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Abstract

Background: Genomic rearrangements exert a heavy influence on the molecular landscape of cancer. New
analytical approaches integrating somatic structural variants (SSVs) with altered gene features represent a
framework by which we can assign global significance to a core set of genes, analogous to established methods
that identify genes non-randomly targeted by somatic mutation or copy number alteration. While recent studies
have defined broad patterns of association involving gene transcription and nearby SSV breakpoints, global
alterations in DNA methylation in the context of SSVs remain largely unexplored.

Results: By data integration of whole genome sequencing, RNA sequencing, and DNA methylation arrays from
more than 1400 human cancers, we identify hundreds of genes and associated CpG islands (CGIs) for which the
nearby presence of a somatic structural variant (SSV) breakpoint is recurrently associated with altered expression or
DNA methylation, respectively, independently of copy number alterations. CGIs with SSV-associated increased
methylation are predominantly promoter-associated, while CGIs with SSV-associated decreased methylation are
enriched for gene body CGIs. Rearrangement of genomic regions normally having higher or lower methylation is
often involved in SSV-associated CGI methylation alterations. Across cancers, the overall structural variation burden
is associated with a global decrease in methylation, increased expression in methyltransferase genes and DNA
damage response genes, and decreased immune cell infiltration.

Conclusion: Genomic rearrangement appears to have a major role in shaping the cancer DNA methylome, to be
considered alongside commonly accepted mechanisms including histone modifications and disruption of DNA
methyltransferases.

Introduction
The cancer genome is characterized by widespread gen-
omic rearrangement in addition to point mutations.
Somatic structural variations (SSVs) are rearrangements
of large DNA segments, which may accompany DNA
copy number alterations (CNAs) [1]. Different types of
SSVs include deletions, insertions, inversions, tandem

duplications, translocations, and more complex rear-
rangements [2]. In contrast to whole exome sequencing,
which focuses on the ~ 1% of the human genome that
encodes protein, whole genome sequencing (WGS) may
be used to identify SSVs resulting from rearrangements
within the cancer genome, each SSV being identified as
two distinct genomic coordinates being joined together
at a breakpoint junction. Recently, large-scale initiatives
including The Cancer Genome Atlas (TCGA) and the
Pan-Cancer Analysis of Whole Genomes (PCAWG) have
systematically analyzed WGS datasets to identify SSVs
across over 3000 cancer cases in total [2–4]. These
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TCGA and PCAWG datasets both include RNA-seq
data uniformly processed and harmonized across the
various cancer types, allowing for data integration ap-
proaches of gene expression with SSVs. SSVs may im-
pact expression of nearby genes in a number of ways,
including forming fusion transcripts or disrupting or re-
positioning cis-regulatory elements near genes. In two
separate studies of TCGA and PCAWG data, respect-
ively [3, 5], we developed a systematic analytical ap-
proach to integrate SSV breakpoints with the expression
of nearby genes, whereby we cataloged hundreds of
genes appearing deregulated by rearrangement-mediated
cis-regulatory alterations.
In addition to genetic mutations and genomic rear-

rangements, epigenetic alterations, including DNA
methylation, play a major role in the development and
progression of cancer. CpG islands (CGIs) are short in-
terspersed DNA sequences that deviate significantly
from the average genomic pattern by being GC-rich,
CpG-rich, and predominantly nonmethylated, with ~
70% of annotated gene promoters being associated with
a CGI [6]. Classical DNA methylation occurs at the 5
position of the pyrimidine ring of the cytosine residues
within CpG sites to form 5-methylcytosines, where the
presence of multiple methylated CpG sites in CGIs of
promoters causes stable silencing of genes [7]. Aberrant
DNA methylation in cancer can lead to transcriptional
silencing of tumor suppressor genes or a loss of regula-
tion of genes that promote tumorigenesis. Human can-
cers are characterized by widespread and pervasive
changes in the patterns of DNA methylation, which may
be attributable to several different mechanisms [8]. It is
understood that DNA repair of double-stranded breaks—
which would be involved in genomic rearrangements—
can lead to altered CpG methylation at the repair site,
with corresponding changes in expression of the genes be-
ing associated with the repaired region [9–11]. Although
previous studies have examined the relationship between
CNAs and DNA methylation in cancer [12], to date, there
has been no global survey to identify CGIs with altered
methylation associated with nearby SSV breakpoints, inde-
pendently of any associated CNA.
In this present study, taking advantages of the unique

resources and opportunities offered by TCGA and
PCAWG—which include cancer profiles of DNA methy-
lation for nearly 1500 cases with corresponding SSV
data—we set out here to survey genes impacted by SSVs
at the levels of either mRNA expression or DNA methy-
lation. By bringing together all available data, a much
larger sample set was available for study over that of pre-
vious studies, allowing us to further refine the catalog of
genes consistently altered in association with nearby
SSV breakpoints. Based on previous observations, here
we modified our analytical approaches to identify gene

alterations by breakpoints occurring across a larger gen-
omic region as well as within specific cancer types. In
this present study, we applied approaches that we had
originally developed for mRNA data to DNA methyla-
tion data, allowing us to identify CGIs and associated
genes with methylation being consistently altered by
nearby breakpoints. Finally, we identified pan-cancer
molecular signatures and involved pathways associated
with the overall burden of structural variation across
cases—involving both mRNA and DNA methylation.

Results
A compendium of SSVs and gene expression across 2334
cases
Our study brought together all available WGS and
RNA-seq data for 2334 cases, of which 1482 cases had
DNA methylation array data (450K platform) being uni-
formly generated and processed as part of TCGA con-
sortium. RNA-seq data were previously processed as
part of efforts by PCAWG consortium or by TCGA con-
sortium or both, with batch correction being carried out
here to harmonize the two sets of data into one unified
set of 2334 sample profiles (Additional file 1: Figure
S1A). Gene-level CNA values by WGS or SNP array
were similarly harmonized together (Additional file 1:
Figure S1B). WGS data were generated with either low
depth of coverage (low pass, ~ 6–8×) or high coverage
(high pass, ~ 30–60×), with both types of WGS being
utilized effectively to identify SSVs in previous studies
[3, 5]. We compiled SSV calls for 1232 cases from
PCAWG [4], for 1207 low-pass WGS cases from our re-
cent study [3], and for 764 high-pass WGS cases from
TCGA [2] (Additional files 2 and 3). Cases sequenced
with high coverage will have more SSVs detected on
average and fewer false negatives [3]. Of the 2334 unique
cases, 1033 had only low-pass WGS data available. Data
integration (e.g., between SSVs and RNA-seq or between
SSVs and DNA methylation arrays) was a key aspect of
our study in identifying gene features with significance
levels (whether by statistical modeling or permutation
testing) rising above any noise inherent in one data plat-
form, with statistical corrections being considered as
warranted for technical covariates such as sequencing
coverage or tumor sample purities.
Using a previously described integration approach be-

tween SSVs and gene expression [3, 13], we assessed
gene-level associations between expression and nearby
SSV breakpoints within several specified genomic region
windows in relation to genes (upstream, downstream, or
within the gene body, Fig. 1a). For each of the genomic
regions relative to genes considered (e.g., within the
gene, 0–20 kb upstream, 20–50 kb upstream, 50–100 kb
upstream, 0–20 kb downstream, 20–50 kb downstream,
and 50–100 kb downstream), we found widespread
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Fig. 1 (See legend on next page.)
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associations between SSV event and expression across
the 2334 cases and 17,798 genes as expected, after cor-
recting for expression patterns associated with tumor
type or CNA (Fig. 1b, c and Additional file 4), indicative
of SSV-mediated gene regulatory disruption. For each of
the significant gene sets for a given genomic region win-
dow (using false discovery rate, or FDR, of < 5% [17]),
many more genes were positively correlated with SSV
event (i.e., expression was higher when SSV breakpoint
was present) than were negatively correlated, though
notably a substantial number of genes—including tumor
suppressors such as PTEN, STK11, TP53, and RB1—
were negatively correlated with SSV breakpoints occur-
ring within the gene body, indicative of direct disruption
of gene coding regions. In a few cases, within-gene SSV
breakpoints associated with increased expression repre-
sented gene fusions, e.g., involving ERG, ALK, or RET
(Fig. 1c and refs [3, 18]). Without statistical corrections
for CNA, we found even larger numbers of genes with
SSVs associated with increased expression (Fig. 1b), in
line with previous observations of SSV breakpoints being
strongly associated with copy gain [3]. The numbers of
statistically significant genes were much lower when
considering genomic region windows very far away from
the gene, e.g., greater than 1Mb.
The significances of association between expression

and nearby SSV breakpoint, as made for all genes in the
present study, were compared to that of both the previ-
ous study utilizing low-pass WGS [3] and the previous
study of PCAWG high-pass WGS [5], involving 1448
and 1220 cases, respectively. Overall, we observed high
concordances, between the results from the present
study utilizing all 2334 cases and previous results from
studies utilizing different subsets of the 2334 cases
(Fig. 1d). Genes with known associations with cancer
[14–16] that were significantly positively correlated with
nearby SSV breakpoints in each of the three separate
studies (FDR < 10% for any one of the following regions:

0–20 kb upstream, 20–50 kb upstream, 50–100 kb up-
stream, 0–20 kb downstream, 20–50 kb downstream,
50–100 kb downstream, or within the gene body, with
corrections for cancer type and CNA) included AKT3,
ALK, BCL9, CCND3, CDK4, ERBB2, ERG, IRF4, LRP1B,
LZTR1, MDM2, MYC, PPARG, RET, TERT, and TP63;
genes significantly negatively correlated included
ARID1B, ARID2, GRLF1, PHF10, PTEN, RB1, SMAD4,
STK11, TP53, and ZNF384. Here we found many genes
that were not significant in one of the previous studies
to be significant in the analysis of the combined datasets.
This could be attributable in part to greater statistical
power represented by the additional cases in the larger
dataset, as well as to differences in the representation
of cancer types between different studies. For example,
SSVs associated with the upregulation of CD274 and
PDCD1LG2 involved ~ 1% of non-amplified cases in
the PCAWG cohort of 1220, but these significant pat-
terns involved lymphomas and other cancer cases that
were not represented in the other previous study of
1448 cases, and so these genes were not significant in
that study.

