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Abstract

A major challenge in the analysis of DNA methylation (DNAm) data is variability introduced from intra-sample cellular
heterogeneity, such as whole blood which is a convolution of DNAm profiles across a unique cell type. When this
source of variability is confounded with an outcome of interest, if unaccounted for, false positives ensue. Current
methods to estimate the cell type proportions in whole blood DNAm samples are only appropriate for one technology
and lead to technology-specific biases if applied to data generated from other technologies. Here, we propose the
technology-independent alternative:methylCC, which is available at https://github.com/stephaniehicks/methylCC.
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Background
DNA methylation (DNAm) is a type of chemical modifi-
cation occurring at CpG dinucleotide sites that is involved
in controlling gene expression and has been shown to
play an important role in distinguishing cell lineages [1].
High-throughput DNAm assays have been widely applied
among researchers as well as large consortia to further our
understanding of basic biology and health implications
[2]. However, a major challenge in extracting information
from these DNAm datasets is variability introduced from
intra-sample cellular heterogeneity observed in samples
of heterogeneous cell composition. Specifically, individual
cell types encode unique cell type-specific DNAm signa-
tures to distinguish between the cell lineages. Therefore,
when we measure DNAm on samples with a heteroge-
neous cell composition, we actually observe a convolution
of the DNAm profiles of each cell type [3]. It is common
for variability in cell type proportions to explain most of
the observed sample-to-sample variability.
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Cell composition induced variability is particularly
problematic in epigenome-wide association studies
(EWAS) [4] because, due to convenience, these are
most frequently performed on whole blood, a highly
heterogeneous tissue. In a seminal paper, Houseman et
al. [3] describe a statistical method that accurately esti-
mates the relative proportions of cell type components
in whole blood. Jaffe et al. [5] used this approach to
demonstrate that reported age-related changes of blood
DNAm profiles [6–12] could be explained with high
levels of confounding between age-related variability
and cell composition, demonstrating the importance of
accounting for this source of variability. As the conse-
quential effect of this source of variability started to be
recognized, interest in statistical methods for estimating
and accounting for intra-sample cellular heterogeneity
grew accordingly. There are currently two major types
of approaches. The first, originally developed by House-
man et al. [3], assumes that the observed heterogeneous
blood profiles are a linear combination of the cell type-
specific DNAm profiles, assumes these DNAm profiles
are known, and then estimates the unknown proportions
using a standard estimation procedures. To be able to
assume cell type-specific DNAm profiles are known, a
rather complex experiment, in which cells of the same cell
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type are sorted and then used to obtain high-throughput
measurements of the reference samples, is conducted.
Methods that make use of the sorted cell type-specific
DNAm profiles are referred to as reference-based. Alter-
natively, other methods that do not use external reference
profiles, referred to as reference-free methods, have been
developed for DNAm data [13, 14] and for more general
types of data such as Surrogate Variable Analysis (SVA)
[15], or Remove Unwanted Variability (RUV) [16] to
account for batch effects [17].
Reference-based approaches have been shown to greatly

outperform reference-free procedures [18]. Here, we con-
sider them to be the state of the art. However, in this
paper, we demonstrate that a limitation of reference-
based approaches is the presence of a technology-specific
bias, which can influence the estimates of cell composi-
tion; namely, when using cell type-specific DNAm profiles
measured using one technology, for example a microar-
ray platform, to estimate the cell type proportions in
samples measured from another technology, for example
a sequencing platform. Here, we introduce a statistical
method, referred to as methylCC, that removes this tech-
nical bias using a latent variable model and accurately
estimates the cell composition in a platform-agnostic
manner. To achieve this, we identify regions of the genome
in which each cell type are either clearly methylated
or unmethylated, and we model these as latent states.
These latent states are biologically driven and there-
fore technology-independent, which allows us to estimate
binary, platform-independent profiles that can be success-
fully be applied across technologies. To study the improve-
ments in estimates of cell composition using methylCC,
we evaluated the difference between the true and esti-
mated proportions of cell types with a Monte Carlo simu-
lation. Specifically, we studied how using cell type-specific
DNAm profiles measured on a microarray platform to
estimate the cell type proportions in samples measured on
a sequencing platform can lead to inaccurate estimates of
cell composition. Furthermore, we demonstrate how our
platform-agnostic approach provides an overall improve-
ment in estimates of cell composition. Although due to the
availability of data all our examples are from whole blood,
the approach can be generalized to other tissues.

