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Abstract

Single-cell RNA sequencing (scRNA-seq) offers new opportunities to study gene expression of tens of thousands of
single cells simultaneously. We present DeepImpute, a deep neural network-based imputation algorithm that uses
dropout layers and loss functions to learn patterns in the data, allowing for accurate imputation. Overall,
DeepImpute yields better accuracy than other six publicly available scRNA-seq imputation methods on
experimental data, as measured by the mean squared error or Pearson’s correlation coefficient. DeepImpute is an
accurate, fast, and scalable imputation tool that is suited to handle the ever-increasing volume of scRNA-seq data,
and is freely available at https://github.com/lanagarmire/DeepImpute.
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Introduction
The RNA sequencing technologies keep evolving and of-
fering new insights to understand biological systems. In
particular, single-cell RNA sequencing (scRNA-seq) rep-
resents a major breakthrough in this field. It brings a
new dimension to RNA-seq studies by zooming in to the
single-cell level. Currently, various scRNA-seq platforms
are available such as Fluidigm- and Drop-Seq-based
methods. While Drop-Seq can process thousands of cells
in a single run, Fluidigm generally processes fewer cells
but with a higher coverage. In particular, 10X Genomics’
platform is gaining popularity in the scRNA-seq com-
munity due to its high yield and low cost per cell. Con-
sequently, an increasing amount of studies have taken
advantage of these technologies to discover new cell
types [1, 2], new markers for specific cell types [1, 3, 4],
and cellular heterogeneity [4–9].
Despite these advantages, scRNA-seq data are very

noisy and incomplete [10–12] due to the low starting
amount of mRNA copies per cell. Datasets with more
than 70% missing (zero) values are frequently observed
in an scRNA-seq experiment. These apparent zero

values could be truly zeros or false negatives. The latter
phenomenon is called “dropout” [13] and is due to fail-
ure of amplification of the original RNA transcripts.
Among genes of various lengths, shorter genes were
more likely to be dropped out [14]. Such bias may in-
crease further during the subsequent amplification steps.
As a result, dropout can affect downstream bioinformat-
ics analysis significantly, such as clustering [15] and
pseudo-time reconstruction [16], as it decreases the
power of the studies and introduces biases in gene ex-
pression. To correct such issue, analysis platforms such
as Granatum [17] have included an imputation step, in
order to improve the downstream analysis.
Currently, several imputation algorithms have been

proposed, based on different principles and models.
MAGIC [18] focuses on cell/cell interactions to build a
Markov transition matrix and smooth the data. ScIm-
pute [19] builds a LASSO regression model for each cell
and imputes them iteratively. SAVER [20] is a Bayesian-
based model using various prior probability functions.
DrImpute [21] is a clustering-based method and uses a
consensus strategy: it estimates a value with several clus-
ter priors or distance matrices and then imputes by ag-
gregation. VIPER is a recent published statistical method
that looks at cell/cell interaction to fit a linear model for
each cell. Instead of using a LASSO regression as for
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scImpute, the authors use a hard thresholding approach
to limit the number of predictors [22]. Most recently,
DCA builds an auto-encoder to model the genes distri-
bution using a zero inflated negative binomial prior. To
this end, the auto-encoder tries to predict the genes’
mean, standard deviation, and dropout probability [23].
As the low quality of the scRNA-seq datasets continues
to be a bottleneck while the measurable cell counts keep
increasing, the demand for faster and scalable imput-
ation methods also keeps increasing [23–25]. While
some of these earlier algorithms may improve the quality
of original datasets and preserve the underlying bio-
logical variance [26], most of these methods demand ex-
tensive running time, impeding their adoption in the
ever-increasing scRNA-seq data space.
Here, we present a novel algorithm, DeepImpute, as