An analytical approach to identify gene features
consistently altered by nearby SSV breakpoints
In light of previous findings using the above genomic re-
gion windows method, we developed an alternative ana-
lytical approach to associate the expression of each gene
with nearby SSV breakpoints. Given that genomic rear-
rangements may involve the translocation of enhancers,
which may impact genes within a distance of ~ 1Mb [3,
19], and given that examining relatively small regions on
the order of ~ 20 kb may result in breakpoints falling just
outside the window that would otherwise contribute to a
significant pattern, we computed a “relative distance
metric” for each sample and gene (Fig. 2a), which was
the relative distance of the SSV breakpoint closest to the
gene start site (upstream or downstream). A data matrix

(See figure on previous page.)
Fig. 1 Genes with altered expression associated with nearby SSV breakpoint by the genomic region window method. a Schematic of the
method. For each of several specified genomic region windows in relation to genes (upstream, downstream, or within the gene body), an SSV
breakpoint matrix annotates for each sample the presence or absence of at least one SSV breakpoint within the given region. Across samples, the
association between expression and SSV breakpoint pattern for each gene is then assessed. b For each of the indicated genomic region windows
examined, numbers of significant genes (FDR < 5%), showing correlation between expression and associated SSV event (correcting for sample
cancer type), across 2334 cases with WGS and expression data. Numbers above and below zero point of the Y-axis denote positively and
negatively correlated genes, respectively. Linear regression models also evaluated significant associations when correcting for both cancer type
and gene-level CNA. Genes tested for the given region had at least three cases with SSV breakpoint. c Heat map of significance patterns for
genes from b (from the model correcting for both cancer type and CNA). Red, significant positive correlation; blue, significant negative
correlation; black, not significant (p > 0.05) or not assessed (less than 3 cases with SSV breakpoint events for given gene in the given genomic
region). Genes listed are cancer-related [14–16] and with FDR < 1%. d Significance of genes in the present study (2334 cases, best FDR from the
following regions: 0–20 kb upstream, 20–50 kb upstream, 50–100 kb upstream, 0–20 kb downstream, 20–50 kb downstream, 50–100 kb
downstream, or within the gene body), as compared to their significance in both the previous study utilizing low-pass WGS [3], left, and the
previous study of PCAWG high-pass WGS [5]. The X-axis indicates the best FDR for the present study, and the Y-axis indicates the best FDR for
the corresponding previous study. Genes in the lower right quadrant reached significance only in the present study. Cancer-related, according to
refs [14–16]. See also Additional file 1: Figure S1 and Additional files 2, 3, and 4
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Fig. 2 (See legend on next page.)
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of absolute relative distances for all 17,998 genes and
2334 samples was assembled, with a relative distance
metric of 1Mb being applied for any sample with no
breakpoints within 1Mb of the gene. Using this break-
point pattern matrix, the correlation between expression
of each gene and the presence of nearby SSV break-
points could be assessed, using linear regression models
(on log-transformed expression and relative distance
data) that would allow for incorporation of any relevant
covariates. Among other things, the distance metric
method provides a single result for each gene across the
samples, representing genes consistently altered across
the entire ± 1Mb region examined, avoiding the issue of
multiple testing of several adjacent regions.
By the distance metric method, we found hundreds of

genes consistently altered in expression by SSV break-
points occurring within a region ± 1Mb of the given gene,
after correcting for CNA (Fig. 2b and Additional file 1:
Figure S2 and Additional file 5). Most genes surveyed (13,
023 out of 17,798) showed a significant increase in gene
copy number with nearby SSV breakpoints, but after cor-
rections for CNA and cancer type, 626 genes showed al-
tered expression with nearby breakpoints at a statistical
cutoff of FDR < 5%, 521 of these genes being positively
correlated with breakpoints and 105 genes being nega-
tively correlated. We found more genes significant by the
distance metric method than were significant for any sin-
gle region examined by genomic region windows method
(Fig. 1b). In addition to CNA, other possible covariates
considered included tumor purity, tumor ploidy, low-pass
versus high-pass WGS, total number of SSV breakpoints
detected per sample, and patient age, none of which repre-
sented major confounders (Additional file 1: Figure S3A).
In addition, permutation testing, whereby we randomly
shuffled the SSV events (by shuffling the patient ids) and
distance metric method carried out for each gene, again
demonstrated far more significant differences over chance
expected (Additional file 1: Figure S3B), consistent with

the above FDR estimates by Storey and Tibshirani method
[17]. Cases involving overexpression of a gene with nearby
SSV spanned all cancer types examined (Additional file 1:
Figure S3C). Gene fusion events accounted for a small mi-
nority of SSV-mediated gene overexpression (Add-
itional file 1: Figure S3C), and cases with low-pass WGS as
well as cases with high-pass WGS contributed substantially
to the significant gene patterns observed (Additional file 1:
Figure S3C). Significant SSV-gene associations involved all
SSV classes and sizes (Additional file 1: Figure S3D and
S3E). A set of 37 microRNAs also showed significant associ-
ations between nearby breakpoint and increased expression
(Additional file 1: Figure S3F and S3G and Additional file 5),
which is likely due in part to many microRNAs residing
within host genes [20].
Significantly enriched gene categories (by Gene Ontol-

ogy or GO, Fig. 2c and Additional file 5) within the set
of 521 genes positively correlated with nearby SSV
breakpoints (FDR < 5%, corrections for CNA and cancer
type) included G-protein-coupled receptor activity (78
genes, p < 1E−20 by one-sided Fisher’s exact test) and
signal transducer activity (94 genes, p < 1E−10); enriched
gene categories within the set of 105 genes negatively
correlated included BRAF-type complex (ARID1B,
ARID2, PHF10, RB1), protein deubiquitination (BAP1,
FAM188A, KEAP1, PTEN, RNF135, SMAD4, STAMBP,
TP53, USP22), cell cycle arrest (APBB2, CDKN2A,
CDKN2B, KILLIN, RB1, STK11, TP53), and proteolysis
(18 genes). Overall, the results obtained by the distance
metric method were consistent with those of genomic
region windows method, although a number of cancer-
associated genes were significant by the latter method
but not the former method (Fig. 2d); while the distance
metric method may aid in our obtaining a more focused
set of genes impacted by breakpoints occurring across a
larger genomic region, there were other genes impacted
just within a smaller and very specific region, as uncov-
ered by the genomic region windows method. A number

(See figure on previous page.)
Fig. 2 Genes with altered expression associated with nearby SSV breakpoint by distance metric method. a Schematic of the method. For each
sample, the relative distances of the SSV breakpoint (BP) closest to the start of each gene are tabulated, with a gene X sample relative distance
matrix being assembled. Across samples, the association between expression and relative SSV breakpoint distance for each gene (with a
maximum distance of 1 Mb) is then assessed. b Numbers of significant genes (FDR < 5%, linear model correcting for sample cancer type), across
2334 cases with WGS and expression data, for each of the indicated analyses: (1) gene-level CNA versus expression, (2) CNA versus relative
distance to closest SSV breakpoint, (3) expression versus SSV breakpoint distance, and (4) expression versus SSV breakpoint distance with
correction for gene-level CNA. c Significantly enriched Gene Ontology (GO) terms for genes correlated (FDR < 5% by distance metric method,
with corrections for cancer type and CNA) with occurrence of SSV breakpoint in proximity to the gene (for any region considered). p values by
one-sided Fisher’s exact test. d Significance of genes in the present study by distance metric method, as plotted (Y-axis) versus significance by
genomic region windows method (left, from Fig. 1d, based on 2334 cases, best FDR from the following regions: 0–20 kb upstream, 20–50 kb
upstream, 50–100 kb upstream, 0–20 kb downstream, 20–50 kb downstream, 50–100 kb downstream, or within the gene body), and versus the
percent of cases impacted (expression > 0.4SD from sample median) by nearby SSV breakpoint (within 1 Mb) without associated amplification or
deletion event (defined as log2 tumor/normal copy ratio > 1 or < 1, respectively). Cancer-related, according to refs [14–16]. e As examples of
significant genes, gene expression levels of BCAR4 (left) and of IGF2 (right), corresponding to SSVs located in the genomic region 1 Mb
downstream to 1 Mb upstream of the gene. Each point represents a single case (closest SSV breakpoint represented for each case). Cases with
gene amplification are indicated. See also Additional file 1: Figures S2 and S3 and Additional file 5
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of well-known oncogenes and tumor suppressor genes
had expression impacted by SSV breakpoints in a sizable
number of cases—on the order of 1 to 4% of the 2334—
that did not harbor amplifications or deletions in the given
gene (Fig. 2d), with oncogenes including TERT [13], CRKL
[21], FGF4 [22], IGF2 [23], and long noncoding RNA
(lncRNA) BCAR4 [24] (Fig. 2e and Additional file 1:
Figure S3H). lncRNA MALAT1 was also positively corre-
lated with SSV breakpoints (Additional file 1: Figure S3H),
though likely not representing an oncogene itself but ra-
ther a correlate of aggressive cancers [25].
In contrast to the genomic region windows method,

the distance metric method allows for inferring SSV-
gene associations by individual cancer type, as this
method incorporates SSV breakpoint information across
a larger genomic region, where SSV events may be
sparse. For each of the 23 major cancer types repre-
sented in our patient cohort, we assessed the gene-level
associations between expression and the presence of
nearby breakpoints. For most cancer types surveyed, on
the order of hundreds of genes were significantly associ-
ated (FDR < 10%, correcting for cancer type and CNA)
with SSV breakpoints (Fig. 3a and Additional file 6). As
with the pan-cancer analysis, more genes were positively
correlated with breakpoints than were negatively corre-
lated. Analogous to findings from genomic surveys for
significantly mutated genes [15], a large number of genes
found significant in the analysis of individual cancer
types did not reach significance when analyzing the
combined pan-cancer set of 2334 cases (Fig. 3b). Out of
1280 genes significant for any one individual cancer type
(FDR < 10%, correcting for cancer type and CNA), just 41
were significant in pan-cancer analysis (Additional file 1:
Figure S4A). The set of SSV-associated genes for each
cancer type was distinct from those of the other cancer
types (Additional file 1: Figure S4A).
Interestingly, when we compared the cancer type-specific