Results
Consider a set of high-throughput data Yij representing a
heterogeneous tissue sample, such as whole blood, from
i ∈ (1, . . . ,N) individuals containing DNAm measure-
ments at CpG sites j ∈ (1, . . . , J). Suppose the heteroge-
neous tissue is a combination of K cell types, which we
index with k ∈ (1 . . .K). Houseman et al. [3] proposed
the following statistical model to estimate the proportions
of K cell types in whole blood DNAm samples, for each
individual i:

Y i =
K∑

k=1
πikXk + εi. (1)

Here πik represents the proportion of cell type k in
individual i, which is the parameter of interest. The
Xk represents the kth cell type-specific DNAm profile
with measurements at the same J CpG sites as Y i. The
measurement error and other unexplained biological vari-
ability is represented by εi. The cell type proportions for
individual i are assumed to be nonnegative, πik ≥ 0,
and sum to 1,

∑K
k=1 πik = 1. To develop a practical

tool, Houseman et al. [3] sorted whole blood samples into
K = 6 cell types that make up the majority of this tis-
sue and obtained a DNAm profile for each cell type. They
used Illumina’s HumanMethylation27 BeadChip (Illumina
27K), which measures DNAm at approximately 27,000
CpG sites [19]. This experimental data provided plug-in
estimates for the cell type-specific DNAm profile, Xk , and
with these in place then they estimated the πik using a
constrained least square algorithm. Soon after the devel-
opment of this method, Illumina released a new plat-
form that measured approximately 450,000 CpG sites: the
HumanMethylation450 BeadChip (Illumina 450K) [20].
Jaffe et al. [5] leveraged publicly available data of sorted
cell types measured with this new Illumina 450K platform
[1] to implement the Houseman et al. method [3].
Although the Illumina 450K microarray platform

has been the most widely used platform, two new
sequencing technologies are being increasingly adapted
by the research community: Whole-genome Bisulfite
Sequencing (WGBS) and Reduced Representation Bisul-
fite Sequencing (RRBS) [21]. Furthermore, Illumina has
recently released a new version of their BeadChip, which
measures approximately 850,000 CpG sites. However,
similar experiments with sorted cells processed at the
same time are not yet available from these new platforms,
which implies we do not have plug-in estimates for Xk on
these platform technologies. Currently, the only way the
Houseman et al. approach [3] can be applied to DNAm
data measured on these new platforms is by assuming
that the cell type-specific DNAm profiles Xk derived for
the 450K platform applies to others. Here, we show this
assumption does not hold.

Across platforms estimates are inaccurate
To determine if the Houseman et al. method [3], as imple-
mented by Jaffe et al. [5], which was specifically developed
for the Illumina 450K array platform, is applicable across
platforms, we obtained a dataset for which whole blood
samples fromN=10 adult males were run on both the Illu-
mina 450K and RRBS platforms (referred to below as the
two-platform dataset). We applied the Housemanmethod
to the whole blood samples in the two-platform dataset
and expected similar cell composition estimates for each
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individual across platforms as these were the same whole
blood samples just measured on two platforms. Because
the Housemanmethod has been shown to provide reliable
cell composition estimates for DNAm data measured on
the Illumina 450K platform, in this specific case we con-
sidered the cell composition estimates from the House-
man method to be the gold-standard or ground truth, as
done by Rahmani et al. [22]. However, we found that the
resulting cell composition estimates between the N = 10
whole blood samples measured on the Illumina 450K and
RRBS platforms did not agree (Fig. 1).
To determine the cause of this disagreement, we exam-

ined this dataset more closely and found two limitations
with the Houseman approach when applied to technolo-
gies other than the Illumina microarrays: (1) DNAm
measurements vary across platforms and (2) different
platforms measure different CpGs. These two limitations
are discussed in the following two sections, respectively.
We then describe a statistical solution to overcome these
two limitations using a general latent class model to
estimate the cell composition of heterogeneous samples
agnostic to platform technology. We also provide a soft-
ware implementation of our method available at https://
bioconductor.org/packages/release/methylCC.

DNAmmeasurements vary across platforms
The first limitation is that there is a platform-dependent
bias.We can observe this bias by simply plotting and com-
paring the raw DNAm measurements using the whole
blood samples in the two-platform dataset. We commonly
observe genomic regions in which both platforms seem
to indicate a change from unmethylated to methylated
states, but the observed DNAm levels differ substantially
across platforms (for example, Fig. 2a). A more system-
atic demonstration is obtained by first using the reference
cell sorted dataset [1] to identify regions that are clearly
unmethylated in all purified cell types and regions that
are clearly methylated in all purified cell types, and then
plotting the empirical DNAmdistribution across all whole
blood samples within these regions for both platforms
(Fig. 2b) and noting the different distributions. We note in
particular that observed DNAm levels measured on RRBS
tends to have values closer to 0 and 1, compared to the
Illumina 450K array attenuating these values away from
the edges.