the next generation imputation method for scRNA-seq
data. DeepImpute is short for “Deep neural network Im-
putation”. As reflected by the name, it belongs to the
class of deep neural-network models [27–29]. Recent
years, deep neural network algorithms have gained much
interest in the biomedical field [30], ranging from appli-
cations from extracting stable gene expression signatures
in large sets of public data [31] to stratify phenotypes
[32] or impute missing values [33] using electronic
health record (EHR) data. In this report, we construct
DeepImpute models by splitting the genes into subsets
and build sub-networks to increase its efficacy and
efficiency. Using accuracy metrics, we demonstrate that
DeepImpute performs better than the six other recently
published imputation methods mentioned above (MAGIC,
DrImpute, ScImpute, SAVER, VIPER, and DCA). It also
improved the downstream analysis results, on clustering
using both real and simulated datasets, as well as on differ-
ential expression using a simulated dataset. We additionally
show the superiority of DeepImpute over the other
methods in terms of computational running time and
memory use. Moreover, DeepImpute allows to train the
model with a subset of data to save computing time, with
little sacrifice on the prediction accuracy. In summary, Dee-
pImpute is a fast, scalable, and accurate next generation im-
putation method capable of handling the ever-increasing
scRNA-seq data.

Results
Overview of the DeepImpute algorithm
DeepImpute is a deep neural network model that imputes
genes in a divide-and-conquer approach, by constructing
multiple sub-neural networks (Additional file 1: Figure S1).
Doing so offers the advantage of reducing the complexity
by learning smaller problems and fine-tuning the sub-
neural networks [34]. For each dataset, we select to impute
a list of genes, which have a certain variance over mean ra-
tio (default = 0.5). Each sub-neural network aims to

understand the relationship between the input genes (input
layer) and a subset of target genes (output layer) (Fig. 1).
Users can set the size of the target genes, and we set 512 as
the default value, as it offers a good trade-off between speed
and stability. As shown in Fig. 1, each sub-neural network
is composed of four layers. The input layer consists of
genes that are highly correlated with the target genes,
followed by a 256-neuron dense hidden layer, a dropout
layer with 20% dropout rate (note: not the dropout rate in
the single cell data matrix) of neurons which avoid overfit-
ting (Additional file 2: Figure S1), and the output neurons
made of the abovementioned target genes. We use rectified
linear unit (ReLU) as the default activation function and
train each sub-model in parallel by splitting the data to
train (95% of the cells) and test (5%) data. We stop the
training if the test loss does not improve for 5 consecutive
epochs or the number of epochs exceeds 500, whichever is
smaller. Because of the simplicity of each sub-network, we
observe very low variability due to hyperparameter tuning.
As a result, we set the default parameters for batch size at
64 and learning rate at 0.0001. Further information about
the network parameters are described in the “Methods”
section. In the following sections, we describe the compre-
hensive evaluations of DeepImpute.

DeepImpute is the most accurate among imputation
methods on scRNA-seq data
We tested the accuracy of imputation on four publicly
available scRNA-seq datasets (Additional file 3: Table
S1): two cell lines, Jurkat and 293T (10X Genomic); one
mouse neuron cells dataset (10X Genomics); and one
mouse interfollicular epidermis dataset deposited in
GSE67602. We compared DeepImpute with six other
state-of-the-art, representative algorithms: MAGIC,
DrImpute, ScImpute, SAVER, VIPER, and DCA. Since
the real dropout values are unknown, we evaluated the
different methods by randomly masking (replacing with
zeros) a part of the expression matrix of a scRNA-seq
dataset (Additional file 1: Figure S2) and then measure
the differences between the inferred and actual values of
the masked data. In order to mimic a more realistic
dropout distribution, we estimated the masking prob-
ability function from the data (see the “Methods” sec-
tion). We measured the accuracies using the two metrics
on the masked values: Pearson’s correlation coefficient
and mean squared error (MSE), as done earlier [20, 35].
Figure 2 shows all the results of imputation accuracy

metrics on the masked data. DeepImpute successfully re-
covers dropout values from all ranges, introduces the
least distortions and biases to the masked values, and
yields both the highest Pearson’s correlation coefficient
and the best (lowest) MSE in all datasets (Fig. 2a and c).
DCA, another neuron-network-based method, has the
second best performance after DeepImpute, based on
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both MSE and Pearson’s correlation coefficient. On the
contrary, other methods present various issues: VIPER
tends to underestimate the original values, as reflected
by the largest MSEs. scImpute has the widest range of
variations among imputed data and generates the lowest
Pearson’s correlations. MAGIC, SAVER, and DrImpute
have intermediate performances compared to other
methods. However, SAVER persistently underestimate
the values, especially among the highly expressed genes.
We further examined MSE distributions calculated on
the gene and cell levels (Fig. 2b). DeepImpute is the clear
winner with consistently the best (lowest) MSEs both at
gene and cell levels on all datasets, which are signifi-
cantly lower than all other imputation methods (p <
0.05). scImpute and VIPER give the two highest MSEs at
the cell level, whereas VIPER consistently has the highest
MSE at the gene level (Fig. 2b). Other methods are
ranked in between, with varying rankings depending on
the datasets and gene or cell level. As internal controls,
we also compared DeepImpute (with ReLU activation)