SSV-gene associations with differential DNA methylation
patterns (involving n = 1482 cases out of the 2334), we ob-
served highly significant overlaps, between the genes with
positive correlations between expression and nearby SSV
breakpoint for a given cancer type and the genes with high
overall DNA methylation being associated with that same
cancer type (Fig. 3c and Additional file 1: Figure S4B). We
examined DNA methylation array probes for 11,203 CpG
islands (CGIs), defining the top CGI probes for each cancer
type having high methylation versus the rest of the cancers
(FDR < 0.001, t test using logit-transformed data). Of the 20
cancer types with methylation data, nine showed a signifi-
cant overlap (p ≤ 0.002, chi-squared test) between genes as-
sociated with the top differentially methylated features and
genes positively correlated between expression and SSV
breakpoints in cancer type-specific analyses. In all, 893 CGI
DNA methylation probes—involving 193 genes—were

involved in the significant patterns of overlap as described
above (Fig. 3d and Additional file 5). One of the involved
genes was TERT, for which several CGI probes were highly
methylated in chromophobe renal cell carcinoma (chRCC)
and for which associations between SSV breakpoints and
TERT expression were significant specifically for that can-
cer type (Fig. 3d). The TERT-associated CGI probes with
high methylation were located within the TERT gene
boundaries and did not include the CGI probe known
to represent a repressive regulatory element (probe
cg02545192, Additional file 1: Figure S4C). Of note,
the discovery of SSV-mediated deregulation of TERT
in solid tumors was first made in the chRCC cancer
type [13], though the associations involving DNA
methylation had not previously been made.

Widespread impact of SSVs on methylation of specific
CpG islands (CGIs) across 1482 cases
While previous studies have examined the global influ-
ence of SSVs on the expression of individual genes, an
analogous survey of associations between SSVs and
DNA methylation patterns remained to be carried out.
The gene by sample breakpoint matrices as constructed
above for analysis of gene expression (Figs. 1a and 2a)
were joined to the DNA methylation data matrix of
1482 cases, in terms of the genes associated with CGIs.
The correlation between methylation of each CGI and
the presence of an SSV breakpoint in relation to the
CGI-associated gene was assessed using linear regression
models, with the inclusion of relevant covariates. We ex-
amined 111,203 CGI DNA methylation probes, involving
13,043 associated genes. After correcting for any associa-
tions that would be attributable to CNA [12], we found
hundreds of CGI probes consistently altered in methyla-
tion by nearby SSV breakpoints, whether by examining
smaller regions by genomic region windows method or
by surveying the ± 1Mb region surrounding each gene
by the distance metric method (Fig. 4a and Add-
itional file 7). More CGI features were positively corre-
lated (i.e., showed increased methylation) with SSV
breakpoints than were negatively correlated. By the dis-
tance metric method, 1286 significant CGI probes
(FDR < 5%, Fig. 4a and Additional file 1: Figure S5) in-
cluded 802 probes positively correlated with nearby
breakpoint and 484 probes negatively correlated. By and
large, a number of possible covariates considered did not
represent major confounders of the methylation-SSV as-
sociations (Additional file 1: Figure S6A), although a
number of CGI probes negatively correlated with nearby
SSV appeared influenced in part by the total number of
SSV breakpoints detected per sample and by sample-
wide DNA methylation (Additional file 1: Figure S6A),
which associations were further explored below. Along
with statistical modeling, permutation testing by random
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shuffling of the SSV events also demonstrated far
more significant differences over chance expected
(Additional file 1: Figure S6B).
Strikingly, CGI probes with SSV-associated increased

methylation were predominantly promoter-associated,
while CGI probes with SSV-associated decreased methy-
lation were enriched for gene body CGIs (Fig. 4b, c;
Additional file 1: Figure S6C). Of the 802 probes

positively correlated (FDR < 5%) with nearby breakpoint,
581 (72%) were promoter-associated according to EN-
CODE annotation of the 450K platform (Add-
itional file 7), where ~ 377 probes (47%) would have
been expected by chance (p < 1E−45, chi-square test). Of
the 484 probes negatively correlated with nearby break-
point, these were anti-enriched for promoter-associated
probes (Fig. 4b), but included 321 probes located within

Fig. 3 Genes with altered expression associated with nearby SSV breakpoint according to cancer type. a For each cancer type, numbers of
significant genes showing correlation between expression and nearby SSV breakpoint (FDR < 10% by distance metric method, linear model
correcting for CNA). b The X-axis indicates the FDR in the most significant of the 23 cancer types. The Y-axis indicates the FDR when the 2334
cases are analyzed as a combined pan-cancer cohort. Genes in the upper left quadrant reached significance only in the pan-cancer analysis.
Genes in the lower right quadrant reached significance only in one or more single-type analyses. Genes in the upper right quadrant were
significant in both the pan-cancer set and in individual cancer types. The color of data points represents the most significant cancer type
(following a color scheme). c For each cancer type, numbers of DNA methylation probes (Illumina 450K array platform) targeting CpG islands
(CGIs) with high methylation in the given cancer type versus other cancer types (FDR < 0.001, t test using logit-transformed data), for which the
associated gene also shows a positive correlation between expression and nearby SSV breakpoint for that same cancer type (FDR < 0.1, from a).
The numbers of CGI probes expected to overlap by chance between the differential methylation results and the expression vs SSV results are also
indicated (gray bars), along with any significance of overlap represented by the actual results (asterisks, p values by chi-squared test). d For 893
CGI DNA methylation probes showing both high cancer type-specific methylation and significant positive correlation between expression and
SSV breakpoint for any one of the 20 cancer types surveyed (from c), the associated SSV versus expression correlations (from a), average DNA
methylation by cancer type, and differential methylation in each cancer type versus other cases (t-statistic using logit-transformed values). See
also Additional file 1: Figure S4 and Additional file 6
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Fig. 4 (See legend on next page.)
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the gene body (between the ATG and stop codon, by
450K platform annotation), as compared to ~ 142 ex-
pected by chance (p < 1E−70, chi-square test). Interest-
ingly, while promoter methylation is known to silence
genes, gene body methylation is often positively corre-
lated with gene expression [26], though our significant
CGIs would represent only a fraction of the total sur-
veyed. Significant SSV-CGI associations involved all SSV
classes and sizes (Additional file 1: Figure S6D and S6E).
We examined the overlap between CGI probes with

SSV-associated altered methylation and the related genes
with corresponding SSV-associated altered expression
(Fig. 4d), taking particular note of inverse correlations
between methylation and expression. Using FDR cutoffs
of < 10% (distance metric method, with cancer type and
CNA corrections), 1126 CGI methylation probes were
positively correlated with nearby SSV breakpoints, of
which 58 probes involved genes negatively correlated be-
tween expression and SSV breakpoints, a highly significant
overlap (p < 1E−35, chi-squared test), with 49 of the 58
probes also showing inverse correlation between expression
and methylation across the 1482 cases (FDR < 10%, Pear-
son’s correlation using log- or logit-transformed values, re-
spectively, with corrections for cancer type and CNA),
which genes included TP53 and PTEN (Fig. 4d and Add-
itional file 1: Figure S6F). Out of 824 CGI methylation
probes negatively correlated with nearby SSV breakpoints,
54 involved genes positively correlated between expression
and SSV breakpoints (p < 1E−7, chi-squared test), which
genes includedDVL1 and FASN (Fig. 4e and Additional file 1:
Figure S6F). Previous findings made elsewhere [5] of other
types of DNA methylation patterns associated with genes
positively correlated with nearby SSV breakpoints were also
observable in the present study, namely an enrichment for
genes positively correlated between expression and

methylation (Additional file 1: Figure S6G), as well as an as-
sociation of methylation at the TERT-associated cg02545192
site (which involves a repressor element) with increased
TERT expression (Additional file 1: Figure S6H). For most
individual cancer types, on the order of hundreds of CGI
probes were significantly associated with altered methylation
with nearby SSV breakpoints (Additional file 1: Figure S7A).
Out of 16,096 probes significant by methylation analysis for
any one individual cancer type (FDR < 10%, Additional file 1:
Figure S7B), 143, representing 55 genes, showed an opposite
and significant correlation between expression and SSVs for
the corresponding gene within the same cancer type
(Fig. 4f).
We explored potential mechanisms involving SSV-

mediated alterations in gene expression and in DNA
methylation, including disruption of topologically associ-
ated domains (TADs) and enhancer hijacking. Using
published data on TAD coordinates in human cells [27],
we categorized all SSVs in our pan-cancer dataset, by
those that were TAD disrupting (i.e., the breakpoints
span two different TADs) versus those that were non-
disrupting (i.e., both breakpoints fell within the same
TAD). As expected [3], for SSVs with breakpoints lo-
cated in proximity to a gene and associated with its
overexpression, a high enrichment (p < 1E−18, chi-
square test) for TAD-disrupting SSVs was observed
(Fig. 5a), though no similar enrichment pattern was ob-
served for SSVs associated with gene underexpression.
Interestingly, SSVs associated with higher CGI methyla-
tion or with lower CGI methylation were both highly
enriched for TAD-disrupting SSVs (Fig. 5a and
Additional file 8, p < 1E−18, chi-square test). We went
on to examine potential enhancer hijacking events in-
volving SSVs, focusing here on a set of active, in vivo-
transcribed enhancers as cataloged previously [28]. For