Different platforms measure different CpGs
The second limitation is that different platforms mea-
sure different CpGs. The human genome contains over

Fig. 1 Across platforms estimates are inaccurate. Cell composition estimates (K = 6 cell types) from N = 10 whole blood samples (two-platform
dataset – GEO Accession GSE95163) measured on the Illumina 450k microarray platform (x-axis) and the RRBS platform (y-axis). The statistical
method proposed by Houseman et al. [3], as implemented by Jaffe et al. [5], and was used to estimate the cell composition

https://bioconductor.org/packages/release/methylCC
https://bioconductor.org/packages/release/methylCC
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Fig. 2 Evidence for platform-dependent bias. a Observed DNAm levels from one region in same N=10 individuals (two-platform dataset – GEO
Accession GSE95163) measured on two platform technologies: Illumina 450k (red) and RRBS (blue). b Density of DNAm levels measured on the 450k
platform (red) and RRBS platform (blue) in regions that are either methylated (dashed line) or not methylated (solid line). Regions were identified by
searching for regions in purified whole blood cell types from Reinius et al. [1] that appeared either methylated or not methylated in all six purified
cell types

20,000,000 CpG sites, and each platform includes a subset
of these which, for logistical reasons, differs across plat-
forms. For example, RRBS [21] uses restriction enzymes
to enrich for the areas of the genome that have a high
CpG content, while the Illumina 450k platform selects
CpG sites that are more uniformly distributed across the
genome. Therefore, to apply the Housemanmodel to sam-
ples measured on platforms other than the Illumina 450K
array, we have to restrict ourselves to the intersection of
the CpGs measured Illumina 450K array and the alter-
native platform, because the jth CpG in the whole blood
sample Y i must match the jth CpG in the cell type-specific

DNAm profile Xk . As a result, in our 10 RRBS samples we
only have measurements from 102 of the 600 CpGs in the
cell type-specific DNAm profiles used by the 450K imple-
mentation of the Houseman method. This results in a loss
of power since informative cell type-specific CpGs may be
left out (for example Fig. 3).

methylCC estimates cell composition in DNAm samples
agnostic to platform technology
To adjust for the platform-specific biases, we introduce a
model that accounts for these biases directly and models
methylation states using latent variables. To account for
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Fig. 3 Example of Houseman cell type-specific CpGs measured on the 450k microarray platform, but not measured on the RRBS platform. a The cell
type-specific CpG and the cell type-specific region of CpGs (or differentially methylated regions, DMR) were both identified using the purified CD8T
cell, CD4T cell, Natural Killer (NK), B cell, Monocytes (Mono) and Granulocytes (Gran) cell types from [1]. b In the whole blood DNAm data from one
individual (GEO Accession GSE95163) measured on two platforms (450k and RRBS), the cell type-specific CpG from Houseman et al. [3] is not
measured on the RRBS platform. However, using a cell type-specific region (DMR), we are able to measure the methylation level by averaging across
the region in both the 450k and RRBS platform for this sample (dotted lines)

the fact that different platforms measure different CpG
sites, we model the latent classes at the region level rather
than the CpG level. Specifically, we propose the following
statistical model:

Y i =
K∑

k=1
πik {(1 − Zk)δ0 + Zkδ1} + εi (2)

where Y i is the observed DNAm level in the heteroge-
neous tissue, in this case whole blood, for the ith individual
i ∈ (1, . . . ,N), but now measured DNAm levels in R

genomic regions r ∈ (1, . . . ,R), as opposed to J individual
CpGs in the Houseman model. Similar to the Houseman
model, πik represents the proportion of cell type k in indi-
vidual i, which is the parameter of interest. In addition,
we assume that the cell type proportions for individual i
are nonnegative, πik ≥ 0, and sum to 1,

∑K
k=1 πik = 1.

Here, Zk = (Z1k , . . . ,ZRk) is a vector of latent variables
for the kth cell type where each latent variable, Zrk , is an
indicator that is equal to 1 if the region r is methylated in
cell type k and 0 otherwise. The platform-specific biases
are represented with random effects δ0 = (δ0,1, . . . , δ0,R)
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and δ1 = (δ1,1, . . . , δ1,R), which are assumed to fol-
low multivariate normal distributions N

(
α01, σ 2

0 I(R×R)

)

and N
(
α11, σ 2

1 I(R×R)

)
, respectively. Measurement error

and other unexplained biological variability is represented
with εi, which we assume follows a multivariate normal
distribution N

(
0, τ 2I(R×R)

)
. Note that in our model the

random effects δ0 and δ1 are assumed to be platform-
dependent: they represent the technology-dependent bias
with different mean and variances in different platforms
(Fig. 2b). However, the Zks are not platform-dependent:
they are latent classes determined by biology.
The statistical model in Eq. 2 can be thought of as

a generalization of Eq. 1 if we restrict the Houseman
approach to only include CpGs that are either methylated
or unmethylated in each cell type. In this case, region r
would simply be a single CpG site and the kth cell type-
specific DNAm profile, Xk , would be defined by Xrk = δ0,r
if region r is unmethylated and Xrk = δ1,r if region r is
methylated.
A significant advantage of our model is that instead of

directly measuring the cell type-specific DNAm profiles,
Xk , for each platform, we account for region-to-region
variability using a latent random variable and therefore do
not need to measure it directly with each new platform.
Instead, all we need is to identify R regions for which each
kth cell type is either clearly methylated (Zrk = 1), or not
methylated (Zrk = 0) for r ∈ (1, . . . ,R). We define Z to
be the matrix with entries Zrk in the rth row and kth col-
umn, which needs to be full rank for the parameters of
interest, πik to be identifiable. Because Z is entirely deter-
mined by biology, not by the platform technology, we only
have to identify these regions once for each type of hetero-
geneous (biological) sample. This requires experimental
data from cell sorted samples measured on only one plat-
form. To demonstrate the utility this approach for estimat-
ing cell composition in whole blood samples, we searched
for these genomic regions in the purified cell type data
described in [1], which were measured on the Illumina
450K array platform. This dataset includes B cells, mono-
cytes, granulocytes, CD8T cells, CD4T cells and natural
killer (NK) cells. We identified R = 210 regions satis-
fying our criteria (Additional file 1: Figure S1). Finally,
with the R regions in place, the estimation of the propor-
tion of cell types, πik , reduces to a missing data problem.
We use an EM algorithm with a constrained linear model
to estimate the parameters θ = (