with 2 variant architectures: the first one with no hidden
layers and the second one with the same hidden layers
but using linear activation function (instead of ReLU).
As shown in Additional file 2: Figure S2, DeepImpute
(with ReLU activation) yields Pearson’s correlation coef-
ficients and MSEs that are either on par or better than
the two other variant architectures. For GSE67602 and
neuron9k datasets generated from complex animal pri-
mary tissues, DeepImpute (with ReLU activation) per-
forms better; for Jurkat and 293T datasets generated
from cell lines, the results are comparable. This suggests
that DeepImpute (with ReLU activation) handles com-
plex datasets better than its variants. In summary, Dee-
pImpute yields the highest accuracy in the datasets
studied, among the imputation methods in comparison.

DeepImpute improves the gene distribution similarity
with FISH experimental data
Another way to assess the imputation efficiency is
through experimental validation on scRNA-Seq data.

Fig. 1 (Sub) Neural network architecture of DeepImpute. Each sub-neural network is composed of four layers. The input layer is genes that are
highly correlated with the target genes in the output layer. It is followed by a dense hidden layer of 256 neurons dense layer and a dropout layer
(dropout rate = 20%). The output layer consists of a subset of target genes (default N = 512), whose zero values are to be imputed

Arisdakessian et al. Genome Biology          (2019) 20:211 Page 3 of 14



Single-cell RNA FISH is such a method that directly de-
tects a small number of RNA transcripts in a single cell.
Torre et al. measured the gene expression of a melanoma
cell line using both RNA FISH and Drop-Seq and com-
pared their distribution using their GINI coefficients (see
the “Methods” section) [36]. Similarly, we compared the
same list of genes using their GINI coefficients of RNA
FISH vs. those after imputation (or raw scRNA-seq data).
DrImpute could not handle the large cell size and was
omitted from comparison. Comparing to Pearson’s correl-
ation coefficient between RNA FISH and the raw scRNA-
seq data (− 0.260), three methods, DeepImpute, SAVER,
and DCA, have the top 3 most improved and positive cor-
relation coefficients, with values of 0.984, 0.782, and 0.732,
respectively. VIPER barely changed the GINI coefficients,
whereas scImpute had a correlation coefficient (− 0.451)
even lower than the raw scRNA-seq dataset (Fig. 3a). For
MSE, all other imputation methods achieved better
(smaller) MSEs compared to the raw scRNA-seq results
(MSE = 0.281), except VIPER which gives the same MSE
as raw data. Echoing the results of correlation coefficient,

three methods, SAVER, DeepImpute, and DCA, give the
lowest MSEs. DeepImpute is the second most accurate
method with an MSE (MSE = 0.0256), closely after SAVER
(MSE = 0.0152) and followed by DCA (MSE = 0.0436).
Additionally, we compared the distributions of each gene
before and after various imputation methods, as well as in
FISH experiments (Fig. 3b). Overall, DeepImpute (blue
curves) yields the most similar distributions to those of
FISH experiments (gray curves) for three of five genes
(LMNA, MITF, and TXNRD1), with K-S test statistics of
0.08, 0.15, and 0.18, respectively. For KDM5A, it achieved
2nd best K-S statistics 0.18, almost the same as DCA
(0.17). It does not perform as well for gene VGF (K-S stat-
istic of 0.44), which has over 40% zero values even in
RNA-FISH data (56% in raw Drop-Seq data). Altogether,
the FISH validation results clearly show that DeepImpute
improves the data quality by imputation.

