. 3b, Additional file 1:

Figure S8), consistent with the previously reported relation-
ship between FIREs and cis-regulatory activity [19, 46]. At
variable DI and INS regions, these metrics tend to be corre-
lated with histone modification levels as well as CTCF and
Cohesin subunit SA1 binding (Bootstrap p < 0.0001; Fig. 3b,
Additional file 1: Figure S8), which are known to influence
these 3D chromatin features [16, 51, 52]. For INS, the rela-
tionship is directional as expected such that higher CTCF/
Cohesin binding corresponds to more contact insulation
(i.e., lower INS score). However, at variable DI regions, the
correlations are not as clearly directional, consistent with
current understanding that the direction of DI (i.e., up-
stream vs downstream contact bias) is arbitrary relative to
strength of CTCF/Cohesin binding. We performed similar
analysis on variable cells in the contact matrix and found
that the interaction frequency in these matrix cells tends to
be correlated with epigenetic or transcriptional properties
of one or both corresponding “anchor” bins (Bootstrap
p < 0.0001; Fig. 3b, Additional file 1: Figure S8). Importantly,
for all types of variable regions examined here, we found cor-
relation with RNA-seq signal across individuals, indicating
that at least in some regions, variation in 3D chromatin fea-
tures accompanies variation in gene expression.
We examined further whether 3D chromatin conform-

ation at a given variable region tends to be correlated
with a single epigenomic property, or with several prop-
erties simultaneously. We found that PC1, FIRE, INS,
and DI values across individuals are often correlated
with multiple features of active regions (e.g., H3K27ac,
H3K4me1, RNA), and anti-correlated with the repressive
H3K27me3 histone modification (Fig. 3c, d). For DI and
INS, where numerical direction of the score is not as
clearly linked to magnitude of gene regulatory activity,
we note a larger set of regions with anti-correlation to
features of active regions (e.g., H3K27ac, H3K4me1,
RNA) and positive correlation with H3K27me3 (Fig. 3e,
f). These results demonstrate that variation in 3D chro-
matin conformation is often accompanied by variation
in transcriptional and regulatory activity of the same
region.

Genetic loci influencing 3D chromatin conformation
To examine genetic influence on 3D chromatin con-
formation, we first considered genetic variants overlap-
ping CTCF motifs at chromatin loop anchors [14],
because disruption of these CTCF motifs by genome en-
gineering has been shown to alter chromatin looping
[23]. We focused on SNPs at key positions in anchor
CTCF motifs (“motifs disrupting SNPs,” defined as SNPs
in positions in the CTCF Position Weight Matrix
(PWM) where a single base has a probability of > 0.75,
Fig. 4a). We observed a significant linear relationship be-
tween SNP genotype and the strength of corresponding
loops (p = 7.6e−5 by linear regression; Fig. 4b, c). We
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also examined whether individuals heterozygous for an-
chor disrupting SNPs showed allelic imbalance in loop
strength. To facilitate this analysis, we used the Haplo-
Seq [43] method to generate chromosome-span haplo-
type blocks for each LCL (Additional file 6: Table S7).

Although few Hi-C read pairs overlap a SNP allow-
ing haplotype assignment (mean 7.89% of usable
reads per LCL), we did observe that the haplotype
bearing the stronger motif allele tends to show more
reads connecting the corresponding loop anchors

Fig. 3 Coordinated variation of the 3D genome, epigenome, and transcriptome. a Example of a variable region where 3D chromatin phenotypes are
correlated with epigenomic and transcriptomic phenotypes (chr6:126,280,000-131,280,000; hg19). Six triangular heatmaps from top to bottom: Hi-C
contact heatmaps from four individuals, variability matrix, and variable cells in the matrix (var = variable, ns = not significant). Standard tracks below
show 3D chromatin, epigenomic, and transcriptomic properties from four individuals in zoomed region (chr6:127,680,918-129,416,097; hg19). All ChIP-
seq and RNA-seq data in the Figure from Kasowski et al. [42]. b Density plots show the distribution of Spearman correlation coefficients at variable
regions between the epigenomic or transcriptomic phenotype indicated in the top margin and the 3D chromatin phenotype indicated in the right
margin of panel. Gray lines show the distributions from 100 random permutations selected at random from the 10,000 permutations performed (due
to plotting limitations). ***p < 0.0001 by permutation test as described in the “Identifying biological variability in Hi-C contact matrices” section, which
applies to all observations in this panel except RNA-seq at INS regions (p = 0.0018) and RNA-seq at FIRE regions (p = 0.0096). c Heatmap showing
Spearman correlation coefficients between PC1 and multiple epigenomic/transcriptomic phenotypes, arranged by k-means clustering (k = 4). Tick
marks to the right show boundaries between clusters. Each row (N = 518) is one variable PC1 region, limited to the subset of variable PC1 regions that
contain RNA-seq signal and at least one peak in at least one individual for each ChIP-seq target included here (H3K27ac, H3K4me1, H3K27me3, CTCF,
Cohesin). d Similar to c, showing correlations with FIRE at N = 132 variable FIRE regions. e Similar to c, showing correlations with DI N = 265 variable DI
regions. f Similar to c, showing correlations with INS at N = 154 variable INS regions
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Fig. 4 (See legend on next page.)
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(p = 5.9e−4 by one-sided t test of mean > 0.5; Fig. 4d).
Our observation that CTCF motif SNPs can modu-
late 3D chromatin conformation is consistent with
similar findings reported from ChIA-PET data [53]
and a recent report of haplotype-associated chroma-
tin loops published while this manuscript was in
preparation [27].
Motivated by these preliminary observations of genetic

effects on 3D chromatin conformation, we next searched
directly for QTLs associated with Hi-C-derived features of
3D chromatin conformation. Power calculations indicated
that, despite limited sample size, we were moderately pow-
ered to find QTLs with strong effect sizes using a linear
mixed effects model (LMM) approach that incorporates
Hi-C replicates for each LCL (Additional file 7: Table S8).
We conducted a targeted search for QTLs associated with
variation in FIRE, DI, INS, and contact frequency. We did
not include PC1 in the QTL search because we reasoned
that individual genetic variants would be more likely to
have detectable effects on local chromatin conformation ra-
ther than large-scale features like compartmentalization.
For this same reason, we used modified versions of DI
scores and INS calculated with a window size of 200 Kb up-
stream and downstream of the target bin, rather than the
standard 2-Mb window size for DI [16] or 480-Kb window
size for INS [8]. We also limited our QTL searches to the

11 unrelated YRI individuals in our study (referred to below
as the “discovery set”) to mitigate potential confounding ef-
fects of differences between populations.
For each 3D genome phenotype under study, we iden-

tified a list of testable bins that showed appreciable
levels of signal in at least one individual in our discovery
set (see the “Identification of QTLs” section for full de-
scription of test bin and SNP selection). We also identi-
fied a unified set of test SNPs with at most one tag SNP
among those in perfect LD in each 40-Kb bin. For each
testable bin, we measured the association of the given
3D chromatin phenotype with all test SNPs in that bin.
In cases where multiple SNPs in the same bin were asso-
ciated with the phenotype, we selected only the most
significantly associated SNP per bin for our final QTL
list. Ultimately, at FDR < 0.2, we identified 387 FIRE-
QTLs (i.e., testable bins in which FIRE score is associ-
ated with at least one SNPs in that bin; comprising 6.6%
of tested bins), 545 DI-QTLs (4.2% of tested bins), and
911 INS-QTLs (12.0% of tested bins) (Fig. 4e, Additional
file 1: Figure S9a, Additional file 8: Table S9). For ana-
lysis of DI-QTLs, we separated the testable bins into
those with upstream bias and those with downstream
bias (see the “FIRE, DI, and INS QTL searches” section),
because we observed a “Simpson’s paradox”, which oc-
curs when a trend present in different groups of data