α0,α1, σ 2
0 , σ

2
1 , τ 2

)
and

π i = (πi1, . . . ,πiK ) for individuals i ∈ (1, . . . ,N) (see
the "Methods" section for complete details on estimation
procedure).

methylCC improves estimates of cell composition of DNAm
samples measured on other platform technologies
To demonstrate the improvements in the estimates of cell
composition provided by our platform-agnostic approach,

we applied our method to the two-platform dataset.
Specifically, we fit our model to the 10 whole blood sam-
ples measured on both the Illumina 450K array and RRBS
platforms. Similar to Fig. 1, we considered the estimates
of cell composition from the Houseman model in the Illu-
mina 450K samples to be the gold-standard reference. In
Fig. 1, we demonstrated that directly applying the House-
man approach [3], as implemented by Jaffe et al. [5], to the
RRBS data led to biased cell composition estimates. How-
ever, our new approach substantially improves estimates
of cell composition (Fig. 4).
Furthermore, we evaluate the performance of our

platform-agnostic approach with the goal of estimating
the proportion of cell types in heterogeneous tissue sam-
ples. Here, we performed a Monte Carlo simulation study
to illustrate the improvements in estimates of cell com-
position by our platform-agnostic approach compared to
the Houseman approach for heterogeneous samples mea-
sured on a sequencing platform (described in detail in
the Methods Section). For the simulations study, we cre-
ated cell type-specific DNAm profiles for a microarray
platform, X450K

k , and a sequencing platform, XRRBS
k , by

simulating platform-dependent random effects with dif-
ferent means and variances (Additional file 11: Figure
S2A). Then, we simulate whole blood samples with a rel-
ative proportion of cell types π i and measurement error
εi to create the observed DNAm level in whole blood
samples measured on in the 450k array platform Y 450k

i
and the RRBS platform YRRBS

i . We estimate the cell com-
position in the whole blood samples measured on both
platform using the reference-based Houseman method
and our platform-agnostic method. Then, we evaluate the
difference between the true and estimated proportion of
cell types using either our approach or the Houseman
approach.
For whole blood samples measured on the 450K array

platform, we found the Houseman approach, which was
specifically developed for the array platform, and our
approach perform similarly (Additional file 1: Figure
S2B). However, for whole blood samples measured on
a sequencing platform, our platform-agnostic model
results in significantly improved estimates of cell com-
position (Additional file 1: Figure S2C). This is because
our model accounts for the platform-specific biases
directly and models methylation states using latent
variables.

methylCC accurately estimates cell composition of DNAm
samples measured onWGBS platforms
We evaluated our platform-agnostic approach using
WGBS reference methylome data from the BLUEPRINT
Epigenome Database [23]. We downloaded N = 44
samples from seven purified whole blood cell types,
specifically B cells, CD4T cells, CD8T cells, neutrophils,
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Fig. 4methylCC: A latent variable model with region-specific and platform-dependent random effects improves estimates of cell composition. Cell
composition estimates from N = 10 whole blood samples (K = 6 cell types) measured on the Illumina 450k microarray platform (x-axis) and the RRBS
platform (y-axis). Two methods were used to estimate the cell composition: (1) the model proposed by Houseman et al. [3], as implemented by Jaffe
et al. [5], that was developed for samples measured on the Illumina 450k microarray platform (left), and (2) our proposed method that is
independent of platform technology (right). Root mean squared error (RMSE) is the difference between the cell composition estimates for whole
blood DNAm samples measured on the Illumina 450k array platform and on the RRBS platform (averaged across cell types). Within each plot, the
RMSE is shown for the reference-based method from Houseman et al. [3] (left) and our proposed model (methylCC) (right)

eosinophils, monocytes, and natural killer cells. For a
given WGBS sample (e.g., CD8T cells), we assumed the
“gold standard” cell composition to be 100% CD8T cells
and 0% for the other cell types. We fit our model to
N = 44 purified cell types measured on the WGBS plat-
form. We found our platform-agnostic approach closely
matches the expected cell composition estimates from the
purified whole blood WGBS samples (Fig. 5).
Next, we used the BLUEPRINT reference methylomes

to construct a set of cell type-specific DMRs to investi-
gate whether DMRs identified with the purified cell types
measured on the WGBS platform can lead to improved
estimates of cell composition with methylCC as opposed
to DMRs identified with the purified cell types mea-
sured on the Illumina 450K array platform. Using the
WGBS “gold standard” data, we found the DMRs identi-
fied with the purified cell types measured on the WGBS
platform resulted performed better than DMRs identi-
fied with the purified cell types measured on the Illumina
450K array platform (Additional file 1: Figure S3). Using
the two-platform dataset, we found methylCC results in
a substantial improvement over the Houseman approach
with either set of DMRs, but using the DMRs identified
with the 450K reference methylomes performs slightly
better (Additional file 1: Figure S4). Data exploration of
the BLUEPRINT data reveals that this is likely due to a

batch effect in the BLUEPRINT data (Additional file 1:
Figure S5).