DeepImpute improves downstream functional analysis
Another way to assess possible benefits of imputation is
to conduct downstream functional analysis. Towards

Fig. 2 Accuracy comparison between DeepImpute and other competing methods. a Scatter plots of imputed vs. original data masked. The x-axis
corresponds to the true values of the masked data points, and the y-axis represents the imputed values. Each row is a different dataset, and each column
is a different imputation method. The mean squared error (MSE) and Pearson’s correlation coefficients (Pearson) are shown above each dataset and
method. The rankings of these methods are shown below the figure in color coding. b Bar graphs of cell-cell and gene-gene level MSEs between the true
(masked) and imputed values, based on those in a. Asterisk indicates statistically significant difference (P < 0.05) between DeepImpute and the imputation
method of interest using the Wilcoxon rank-sum test. Color labels for all imputation methods are shown in the figure (c). Ranking of each method for all
four datasets for both overall MSE and Pearson's correlation coefficient
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this, we utilized additional experimental and simulation
datasets. We use an experimental dataset (Hrvatin) from
GSE102827, composed of 48,267 annotated primary vis-
ual cortex cells from mice and which had 33 prior cell
type labels [37]. Using the Seurat pipeline implemented
in Scanpy, we extracted the UMAP [38] components
(Fig. 4a). We then performed cell clustering using the
Leiden clustering algorithm [39], an improved version of
the Louvain algorithm [40]. We measure the accuracy of
clustering assignments using various metrics, including

the Adjusted Rand Index (ARI), the Adjusted Mutual Score
(AMS), the Fowlkes-Mallow Index (FMI), and Silhouette
Index (SI) to exam UMAP cluster shapes (Fig. 4b). Due to
the size of the Hrvatin dataset, we could not run DrImpute
and VIPER (speed issues) as well as scImpute (speed and
memory issues), but only DeepImpute, DCA, MAGIC, and
SAVER. DeepImpute manages to disentangle many clusters
(Fig. 4a), resulting in the most improved clustering metrics
compared to the scenario without imputation (Fig. 4b).
DCA, the other deep neural-network-based method, also

Fig. 3 Comparison among imputation methods using RNA FISH data. a Scatter plots of GINI coefficients from the imputed (or raw) vs. FISH data.
The x-axis is the “true” GINI coefficient as determined by FISH experiments, and the y-axis is the imputed (or raw) GINI coefficient. The Pearson’s
correlation coefficients (Pearson) and mean squared error (MSE) are shown for each method. Colors represent different genes: KDM5A (blue),
LMNA (yellow), MITF (Green), TXNRD1 (red), and VGF (brown). b Gene distributions for seven imputation methods: DeepImpute (blue), DCA
(yellow), MAGIC (green), SAVER (red), scImpute (purple), VIPER (brown), raw (pink), and FISH (gray) data
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Fig. 4 (See legend on next page.)
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slightly improves the clustering metrics (Fig. 4b). On the
contrary, MAGIC and SAVER decrease, rather than im-
proving the clustering outcome. Notable, MAGIC manages
to split many cell types but also highly distorts the data
(Fig. 4a). SAVER disentangles some clusters, but also splits
some clusters beyond the original cell type labels (Fig. 4a).
Given lack of absolute truth of class labels in experi-

mental data, we next generated a simulation data using
Splatter. This simulation dataset (sim) is composed of
4000 genes and 2000 cells, which are split into 5 cell
types (proportions: 5%/5%/10%/20%/20%/40%). DeepIm-
pute successfully separates cell types on the simulation,
closely followed by scImpute (Fig. 5a). These observa-
tions are confirmed by the evaluation metrics, where
DeepImpute achieves almost perfect scores for ARI,
AMS, and FMI and significantly increases the Silhouette
score compared to the raw data (Fig. 5b). Next, we com-
pare all seven imputation methods for their capabilities
to recover differentially expressed genes in the simula-
tion data (Fig. 5c). For each method, we extracted the
top 500 differentially expressed genes in each cell type
and compared with the true differentially expressed
genes. Overall, DeepImpute has the highest precision
(AUC = 0.893) at detecting differentially expressed genes,
compared to those of no imputation and other imput-
ation methods. All together, these results from both ex-
perimental and simulation data show unanimously that
DeepImpute improves downstream functional analysis.

DeepImpute is a fast and memory efficient package
As scRNA-seq becomes more popular and the number
of sequenced cells scales exponentially, imputation
methods will have to be computationally efficient to be
widely adopted. With such a goal in mind, we choose
the Mouse1M dataset to evaluate the computational
speed and memory usage among different imputation
methods. We use Mouse1M dataset as it has the highest
number of cells to assess how adaptive each method is.
We downsampled the Mouse1M data, ranging in size

from 100 to 50k cells (100, 500, 1k, 5k, 10k, 30k, 50k).
We ran the imputations three times and measured the
runtime (for both training and testing steps) and mem-
ory load on an 8-core machine with 30 GB of memory.
DeepImpute, DCA, and MAGIC outperformed the other
four packages on speed (Fig. 6a), and DeepImpute is the
most advantageous when the cell counts get large (> 30k).