(See figure on previous page.)
Fig. 4 A genetic contribution to variations in 3D chromatin conformation. a A CTCF Position Weight Matrix (PWM) is shown (Jaspar MA0139.1).
Eight positions boxed by dashed lines have probability > 0.75 for a single base. We refer to SNPs at these positions as “motif disrupting SNPs.”
Alleles matching the consensus base in the motif are labeled “strong motif alleles (S),” and alleles matching any other base are labeled “weak
motif alleles (W).” b Boxplot shows the distribution of interaction frequencies at loops with exactly one anchor containing a CTCF motif
disrupting SNP (N = 138), separated according to genotype. For each SNP, loop strengths are normalized to the mean value of the heterozygous
genotype (WS). There is significant linear relationship between normalized loop strength and genotype by linear regression (p = 7.6e-5). c
Aggregate contact map shows the average difference in interaction frequency per loop between SS and SW genotypes (top; N = 117 SNPs), and
between SW and WW genotypes (bottom; N = 31 SNPs). The cross point of dotted lines indicates the 40-Kb bin containing the loop being
evaluated. d Histogram shows the allelic imbalance in reads connecting loop anchors on the S vs W haplotypes in WS heterozygotes (N = 135
loops). The mean percentage of reads on the S haplotypes is significantly larger than 0.5 (p = 5.9e−4 by one-sided t test). e Line plots show signal
of FIRE-QTL, INS-QTL, and DI-QTL by QTL genotype using 11 independent YRI individuals. Each plot shows the indicated phenotype as lines with
light color, medium color, and dark color representing average signal across LCLs with the low signal genotype, medium signal genotype, and
high signal genotype, respectively. For DI-QTLs, we split all 40-Kb QTL bins into two groups, based on the presence of either upstream DI bias
(upper panel) or downstream DI bias (bottom panel). f For C-QTLs, an aggregate contact plot analogous to panel c is used to show the average
difference in BNBC corrected interaction frequency (“Δ log(norm contacts)”) between the high and medium contact genotypes (top; N = 138
interactions), and between the genotypes medium and low genotypes (bottom; N = 94 interactions). The cross point of dotted lines indicates the
40-Kb test bin in question. g Boxplots show signal by QTL genotype using additional 6 individuals as a validation set. In each boxplot, three
boxes with light shade, medium shade, and dark shade represent the average signal in the 40-Kb QTL bin from individuals with the low signal
genotype, medium signal genotype, and high signal genotype, respectively. h Results of permutation test to evaluate the statistical significance
of results in g. The solid vertical lines show the linear regression slope values obtained from the validation set (N = 6 individuals). The gray curves
show the distributions of slope values obtained from 1000 random permutations. Corresponding bootstrap p values indicated in the upper left
corner of each subpanel. i Line plot shows the fraction of “Y” QTL SNPs with nominal significance (p < 0.5) when tested for association with
phenotype “X” (“nominal fraction”). Yellow diamonds show nominal fractions for phenotype “Y” QTLs. Red dashed lines show nominal fractions
for all SNPs tested for association with phenotype “X,” and open triangles show nominal fractions for all SNPs tested for association with
phenotype “Y.” Black circles and lines indicate the median and middle 95% range of 10,000 permutations in which SNPs were selected at random
from the phenotype “Y” test SNPs. The number to the right of each line indicates the bootstrap p value (fraction of permutations with a nominal
fraction higher than observed for “Y” QTLs). j QQ plot shows FIRE-QTL search results, including all SNPs tested for FIRE association (black points,
N = 128,137), and several subsets of FIRE-QTL test SNPs as follows: SNPs also tested for DI association (light green, N = 46,784), SNPs also tested for
INS association (light red; N = 6238), SNPs also tested for contact frequency association (light blue; N = 69,847), DI-QTLs (dark green, N = 152), INS-
QTLs (dark red, N = 60), C-QTLs (dark blue, N = 53)
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disappears when all data is combined (Additional file 1:
Figure S9b).
We also searched for QTLs associated directly with

interaction frequency in individual contact matrix cells
using an LMM approach like that described above for
FIRE, DI, and INS. The large number of cells in a Hi-C
contact matrix, together with limited sample size, made
a true genome-wide QTL search impractical. Thus, we
limited our QTL search for contact matrix QTLs (“C-
QTLs”) to matrix cells that showed significant biological
variability in our samples, as described above. We tested
for association in our discovery set between the BNBC-
normalized interaction frequency in these variable
matrix cells and the genotype of test SNPs in either of
the two anchor bins. We selected at most one QTL SNP
per matrix cell, using association p value to prioritize, fi-
nally yielding 345 C-QTL SNPs associated with 463
matrix cells at an IHW-FDR threshold of 0.2 (Fig. 4f,
Additional file 1: Figure S9d, Additional file 9: Table S9).
To evaluate the reproducibility of each of these QTLs

sets (FIRE-QTLs, DI-QTLs, INS-QTLs, and C-QTLs),
we examined Hi-C data from six individuals who were
not included in our discovery set (we refer to these six
individuals as our “validation set”; Additional file 2:
Table S2). These individuals come from four different
populations (CEU, PUR, CHS, YRI) and include a child
of two individuals in the discovery set (YRI-13/NA19240
is a child of YRI-11/NA19238 and YRI-12/NA19239). In
each case, we found a significant linear relationship in
the validation set between QTL genotype and the corre-
sponding 3D chromatin phenotype (p = 1.8e−14 for
FIRE-QTLs, p = 2.5e−7 for DI-QTLs at positive DI bins,
p = 0.008 for DI-QTLs at negative DI bins, p = 3e−4 for
INS-QTLs, p = 4.1e−9 for C-QTLs; Fig. 4g). To provide
an additional and more stringent estimate of the signifi-
cance of these observations, we performed permutations
by randomly selecting sets of test SNPs and measuring
the linear relationship between genotype and phenotype
in the validation set. In all cases, the observed relation-
ship was also significant by this more conservative boot-
strap approach (p < 0.001 for FIRE-QTLs, p < 0.001 for
DI-QTLs at positive DI bins, p = 0.041 for DI-QTLs at
negative DI bins, p = 0.005 for INS-QTLs, p = 0.006 for
C-QTLs; Fig. 4h). We also found that the linear relation-
ship between genotype and phenotype at these QTLs is
generally consistent with Hi-C data analyzed at a variety
of resolutions (i.e., bin sizes), and when the data is nor-
malized with Knight-Ruiz (KR) matrix balancing [14] in-
stead of the HiCNorm method we used for the rest of
our analysis (Additional file 1: Figure S9c).
There is little direct overlap between our different

QTL sets (Additional file 1: Figure S9e), likely due to
limited power and different testable bins for each metric.
However, we observed genotype-dependent INS at FIRE-

QTLs and C-QTLs and genotype-dependent FIRE score
at INS-QTLs and DI-QTLs (Additional file 1: Figure
S10a), suggesting that overlapping signal between differ-
ent types of 3D chromatin QTLs might exist below the
level of genome-wide significance. To more rigorously
assess overlapping signal between our QTL sets, we ex-
amined shared association below the threshold of mul-
tiple test correction, inspired by similar approaches
reported elsewhere [54]. Our underlying assumption in
this analysis is that genetic association studies of two dif-
ferent phenotypes “X” and “Y” with overlapping (or par-
tially overlapping) genetic architecture may have few
direct QTL overlaps due to limited power or different
study designs, but the shared signal should become ap-
parent when results below the level of genome-wide sig-
nificance are considered. We thus calculated the fraction
of QTLs for a given phenotype X that exceed a nominal
level of significance (p < 0.05) when tested for association
with a different phenotype Y. We refer to this value as
the “nominal fraction” below and in Fig. 4i. To assign a
level of statistical significance to these nominal fractions,
we approximated the null distribution by calculating
nominal fractions for 10,000 sets of SNPs selected ran-
domly from among all test SNPs. In almost all pairwise
comparisons between 3D chromatin QTL types exam-
ined here, we found that the observed nominal fractions
are significantly higher than fractions that would be ex-
pected in the absence of shared genetic architecture
(Fig. 4i, j).