(See figure on previous page.)
Fig. 4 CpG islands (CGIs) with altered DNA methylation associated with nearby SSV breakpoint. a For each of the indicated genomic region
windows in relation to genes associated with CGIs, numbers of significant CGIs (FDR < 5%, correcting for both cancer type and gene-level CNA),
showing correlation between DNA methylation and associated SSV event, across 1482 cases with WGS and DNA methylation data. Results from
distance metric method (± 1 Mb) as well as genomic region windows methods are shown. CGI DNA methylation probes tested for the given
region had at least three cases with SSV breakpoint. b Fraction of promoter-associated CGIs, for the CGIs associated with increased methylation
(by distance metric method from a), and for the CGIs associated with decreased methylation. p values by chi-square test. c Breakdown by probe
position relative to gene, for the CGIs associated with increased or decreased methylation, respectively. p values by chi-square test. d Overlap
between CGI probes with SSV-associated altered methylation and nearby genes with corresponding SSV-associated altered expression. For
expression- and DNA methylation-SSV breakpoint associations inverse to each other for the same genes (e.g., gene expression positively
correlated and DNA methylation negatively correlated with nearby breakpoint, using FDR < 10%), the subset of CGI methylation probes for which
the associated genes are negatively correlated between methylation and expression (FDR < 10% by Pearson’s correlation on logit- or log-
transformed values) across the 1482 cases are indicated. Genes highlighted are represented by multiple CGI probes. p value for significance of
overlap by chi-squared test. e As an example of a significant gene, gene expression levels (left) and DNA methylation levels (right) of FASN,
corresponding to SSVs located in the genomic region 1 Mb downstream to 1 Mb upstream of the gene. Each point represents a single case
(closest SSV breakpoint represented for each case). Cases with gene amplification are indicated. f A set of 143 CGI methylation probes
significantly associated with nearby SSV breakpoints for one or more individual cancer types (FDR < 10%), for which the expression versus SSV
association for the corresponding gene within the same cancer type are significant (FDR < 10%) and in the opposite direction. Left panel
represents SSV-methylation associations; right panel represents SSV-expression associations. FDR values by distance metric method, correcting for
CNA. Gene name coloring corresponds to associated cancer type. See also Additional file 1: Figures S5 and S6 and Additional file 7
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all SSV breakpoint associations occurring 0–500 kb up-
stream of a gene and with breakpoint mate on the distal
side from the gene, we tabulated SSV breakpoint associa-
tions involving the translocation of an active, in vivo-tran-
scribed enhancer within 0.5Mb of the gene (assuming no
other disruptions involving the region), where the unaltered
gene had no enhancer within 1Mb. In line with previous
findings [3], the subset of SSV breakpoint associations in-
volving gene overexpression showed a statistically signifi-
cant percentage (8.1% versus 6.2%) involving putative
enhancer translocation events (Fig. 5b and Additional file 9,
p < 1E−6, chi-squared test). However, as might be expected,
we observed no such enrichment patterns for SSVs associ-
ated with gene underexpression or with altered DNA
methylation (Fig. 5b).
Interestingly, rearrangement of regions with higher or

lower methylation from other parts of the genome was
associated with SSV-associated DNA methylation alter-
ations. Using the TCGA dataset of DNA methylation of
16 types of normal adjacent tissues and ~ 450K probes
(Additional file 1: Figure S7C), for each SSV breakpoint,
the average DNA methylation in normal tissues repre-
sented by the rearranged region (using window of 50 kb)
was compared with the normal tissue methylation of the
CGI nearby the gene on the other side of the breakpoint.
This average difference in normal methylation repre-
sented by SSV breakpoint was computed for all SSV-
CGI associations, as well as for the subset of SSV-CGI
associations involving higher or lower DNA methylation
for the CGI in the cancer sample (using FDR < 5% for
the CGI by distance metric and > 0.4SD or < −4SD from
sample median for the case harboring the breakpoint,
with corrections for cancer type and CNA). On average,
all SSV-CGI associations showed an increase in methyla-
tion represented by the rearranged region relative to the
CGI on the other side of the breakpoint (average beta
difference of + 0.37, Fig. 5c, Additional file 1: Figure
S7C, S7D, and S7E), which reflects the fact that regions

of the genome outside of CGIs tend to have higher DNA
methylation (Additional file 1: Figure S7C). However,
when considering the subset of SSV-CGI associations in-
volving higher methylation in the cancer, the increase in
methylation involving the rearranged region was even
greater (average beta difference of + 0.47, Spearman’s
p < 1E−6, Fig. 5c), and SSV-CGI associations involving
lower methylation showed a highly significant decrease
in methylation represented by the rearranged region
(average beta difference of − 0.11, Spearman’s p < 1E−50,
Fig. 5c). The top SSV-CGI associations involving the re-
arrangement of a region of low methylation (average
methylation beta difference < − 0.1), with corresponding
decrease in methylation and increase in expression being
observed in the cancer case (< − 4SD and > 0.4SD from
median, respectively), involved 314 unique cancer cases
and 549 unique genes (Additional file 10), including genes
such as TERT (14 cases) and FASN (5 cases, Fig. 5d).

Widespread molecular alterations associated with the
overall burden of structural variation
As another line of investigation, we examined gene ex-
pression and DNA methylation features that were corre-
lated with the total number of SSV breakpoints detected
per sample, independent of where the breakpoints were
located in relation to genes. The hypothesis explored
here is that cancer cases with a high burden of structural
variation may show an altered molecular profile as a re-
sult of the extensive DNA damage involved. As low-pass
WGS on average would yield more false negative SSV
events, low-pass versus high-pass WGS was incorporated
as a covariate in the statistical modeling, along with the
TCGA or ICGC project to factor in other technical
differences between projects. We found thousands of
molecular correlates at both the mRNA and DNA
methylation levels (FDR < 10% by linear regression
model), when factoring the above covariates as well as
other potential biological or technical covariates (Fig. 6a,

(See figure on previous page.)
Fig. 5 SSVs associated with TAD disruption, enhancer hijacking, and rearrangement of regions with high or low methylation. a As compared to
all SSVs, fractions of SSVs involving topologically associated domain (TAD) disruption and altered gene expression or DNA methylation (defined as
FDR < 5% for the gene or CGI probe within the given region window, with corrections for cancer type and CNA, and expression > 0.4SD or < −
4SD from median for the case harboring the breakpoint). p values by chi-squared test. b Percentages of SSV breakpoint associations involving the
translocation of an active, in vivo-transcribed enhancer [28] within 0.5 Mb of the gene (where the unaltered gene had no enhancer within 1 Mb),
as tabulated for the entire set of SSV breakpoint associations occurring 0–500 kb upstream of a gene and with breakpoint mate on the distal side
from the gene, as well as for the subsets of SSV breakpoint associations involving altered gene expression or CGI methylation (using FDR < 5% by
distance metric and > 0.4SD or < − 4SD, with corrections for cancer type and CNA). p values for enrichment as compared to all SSV events by chi-
squared test. c Using a dataset of DNA methylation of normal tissues (Additional file 1: Figure S7), the average DNA methylation represented by
the rearranged region (using window of 50 kb) was compared with that of the CGI nearby the gene on the other side of the SSV breakpoint,
with the average difference in methylation beta values computed for all SSV-CGI associations, as well as for the subset of SSV-CGI associations
involving higher or lower DNA methylation (defined as for b). p values by Spearman’s rank correlation. Bars represent standard error. d By gene
and by cancer type, the number cancer cases involving the rearrangement of a region of low methylation (average methylation beta
difference < − 0.1), with corresponding decrease in methylation and increase in expression being observed (< − 4SD and > 0.4SD from median,
respectively), involving 41 genes and 105 cases (genes affected in > 2 cases or cancer-associated genes [14–16] being represented here). See also
Additional file 1: Figure S7 and Additional files 8, 9, and 10

Zhang et al. Genome Biology          (2019) 20:209 Page 12 of 24



Fig. 6 (See legend on next page.)