DCA is consistently and slightly slower than DeepImpute
through all tests. The other four imputation methods
(scImpute, DrImpute, VIPER, and SAVER) are signifi-
cantly slower and consume significantly more memory
(Fig. 6b). The slow computation time of VIPER and DrIm-
pute are due to lack of parallelization. VIPER is unable to
scale beyond 5k cells within 24 h, while scImpute
exceeded the 30 GB of memory available and failed to run
on more than 10k cells. For memory, DeepImpute and
DCA, two neural-network-based methods, are the most
efficient, and their merits are much more pronounced on
large datasets (Fig. 6b). MAGIC uses a similar amount of
memory as DeepImpute and DCA on smaller datasets;
however, as the dataset size increases beyond 10k cells, it
requires significantly more memory. It hits an out of
memory error and is unable to finish the 50k cell imput-
ation on our 30GB machine. In all, judging by both com-
putation speed and memory efficiency on larger datasets,
DeepImpute and DCA tops the other five methods.

DeepImpute is a scalable machine learning method
Unlike the other imputation methods, DeepImpute first
fits a predictive model and then performs imputation
separately. The model fitting step uses most of the com-
putational resources and time, while the prediction step
is very fast. We then asked the question what is the min-
imal fraction of the dataset needed to train DeepImpute
and obtain efficient imputation without extensive train-
ing time. Hence, we used the neuron9k dataset and eval-
uated the effect of different subsampling fraction (5%,
10%, 20%, 40%, 60%, 80%, 90%, 100%) in the training
phase on the imputation prediction phase. We randomly
picked a subset of the samples for the training step and
computed the accuracy metrics (MSE, Pearson’s correl-
ation coefficient) on the whole dataset, with 10 repetitions
under each condition. Model performance improvement
begins to slow down at around 40% of the cells (Fig. 6c).
Specifically, from 40 to 100% fraction of data as the train-
ing set, the MSE decreases slightly from 0.121 to 0.116,
and Pearson’s coefficient score marginally improves from
0.880 to 0.884. These experiments demonstrate another
advantage of DeepImpute over the other competing
methods, that is, the use of only a fraction of the data set
will reduce the running time even more with little sacrifice
to the accuracy of the imputed results.

(See figure on previous page.)
Fig. 4 Comparison on effect of imputation on downstream function analysis of the experimental data (GSE102827). a UMAP plots of
DeepImpute, DCA, MAGIC, SAVER, and raw data (scImpute, DrImpute, and VIPER) failed to run due to the large cell size of 48,267 cells). Colors
represent original cell type labels as annotated. b Accuracy measurements of clustering using various metrics: adjusted Rand index
(adjusted_rand_score), adjusted mutual information (adjusted_mutual_info_score), Fowlkes–Mallows Index (Fowlkes-Mallows), and Silhouette
coefficient (Silhouette score). Higher values indicate better clustering accuracy. Bar colors represent different methods: DeepImpute (blue), DCA
(orange), MAGIC (green), SAVER (red), and raw data (brown)
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Discussion
Dropout values in scRNA-seq experiments represent a
serious issue for bioinformatic analyses, as most bio-
informatics tools have difficulty handling sparse matri-
ces. In this study, we present DeepImpute, a new
algorithm that uses deep neural networks to impute
dropout values in scRNA-seq data. We show that Dee-
pImpute not only has the highest overall accuracy using
various metrics and a wide range of validation ap-
proaches, but also offers faster computation time with
less demand on the computer memory. In both simulated
and experimental datasets, DeepImpute shows benefits in
increasing clustering results and identifying significantly
differentially expressed genes, even when other imputation
methods are not desirable. Furthermore, it is a very