Contribution of 3D chromatin QTLs to molecular
phenotypes and disease risk
Given the correlation observed between 3D chromatin
variation and epigenome variation, we next investigated
whether 3D chromatin QTLs could modulate both the
epigenome and 3D genome. Here, we used published
ChIP-seq data for histone modifications (H3K4me1,
H3K4me3, H3K27ac) in a large set of 65 YRI LCLs [39],
DNase-seq data from 59 YRI LCLs [38], and CTCF
ChIP-seq data from 15 CEU LCLs [55]. In many cases,
we found a significant linear relationship between 3D
chromatin QTL genotypes and these different epigenetic
phenotypes, even when only considering individuals in
these datasets were not included in our QTL discovery
or validation sets (Fig. 5a, Additional file 1: Figure S10b;
54/65 individual for histone modification ChIP-seq, 48/
59 for DNase-seq, and all 15/15 for CTCF ChIP-seq).
For example, at FIRE-QTLs, the high-FIRE allele is also
associated with higher levels of active histone modifica-
tions and chromatin accessibility (Fig. 5a). We note that
although these associations are all significant by linear
regression, only H3K27ac and H3K4me1 passed more
conservative permutation testing in which the null distri-
bution is approximated by selecting random SNPs from
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Fig. 5 Contribution of 3D chromatin QTLs to other molecular and organismal phenotypes. a Boxplots show signal for epigenetic phenotypes
separated by genotype at FIRE-QTLs (top row), C-QTLs (middle row), and INS-QTLs (bottom row). Epigenetic signals averaged across all peaks in 40-Kb
bin. Linear regression p and beta values shown above each plot. p value < 0.05 in bold, others in italics. b Line plots shows beta values of linear
relationships between QTL genotypes indicated to the left and epigenetic phenotype indicated above each subpanel. Yellow diamonds show beta
values for the true QTLs sets as shown in (a) or Additional file 1: Figure S10b. Black circles and lines indicate the median and middle 95% range,
respectively, of 1000 permutations in which SNPs were selected from those tested in the QTL search indicated to the left of each line. The number to
the right of each line indicates the bootstrap p value (fraction of permutations with abs(beta) higher than observed for the true QTL set). Yellow boxes
highlight values < 0.05. c Genome browser view (chr2:201,222,342-201,386,844; hg19) showing examples of a DI-QTL (chr2:201333312) and FIRE-QTL
(chr2:201254049). All signals plotted as a function of DI-QTL genotype (L = Low DI, M =medium DI, H=High DI). Gray boxes highlight regions where
epigenetic signals stratify by DI-QTL genotype. d Left subpanel shows the enrichment values for 3D QTL SNPs with nominal significance in the
indicated GWAS study calculated as follows: (fraction of indicated 3D QTL SNPs with nominal significance in the indicated GWAS)/(fraction of 3D test
SNPs with nominal significance in the indicated GWAS). Asterisks mark values with p < 0.05 by chi-square test (middle panel), and permutation test
(right panel). Right panel shows the proportion of 1000 random SNP subsets (selected from the tested SNPs) with enrichment values higher than the
indicated true QTL set. Dotted lines mark p < 0.05. e QQ plot shows the results of UC GWAS with all tested SNPs shows as black points, and two
subsets as follows: SNPs also tested in our INS-QTL search (light red), and SNP called as INS-QTLs or in perfect LD with INS-QTLs in the same 40-Kb bin
(dark red). f QQ plot shows the results of IBD GWAS with all tested SNPs shows as black points, and two subsets as follows: SNPs also tested in our
FIRE-QTL search (light green), and SNP called as FIRE-QTLs or in perfect LD with FIRE-QTLs in the same 40-Kb bin (dark green)
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the full set of tested SNPs (Fig. 5b). At INS-QTLs, the
slope of these genotype-phenotype relationships is
inverted such that higher levels of histone modifications
and chromatin accessibility are associated with the low
INS score allele (i.e., more contact insulation), although
only the association with chromatin accessibility is sig-
nificant by both linear regression and permutation test
(p = 3.6e−35 by linear regression, bootstrap p = 0.018;
Additional file 1: Figure S10b,d). The genotype-phenotype
relationships observed at DI-QTLs are not as clear as for
other metrics (Fig. 5b, Additional file 1: Figure S10a), but
this may be expected because increased histone modifica-
tions or chromatin accessibility can influence DI in either
direction, potentially confounding this type of aggregate
analysis. Anecdotally, we did observe examples of individ-
ual DI-QTLs where genotype appears to correlate with
epigenomic phenotype (Fig. 5c). At C-QTLs, the high-
contact alleles show higher levels of the enhancer-
associated mark H3K4me1 in the two anchor bins that
connect the corresponding matrix cell. Moreover, the
fraction of C-QTLs with p < 0.05 association with
H3K4me1 in a published set of H3K4me1-QTLs is signifi-
cantly higher than expected in the absence of shared gen-
etic association (p = 6.9e−6 by chi-square test, bootstrap
p = 0.028; Additional file 1: Figure S10c, d).
Finally, we sought to examine whether 3D chromatin

QTLs might contribute risk for complex diseases. There
are 44 direct overlaps between our 3D chromatin QTLs
(or SNPs in perfect LD in the same 40-Kb bin) and
NHGRI-EBI GWAS catalog [56] (Additional file 9: Table
S10). However, the significance of these direct overlaps
is hard to assess given the differences between the popu-
lations and study designs. Thus, we examined overlaps
below the level of genome-wide significance by looking
at “nominal fractions” (described above) to assess the
shared signal between association studies. We compiled
full summary statistics for large GWAS (> 50,000 indi-
viduals) of immune-relevant phenotypes including
Crohn’s disease (CD), ulcerative colitis (UC), and inflam-
matory bowel disease (IBD) [57], as well as studies of the
non-immune phenotypes height [58] and body mass
index (BMI) [59]. We observed striking enrichments for
INS-QTLs among variants with nominal associations for
UC and IBD risk (1.67- and 1.65-fold, respectively), and
these enrichments are significant by both chi-square and
permutation tests (INS-QTL with UC chi-square
p = 2.5e−16 and bootstrap p = 0.024; INS-QTL with IBD
chi-square p = 5.5e−17 and bootstrap p = 0.018; Fig. 5d,
e). We also note a trend in which FIRE-QTLs show
nominal association with UC and IBD (1.36- and 1.58-
fold enrichment, respectively), although these observa-
tions fall just below the threshold of significance by the
more stringent permutation test (FIRE-QTL with UC
chi-square p = 7.6e−6 and bootstrap p = 0.090; FIRE-

QTL with IBD chi-square p = 4.2e−8 and bootstrap
p = 0.056; Fig. 5d, f).

Discussion
Our results provide the first systematic characterization
of chromatin conformation variation across unrelated in-
dividuals at the population level (Fig. 6). The most im-
portant finding of our study is that genetic variation
influences multiple features of 3D chromatin conform-
ation, and does so to an extent that is detectable even
with limited sample size and Hi-C resolution. To the
best of our knowledge, this represents the first report of
QTLs directly associated with 3D chromatin conform-
ation. However, there are limitations to our QTL search
that are important to note here. First, the small sample
size means that our power to detect QTLs is limited,
and thus, our QTL sets should not be considered com-
prehensive, even within the targeted regions over which
the QTL searches were performed. Second, in order to
identify QTL sets that could be analyzed in aggregate,
we tolerated elevated type I error by using an FDR
threshold of 0.2 (as done previously for molecular QTL
studies with limited power [40]). While the QTL sets re-
ported here likely contain false positives, the abundance
of true positives is suggested by aggregate analyses
showing that the genotype-phenotype relationships are
reproduced in an independent set of six individuals, and
consistent genotype-phenotype relationships at 3D QTLs
are apparent in orthogonal epigenomic datasets gener-
ated independently by other labs on material isolated in-
dependently, and from different LCLs/individuals.
Another key finding of our study is that regions which

vary in 3D chromatin conformation between individuals
also tend to vary in measures of transcriptional and
regulatory activity. This supports the existence of shared
mechanisms that underlie variation in 3D chromatin
conformation, transcription, and epigenomic properties.
Our data does not resolve whether variation in higher-
order chromatin conformation leads to variation in gene
expression and histone modification state, or vice versa.
However, we suspect that no single mechanism or causal
hierarchy applies to all regions of the genome with vari-
ation in one or more of these molecular phenotypes.
Our QTL results suggest that, in at least some cases,
genetic variation is likely the underlying mechanism that
leads to the observed multi-omic variation. This raises
the question of whether 3D chromatin QTLs are funda-
mentally the same as QTLs previously described for
other molecular phenotypes (e.g., eQTLs, dsQTLs, histo-
neQTLs; collectively referred to below as “molQTLs”)
or, rather, represent a separate set of QTLs not detect-
able with other methods. This question is difficult to an-
swer in the present study for two main reasons: (1) Our
power is limited, and thus, we cannot say with
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confidence that a given SNP is not a 3D chromatin QTL.
Many molQTL studies also have limited power and are
thus also prone to high type II error (i.e., false negatives).
(2) Our QTL searches, like most molQTL studies, are
not truly genome-wide because testable regions and test-
able SNPs are pre-selected to limit the search space.
These selection criteria can differ widely across studies,
making direct QTL-to-QTL comparisons challenging. The
observation of genotype-dependent epigenetic signal at 3D
chromatin QTLs suggests that at least some 3D chromatin
QTLs could also be detected as other types of molQTLs if
those studies had enough statistical power. However, the
limited overlap between 3D chromatin QTLs and published
molQTLs (even when considering SNPs with only a nom-
inal level of significance) suggests that the QTLs with lar-
gest effects on 3D chromatin conformation are not
necessarily the same as those with large effects on other
molecular phenotypes, and vice versa. Therefore, it is likely
that QTL studies directed toward different types of molecu-
lar phenotypes (including 3D chromatin features) are likely
to be complimentary rather than redundant.
We expect that future studies with higher resolution

Hi-C data and larger sample size will be important to
identify functional variants modulating 3D chromatin

conformation, and to further dissect the mechanistic re-
lationships between genetics, 3D chromatin conform-
ation, and other molecular phenotypes. We anticipate
that these studies will continue to reveal cases in which
perturbation of 3D chromatin conformation is a molecu-
lar mechanism through which disease-associated genetic
variants confer disease risk. The present study provides
initial discoveries of genetic influence on 3D chromatin
conformation and an analytical framework that we be-
lieve will facilitate future efforts to unravel the molecular
basis of genetic disease risk.