methylCC accurately estimates cell composition of DNAm
samples measured on Illumina 450K array platforms
To validate the results of our simulation study using whole
blood samples measured on the Illumina 450K array plat-
form, we compared the cell composition estimates from
our model and the Houseman model using two publicly
available data sets with DNAmwhole blood samples mea-
sured on the Illumina 450K array platform. In the first
data set [24], the N=78 whole blood samples had their cell
composition independently estimated using flow cytome-
try, which can be considered as a “gold standard” [22]. We
found our platform-agnostic approach closelymatches the
independent cell composition measurements (Additional
file 1: Figure S6).
Next, we used a second data set [25] with N=689 whole

blood samples, which did not have independent measure-
ments of cell composition. Here, we considered the cell
composition estimates from the Houseman model to be
the “gold standard” for the purposes of this assessment
because the Houseman model was specifically designed
for the Illumina 450K array platform and it has been pre-
viously considered as a “gold standard" [22]. Using this
data, we found our platform-agnostic approach closely
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Fig. 5methylCC accurately estimates cell composition of DNAm samples measured on WGBS platforms. Cell composition estimates using N=44
WGBS samples from the BLUEPRINT Epigenome Database [23] from seven purified whole blood cell types, specifically B cells, CD4T cells, CD8T cells,
neutrophils, eosinophils, monocytes, and natural killer cells. For a given WGBS sample (e.g., CD8T cells), we assumed the “gold standard” cell
composition to be 100% CD8T cells and 0% for the other cell types. We fit our model to N = 44 purified cell types measured on the WGBS platform

matches the referenced-based approach (Additional file 1:
Figure S7).

Discussion
A major challenge in measuring DNAm is variabil-
ity introduced from intra-sample cellular heterogeneity,
which is a convolution of DNAm profiles across cell types.
This is particularly problematic in epigenome-wide asso-
ciation studies for human disease performed on whole
blood, a heterogeneous tissue. Accounting for this source
of variability is a first step to determine the actual cell
proportions of each sample. Currently, the most effec-
tive approach is based on fitting a linear model in which
one assumes the DNAm profiles of the representative
cell types are known for a specific platform technology,
the Illumina microarray platform. Although this method
works well in practice, we have demonstrated that if the
DNAm data was generated on a new platform technology,
such as RRBS or WGBS, this can lead to technology-
specific biases in the cell composition estimates.
To address this, we have developed a latent variable

model with region-specific and platform-dependent ran-
dom effects to accurately estimate the cell composition in
DNAmwhole blood samples measured from any platform
technology. By using informative genomic regions that

are either methylated or unmethylated for each purified
cell type, our model can account for the platform-specific
biases directly and model methylation states using latent
variables. We have illustrated how we can estimate the
cell composition across platform technologies as cell types
preserve their methylation state in regions independent of
platform, despite observedmeasurements being platform-
dependent. Note that, our current model assumes that
the random effects and measurement error are normally
distributed. Although these assumptions were a practi-
cal approximation that led to an improvement for RRBS
data and accurately identified purified cell types inWGBS
data, the model may need to be generalized to other dis-
tributions, such as count data for which negative binomial
models may be more appropriate. Given that sequencing
platform technologies are poised to become more widely
used for studies measuring DNAm in whole blood, this
suggests that our method is an needed contribution.

Conclusions
We demonstrated that our method accurately estimates
the cell composition from whole blood samples and is
applicable across multiple platforms, including microar-
ray and sequencing platforms. Specifically, we illustrated
how our method significantly improves the estimates of
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the cell composition compared to the reference-based
method in whole blood samples measured on a sequenc-
ing platform using real and simulated whole blood sam-
ples, in addition to purified whole blood cell types mea-
sured on a sequencing platform. Our approach is agnostic
to platform because it first uses experimental data to
identify regions in which each cell type is clearly methy-
lated or unmethylated, and then models these as latent
states. While the continuous measurements used in the
linear model approaches are affected by platform-specific
biases, the latent states are biologically driven and there-
fore technology independent, implying that experimental
data only needs to be collected once. We have imple-
mented our method into themethylCC R-package provid-
ing researchers a tool to estimate the cell composition in
the analysis of their own whole blood DNAm data.