“resilient” method. The model trained on a fraction of the
input data can still yield decent predictions, which can fur-
ther reduce the running time. Together, these results
demonstrate consistently and robustly that DeepImpute is
an accurate and highly efficient method, and it is likely to
withstand the tests of time, given the rapid growth of
scRNA-Seq data volume.
Through systematic comparisons, two deep-learning-

based methods, DeepImpute and DCA, show overall
advantages over other methods, between which DeepIm-
pute performs even better. Several unique properties of
DeepImpute contribute to its superior performance. One
of them is using a divide-and-conquer approach. This
approach has several benefits. First, contrary to an auto-
encoder as implemented in DCA, the subnetworks are

Fig. 5 Comparison on effect of imputation on downstream function analysis of simulated data using Splatter. This simulation dataset is composed of
4000 genes and 2000 cells, split into 5 cell types (proportions: 5%/5%/10%/20%/20%/40%). a UMAP plots of DeepImpute, MAGIC, SAVER, scImpute,
DrImpute, and raw data. Each color represents one of the 5 cell types. b Accuracy measurements of clustering using the same metrics as in Fig. 4b. Bar
colors represent different methods as shown in the figure. c Accuracy measurements of differentially expressed genes by different imputation
methods. The top 500 differentially expressed genes in each cell type are used to compare with the true differentially expressed genes in the
simulated data, over a range of adjusted p values for each method. Colors represent different methods as shown in the figure
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Fig. 6 (See legend on next page.)

Arisdakessian et al. Genome Biology          (2019) 20:211 Page 9 of 14



trained without using the target genes as the input. It re-
duces overfitting while enforcing the network to under-
stand true relationships between genes. Second, splitting
the genes into subsets results in a lower complexity in
each sub-model and stabilizing neural networks. As a re-
sult, a small change in the hyperparameters has little ef-
fect on the result. Using a single set of hyperparameters,
DeepImpute achieves the highest accuracies in all four
experimental datasets (Fig. 2a). Third, splitting the train-
ing into sub-networks results in increased speed as there
are fewer input variables in each subnetwork. Also,
training of each sub-network is done in parallel on dif-
ferent threads, which is more difficult to do with one
single neural network.
Unlike some other imputation algorithms in compari-

son, DeepImpute is a machine learning method. The
training and the prediction processes of DeepImpute are
separate, and this may provide more flexibility when
handling large datasets. Moreover, we have shown that
using only a fraction of the overall samples, one can still
obtain decent imputation results without sacrificing the
accuracy of the model much, thus further reducing the
running time. Perhaps, another advantage of DeepIm-
pute over other methods is that one can pre-train a
dataset of a cell type (or cell state) on another cell type
(or cell state) decently. This pre-training process is very
valuable in some cases, such as when the number of cells
in the dataset is too small to construct a high-quality
model. Pre-training can also largely reduce the overall
computation time, since DeepImpute spends most of the
time on training the samples. Thus, it is also a good
strategy when the new, large dataset is very similar to
the dataset used in pre-training.
An enduring imputation method has to adapt to the

ever-increasing volume of scRNA-seq data. DeepImpute
is such a method, implemented in deep learning frame-
work where new solutions for speed improvements keep
appearing. One example is the development of neural
network-specific hardware (such as tensor processing
units [41], or TPUs) which are now available on Google
Cloud. TPU can dramatically accelerate the tensor
operations and thus the imputation process. We were
already able to deploy DeepImpute in a Google Cloud

environment where TPUs are already available. Another
example is the development of frameworks that effi-
ciently use computer clusters to parallelize tasks such as
Apache-Spark [42] or Dask [43]. Such resources will
help DeepImpute and similar deep-learning methods,
such as scDeepCluster designed for clustering analysis
[44], achieve even higher peed over time and keep up
with the development of scRNA-seq technologies.

Methods
The workflow of DeepImpute
DeepImpute is a deep neural network-based imputation
workflow, implemented with the Keras [45] framework
and TensorFlow [46] in the backend. Below, we describe
the workflow in four steps: preprocessing, architecture,
training procedure, and imputation.

Preprocessing
The first step of DeepImpute is selecting the genes for
imputation, based on the variance over mean ratio
(default = 0.5), which are deemed interesting for down-
stream analyses [47, 48]. For efficiency, we adopt a
divide-and-conquer strategy in our deep learning imput-
ation process. We split the genes into N random subsets,
each with S numbers of genes, which we call “target
genes.” By default, S is set as 512. If the number of target
genes is not a multiple of this number, we round the
number of genes to impute in N + 1 subsets of deep
neural networks. The details of this step are illustrated
in Additional file 1: Figure S1.