Methods
Hi-C data generation
Hi-C was performed as previously described [13]. We note
that all Hi-C experiments were performed using a “dilu-
tion” HindIII protocol, rather than the newer “in situ” ver-
sion of the protocol, for consistency because data
generation began before the invention of in situ Hi-C. In
addition, the resolution of 40 Kb used here for most ana-
lysis was determined primarily by sequencing depth rather
than choice of a restriction enzyme. Thus, even if a 4-
cutter like MboI had been used, the prohibitive cost of

Fig. 6 Summary of findings related to 3D chromatin variability and genetic influence. a There are thousands of regions that vary between
individuals in one or more features of 3D chromatin conformation. b These regions tend to vary across individuals in multiple 3D chromatin
features as well as in histone modifications, TF binding, and gene expression. c We identify hundreds of QTLs associated with 3D chromatin
variation at a subset of these variable regions. d SNPs that disrupt CTCF binding motifs modulate chromatin loop strength
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sequencing would have prevented us taking advantage of
the additional possible resolution.

Hi-C data processing
Alignment with WASP
Read ends were aligned to the hg19 reference genome
using BWA-MEM [60] v0.7.8 as single-end reads with
the following parameters: -L 13,13. We used the WASP
pipeline [40, 45] to control for potential allelic mapping
biases, with some modifications to account for unique
aspects of Hi-C data: BWA-MEM can produce split
alignments where different parts of a read are aligned to
different parts of the genome. This is critical for Hi-C
data, because a read can span a Hi-C ligation junction
between two interacting fragments. In the case of a split
alignment, BWA-MEM will mark the higher-scoring
alignment as the primary alignment. For Hi-C data, this
is not ideal—we want the five-prime-most alignment
(before the ligation junction) to be the primary align-
ment. To account for this, we further processed the
alignments from BWA-MEM to select the five-prime-
most alignment in cases where one read was split. Reads
without an alignment to the five-prime end of the read
were filtered out, as were alignments with low mapping
quality (< 10). The WASP pipeline was then used to gen-
erate alternative reads by flipping the allele in reads
overlapping SNPs, and these reads were then realigned
using the same pipeline. As input to WASP, we included
all SNPs and indels present in the PUR individuals in
our set (HG00731, 732, 733), all CHS individuals in
1000 genomes (we included all CHS to account for the
fact that no 1000 genomes genotype calls were available
for HG00514), all YRI individuals in 1000 genomes (we
included all YRI individuals to account for the fact that
no 1000 genomes genotype calls were available for
GM19193), and the H1 cell line [21] (to facilitate uni-
form processing and comparisons between LCLs and
H1-derived datasets). After alignment of the alternative
reads, alignment locations of the original reads and alter-
native reads were compared (using WASP), and only the
original reads for which all alternative reads aligned at
the same location with same CIGAR string were kept.
Reads overlapping indels were removed. Reads were then
re-paired, and only pairs in which both reads survived
this filtering were kept. PCR duplicates were removed
using Picard tool (http://broadinstitute.github.io/picard/)
with default parameters. To ensure that our adapted
WASP pipeline removed allelic mapping biases effectively,
we simulated all possible 100-bp single-end reads span-
ning SNPs in our LCLs for chromosome 22 and aligned
them back to the genome using our adapted WASP pipe-
line. We found that no SNPs depart from 50/50 mapping
ratio between reference and alternative allele in these
simulations.

We also took steps to remove any potential artifacts
due to HindIII polymorphisms. Hi-C data was obtained
by cutting the genome with HindIII, so we reasoned that
SNPs or indels that disrupt existing HindIII sites or cre-
ate novel HindIII sites could lead to differential cutting
of two alleles and thus the appearance of differential
contact frequency. To mitigate these potential artifacts,
we identified all HindIII sites that would be disrupted or
created by genetic variants present in our samples, and
removed all reads within 1 Kb of these polymorphisms
in all individuals.

Contact matrix calculations
Matrices were generated and normalized as previously
described [21, 61]. Briefly, intra-chromosomal read pairs
were divided into 40-Kb bin pairs based on five-prime
positions. The number of read pairs connecting each
pair of 40-Kb bins was tallied to produce contact matri-
ces for each chromosome. Raw counts in the contact
matrices were then normalized using HiCNorm [61] to
correct for known sources of bias in Hi-C contact matri-
ces (GC content, mappability, fragment length) [62].
Bins that are unmappable (effective fragment length, GC
content, or mappability is 0) were assigned NA values.
These normalized matrices were further quantile nor-
malized across samples to account for differing read
depths and mitigate potential batch effects. One such
quantile normalized matrix was generated for each
chromosome in each replicate, as well as in each sample
(replicates pooled together). We eliminated chromo-
somes X and Y from all downstream analyses due to the
gender differences between our samples. For KR norm
matrices used in Additional file 1: Figure S9, we used
the Juicer pipeline to generate matrices and performed
normalization using Juicebox tools [63].

PC1 score
PC1 scores were computed using methods defined previ-
ously [13]. Briefly, quantile normalized matrices for each
chromosome were transformed to observed/expected (O/E)
matrices by dividing each entry in the matrix by the ex-
pected contact frequency between regions in that matrix at
a given genomic distance. For a given matrix, the expected
contact frequencies were computed by averaging contact
frequencies at the same distance in that each matrix. The
O/E matrices were further transformed to Pearson correl-
ation matrices by the “cor” function in R and eigen vectors
(principal components) were computed using the “cov”
function in R. Generally, the first eigenvector (“PC1”) reflects
A/B compartmentalization. However, for some chromo-
somes, we have seen that the second or third eigenvector
sometimes reflects compartmentalization, while the first
eigenvector reflects other features like the two chromosome
arms. To identify such cases, we examined the first three
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eigenvectors for each chromosome in each replicate by cal-
culating their correlation with the gene density, because the
true compartmentalization pattern is correlated with gene
density, while other properties like chromosome arms are
not. We required that PC1 show the highest correlation with
gene density among the first three eigenvectors in every rep-
licate. If this was not the case for a given chromosome, we
eliminated that chromosome from all downstream PC1 ana-
lyses in all individuals. Six chromosomes were eliminated in
this way: chr1, chr9, chr14, chr19, chr21, and chr22. For the
chromosomes that passed this filter, the sign of the first
eigenvector, which is arbitrary, was adjusted such that posi-
tive PC1 values correspond to compartment A (higher gene
density). We note that gene density was not used in the ac-
tual PCA calculations, but was only used to orient the other-
wise arbitrary direction of PC1, and to systematically
eliminate problematic chromosomes where we could not be
sure that the first eigenvector captures compartmentalization
as opposed to other chromosome features.

Directionality index
Directionality index was computed as previously de-
scribed [16]. Briefly, upstream and downstream contacts
within 2-Mb window for each 40-Kb bin were counted,
and chi-square statistics were calculated under equal as-
sumption. The sign of the chi-square statistics was ad-
justed such that positive values represent upstream bias.
For some bins, there are more than five NA bins within
2-Mb window, and DI for those bins are not calculated.
As noted in the main text, we made a slight variation of
these DI scores for the QTL searches in which DI was
recalculated using a window size of 200 Kb to capture
more local features.

Insulation score
Insulation scores were computed as previously described
[7] with some adjustments. Briefly, contacts linking up-
stream and downstream 400-Kb windows for each 40-
Kb bin were calculated in the O/E matrices instead of
raw matrices. We further divided the contact frequency
by the average of upstream and downstream 400-Kb
windows, to account for differences in contact density
across the chromosome. The insulation scores were then
ranged from 0 to 1, representing absolute insulation and
no insulation respectively. Insulation scores for bins
in which more than 50% of matrix cells in the 400-Kb
window have NA values were not computed. For the
QTL search, we re-calculated insulation scores using
200-Kb window.

TADs calling
TADs were called using the same approach as described
previously [16]. DI values for each 40-Kb bins were used
to build a Hidden Markov Model and predict the

probability upstream bias, no bias, and downstream bias.
Regions switching from upstream bias to downstream
bias were called as boundaries.