Methods
Using cell sorted experimental data to identify informative
genomic regions in Z
Cell sorted experimental data is needed to identify R infor-
mative genomic regions for which the kth cell type is
either clearly methylated (Zrk = 1) or not methylated
(Zrk = 0) for regions r ∈ (1, . . . ,R). This is step is
done only once for each type of heterogeneous (biologi-
cal) sample, such as whole blood, and does not depend on
the platform technology. In addition, this matrix Z needs
to be full rank for the parameters of interest, πik to be
identifiable.
In application for estimating the cell composition in

whole blood samples, we used cell sorted data described
in [1], which were measured on the Illumina 450K array
platform. This dataset includes six biological replicates
for each of the six purified cell type (B cells, mono-
cytes, granulocytes, CD8T cells, CD4T cells, and natural
killer (NK) cells). We used the bumphunter [26] Bio-
conductor [27] package to identify differentially methy-
lated regions (DMRs) across cell types. For example, to
search for DMRs such that the six granulocytes samples
are unmethylated and the other cell types are methylated
(Fig. 3), we fit a linear model Yij = β0(lj)+β1(lj)Xj + εij at
each jth genomic position (or CpG site) where Yij repre-
sents observed DNAm level in the ith biological replicate
for a purified cell type at position j with a covariate of
interest, Xj, (for example Xj = 0 for granulocytes and Xj =
1 for other cell types). Then, we searched for regions of
CpGs such that β1(l) �= 0. For more details on identifying
DMRs, we refer the reader to [26, 28].
We searched for regions that were not overlapping so

they would be considered independent observations. In
certain pairwise cell type comparisons, the only regions
found contained just one CpG; however, we prioritized
regions with more than one CpG whenever possible. In
addition to these cell type-specific DMRs, our method

has the option for a user to search for and include addi-
tional cell type-specific CpGs along with the DMRs, if too
few DMRs are found. Following these steps, we identified
R = 210 regions satisfying our criteria (Additional file 1:
Figure S1).
We also used the reference methylomes from the

BLUEPRINT Epigenome Database (http://www.
blueprint-epigenome.eu) [23], which contained N = 44
samples from seven purified whole blood cell types,
specifically B cells, CD4T cells, CD8T cells, neutrophils,
eosinophils, monocytes, and natural killer cells. We
combined neutrophils, eosinophils as one group called
granulocytes. We used the bsseq [29] Bioconductor [27]
package to store theWGBS data and we used the dmrseq
[30] package to identify DMRs across the six cell types.
In the next section, we describe our estimation pro-

cedure to obtain the cell composition estimates, π i =
(πi1, . . . ,πiK ), and we note that we assume these regions
Z are known here. This is because if we fit the model only
to these regions, then the estimation procedure reduces to
a missing data problem with random effects δ0 and δ1.

Estimation procedure
Using the R = 210 informative genomic regions iden-
tified above, we estimate the parameters of interest,
namely the proportion of cell types π i = (πi1, . . . ,πiK )
for the i ∈ (1, . . . ,N) individuals, and the parameters
θ = (

α0,α1, σ 2
0 , σ

2
1 , τ 2

)
in the proposed latent variable

model (Eq. 2) using an EM algorithm with constraints∑K
k=1 πik = 1 and πik ≥ 0 for all k.

Obtain initial parameter estimates θ(0) and π
(0)
i at step t = 0

To obtain initial parameter estimates for the α
(0)
0 and

(
σ 2
0
)(0) at step t = 0, we use the reference cell sorted

dataset [1], which has six biological replicates for each cell
type, to identify a set of R0 genomic regions that are clearly
unmethylated (Zrk = 0) in all K purified whole blood
cell types. In these unmethylated regions, the expected
DNAm level is

E(Yir) =
K∑

k=1
πikE(δ0,r) + E(εir) =

K∑

k=1
πikα0 = α0

and we use Jensen’s inequality to estimate an upper bound
on the variance of Yir :

Var(Yir) = Var
( K∑

k=1
πikδ0,r

)
+ Var(εir)

≤
K∑

k=1
πikVar(δ0,r) + Var(εir) = σ 2

0 + τ 2

http://www.blueprint-epigenome.eu
http://www.blueprint-epigenome.eu
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Therefore, we obtain initial parameter estimates

α̂
(0)
0 = 1

N

N∑

i=1

⎡

⎣ 1
R0

R0∑

r=1
Yir

⎤

⎦

(σ̂ 2
0 )(0) ≥ 1

N

N∑

i=1

⎡

⎣ 1
R0 − 1

R0∑

r=1
(Yir − Ȳi)2

⎤

⎦

where the measurement error τ 2 is assumed to be small.
The argument is similar for the initial parameter estimates
of α

(0)
1 and

(
σ 2
1
)(0) by identifying genomic regions (R1)

where the CpGs are all methylated (Zrk = 1) for all K
purified cell types.
To obtain initial parameter estimates for the proportion

of cell types, π
(0)
i with constraints

∑K
k=1 π

(0)
ik = 1 and

π
(0)
ik ≥ 0, we use the fact that π̂ i = argminπi log L =

argmaxπi(− log L) and − log L ∝ (Y − Xπ)T (Y − Xπ).
This non-negative least squares (NNLS) problem with
constraints is equivalent to the quadratic programming
problem argminπi