Zhang et al. Genome Biology          (2019) 20:209 Page 13 of 24



b and Additional file 11). Most covariates considered—
which included CNA, proximal BP pattern (from Fig. 2a),
patient age, tumor purity, and overall methylation—did
not represent major confounders in inferring molecular
correlations with the total number of SSV events de-
tected across samples, with the one notable exception
being overall methylation (the median beta across all
450K probes in the sample profile) as applied to the
DNA methylation analyses, whereby thousands of CGI
probes that had been significantly negatively correlated
with the total number of SSVs lost significance when
overall methylation was factored into the model, indicat-
ing that globally lower methylation levels overall could
be associated with the total number of SSVs.
In addition to specific mRNA and DNA methylation

features, other molecular variables were associated with
the total number of SSVs across samples. A slight but
significant decrease in overall DNA methylation (median
beta of the 450K probes) with increasing numbers of
SSV was observed, independent of high-pass or low-pass
WGS (Fig. 6c, Additional file 1: Figure S8A-D), Spear-
man’s r = − 0.17, corrected p < 1E−5), and accounting
for many of the individual CGI probes that were signifi-
cantly negatively correlated with the total number of
SSVs (Fig. 6b). Significantly enriched GO gene categories
(Fig. 6d and Additional file 11) within the set of 2661
genes positively correlated with the total number of
SSVs per sample (FDR < 1%, with corrections for cancer
type, CNA, and low-pass versus high-pass WGS) in-
cluded cell cycle process (340 genes, p < 1E−50 by one-
sided Fisher’s exact test), chromosome organization (173
genes, p < 1E−45), cell division (145 genes, p < 1E−30),
DNA repair (157 genes, p < 1E−25), double-strand break
repair (63 genes, p < 1E−14), and methyltransferase com-
plex (33 genes, p < 1E−7); enriched gene categories
within the set of 1611 genes negatively correlated in-
cluded immune system process (374 genes, p < 1E−50),

immune response (214 genes, p < 1E−45), leukocyte acti-
vation (169 genes, p < 1E−25), and apoptotic signaling
pathway (43 genes, p < 0.0001). Consistent with the ob-
served overexpression of cell cycle genes, a trend of in-
creased number of SSVs detected in tumor samples and
overall patient survival was observed (Additional file 1:
Figure S8E). Other tumor sample variables associated
with the total number of SSVs (p < 0.0005, corrected
Pearson’s) included tumor sample purity, tumor ploidy,
tumor aneuploidy, overall CNA, and patient age (Fig. 6e
and Additional file 1: Figure S8F and S8G). Genes asso-
ciated with both low expression and high DNA methyla-
tion with increasing numbers of SSVs included
ADRA1A, GATA3, TCF21, and SOX17 (Fig. 6e and Add-
itional file 1: Figure S8H).
Based on the above GO term enrichment patterns

(Fig. 6d), we examined gene transcription signatures of
DNA damage response, of methylation, and of immune
cell types across the 2334 cases with expression data
(Fig. 7a). Gene signature analyses using a previously cu-
rated list of 276 genes encompassing all major DNA re-
pair pathways [30] showed several of these to be
elevated in cases with high numbers of SSVs, including
signatures of base excision repair, mismatch repair, Fan-
coni anemia, and homologous recombination (Fig. 7a).
The associations involving DNA double-strand break re-
pair pathway and Fanconi anemia, in particular, were
also evident when examining key individual genes, in-
cluding BRCA1, BRCA2, FANCD2, FANCI, and RAD51
(Fig. 7b). Key genes involved in histone methylation and
DNA methylation, which appeared significantly in-
creased with increasing numbers of SSV events, included
EZH2, WDR77, PRMT6, DNMT1, DMNT3A, and
DMNT3B (Fig. 7c). Analysis of gene expression signa-
tures from Bindea et al. [16, 31] suggested that levels of
immune cell infiltrates (e.g., B cells, T cells, and den-
dritic cells) were higher within tumors harboring fewer

(See figure on previous page.)
Fig. 6 Global alterations in transcription and DNA methylation associated with the overall burden of structural variation across cancers. a
Numbers of significant genes (FDR < 5%), showing correlation between expression and the total number of SSV events detected across the 2334
cases with RNA-seq data. Linear regression models evaluated significant associations when correcting for specific covariates (in addition to low-
pass versus high-pass WGS), as indicated. b Numbers of significant CGI probes (FDR < 5%), showing correlation between DNA methylation and
the total number of SSV events detected across the 1482 cases with methylation data. Linear regression models evaluated significant associations
when correcting for specific covariates (in addition to low-pass versus high-pass WGS), as indicated. c Scatter plot of global SSV index (measuring
total number of SSV events, correcting for high-pass versus low-pass WGS) versus overall methylation (median beta of all 450K probes within the
sample profile). p value by linear model correcting for cancer type. d Significantly enriched GO terms for genes correlated (FDR < 1%, with
corrections for cancer type, CNA, and low-pass versus high-pass WGS) with the total number of SSV events. p values by one-sided Fisher’s exact
test. e Across the 1482 cases with DNA methylation data, with cases ranked high to low by global SSV index quartiles, selected molecular features
are represented, including top expression correlates with total number of SSV events (from d), CGI probes with DNA methylation high with total
number of SSV events (FDR < 1%, correcting for cancer type, low-pass versus high-pass WGS, CNA, proximal BP pattern, age, and overall
methylation) and with associated mRNAs low with total number of SSV events (as well as anti-correlation between mRNA and methylation,
Pearson’s FDR < 10%), overall methylation (from c), tumor purity, tumor ploidy, aneuploidy [29], overall CNA, exome mutation rate, and patient
age. Expression and methylation values are normalized or centered within each cancer type. Highlighted genes are represented by multiple CGI
probes. p values by linear model correcting for both cancer type and low-pass versus high-pass WGS. See also Additional file 1: Figure S8
and Additional file 11
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SSVs, which was also evident from the analysis of canon-
ical immune cell gene markers (Fig. 7a, d). A DNA
methylation signature of leucocyte fraction [32] also
showed a similar pattern of anti-correlation with increas-
ing total numbers of SSVs (Additional file 1: Figure S8F,
Pearson’s corrected p < 1E−8), indicating that some of
the global DNA methylation patterns as well as the gene
expression patterns identified may involve non-cancer
cell types.

Discussion
This study provides a more comprehensive catalog of
mRNAs deregulated by nearby somatic genomic rear-
rangements, both in pan-cancer analyses and in analyses
of individual cancer types. Our distance metric approach
to integrate SSVs with altered gene features, as intro-
duced in the present study, provides a framework by
which we can assign global significance to a core set of
genes, analogous to methods such as MutSig [15] or
GISTIC [33] that identify genes appearing non-randomly
targeted by somatic mutation or CNA, respectively. As
observed with significance of mutation patterns across
cancers [15], many genes show significance within a spe-
cific cancer type but do not appear significant in pan-
cancer analyses. In pan-cancer analyses, many known
oncogenes (e.g., BCAR4, BCL2, CCNE1, CD274, CDK4,
CRKL, ERBB2, FGF4, IGF2, PDCD1LG2, MDM2, MYC,
and TERT) are overexpressed with SSV breakpoints lo-
cated near the gene, and many tumor suppressor genes
(notably PTEN, STK11, TP53, and RB1) are underex-
pressed with breakpoints located within the gene. As is
the case involving CNA patterns, SSV-altered genes may
involve passengers as well as drivers, where other
sources of information, including global mutation and
CNA patterns, may be brought to bear in uncovering
novel potential driver genes as uncovered by SSV ana-
lysis. Analogous to observations involving point muta-
tion analysis [15], many cancer-associated genes may be
altered by SSVs at relatively small frequencies (e.g., 1–
3%), and so as more WGS data are brought into the
public domain, the greater samples and power offered by
such data can lead to additional significant genes being
identified by our approaches, both across all cancers as
well as within individual cancer types.

This present study has revealed an apparent wide-
spread impact of SSVs on CGI methylation in human
cancer, independently of CNA. Previous studies have de-
fined broad patterns of association involving gene tran-
scription and nearby SSV breakpoints based on RNA-
seq and WGS analysis, with these patterns collectively
involving large groups of genes [3, 5, 34, 35], though
none of these studies had surveyed DNA methylation
patterns in the context of SSVs. It has been understood
that DNA repair of double-stranded breaks can lead to
altered CpG methylation at the repair site [9–11], but
the findings made here of specific CGIs appearing recur-
rently and non-randomly altered in association with
nearby SSV breakpoints across cancers, independently of
any associated CNA, is intriguing and suggestive of a se-
lection process in the disease. A shorter list of genes was
found to be associated with SSV breakpoints inversely
between DNA methylation and expression, with some
notable genes including Wnt pathway-related DVL1 and
metabolism-related FASN. Other genes, such as TERT,
appear altered in expression in some cases due in part to
corresponding DNA methylation changes and in other
cases due to other mechanisms including enhancer
hijacking [19], and so while TERT-associated CGIs may
not be globally associated with DNA methylation
changes across all cases, in a subset of cases, methylation
alterations may still play a role in deregulated expres-
sion. In evaluating the true impact of DNA methylation
alterations for a given gene, the absolute level of DNA
methylation changes as well as domain-specific know-
ledge regarding regulation of the gene should be taken
into account.
This study identified a phenomenon involving the re-

arrangement of genomic regions with higher or lower
methylation as a potential contributor to the observed
SSV-associated DNA methylation alterations. TADs can
confine physical and regulatory interactions between en-
hancers and their target promoters and if disrupted can
result in ectopic gene expression [23], consistent with
observations in the present study. TAD disruption in
cancer was also associated here with global changes in
DNA methylation (both higher and lower), which would
be related to the rearrangement of differentially methyl-
ated regions, where such rearrangements involving two