FIRE
We first calculated FIRE score for each of 20 individuals,
as described in our previous study [19]. Specifically, we
mapped the raw reads to the reference genome hg19 as
described above. Next, we removed all intra-
chromosomal reads within 15 Kb and created 40-Kb raw
Hi-C contact matrix for each individual for each auto-
some. For each 40-Kb bin, we calculated the total num-
ber of intra-chromosomal reads in the distance range of
15–200 Kb. We then filtered bins as follows, starting
from 72,036 autosomal 40-Kb bins: First, we removed
40-Kb bins with zero effective fragment size, zero GC
content, or zero mappability score [61]. Next, we filtered
out 40-Kb bins within 200 Kb of the bins removed in
the previous step. We further filtered out 40-Kb bins
overlapping with the chr6 MHC region (chr6:28,477,
797-33,448,354; hg19), which has extremely high SNP
density that can make it difficult to correct for allelic
mapping artifacts. This left 64,222 40-Kb bins for down-
stream analysis. Next, we applied HiCNormCis [19] to
remove systematic biases from local genomic features,
including effective fragment size, GC content, and
mappability. The normalized total number of cis intra-
chromosomal reads is defined as FIRE score. We further
performed quantile normalization across multiple indi-
viduals using R package “preprocessCore.” The final
FIRE score is log transformation log2(FIRE score + 1)
and converted into a Z-score to create a mean of 0 and
standard deviation of one. To identify significant FIRE
bins in each individual, we used one-sided p value <
0.05. Ultimately, merging across all individuals, we iden-
tified 6980 40-Kb bins which are FIRE bin in at least one
of 12 YRI individuals. Consistent with our previous find-
ings [19], we observed significant enrichment of
GM12878 typical enhancers and super enhancers among
these 6980 40-Kb FIRE bins (Additional file 1: Figure
S1d). GREAT analysis [64] further showed immune-
related biological pathways and disease ontologies are
enriched in these 6980 40-Kb FIRE bins (Additional
file 1: Figure S1e).

Comparison of intra-individual vs inter-individual
variation
To estimate variability between replicates, we computed
the Pearson correlation coefficient for all pairs of repli-
cates for each score (DI, INS, FIRE, and PC1). Repli-
cate pairs then can be divided into two groups based on
whether they are from the same individuals or different
individuals, as illustrated in Additional file 1: Figure S4c.
We then tested if the distribution of Pearson correlation
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coefficients were different comparing two groups. Simi-
lar analysis was performed for contact matrices. For con-
tact matrices, we calculated the Pearson correlation
coefficient for each distance and each chromosome sep-
arately as shown in Fig. 1c.

Variable regions
F test for variable bins
To identify regions that are variable across genomes, we
used a linear normal model with an empirical Bayes vari-
ance estimator using the “eBayes” in limma [48] function
with default parameters. First, values for each 40-Kb bin
in hg19 reference genome were calculated for each
metric tested (DI, FIRE, INS, PC1) as described above.
DI, PC1, and INS scores were calculated based on con-
tact matrices quantile normalized across 40 replicates.
FIRE scores were calculated based on raw counts using
HiCNormCis [19] and then quantile normalized across
40 replicates. Second, we filtered out bins that are not
testable. Specifically, FIRE scores were only tested for
bins that are FIRE regions (p < 0.05) in any of 40 repli-
cates. DI scores were only tested for bins where strong
biases are observed (abs(DI) > 10.82757, which corres-
pond to chi-squared test p value 0.001) in any of 40 rep-
licates. INS were only tested for bins where strong
insulation is observed (z-score transformed INS score <
− 1) in any of 40 replicates. No similar filterers were per-
formed for PC1 scores. Third, we filtered out any bins
that overlapping large SVs (> 10,000 bp) to avoid effect
caused by SVs. Specifically, for FIRE, INS, and DI scores,
bins that are within 200 Kb, 400 Kb, and 2Mb respect-
ively upstream or downstream of large SVs were re-
moved. For PC1 scores, bins directly overlapping large
SVs were removed. Lastly, we applied limma standard
model with individual as a fixed factor and eBayes cor-
rection. To estimate empirical false-positive rate (FDR),
we bootstrapped replicates to calculate the number of
false positives in random background. Briefly, we ran-
domly selected 40 or 22 replicates with replacement for
LCL20 and YRI11 respectively and identified variable re-
gions as mentioned above. We performed 1000 permuta-
tions and calculated empirical FDR as the average
positive hits in 1000 permutations divided by number of
hits in real data.

Normalizing Hi-C contact matrices using BNBC
normalization
To directly compare individual Hi-C contact matrix cells
across samples, we sought to remove unwanted per-matrix-
cell variation owing to date of processing or other unknown
“batch” effects. To this end, we developed Bandwise
Normalization and Batch effect Correction (BNBC), de-
scribed and evaluated in a separate manuscript (preprint on
bioRxiv https://www.biorxiv.org/content/10.1101/214361v1

). A brief description follows. For each chromosome and
for each strata of distance between loci (a matrix “band,”
hence the term “bandwise”), we correct for unwanted vari-
ation by taking the log counts-per-million-transformed
values of all samples and generating a matrix whose entries
are the observations for that chromosome’s matrix band
across all samples (columns indexes samples and rows in-
dexes contact matrix cells with anchor bins separated by a
fixed distance). We then quantile normalize this matrix and
regress out the impact of known batches (here, date of pro-
cessing) using ComBat [65] (specifically we correct both
mean and variance). This procedure essentially conditions
on genomic distance. We correct the majority of each con-
tact matrix for each chromosome for each sample: we cor-
rect all but the 8 most distal matrix bands, for which we
set all values to 0. The choice of the last 8 bands is
empirical and reflects the small number of observations in
each band matrix. The procedure is implemented in the
bnbc package available through Bioconductor (http://www.
bioconductor.org/packages/bnbc). Correction of contact
matrices was performed on replicate-level data using the
following LCLs: GM18486 (YRI-1), GM18505 (YRI-2),
GM18507 (YRI-3), GM18508 (YRI-4), GM18516 (YRI-5),
GM18522 (YRI-6), GM19099 (YRI-7), GM19141 (YRI-8),
GM19204 (YRI-10), GM19238 (YRI-11), GM19239 (YRI-
12), GM19240 (YRI-13), HG00731 (PUR-1), HG00732
(PUR-2), HG00512 (CHS-1), HG00513 (CHS-2). We note
that NA19239 (YRI-12) replicate 1 and NA19240 (YRI-13)
replicate 2 were excluded because the BNBC algorithm re-
quires multiple samples from a given experimental batch to
estimate batch effect parameters.

Identifying biological variability in Hi-C contact matrices
To identify contacts with significant levels of between-
individual variability, we employed the following proced-
ure, which mimics the analysis for INS, DI, FIRE, and
PC1, on contact matrices normalized by BNBC (see the
“Normalizing Hi-C contact matrices using BNBC
normalization” section). For each contact matrix cell
(representing loci separated by less than 28Mb, this is a
subset of the matrix cells normalized by BNBC), we used
a linear model with individual modeled as a fixed factor,
note we have 2 growth replicates for almost every individ-
ual. We used a parametric likelihood ratio test (equivalent
to an F test) to test whether there was significant
between-individual variation. We used the IHW frame-
work [50] with the distance between anchor bins as in-
formative covariate, to increase power and estimate false
discovery rate. We used a FDR of 10% as significance
threshold, resulting in 115,817 contact matrix cells with
significant biological variability across the autosomes. To
estimate effect size (depicted in Figs. 2a and 3a and Add-
itional file 1: Figure S5), we used a linear mixed effects
model with individual as random effect, to decompose the
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variance into between-individual variability (biological)
and within-individual variability (technical). As the meas-
ure of biological variability in these figures, we used the
estimated biological variance. For this analysis, all 16 sam-
ples we normalized using BNBC were used.

Correlation with other datasets
To examine correlation between 3D genome organization
and other genome features, we re-identified variable re-
gions with the same pipeline mentioned above using only
individuals for which data is available for other genome
features, and then computed the Spearman correlation co-
efficient between 3D genome metrics (DI, INS, PC1, and
FIRE) and other genome features (RNA-seq, ChIP-seq,
and DNase-seq) for each variabel 40-Kb bin. Signals for
each 40-Kb bins were calculated by averaging signals for
the bin. Specifically, signals for ChIP-seq were the average
signal of all peaks within the bin, signals for RNA-seq
were the average FPKM of all genes in the bin, and DNase
signals were average signal for each base pair in the bin. In
some cases, serval consecutive bins were identified as vari-
able. In these cases, we only kept the bin with strongest
signal for other genome features among consecutive bins.
To generate random backgrounds, we permutated individ-
ual labels for the same set of bins and recomputed
Spearman correlation coefficient. Ten thousand such per-
mutations were used to calculate the statistical signifi-
cance of departure from the null hypothesis in which the
median value of true correlation values and permutated
correlation values are equal. Similar analysis was per-
formed for variable matrix cells with the following modifi-
cations. First, we used the variable matrix cells in the
preceding section “Identifying biological variability in Hi-
C contact matrices.” Second, to correlate matrix-cell-level
contacts with bin-level DNase and ChIP-seq signals, we
sued the anchor bins of variable matrix cells. Since each
anchor bin may belong to more than one matrix cells, we
only used each bin once and selected the matrix cell
value with the highest Spearman correlation coefficient.
Exactly same approach was performed during permuta-
tion to ensure a fair comparison.