Network architecture
For each subset, we train a neural network of four layers:
the input layer of genes that are correlated to the target
genes, a 256-neuron fully connected hidden layer with a
rectified linear unit (ReLU) activation function, a drop-
out layer (note: different from dropout data in scRNA-
Seq), and an output layer of S target genes. A gene is se-
lected to the input layer, if it satisfies these conditions:
(1) it is not one of the target genes and (2) it has top 5
ranked Pearson’s correlation coefficient with a target
gene. The dropout layer is included after the hidden
layer, as a common strategy to prevent overfitting [49].

(See figure on previous page.)
Fig. 6 Speed and memory usage comparison among imputation methods, as well as the effect of subsampling training data on DeepImpute
accuracy. a, b Speed and memory comparisons on the Mouse1M dataset. This dataset is chosen for its largest cell numbers. Color labels different
imputation methods. a Speed average over 3 runs. The x-axis is the number of cells, and the y-axis is the running time in minutes (log scale) of
the imputation process. b RAM memory usage. The x-axis is the number of cells, and the y-axis is the maximum RAM used by the imputation
process. Because of the limited amount of memory or time, scImpute, SAVER, and MAGIC exceeded the memory limit respectively at 10k, 30k,
and 50k cells, thus no measurements at these and higher cell counts. VIPER and DrImpute each exceeded 24 h on 1k and 10k cells; therefore,
they too do not have measurements at these and higher cell counts. c The effect of subsampling training data on DeepImpute accuracy.
Neuron9k dataset is masked and measured for performance as in Fig. 2. x-axis is the fraction of cells in the training data set, and y-axis labels are
values for mean squared error (left) and Pearson’s correlation coefficient (right). Color labels are as indicted in the graph. Error bars represent the
standard deviations over the 10 repetitions
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We optimized the dropout rate as 20%, after experiment-
ing the dropout rates from 0 to 90% (Additional file 2:
Figure S1). The other default parameters of the networks
include a learning rate of 0.0001, a batch size of 64, and
a subset size of 512. As internal controls, we also experi-
mented two alternative setups for DeepImpute: one with
the same architecture but linear activation function and
the other one without hidden layers of neurons.

Training procedure
The training starts by splitting the cells between a train-
ing (95%) and a test set (5%). The test set is used at each
epoch to measure overfitting. We use a weighted mean
squared error (MSE) loss function that gives higher
weights to genes with higher expression values. This em-
phasizes accuracy on high confidence values and avoids
over penalizing genes with extremely low values (e.g.,
zeros). For a given cell c, the loss is calculated as follows:

Loss c ¼
X

Y i � Y i−Ŷ i
� �2

where Yi is the value of gene i for cell c and Ŷ i is the
corresponding estimated value at a given epoch. For the
gradient descent algorithm, we choose an adaptive learn-
ing rate method, the Adam optimizer [50], since it is
known to perform very efficiently over sparse data [51].
The training stops if it reaches 500 epochs or if the
training does not improve for 10 epochs.

Imputation
Once the network weights are properly trained, we im-
pute the data by filling zeros in the original matrix with
the imputed values.

Evaluation metrics
Accuracy comparison on real datasets
To evaluate the accuracy of imputation, we apply a ran-
dom mask to the real single-cell datasets. The masking
probability function is estimated in a similar fashion as
in splatter [14]. For each gene, we extract the proportion
of zeros vs. the mean of those positive values. As done
in Splatter, we fit a logistic function to these data points.
Next, for each gene in the dataset, we mask ten cells at
random using a multinomial distribution: each cell c1...
cn has a dropout probability p1... pn given by the logistic
function previously fitted. The masked cells are sampled
from a multinomial distribution with parameters (q1, q2,
..., qn), where qi = pi/∑ipi are the normalized probabil-
ity such that ∑iqi = 1.
These original values are used as “truth values” to

evaluate the performance of imputation methods. We
used two types of performance metrics: the overall Pear-
son correlation coefficient and MSE, both on log trans-
formed counts. When needed, we also computed MSE

between cells cj and between genes gi. Speed and mem-
ory comparison: we run comparisons on a dedicated 8-
core, 30-GB RAM, 100-GB HDD, Intel Skylake machine
running Debian 9.4. We record process memory usage
at 60-s intervals. For testing data, we use the Mouse1M
dataset since it has the largest number of single cells
(Additional file 3: Table S1). We filter out genes that are
expressed in less than 20% of cells, leaving 3205 genes in
our sample. From this dataset, we generate 7 subsets
ranging in size (100, 500, 1k, 5k, 10k, 30k, 50k cells). We
run each package 3 times per subset to estimate the
average computation time. Some packages (VIPER,
DrImpute, SAVER, scImpute, and MAGIC) are not able
to successfully handle the larger files either due to out-
of-memory errors (OOM) or exceedingly long run times
(> 24 h).