(See figure on previous page.)
Fig. 7 Gene signatures and pathways associated with the overall burden of structural variation across cancers. a Across the 2334 cases with both
WGS and RNA-seq data, heat maps of gene expression-based signatures scoring for DNA damage response pathways [30], methylation (by Gene
Ontology or GO categories), and immune cell infiltrates [31]. Gene signature scores are the average of normalized expression values (for immune
signatures, expression values normalized within each cancer type; for other signatures, expression values normalized across sample profiles). p
values by linear model correcting for both cancer type and low-pass versus high-pass WGS. b Diagram of key genes involved with DNA double-
strand break repair pathway, with corresponding correlation with the overall structural variation burden (red, significantly higher with increasing
number of SSVs). c Similar to b, with diagram of key genes involved in methylation of DNA and histones. d Similar to b, with diagram of immune
cell types and associated gene markers. FDR values in b and c (based on the entire set of 17,798 genes profiled) by linear model correcting for
both cancer type and low-pass versus high-pass WGS
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regions representing dramatically different methylation
landscapes are more likely to span TAD boundaries ra-
ther than involving short-range rearrangements within a
TAD. A number of possible mechanisms would be at
work in DNA methylation alterations in cancer, includ-
ing disruption of genes involved with methylation such
as DNA methyltransferases (DNMTs), modifications of
histones (e.g., by deregulation of enhancer of zeste dros-
ophila homologue 2, or EZH2) that mark a gene for
hypermethylation, and processes involved in DNA repair
of double-stranded breaks [11, 36]. The findings made in
the present study regarding rearrangement of differentially
methylated genomic regions would seem to represent an
under-appreciated mechanism involved in shaping the
cancer DNA methylome. For some genes, such as TERT,
higher levels of DNA methylation for some cancer types
might represent a barrier to gene overexpression, which
SSVs appear to help overcome in many cases of our pa-
tient cohort. Multiple mechanisms of SSV-mediated de-
regulation at both the gene transcription and DNA
methylation levels appear to be involved, which may be
further elucidated in future studies.
Our study also identified widespread molecular alter-

ations associated with the overall structural variation
burden across cancers, which were distinct from that of
the overall mutational burden. Overall structural vari-
ation burden (i.e., high number of detected SSVs relative
to other cases, correcting for differences in coverage)
was also associated with a global decrease in overall
methylation across cancers, an observation for which
there would be parallels in other contexts from previous
studies, as described below. In experimental models,
genome-wide hypomethylation has been repeatedly ob-
served in structurally unstable cancer genomes [36, 37].
In the human germline, hypomethylation of genomic
DNA associates with local genomic instability and struc-
tural variation [38]. DNA methylation may provide a sta-
bilizing effect in preventing chromosomal instability and
translocations [36], with other possible mechanistic links
including an observed activation of components of the
base excision DNA repair pathway at the time of
genome-wide DNA demethylation in primordial germ
cells [39]. In our study, we observed increased expres-
sion in DNA damage response and of DNA methyltrans-
ferase genes with increasing structural variation burden,
both of these perhaps representing a transcription pro-
gram initiated without success to combat genomic in-
stability. Elsewhere, genome-wide DNA hypomethylation
despite an increase in DNA methyltransferase activity
and gene-specific regional hypermethylation has been
observed in cancer [40, 41]. In parallel with results from
a recent pan-cancer genomic study of aneuploidy [29],
our study finds structural variation burden to correlate
with cell cycle gene expression and anti-correlate with

immune cell infiltration. As suggested in the previous
aneuploidy study, tumor cells with high numbers of gen-
omic rearrangements may have to overcome or evade
the immune response for tumors to progress.
This present study demonstrates the need to include

DNA methylation profiling as a component of ongoing
and future cancer genomics studies, where TCGA data-
sets at present represent a truly unique resource in
terms of having multiple data platforms in addition to
DNA sequencing being applied uniformly to the same
samples. Our results identify a class of molecular alter-
ations that would not currently be a component of on-
going personalized or precision medicine approaches.
Our study provides a rich resource, whereby the mRNA
and DNA methylation associations provided here may
be further explored to establish novel cancer drivers and
mechanistic links with cancer phenotypes.

Methods
Patient cohorts
The results here are based upon data generated by both
The Cancer Genome Atlas (TCGA) Research Network
and the International Cancer Research Consortium
(ICGC). Combined whole genome sequence (WGS) ana-
lysis and RNA-seq analysis was carried out for 2334
cases in total, 1892 of which were from TCGA and 1232
of which (including all ICGC cases and 790 TCGA
cases) were included as part of the Pan-Cancer Analysis
of Whole Genomes (PCAWG) consortium efforts. Cases
profiled spanned a range of cancer types (bladder, sar-
coma, breast, liver-biliary, cervix, leukemia, colorectal,
lymphoma, prostate, esophagus, stomach, central ner-
vous system or “cns”, head/neck, kidney, lung, skin,
ovary, pancreas, thyroid, uterus), as detailed in Add-
itional file 2. Of the 2334 cases with WGS and RNA-seq,
1482 were cases from TCGA that were also uniformly
profiled for DNA methylation using Illumina 450K array
platform. All publication moratoriums as set by the re-
spective consortiums for utilizing these data were re-
spectfully followed, with the PCAWG datasets being the
last to have their moratorium lifted as of July 25, 2019.

Somatic structural variant (SSV) data
SSV calls were compiled from three different sources:
from the PCAWG consortium of high-pass WGS data
on 1232 cases [4], from our own recent study utilizing
SSV calls based on low-pass WGS data of 1207 cases [3],
and from SSV calling by our group of 764 cases with
high-pass WGS, using Meerkat algorithm [2]. All coordi-
nates are based on the hg19 human reference genome.
Low-pass WGS involved sequencing at ∼ 6–8× coverage,
while high-pass WGS involved sequencing at ∼ 30–60×
coverage. Somatic variants were defined by comparison
between the tumor and matched normal. For PCAWG,
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SSV calls were made by three different data centers
using different algorithms; calls made by at least two al-
gorithms were used in the downstream analyses, along
with additional filtering criteria being used as described
by the PCAWG consortium [42, 43]. Low-pass WGS
calls were previously made using BreakDancer [44] and
Meerkat [2] algorithms [3]. SSV calling of high-pass
WGS by Meerkat algorithm was carried out as previ-
ously described [3, 13, 45]. Briefly, the combined dis-
cordant read pairs support and reads spanning the
breakpoint junction was at least six for each event. For
each variant, if there was more than one discordant read
pair supporting the variant in any normal samples of the
same tumor type, such variant was considered germline
and removed from the somatic variant list. Alterations
found in simple or satellite repeats were also excluded
from the output. Previous studies show that on the order
of 96–98% of high confidence SSVs from high-pass
WGS data detected by Meerkat can be validated by PCR
[2, 13].
All available SSV calling information was brought to-

gether as described above in the interests of the down-
stream integrative analyses with both gene expression
and DNA methylation. True SSV calls missed by one
calling dataset would potentially be supplemented by in-
clusion of results from another dataset. As one notable
example, of the five cases of chromophobe renal cell car-
cinoma (KICH) for which an SSV breakpoint upstream
of TERT was both identified by Meerkat WGS analysis
and independently confirmed by PCR [13], just three
cases had the same SSV breakpoints detected by
PCAWG analysis, consistent with observations else-
where that ensembles of SSV analysis pipelines do not
always outperform individual SSV calling methods [46].
In addition, low-pass WGS calls, in particular, would in-
volve a high false-negative rate (with ~ 20% of the SSV
calls by high-pass data being identifiable using the low-
pass data [3]), where 174 cases in our compilation data-
set had SSV calls by both high-pass and low-pass WGS.
The false-negative SSV call rates represented by variable
sequencing coverage and calling methods across the dif-
ferent TCGA and ICGC sequencing projects were offset
in part by the inclusion of greater numbers of cases and
associated increased statistical power involved in the in-
tegrative analyses. The integration of results between or-
thogonal platforms (e.g., WGS and RNA-seq and WGS
and DNA methylation) was therefore a key aspect of our
study, as associations identified must be significant
enough to rise above any noise involving the respective
data platforms.
In addition, we checked the Database of Genomic Var-

iants (DGV) germline call set (2016 hg19 version), con-
sisting of 392,583 structural variants, against our SSV
call set, consisting of nearly 270,000 SSVs. Exactly four

SSVs from our set overlapped with DGV, and none of
these four were actually involved in the top significant
mRNAs or CGI methylation features by distance metric
method (i.e., either the questionable SSVs were not any-
where in proximity to a gene or CGI called significant,
or, in the one case where an SSV was near a significant
CGI, the associated sample was non-TCGA and did not
have DNA methylation data and was therefore not used
in the DNA methylation analysis).

Gene expression data
Gene expression calls based on RNA-seq data were ob-
tained from two different sources: from PCAWG con-
sortium and from TCGA Network. PCAWG expression
calls were available for 1220 cases (including 442 ICGC
cases and 778 TCGA cases), which data involved align-
ments by both STAR (version 2.4.0i,2-pass) and
TopHat2 (version 2.0.12) were used to generate a com-
bined set of calls, which efforts substantially reduced po-
tential batch effects due to the use of different
computational pipelines between ICGC and TCGA pro-
jects [47]. TCGA Network expression calls were uni-
formly quantified for all 1892 TCGA cases by counting
the number of reads overlapping each gene model’s
exons and converted to reads per kilobase mapped
(RPKM) values by dividing by the transcribed gene
length, defined in the GAF and by the total number of
reads aligned to genes as previously described [48], with
these data obtained from the Broad Institute Firehose
pipeline (http://gdac.broadinstitute.org/). Combat soft-
ware [49] was used to correct for batch effects repre-
sented by the two RNA-seq alignment and processing
methods (PCAWG versus TCGA, using cancer type as
the experimental group). Analysis of the combined
RNA-seq dataset of 2334 cases both before and after
batch correction (Additional file 1: Figure S1A) found
that pre-Combat sample profiles segregate according to
the processing method (i.e., batch) and post-Combat
sample profiles segregate according to cancer type (rep-
resentative of tumor biology). Duplicate expression pro-
files for a sample represented by both PCAWG and
TCGA processing methods were averaged to make a single
profile. The miRNA-seq dataset was obtained from TCGA
PanCanAtlas project (https://gdc.cancer.gov/about-data/
publications/pancanatlas) [50], which dataset involved
batch correction as carried out by TCGA Network accord-
ing to Illumina GAIIx or HiSeq 2000 platforms.