Phasing variants
Phasing of variants was performed based on HaploSeq
pipeline [43]. Briefly, (1) variants were filtered to keep
only bi-allelic SNPs heterozygous in a given individual;
(2) aligned Hi-C bam files were realigned and recali-
brated using GATK 3.4.0 [66] based on SNPs in the in-
dividual; (3) filtered SNPs and realigned bam files were
then used as input to run HAPCUT [67]; (4) results
from HAPCUT were further filtered to keep only the
largest haplotype block and combined with homozygous
alt SNPs as input for imputation using Beagle 4.0 [68]
using 1000 Genome Phase 3 data excluding individual to

phase as reference panel; (5) results from Beagle were
then combined with results of HAPCUT by removing
conflicting phased SNPs. For all auto chromosomes ex-
cept 1 and 9 in 18 out 20 individuals, we were able to
obtain a single haplotype block. For chromosome 1 and
9, two arms were phased separately because of large het-
erochromatin region surrounding centromere. X
chromosome was only phased for female individuals. We
excluded NA19193 and HG00514 from phasing because
of the lack of available genotypes through 1000 genomes
at the time of phasing. We evaluated accuracy of phasing
in three probands in trios (NA19240, NA12878,
HG00733) and found phasing results are of very high ac-
curacy (~ 97.71%). Specifically, we calculated accuracy as
percentage of correctly phased variants among total
phased variants. Only variants whose transmission from
parents can be unambiguously identified were used in
calculation of accuracy where at least one parent is
homozygous. Detailed statistics for phasing are listed in
Additional file 5: Table S6.

CTCF motif variation and looping strength
GM12878 loops and motif positions were obtained from
Rao et al. [14] (GSE63525_GM12878_primary+replicate_
HiCCUPS_looplist_with_motifs.txt.gz; N = 9448 HiC-
CUPS loops). We limited our analysis to autosomal cis
loops in which a CTCF motif in one of the anchor re-
gions overlaps a SNP (N = 572). To evaluate the impact
of motif disruption, we first identified eight “key” posi-
tions in the CTCF PWM (Jaspar MA0139.1) [69] in
which a single base has higher than 0.75 probability. We
refer to SNPs at these positions in motif occurrences
with one allele matching the high-probability base as
“motif disrupting SNPs.” We refer to alleles matching
the consensus base in the motif as strong motif alleles
(S), and alleles matching any other base as weak motif
alleles (W). There are N = 142 loops with a motif dis-
rupting SNP in a convergently oriented CTCF motif,
which we refer to below as testable loops. For each test-
able loop, we extracted the Hi-C interaction frequency
in the loop bin from each LCL and classified as either
“WW,” “SW,” or “SS” depending on the individual’s
genotype at the corresponding motif disrupting SNP. To
enable aggregation of data across different SNPs, we set
the mean “SW” interaction frequency for each SNP to 1
and normalized all values for that SNP accordingly.
These values are plotted in Fig. 4b. In addition, for each
testable loop we extracted a submatrix including the
loop bin as well as 15 bins upstream and 15 bins down-
stream. Submatrices with missing values were discarded.
For each SNP, we calculated the mean submatrix for
each genotype and then subtracted submatrices to calcu-
late the difference in each matrix cell per “W” allele (i.e.,
SS-SW and SW-WW). These differences were then
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averaged across all SNPs and plotted in Fig. 4c. Subma-
trices with missing values were discarded. For the allelic
analysis in S/W heterozygous individuals, we used
chromosome-span phasing results (see the “Variable re-
gions” section) to split the Hi-C reads from each
chromosome in each LCL into two separate haplotypes.
Specifically, we required at least one base pair overlap
with phased heterozygous SNPs with high base calling
score (> 13) and high mapping quality (> 20). Reads
overlapping indels or containing SNPs from both haplo-
types were not used. Approximately 7.89% of Hi-C reads
covered a heterozygous variant and could thus be
assigned to one of the two haplotypes. The accuracy of
haplotype assignment was evaluated by fraction of
homologous-trans (h-trans) read, which contain SNPs
from both haplotypes. On average, ~ 1% reads were h-
trans, suggesting high quality of the assignment. For
each testable loop, we defined 40-Kb windows around
the center of each loop anchor region and calculated the
number of reads connecting these two anchor windows
(“loop reads”) on each haplotype. For each heterozygous
LCL, we then calculated the percentage of loop reads
that occur on the haplotype containing the S allele at
the motif disrupting SNP anchor. We required that at
least 10 total loop reads were present for a given loop in
a given heterozygous LCL, leading to a total of 218 data
points from 105 different loops for inclusion in Fig. 4d.

Identification of QTLs
Testable bins
To identify testable bins for FIRE-QTL, DI-QTL, INS-
QTL, and C-QTL searches, we began with 72,036 auto-
somal 40-Kb bins based on reference genome hg19. We
eliminated “unreliable” bins with effective length, GC
content, or mappability equal to zero [62], resulting in
66,597 bins remaining. We further removed any 40-Kb
bins within 200 Kb of an unreliable bin, resulting in 64,
337 40-Kb bins. We also removed bins covering the chr6
MHC locus (hg19: chr6:28,477,797-33,448,354), which is
extremely polymorphic and may lead to complex map-
ping artifacts that are difficult to correct for. To elimin-
ate false signals in Hi-C data that could arise from large
structural variations (SVs), we obtained SVs from the
1000 Genomes consortium [35] (ftp://ftp-trace.ncbi.nih.
gov/1000genomes/ftp/phase3/integrated_sv_map/ALL.
wgs.integrated_sv_map_v2.20130502.svs.genotypes.vcf.
gz) and removed bins which overlap one or more struc-
tural variants of any size previously annotated in these
individuals (N = 123,015 SVs), or within 200 Kb of large
structural variations (> 10 Kb, N = 1253 SVs). These fil-
tering steps yielded a set of 51,511 testable bins, which
represent a common starting point for FIRE-QTL, DI-
QTL, INS-QTL, and C-QTL searches as described
below.

Testable SNPs
We began with a list of 15,765,667 variants among all
20 LCL individuals (Additional file 2: Table S3). We
kept 14,177,284 variants among 11 unrelated YRI in-
dividuals and removed all indels, HindIII site poly-
morphisms, multi-allelic SNPs, and SNPs with minor
allele frequency (MAF) < 5%. We also required that
remaining SNPs were within the 51,511 testable bins
described above and that both alleles were present in
at least 2 individuals in the discovery set individuals.
(N = 4,132,791 SNPs remaining). Finally, where mul-
tiple SNPs in the same bin were in perfect LD among
11 unrelated YRI individuals, we selected one with
the smallest genomic position (to avoid the introduc-
tion of a random selection that would not be
perfectly reproducible), ultimately yielding 1,304,404
potentially testable SNPs that served as a common in-
put set to all QTL searches.

Power calculations
To explore the power of our approach and data, we
performed a Monte Carlo-based power calculation.
Specifically, we varied four variables: (1) the minor al-
lele frequency of a variant, (2) the effect size of geno-
type (a fixed effect), (3) the variability between subjects
(a random effect), and (4) the variability of the resid-
uals. For contact QTLs, we also varied the mean of the
Hi-C contact frequency in question. For analyses re-
ported, we fixed the number of replicates per subject to
be 2 (consistent with our study design). We explored a
variety of settings for these parameters to assess power
as each variable changes (see Additional file 6: Table
S7). Each setting tested was chosen to reflect the distri-
bution of observed values in our real Hi-C data. For
each configuration of parameters, we performed the fol-
lowing simulation: We simulated genotypes by ran-
domly sampling a set of alleles (one allele per subject)
from a binomial distribution parameterized by the
number of subjects and the MAF; we repeated this
process twice and create per-subject genotypes by add-
ing the results of the sampling of alleles. We simulated
per-subject random effects, and per-sample residuals.
To obtain a given sample’s simulated Hi-C contact
matrix value, we added the mean Hi-C contact matrix
value to that sample’s simulated genotype (multiplied
by the pre-specified effect size), the specific subject’s
random intercept, and the sample’s random residual.
After performing this for all samples, we then fitted the
same LMM model used in our QTL search. We re-
peated this simulation and model fitting process 1000
times and computed power as the fraction of times the
null hypothesis that the effect of genotype is equal to 0
is rejected at a nominal p value of 0.05.
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FIRE, DI, and INS QTL searches

FIRE tested bins and SNPs We limited our FIRE QTL
search to the subset of testable bins that were called as
FIRE in at least one YRI LCL (N = 5822 FIRE test bins),
and the subset of testable SNPs therein (N = 128,137
FIRE test SNPs).