( 1
2π

T
i Qπi + aTπi

)
where Q = (XTX)

and a = (−XTY
)
[31, 32]. Therefore, we calculate X̂

(0) =
(1 − Z)α̂

(0)
0 + Zα̂

(0)
1 and apply quadratic programming

[31, 32] to solve for π̂
(0)
i =

(
π

(0)
i1 , . . . ,π(0)

iK

)
. We use the

solve.QP() function from the R package quadprog
[33] to implement the quadratic programming. Finally,
to obtain an initial parameter estimate for (τ 2)(0), we
calculate

(τ̂ 2)(0) = 1
RN

N∑

i=1

R∑

r=1

(
Yir −

K∑

k=1
X̂(0)
rk π̂

(0)
ik

)2

EM algorithm to estimate θ and π

To construct an EM algorithm to obtain maximum like-
lihood estimates of θ and π , we define the complete-data
vector Y ∗ = (Y , δ0, δ1) where Y = (Y 1, . . . ,YN ) rep-
resents the observed DNAm levels for individuals i ∈
(1, . . . ,N) each of length R regions. The complete-data
likelihood is given by

f (Y ∗|θ ,π) =
N∏

i=1
f1(Y i|δ0, δ1, θ ,π i)f2(δ0|θ)f3(δ1|θ)

where f1 ∼ N
(∑K

k=1 πik{(1 − Zk)δ0 + Zkδ1}, τ 2I(R×R)

)
,

f2 ∼ N
(
α0, σ 2

0 I(R×R)

)
, and f3 ∼ N

(
α1, σ 2

1 I(R×R)

)
. It is

easy to show the log of the complete-data likelihood is
linear in the following complete-data sufficient statistics:
T1 = ∑R

r=1 δ0,r , T2 = ∑R
r=1 δ1,r , T3 = ∑R

r=1(δ0,r)
2,

T4 = ∑R
r=1(δ1,r)

2, and T5 = ∑R
r=1(uir)2 where uir =

Yir − ∑K
k=1 πik{(1 − Zrk)δ0,r + Zrkδ1,r}.

The EM algorithm alternates between the following two
steps:

1 E-Step
We can consider the two joint distributions
Y ∗ = (Y , δ0) and Y ∗ = (Y , δ1) separately since δ0
and δ1 are independent. The joint distributions are
also normally distributed

Y ∗ = (Y , δ0) ∼ N

⎛

⎝
[
Xπ

α01

]

((RN+R)×1)

,
[

	11 	12

	21 	22

]

((RN+R)×(RN+R))

⎞

⎠

Y ∗ = (Y , δ1) ∼ N

⎛

⎝
[
Xπ

α11

]

((RN+R)×1)

,
[

	11 	12

	21 	22

]

((RN+R)×(RN+R))

⎞

⎠

where Y is a matrix of dimension R × N , but we
convert this into a vector of length RN,
X = (1 − Z)α0 + Zα1 is an R × K matrix and π is a
K × N matrix. We convert the Xπ matrix into a
vector of length RN. To derive the conditional
distributions of δ0|Y and δ1|Y , we use Theorem 3.2.3
and 3.2.4 in [34]:

δ0|Y ∼ N
(
α01 + 	21	

−1
11 [Y − Xπ ] ,	22 − 	21	

−1
11 	12

)

where

• X = (1 − Z)α0 + Zα1 is an R × K matrix. π is a
K × N matrix.

• 	11 = Cov(Y ) is an RN × RN covariance
matrix with entries

Cov(Yir ,Yi′ r′ ) = W 2
0riσ

2
0 + W 2

1riσ
2
1 + τ 2 if r = r

′
, i = i

′

= W0riW0ri′ σ
2
0 + W1riW1ri′ σ

2
1 if r = r

′
, i �= i

′

= 0 if r �= r
′
, i �= i

′

whereW0ri = ∑K
k=1 πik(1 − Zrk), and

W1ri = ∑K
k=1 πikZrk

• 	12 = Cov(Y , δ0) is an RN × R covariance
matrix with entries

Cov(Yir , δ0,r′ ) = W0riσ
2
0 if r = r

′

= 0 if r �= r
′

Note: 	T
12 = 	21.

• 	22 = Cov(δ0) is an R × Rmatrix with
Var(δ0,r) = σ 2

0 and Cov(δ0,r , δ0,r′ ) = 0

We use the conditional distribution δ0|Y to calculate
the tth iteration in the E-Step when computing
Eθ (T1|Y ) and Eθ (T3|Y ).

T(t)
1 =

R∑

r=1

[
α̂

(t)
0 1 + 	̂

(t)
21

(
	̂

(t)
11

)−1 [
Y i −

{
(1 − Z)α̂

(t)
0 + Zα̂

(t)
1

}
π̂

]]

T(t)
3 =

R∑

r=1

[
α̂

(t)
0 1 + 	̂

(t)
21

(
	̂

(t)
11

)−1
[Y i −

{
(1 − Z)α̂

(t)
0 + Zα̂

(t)
1

}
π̂ ]

]2

+ diag
(

	̂
(t)
22 − 	̂

(t)
21

(
	̂

(t)
11

)−1
	̂

(t)
12

)
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Similarly, we can show

δ1|Y ∼ N
(
α11 + 	21	

−1
11 [Y − Xπ ] ,	22 − 	21	

−1
11 	12

)

where

• X = (1 − Z)α0 + Zα1 is an R × K matrix. π is a
K × N matrix.