Copy number alteration (CNA) data
Gene-level CNA calls were obtained from two different
sources: from PCAWG consortium (based on WGS ana-
lysis) and from TCGA Network (based on SNP array
analysis). DNA from each tumor or germline-derived
sample had been hybridized by TCGA Network to
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Affymetrix SNP 6.0 arrays as previously described [48, 51].
Significant focal copy number alterations were identified
from segmented data using GISTIC 2.0.22. The Broad In-
stitute’s Firehose pipeline (http://gdac.broadinstitute.org/)
first filtered out normal samples from the segmented copy
number data by inspecting the TCGA barcodes and then
executed GISTIC (Firehose task version: 140) to generate
gene-level log base 2 (tumor/normal) CNA values as a
continuous variable. Gene-level copy data based on WGS
data was previously generated by PCAWG consortium
from a consensus of multiple CNA callers [52]; log base 2
(tumor/normal) CNA values were then generated from
the PCAWG copy calls by dividing the gene copy with the
tumor ploidy. Combat software [49] was used to correct
for batch effects represented by the two CNA datasets
(PCAWG WGS-based versus TCGA SNP array-based,
using cancer type as the experimental group, excluding
genes on X or Y chromosomes). Duplicate CNA profiles
for a sample represented by both WGS and SNP array
were averaged to make a single profile. An index of overall
CNA (Fig. 6e) was computed as the standard deviation of
copy alteration logged ratios across all genes.

Integrative analyses between SSVs and gene expression
Genes with altered expression associated with nearby
SSV breakpoint were defined by two methods: by the
“genomic region window” method, which has been pre-
viously described [3, 5], and by the “distance metric”
method, which is described below. These analyses in-
volved 17,798 unique named genes, where genes located
on the X or Y chromosomes in particular were not in-
cluded, along with genes not represented in the PCAWG
gene-level copy number dataset. Both integrative analysis
methods incorporated TCGA or ICGC project as a co-
variate, in order to factor in differences involving either
WGS coverage or tissue-specific gene expression. While
1033 cases in our cohort with only low-pass WGS would
entail lower sensitivity of SSV detection, the larger sam-
ple numbers utilized also provided increased power,
which was better able to tolerate false-negative events
and other sources of noise in identifying recurrent pat-
terns. To an extent, our analytical approaches were also
more tolerant of false negatives, whereby in our examin-
ing fixed genomic regions near a given gene, multiple
SSV breakpoints may exist, but only one would need to
have been identified by WGS in order to contribute to
associations found. In addition, where high-pass vs low-
pass WGS was explicitly incorporated as a covariate, no
substantial differences in the results were observed (e.g.,
Additional file 1: Figures S3A and S6A).
The genomic region window method starts with a

number of specified genomic region windows of interest
in relation to genes, where for each region we con-
structed an SSV breakpoint matrix by annotating for

every sample the presence or absence (using “1” or “0”,
respectively) of at least one SSV breakpoint within the
given region. For the set of SSVs associated with a given
gene within a specified region in proximity to the gene
(e.g., 0–20 kb upstream, 20–50 kb upstream, 50–100 kb
upstream, 0–20 kb downstream, 20–50 kb downstream,
50–100 kb downstream, or within the gene body), correl-
ation between expression of the gene and the presence
of an SSV breakpoint was assessed using a linear regres-
sion model (with log-transformed expression values). In
addition to modeling expression as a function of SSV
event, cancer type (as encapsulated by one of the 30
TCGA or ICGC projects listed in Additional file 2) was
incorporated into the model as a covariate, where any
significant association between genes and SSV break-
point pattern must rise above any association that would
be explainable by cancer type alone. As presented in the
“Results” section, other models incorporating additional
covariates of interest, such as CNA (using log2 tumor/
normal values) were considered, where observed associa-
tions between expression and SSV pattern would be re-
quired to rise above what would be explainable by the
additional covariates in addition to cancer type. For
these linear regression models, genes with at least three
samples associated with an SSV within the given region
were considered. Genes for which SSV associations were
significant (FDR < 5%) after correcting for both cancer
type and CNA were explored in downstream analyses.
The distance metric method is similar to the genomic

region windows approach, but with the gene X sample
breakpoint pattern matrix being constructed in a differ-
ent way. In defining a ± 1Mb region window in relation
to each gene (spanning from 1Mb upstream of the gene
start to 1 Mb downstream of the gene start), for each
sample, the relative distances of the SSV breakpoint
closest to the start of each gene were tabulated, with a
gene X sample relative distance matrix being assembled.
Where no breakpoints were found for a particular gene
in a given sample, the maximum distance of 1Mb was
imputed. Using this breakpoint pattern matrix (with the
absolute relative distances being log2-transformed),
the correlation between expression of the gene and
the presence of an SSV breakpoint was assessed using
a linear regression model (with log-transformed ex-
pression values). As with the genomic region windows
method, cancer type (i.e., TCGA or ICGC project)
and other additional covariates of interest, such as
CNA (using log2 tumor/normal values) were incorpo-
rated into the linear models. The distance metric
method was also used to evaluate the associations of
microRNAs with SSV breakpoint patterns, as well as
for identifying gene-level SSV associations within each
of the 20 major cancer types (cancer type here being
more broadly defined according to tissue of origin,
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following the classifications provided by PCAWG con-
sortium [4]).
In all of the linear models performed in this study, ap-

propriate data transformations were used to make the
data align better with the model assumptions. As noted
above, gene expression data were log2-transformed, as
were the relative SSV breakpoint distances from the
gene in the breakpoint pattern matrix. For DNA methy-
lation beta values, the logit transformation was used, also
a common practice for making DNA methylation data
better align with linear model assumptions [53].

Integrative analyses between SSVs and DNA methylation
DNA methylation profiles had been generated by TCGA
using the Illumina Infinium HumanMethylation450
(HM450) BeadChip array platform (Illumina, San Diego,
CA), as previously described [48]. Patterns of association
of altered DNA methylation with nearby SSV breakpoint
focused on the 111,203 array probes falling within CpG
islands (CGIs) that did not involve X or Y chromosomes
(these chromosomes not being included as these would
be present or not present or differentially methylated ac-
cording to patient gender). Both the genomic regions
window method and the distance metric method (both
described above) were applied to the DNA methylation
data in a similar manner as that of the gene expression
data. The gene X sample breakpoint matrices as con-
structed above were joined to the DNA methylation data
matrix, in terms of the genes associated with CGIs. The
correlation between methylation of each CGI and the
presence of an SSV breakpoint in relation to the CGI-
associated gene was assessed using linear regression
models (with logit-transformed DNA methylation beta
values). As with the gene expression analyses, cancer type
(i.e., TCGA or ICGC project) and other additional covari-
ates of interest, such as CNA (using log2 tumor/normal
values), were incorporated into the linear models.
We searched the subset of SSV-CGI associations in-

volving higher or lower DNA methylation (with CGI
probe being globally significant by distance metric
method and methylation being higher or lower in that
particular sample), for those that may involve the re-
arrangement of regions from other parts of the genome
normally having high or low methylation. From TCGA,
HM450 methylation profiles of normal adjacent tissues
were examined, where for each cancer type, the corre-
sponding normal sample profiles for that tissue type
were assigned to represent a surrogate for normal
methylation (e.g., TCGA-BRCA for breast and TCGA-
PRAD for prostate). For a given SSV breakpoint, the
normal tissue DNA methylation levels at the CGI site
(nearby the gene on the other side of the SSV break-
point) were compared with the average DNA methyla-
tion represented by the rearranged region adjacent to

the breakpoint (using window of 50 kb, averaging the
normal methylation beta values for all HM450 probes
within this region). The average difference in methyla-
tion beta values (CGI versus average of adjacent rear-
ranged region) was computed for each SSV-CGI
association (with only the SSV breakpoint closest to the
start of each gene being considered for each sample in
the instance of multiple breakpoints being detected).

Integrative analyses using TAD and enhancer genomic
coordinates
To identify breakpoints associated with TAD disruption,
we used recently published TAD data from the IMR90
cell line [27], where TADs have been found to be largely
invariant across cell types [23]. TAD-disrupting SSVs
were defined as those SSVs for which the two break-
points did not fall within the same TAD. The fraction of
SSVs involving topologically associated domain (TAD)
disruption was evaluated both for SSVs with breakpoints
located in proximity to a gene (e.g., 0–100 kb upstream,
0–100 kb downstream, or within gene body) and associ-
ated with its altered expression and for SSVs with break-
points located in proximity to a gene and associated
with altered methylation of the nearby CGI, with signifi-
cance of enrichment as compared to the entire set of
SSVs being evaluated by chi-squared test.
For each SSV breakpoint association 0–500 kb up-

stream of a gene (each association involving unique
breakpoint and gene pairing, with only the SSV break-
point closest to the start of each gene being considered
for each sample in the instance of multiple breakpoints
being detected), the potential for translocation of an ac-
tive, in vivo-transcribed enhancer near the gene that
would be represented by the rearrangement was deter-
mined (based on the orientation of the SSV breakpoint
mate). We utilized the enhancer annotations as provided
by Andersson et al. [28]. The Andersson study had pre-
viously categorized a set of ~ 40 K enhancers according
to tissue- or cell-specific expression, with a small subset
of enhancers categorized as “ubiquitous” or associated
with expression in the majority of tissue and cell types
examined. The ubiquitous enhancers were therefore ap-
plied to all cases in our pan-cancer cohort. In addition,
for each one of the 20 major cancer types represented in
our study, any applicable Andersson tissue- or cell-
specific enhancer subsets for that particular cancer type
were also applied (e.g., mammary epithelial cell-specific
enhancers for breast cancer cases, epithelial cell of pros-
tate and prostate gland for prostate cancer cases, see
Additional file 9). Only enhancers that were either ubi-
quitous or with tissue or cell specificity relevant to a
given cancer type were applied to the SSVs found for
cases of that cancer type.
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SSV breakpoint-to-gene associations involving the
translocation of an active, in vivo-transcribed enhancer
within 0.5 Mb of the gene (assuming no other disrup-
tions involving the region), where the unaltered gene
had no enhancer within 1Mb, were tabulated. Only
SSVs with breakpoints on the distal side from the gene
were considered in this analysis; in other words, for
genes on the negative strand, the upstream sequence of
the breakpoint (denoted as positive orientation) should
be fused relative to the breakpoint coordinates, and for
genes on the positive strand, the downstream sequence
of the breakpoint (denoted as negative orientation)
should be fused relative to the breakpoint coordinates.
Percentages of SSV breakpoint associations involving the
translocation of an active, in vivo-transcribed enhancer
were tabulated for the subsets of SSV breakpoint associ-
ations involving altered gene expression or altered DNA
methylation, with evaluation of enrichment as compared
to results from the entire set of SSVs being made using
chi-squared tests.