INS tested bins and SNPs For the INS-QTL search, we
examined 328,530 test SNPs with 12,976 variable INS
bins (see the “F test for variable bins” section).

DI tested bins and SNPs For the DI-QTL search, we
examined 181,950 test SNPs with 7590 variable DI bins
(see the “F test for variable bins” section). For the DI-
QTL search, we further classified each DI bin based on
which whether it showed stronger upstream or down-
stream bias, because we saw a Simpson’s paradox when
we considered them together (see Additional file 1: Fig-
ure S10b). This was done as follows: for each bin, we
evaluated the DI score in each of 11 unrelated YRIs and
identified the DI score among these individuals with the
largest absolute value. We defined a bin as “upstream DI
bias” if the DI score with the highest absolute value was
positive, or “downstream DI bias,” if the DI score with
the highest absolute value was negative. Only 37/7590
bins (0.4%) had individuals with both positive and nega-
tive DI values.

LMM QTL searches For each test SNP, we identified
the 40-Kb bin it belongs to, and fitted a linear mixed ef-
fects model, using FIRE, DI (200-Kb window; see the
“Directionality index” section), or INS score (200-Kb
window; see the “Insulation score” section) in each bio-
logical replicate as the response variable and genotype of
that testable SNP as the explanatory variable. Since two
biological replicates from the same individual are
dependent, we used an individual-specific random effect
to specifically characterize such within-individual de-
pendence. We used the R package “nlme” and R func-
tion “gls” to fit the linear mixed effects model. Code is
available here: http://renlab.sdsc.edu/renlab_website//
download/iqtl/. The quantile-quantile plots (QQ plot)
showed only minor genomic inflation (median p value =
0.4821, lambda = 1.0864 for FIRE-QTLs; median p
value = 0.4864, lambda = 1.0649 for upstream-biased DI-
QTLs; median p value = 0.4828, lambda = 1.0826 for
downstream-biased DI-QTLs; median p value = 0.4865,
lambda = 1.0646 for INS-QTLs). The linear mixed effects
model identified 476, 315, 315, and 1092 SNPs with false
discovery rate (FDR) less than 0.20 for FIRE, upstream-
biased DI, downstream-biased DI, and INS, respectively.
When more than one SNP in the same bin was identi-
fied, we selected the SNP with lowest p value among

them to be included in the final QTL sets. After this fil-
tering, we ended up with 387 candidate FIRE-QTLs, 268
candidate upstream-biased DI-QTLs, 277 downstream-
biased DI-QTLs, and 911 candidate INS-QTLs. As a
control for each of these QTL searches, we randomly
shuffled the score in question (i.e., FIRE, DI, or INS)
among all 11 YRI individuals and performed QTL
searches on this permuted data. In each of these tests,
we found no SNPs associated with the permuted scores
at FDR < 0.20.

C-QTL search
To find QTLs affecting Hi-C contact strength, we first
identified 115,187 Hi-C contact matrix cells exhibiting
substantial biological variability as described in the
“Normalizing Hi-C contact matrices using BNBC
normalization” section, and constrained our QTL search
to these cells. We then intersected these contact cells
with 1,304,404 testable SNPs by requiring a SNP to sit
in one anchor bin of one of these variable matrix cells.
We also filtered out matrix cells to ensure both anchor
bins of the matric cell are among 51,511 testable bins. In
total, we obtained 3,109,039 tests involving 687,655
SNPs and 54,880 matrix cells on all 22 autosomes. For
each test, we used the BNBC normalized data described
in the “Variable regions” section, but used only the 11
unrelated YRI individuals with genotypes available and
fit a linear mixed effects model in which genotype is a
fixed effect and subject is a random intercept. We then
used “lmerTest” package in R to estimate p values for
the fixed effect of genotype [70]. We used the IHW
framework [50] to estimate FDR, with the distance be-
tween anchor bins as an informative covariate, and call
any matrix cell with FDR < 0.2 as significant. We further
filtered significant tests by selecting the most significant
SNPs per matrix cell and kept the leftmost SNPs among
SNPs in perfect LD in two anchor bins of the matrix cell.
After filtering, we ended up with 463 tests involving 345
SNPs and 463 matrix cells. To make the aggregate con-
tact plots in Fig. 4g, we recoded the genotypes based on
the direction of effect such that 0, 1, 2 refer to the geno-
types containing 0, 1, or 2 alleles associated with the
increased phenotype, respectively. Next, to avoid aggre-
gating the same submatrix multiple times, we filtered by
(1) selecting only the most significant matrix cell associ-
ated with each QTL and (2) selecting only the most sig-
nificant QTL associated with each anchor bin (in some
cases the same bin anchors multiple matrix cells associ-
ated with different QTL SNPs). This filtering left 165
unique matrix cell QTL interactions for plotting. For
each matrix cell, we then extracted a submatrix includ-
ing 25 bins upstream and 25 bins downstream. Subma-
trices with missing values were discarded. For each
QTL, we then calculated the mean submatrix values for
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each genotype and then subtracted submatrices to calcu-
late the difference in interaction frequency between the
1 and 0 genotypes, and between the 1 and 2 genotypes.
These differences were then averaged across QTLs and
plotted in Fig. 4g.

Validation of QTLs in additional individuals
Our validation set included six unrelated individuals not
included in the discovery set: NA12878, NA19240,
HG00512, HG00513, HG00731, and HG00732. For each
QTL, we collected the genotype among six additional in-
dividuals, and the corresponding FIRE, DI, or INS
scores. Note that a small fraction of QTLs have missing
genotypes in these six individuals (coded as “-1”), and
these missing data points were eliminated from valid-
ation analysis. We examined the distributions of scores
for each genotype. For each QTL type (i.e., FIRE, DI, or
INS), we found that the same direction of effect ob-
served in the discovery set is observed on average in the
validation set. To assess the significance of this observa-
tion, we approximated the null expectation as follows.
For FIRE-QTLs, for example, we started from all 128,
137 FIRE test SNPs and 5822 FIRE test bins. Note that
in our discovery set, we identified 387 FIRE-QTLs, each
in a different 40-Kb bin. To create a random control
SNP group, we first randomly selected 387 40-Kb bins
from all 5822 FIRE test bins. Next, within each select
bin, we randomly selected one SNP and combined all
these 387 selected SNPs into a control SNP group. We
then tested their SNP effect on the six additional indi-
viduals. We repeated such sampling with replacement
1000 times, to create a null distribution of positive and
negative SNP effect, respectively. We performed the
same type of permutations for DI and INS. Similar ana-
lysis was performed for C-QTLs with a few modifica-
tions. First, we only used replicates from NA19420,
HG00512, HG00513, HG00731, and HG00732 as ex-
plained in the “Variable regions” section. Second, 1000
random permutations were performed by sampling
matrix cells instead of bins. Third, we used values of bio-
logical replicates separately instead of as merged data
because the BNBC normalization is performed at the
level of replicates.

Examining epigenetic variation at FIRE, DI, INS, and C-QTLs
To examine epigenetic variation at 3D genome QTLs,
we re-analyzed DNase-seq data from 59 LCLs [38], his-
tone modification ChIP-Seq data (H3K27ac, H3K4me1
and H3K4me3) for 65 LCLs [39], and CTCF ChIP-seq
data from 11 LCLs [55]. These data were re-mapped
using the WASP pipeline to control for allelic mapping
artifacts and calculating the signal in 40-Kb bins as de-
scribed above in the "Alignment with WASP" section.
We examined the effect of genotype at FIRE, DI, INS, or

C-QTLs on DNase-seq and ChIP-seq signal by linear re-
gression. As a control, we randomly selected the
matched number of SNPs with the same approach de-
scribed in the “Validation of QTLs in additional individ-
uals” section and re-did such validation analysis. We
repeated such random sampling 1000 times to create the
empirical null distribution of no genetic effect. For C-
QTLs, we used the sum of epigenetic features in two
anchor bins to calculate correlation with contact
frequency.

Nominal fraction analyses
Comparing between 3D chromatin QTL types
To compare between different 3D chromatin QTLs, we
took the raw test results for each QTL set and projected
other 3D QTLs into the test results. For example, in
Fig. 4j, we selected subset of SNPs that are DI-QTLs and
plotted them (dark green dots) using p values from
FIRE-QTLs along with all SNPs tested in the FIRE-QTL
search (black dots). We also used all tested SNPs in the
DI-QTL search (light green dots) as a control set. To as-
sign significance to the overlap, we compared the frac-
tion of SNPs with nominal significance (p < 0.05) in each
set: (1) DI-QTL tested SNPs that were not significant
QTLs and (2) DI-QTLs. We calculated p values for this
comparison by chi-square test. To rule out the effect of
sampling bias when selecting a small number of SNPs,
we also performed permutation. In each permutation,
we randomly selected the same number of SNPs as the
real QTL set (from the full set of tested SNPs) and cal-
culated the fraction with nominal significance. We then
computed bootstrap p values using 10,000 such permu-
tations under the null hypothesis that the fraction of
nominal significance is the same between QTLs and ran-
dom selected SNPs. For C-QTLs, one SNP may be tested
against multiple matrix cells, so we only kept the most
significant p value for each SNP to avoid biases toward
SNPs with multiple tests.