• 	11 = Cov(Y ) is same as defined above.
• 	12 = Cov(Y , δ1) is an RN × R covariance

matrix with entries

Cov(Yir , δ1,r′ ) = W1riσ
2
1 if r = r

′

= 0 if r �= r
′

Note: 	T
12 = 	21.

• 	22 = Cov(δ1) is an R × Rmatrix with
Var(δ1,r) = σ 2

1 and Cov(δ1,r , δ1,r′ ) = 0

We use the conditional distribution δ1|Y to calculate
the tth iteration in the E-Step when computing
Eθ (T2|Y ) and Eθ (T4|Y ).

T(t)
2 =

R∑

r=1

[
α̂

(t)
1 1 + 	̂

(t)
21

(
	̂

(t)
11

)−1 [
Y −

{
(1 − Z)α̂

(t)
0 + Zα̂

(t)
1

}
π̂

]]

T(t)
4 =

R∑

r=1

[
α̂

(t)
1 1 + 	̂

(t)
21

(
	̂

(t)
11

)−1 [
Y −

{
(1 − Z)α̂

(t)
0 + Zα̂

(t)
1

}
π̂

]]2

+ diag
(

	̂
(t)
22 − 	̂

(t)
21

(
	̂

(t)
11

)−1
	̂

(t)
12

)

2 M-Step
The complete-data maximum likelihood estimates
(MLEs) were calculated by using the log of the
complete-data likelihood, taking the derivative with
respect to the individual parameters, setting the
likelihood equal to zero and solving for the MLEs.

α̂0 = T1
R

α̂1 = T2
R

σ̂ 2
0 = T3

R
− (α̂0)

2

σ̂ 2
1 = T4

R
− (α̂1)

2

Using these MLEs, we can substitute the sufficient
statistics calculated in the E-Step:

α̂
(t+1)
0 = T (t)

1
R

α̂
(t+1)
1 = T (t)

2
R

(σ̂ 2
0 )(t+1) = T (t)

3
R

−
(
α̂

(t+1)
0

)2

(σ̂ 2
1 )(t+1) = T (t)

4
R

−
(
α̂

(t+1)
1

)2

To estimate π i, we apply quadratic programming
[31, 32] (see section on “Obtain initial parameter est-
imates θ (0) and π

(0)
i at step t=0” for details) with the

constraints
∑K

k=1 πik = 1 and πik ≥ 0 for all k. We
calculate X(t) using the tth iteration of the
conditional expectations Eθ (δ0|Y ) and Eθ (δ1|Y ) then
apply quadratic programming [31, 32] to solve for
π̂

(t+1)
i =

(
π

(t+1)
i1 , . . . ,π(t+1)

iK

)
. We use the

solve.QP() function from the R package
quadprog [33] to implement the quadratic
programming.
Finally, the MLE for τ 2, was calculated by using the
log of the complete-data likelihood, taking derivative
with respect to τ 2, setting likelihood equal to zero
and solving.

(τ̂ 2)(t+1) = 1
R ∗ N

N∑

i=1

R∑

r=1

(
Yir −

K∑

k=1
X(t)
rk π

(t+1)
ik

)2

Details for simulation studies
We created platform-dependent cell type-specific DNAm
profiles for the kth cell type (X450k

k and XRRBS
k ) where

X∗
k = (1 − Zk)δ

∗
0 + Zkδ

∗
1 by simulating platform-

dependent random effects
(
δ∗
l ∼ N(α∗

l , (σ
2
l )∗I(R×R)

)
for

both l = 0, 1 (Fig. 2b). For each whole blood DNAm
sample (N = 200), we simulate a relative proportion
of cell types (π i) and measurement error (εi) to create
the observed DNAm level in the 450k array platform(
Y 450k
i = ∑K

k=1 π ikX450k
k + εi

)
and the RRBS platform

(
YRRBS
i = ∑K

k=1 π ikXRRBS
k + εi

)
.

Assessment of performance
Next, we estimate the cell composition of, for exam-
ple, the 450k array and RRBS samples using both the
reference-based Houseman method and our platform-
agnostic method. We do not scale the cell compositions
estimates to 1 to allow for potential unaccounted cell
types.
We calculate the cell type-specific RMSEk as

RMSEk =
√√√√ 1

N

N∑

i=1
(π̂ik − πik)2

where πik is the true cell composition and π̂ik is the esti-
mated cell composition (using either Houseman model or
our proposed model) in the ith sample and kth cell type.
The cell type-specific RMSEk is averaged across cell types
and recorded as the mean RMSE. We repeat the above
nsims = 100 times to calculate the distribution of mean
RMSE.
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