Downstream functional analysis
Clustering
We perform cell clustering using the Seurat pipeline im-
plemented in Scanpy. After preprocessing the data, we
extract the UMAP components [38] and cluster the cells
using the Leiden algorithm recommended in the Scanpy
documentation. To assess the performance of the clus-
ters, we use four metrics. For all of them, a value of 1 in-
dicates a perfect clustering, while 0 corresponds to
random assignments.

Adjusted mutual information [16]
It is an entropy-based metric that calculates the shared
entropy between two clustering assignments, and is ad-
justed for chance. The mutual information is calculated

by MIðC;KÞ ¼ P
i∈C

P
j∈KPði; jÞ � logð Pði; jÞ

PðiÞPð jÞÞ , where

P(i, j) is the probability of cell i belonging to both
cluster C and K.

Adjusted Rand index [16]
It is the ratio of all cell pairs that are either correctly
assigned together or correctly not assigned together,
among all possible pairs. It is also adjusted for chance.

Fowlkes–Mallows index
It is a metric derived from the true positives (TP),
false positives (FP), and false negatives (FN) as

follows: FMI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TPþFP � TP
TPþFN:

q

Silhouette coefficient [29]
It is a clustering metric derived by comparing the mean
intra-cluster distance and the mean inter-cluster
distance.
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Differential expression analysis
We perform the differential expression analysis using
the scanpy package on the simulation as the groups are
pre-defined. For each method, we extracted the differen-
tially expressed genes for each cell group by performing
a t test of one group against the rest groups. We used
Benjamini-Hochberg correction for multiple hypothesis
testing to obtain adjusted p value (pvaladj). Since each
method has generated different differentially expressed
genes, we extracted the top 500 differentially expressed
genes for each group and pooled the differentially
expressed genes for all of the groups. Using 1-pvaladj as
the DE calling probability and the true differentially
expressed genes (by Splatter) as the truth measure, we
calculated the area under the curve (AUC) for the ROC
curve for each method using the scikit-learn python
package.

RNA FISH validation
We obtain a Drop-Seq dataset (GSE99330) and its RNA
FISH dataset from a melanoma cell line, as described by
Torre et al. [36]. The summary of the dataset is listed in
Additional file 3: Table S1. For the comparison between
RNA FISH and the corresponding Drop-Seq experiment,
we keep genes with a variance over mean ratio > 0.5, the
same as other datasets in this study, leaving six genes in
common between the FISH and the Drop-Seq datasets.
For GINI coefficient calculation, we first normalize the

cells in each dataset using a housekeeping gene (glycer-
aldehyde 3-phosphate dehydrogenase, or GAPDH)-based
factor, as done by others [20]. We remove GAPDH out-
lier cells (defined here as the cells below the 10th and
above the 90th percentiles). Then, we rescale each data
point by a GAPDH-based factor, as follows:

data cell; gene½ � ¼ data cell; gene½ ��factor cellð Þ

where factor cellð Þ ¼ mean data :;GAPDH½ �ð Þ=data cell;GAPDH½ �

Then, we compute GINI coefficient, as done in SAVER
[20]. For distribution normalization, the procedure is the
same except that we first normalize each gene by an effi-
ciency factor (defined as the ratio between its mean
value for FISH and its value for the imputation method).
We calculate the MSEs and Pearson’s coefficients with
the following formulas:

MSE gene;methodð Þ ¼
X

cell
XFISH gene; cellð Þ−Xmethod gene; cellð Þð Þ2

Corr gene;methodð Þ ¼ Cov XFISH geneð Þ;Xmethod geneð Þð Þ
Var XFISH geneð Þð Þ � Var Xmethod geneð Þð Þ

where X is the input matrix of gene expression from
RNA-FISH or Drop-Seq, Cov is the covariance, and Var
is the variance.
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