Comparing 3D chromatin QTLs to other molQTLs
Similar approaches were used to assess overlap between
3D chromatin QTLs and other molQTLs. We obtained
full test results (all tested SNPs with the p values) from
previous molQTL studies and projected 3D chromatin
QTLs into those test results. We calculated the fraction
of nominal significance and used chi-square test to
evaluate significance between 3D-QTLs and non-3D-
QTLs. Similarly, we performed bootstrap to estimate sig-
nificance empirically. One modification is that we ex-
tended our QTL sets by incorporating all SNPs in
perfect LD with the same 40-Kb bin because we may not
use the same tagging SNP in our study as used in other
studies. To ensure a fair comparison, we performed the
same extension for the control sets of all tested SNPs.
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Comparing 3D chromatin QTLs to GWAS
Comparison with the GWAS results was performed in
the same manner as described in the “Comparing 3D
chromatin QTLs to other molQTLs” section for other
molQTLs. Instead of test results for other molQTLs, we
used summary statistics from previous GWAS.

FISH
Cell preparation for FISH
Approximately 100,000 cells were adhered to center of
PDL-coated coverslips (Neuvitro, GG-22-15-PDL) by
placing 100 uL of cells at 1 × 10 [6] cells/mL. Cells on
coverslips were incubated for an hour at 37 °C, carefully
washed with PBS, and fixed with 4% paraformaldehyde
in 1× PBS for 10 min. PFA was quenched with 0.1M
Tris-Cl, pH 7.4 for 10 min, washed with PBS, and stored
in 1× PBS at 4 °C for up to 1month.

BAC probe labeling and preparation
All BAC clones were ordered from the BACPAC Re-
source Center at the Children’s Hospital Oakland Re-
search Institute: “U” probe is RP11-74P5, “C” probe is
RP11-337 N12, and “D” probe is RP11-248M23. BAC
DNAs were labeled with either Chromatide Alexa Fluor
488-5 dUTP (Invitrogen, C-11397) or Alexa Fluor 647-
aha-dUTP (Invitrogen, A32764) using nick-translation
kit (Roche, 10976776001), and incubated in 15 °C for 4
h. The nick-translation reaction was deactivated using
1 μL of 0.5 M EDTA, pH 8.0, and heated for 10 min at
65 °C. The probes were then purified using illustra Pro-
beQuant G-50 Micro Columns (GE Healthcare,
28903408) and eluted to a concentration of 20 ng/μL.
Probes were mixed with Human Cot-1 DNA (Invitrogen,
15279011) and salmon sperm (Invitrogen, 15632011),
and precipitated with 1/10th volume of 3M sodium
acetate, pH 5.2, and 2.5 volume of absolute ethanol for
at least 2 h at − 20 °C. Probes were then spun down,
washed with cold 70% ethanol, resuspended in formam-
ide and 40% dextran sulfate in 8X SSC, and incubated at
55 °C.

Hybridization
Cells on coverslips were blocked with 5% BSA and 0.1%
Triton X-100 in PBS for 30 min at 37 °C and washed
twice with 0.1% Triton X-100 in PBS for 10 min each
with gentle agitation at room temperature. Cells were
permeabilized with 0.1% saponin and 0.1% Triton X-100
in PBS for 10 min at room temperature. Next, they were
incubated in 20% glycerol in PBS for 20 min, freeze-
thawed three times with liquid nitrogen, and incubated
in 0.1M hydrogen chloride at room temperature for 30
min. Cells were further blocked for 1 h at 37 °C in 3%
BSA and 100 μg/mL RNase A in PBS. Cells were perme-
abilized again with 0.5% saponin and 0.5% Triton X-100

in PBS for 30 min at room temperature. Lastly, they
were rinsed with 1× PBS and washed with 2× SSC for 5
min. For hybridization of probes, the prepared probes
were denatured at 73 °C for 5 min in water bath. Cells
were denatured in a two-step process in a 73 °C water
bath: 2.5 min in 70% formamide in 2× SSC and 1min in
50% formamide in 2× SSC. Denatured probes were
transferred onto microscope slides, and coverslips were
placed on top with cell-side facing down. The coverslips
were sealed with rubber cement and incubated overnight
at 37 °C in a dark, humid chamber. Next day, coverslips
were carefully removed and transferred onto a 6-well
plate. Cells were washed at 37 °C with gentle agitation,
twice with 50% formamide in 2× SSC for 15 min and
three times with 2× SSC for 5 min. The cells were then
stained with DAPI (Invitrogen, D1306), mounted on
microscope slides with ProLong Gold Antifade Mount-
ant (Invitrogen, P36930), sealed with nail polish, and
imaged.

Microscope and analysis
Images were acquired with DeltaVision RT Deconvolu-
tion Microscope at UC San Diego’s department of
neuroscience (acquired with award NS047101). Captured
images were processed using the TANGO [71] plugin in
ImageJ for quantitative analysis. Each FISH experiment
contained two probes labeled with different color dyes
(either U-C or C-D). We limited our analysis to nuclei
containing 2 labeled foci for each color (4 total foci),
allowing us to more confidently distinguish foci in cis
from those in trans. Distances were measured from the
center of one color focus to the center of the closest
focus of the other color.

Re-analysis of public datasets
Analysis of ChIP-seq data from Kasowski et al. and
McVicker et al.
Raw fastq files were downloaded from SRA database for
each experiment (SRP030041 and SRP026077, respect-
ively). Reads were aligned to hg19 reference genome
using BWA MEM (Kasowski) or BWA ALN [60] v0.7.8
(McVicker) with WASP pipeline [40, 45] to eliminate al-
lelic mapping bias. Only reads with high mapping quality
(> 10) were kept. PCR duplicates were removed using
Picard tools v1.131 (http://broadinstitute.github.io/pic-
ard). MACS2 [72] v2.2.1 was then used to call peaks
using corresponding input files. For CTCF and SA1, de-
fault parameters were used for MACS2. For H3K27ac,
H3K4me1, and H3K4me3, peak calling was done using
“--nomodel” parameter because we do not expect sharp
peaks for histone modifications. For H3K27me3 and
H3K36me3, peak calling was done using “--nomodel
--broad” parameter. Bigwig files were generated by
MACS2 using fold enrichment for viewing in genome
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browser. All Kasowski data were processed in pair-end
mode, and both replicates were merged for analysis. All
McVicker data were processed in single-end mode, and
the pooled input data were used for all samples because
there are no individual input files. To compute signals in
peaks, we used a set of merged peaks across all individ-
uals for each mark.

Analysis of RNA-seq data from Kasowski et al.
Raw fastq files were downloaded from SRA database
(SRP030041). Reads were aligned to hg19 reference gen-
ome using STAR [73] v2.4.2a with the WASP pipeline in
pair-end mode to eliminate allelic mapping bias. Gen-
code [74] v24 annotation was used to construct STAR
index and computing FPKM. Only uniquely mapped
reads were kept. Cufflinks [75] v2.2.1 was applied to compute
FPKM values. Both replicates were merged for analysis.

Analysis of DNase-seq data from Degner et al.
Raw fastq files were downloaded from SRA database for
each experiment (SRP007821). Reads were aligned to
hg19 reference genome using BWA ALN with the
WASP pipeline in single-end mode to eliminate allelic
mapping bias. Only reads with high mapping quality (>
10) were kept. PCR duplicates were removed using Pic-
ard tools. Bigwig files were generated using makeUCSC-
file commands in homer tools [76] v4.9.1.

Analysis of ChIP-seq data from Ding et al.
Raw fastq files were downloaded from SRA database for
each experiment (SRP004714). Reads were aligned to
hg19 reference genome using BWA MEM v0.7.8 with
the WASP pipeline to eliminate allelic mapping bias.
Only reads with high mapping quality (> 10) were kept.
PCR duplicates were removed using Picard tools. We
performed quality control for CTCF ChIP-seq data by
FRIP (Fraction of Reads In Peaks) and used datasets with
FRIP > 10. Bigwig files were generated using bamCover-
age commands in deepTools [77] v2.3.3. To compute
signals in peaks, we used the merged CTCF peaks from
Kasowski data.

Analysis of ChIP-seq data from Grubert et al.
Bigwig files and peaks for H3K27ac, H3K4me1, and
H3K4me3 were downloaded from GEO database
(GSE62742). Peaks for each mark were merged and then
used to compute the averaged signal.
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