Molecular correlates of the overall extent of genomic
rearrangement
SSV calls across the three datasets were collapsed to
estimate the number of unique SSVs detected per
sample; SSVs less than 10 bases apart were collapsed
into a single SSV. For each gene, the correlation be-
tween expression and the total number of SSV events
detected across the 2334 cases with RNA-seq data
was assessed, using linear regression models with
both log-transformed expression values and log-
transformed SSV event numbers, correcting for low-
pass versus high-pass WGS (a technical factor impact-
ing SSV detection) as well as for other specific covari-
ates where indicated. In a similar manner, CGI
probes showing correlation between DNA methylation
and the total number of SSV events were determined
(using logit-transformed DNA methylation values),
across the 1482 cases with methylation data. A global
SSV index variable, which measured the total number
of SSV events while correcting for high-pass versus
low-pass WGS, was defined first by taking the log-
transformed total SSV numbers within samples with
only low-pass WGS (n = 1033) and normalizing these
values across samples to standard deviations from the
median and then by doing the same for the remaining
samples with high-pass WGS. Scoring for a transcrip-
tional signature of DNA damage response pathway
was carried out by taking a set of 49 genes canonic-
ally associated with the pathway [30] and taking the
average of the normalized expression values (standard
deviations from the median of logged values) for each
sample profile.

Pathway and signature analyses
Enrichment of GO annotation terms within sets of dif-
ferentially expressed genes was evaluated using SigTerms
software [54] and one-sided Fisher’s exact tests. “Can-
cer-related genes,” as annotated in gene significance
plots, are genes with membership in the Sanger Cancer
Consensus Gene list (http://www.sanger.ac.uk/science/
data/cancer-gene-census) [14], genes significant by pan-
cancer mutation significant analysis (from ref [15]), or
genes in annotated pathways targeted by mutation in ref
[16] (using Additional file 7 of that reference). To com-
putationally infer the infiltration level of specific im-
mune cell types using RNA-seq data (Fig. 7a), we used
the set of genes specifically overexpressed in the given
immune cell type according to the study from Bindea
et al. [31]; expression values were first normalized within
each cancer type, and the average of normalized expres-
sion values within each sample profile was computed for
each immune signature. We also performed signature
analyses using a previously curated list of 276 genes
encompassing all major DNA repair pathways [30]; both
the full set of 276 genes represented in our RNA-seq
data and gene subsets in core DNA damage response
pathways (using the “core” pathway membership gene
sets as provided in [30]) were evaluated, with expression
values being first normalized across sample profiles, with
the average of normalized expression values within each
sample profile being computed for the given DNA repair
signature.

Statistical analysis
All p values were two-sided unless otherwise specified.
Linear regression models were utilized to associate the ex-
pression or methylation of genes with nearby SSV break-
points and with structural variation burden, as described
above. One-sided Fisher’s exact tests or chi-squared tests
were used to determine significance of overlap between
two given feature lists. The method of Storey and Tibshir-
ani [17] was used to estimate FDR for significant genes.
FDR cutoffs of 5% were typically used to define top mo-
lecular features, though in situations where fewer samples
were involved (e.g., the cancer type-specific analyses of
Fig. 3) or where we examined the overlap between two re-
sults sets (e.g., the methylation versus expression results of
Fig. 4d), more relaxed statistical cutoffs (e.g., FDR < 10%)
were used. Visualization using heat maps was performed
using JavaTreeview [55].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-019-1818-9.

Additional file 1: Figure S1. Related to Fig. 1. Batch effects correction
involving RNA-seq and DNA copy number alteration (CNA) datasets.
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Figure S2. related to Fig. 2. Additional information regarding the top set
of genes with altered expression associated with nearby SSV breakpoint by
distance metric method. Figure S3. related to Fig. 2. Addition information
regarding genes with altered expression associated with nearby SSV break-
point. Figure S4. related to Fig. 3. Additional information on genes with al-
tered expression associated with nearby SSV breakpoint according to cancer
type. Figure S5. related to Fig. 4. Additional information regarding the top
set of CGIs with altered methylation associated with nearby SSV breakpoint
by distance metric method. Figure S6. related to Fig. 4. Additional informa-
tion on CGIs with altered DNA methylation associated with nearby SSV
breakpoint. Figure S7. related to Fig. 5. DNA methylation patterns by cancer
type and tissue type. Figure S8. related to Fig. 6. Additional information re-
garding global molecular alterations associated with the overall burden of
structural variation across cancers.

Additional file 2. Related to Fig. 1. TCGA and ICGC cancer cases
examined in this study.

Additional file 3. Related to Fig. 1. SSV calls by Meerkat for 827 TCGA
cases with high pass WGS data, for 761 of which RNA-seq data were
available for analysis as part of the total combined set of 2334 cases.

Additional file 4. Related to Fig. 1. By genomic region windows
method: complete set of gene-level correlations between expression and
nearby SSV event, according to region examined (e.g. 0-20 kb upstream,
20-50 kb upstream, 50-100 kb upstream, 0-20 kb downstream, 20-50 kb
downstream, 50-100 kb downstream, or within the gene body) and the
regression model applied.

Additional file 5. Related to Fig. 2. By distance metric method:
complete set of gene-level correlations between expression and nearby
SSV event, according to regression model applied (i.e. what covariates
were considered). The top significant mRNAs (FDR < 10%, correcting for
cancer type and CNA) and related information are highlighted in a separ-
ate Excel tab. Results for microRNAs are provided in a separate Excel tab.
Also includes Gene Ontology (GO) terms associated with genes positively
correlated (FDR < 5%, with corrections for cancer type and CNA) with oc-
currence of SSV in proximity to the gene.

Additional file 6. Related to Fig. 3. By distance metric method:
complete set of gene-level correlations between expression and nearby
SSV event for each individual cancer type (using regression model with
corrections for cancer type and CNA). Data for the 893 CGI DNA methyla-
tion probes showing both high cancer type-specific methylation and sig-
nificant positive correlation between expression and SSV breakpoint for
any one of the 20 cancer types surveyed (from Fig. 3d) are in a separate
data tab.

Additional file 7. Related to Fig. 4. Complete set of probe-level CGI cor-
relations between DNA methylation and nearby SSV event, according to
regression model applied (i.e. what covariates were considered). Results
by both genomic region windows method (e.g. 0-100 kb upstream, 0-
100 kb downstream, or within the gene body) and distance metric
method are included. The top significant mRNAs (FDR < 5% by distance
metric method, correcting for cancer type and CNA) and related informa-
tion are highlighted in a separate Excel tab.

Additional file 8. Related to Fig. 5. SSV associations with disruption of
TADs. All SSVs involving TAD disruption (i.e. SSVs with breakpoints
spanning TAD boundaries), as well as the subset of SSVs with breakpoints
located in proximity to a gene (0-100 kb upstream, 0-100 kb downstream,
or within the gene body) and associated with altered expression or
methylation, are included.

Additional file 9. Related to Fig. 5. SSV associations with translocated
active in vivo-transcribed enhancers. For the enhancer-related ana-
lyses of Fig. 5b, the Andersson et al. tissue- or cell-specific enhancer
subsets as applied to each TCGA or ICGC project are listed. Results
include the subset of SSV breakpoint associations involving the trans-
location of an active, in vivo-transcribed enhancer within 0.5 Mb of
the gene (where the unaltered gene had no enhancer within 1 Mb),
for both the entire set of SSV breakpoint associations occurring 0-
500 kb upstream of a gene and with breakpoint mate on the distal
side from the gene (for cases with WGS), as well as for the subset of
SSV breakpoint associations involving altered gene expression or CGI
methylation.

Additional file 10. Related to Fig. 5. SSVs associated with
rearrangement of regions with high or low methylation. Using a dataset
of DNA methylation of normal tissues, the average DNA methylation
represented by the rearranged region (using window of 50 kb) was
compared with that of the CGI nearby the gene on the other side of the
SSV breakpoint, with the average difference in methylation beta values
computed for all SSV-CGI associations, as well as for the subset of SSV-
CGI associations involving higher or lower DNA methylation (defined
using distance metric FDR < 5% and methylation in cancer sample either
> 0.4SD or < − 0.4SD from sample median for the case harboring the
breakpoint).

Additional file 11. Related to Fig. 6. Complete set of molecular-level
correlations with total number of SSV events detected across samples,
according to regression model applied (i.e. what covariates were consid-
ered, all models including cancer type according to TCGA/ICGC project
and high pass versus low pass WGS as covariates). DNA methylation and
mRNA results are included in separate data tabs. Also includes Gene
Ontology (GO) terms associated with genes positively correlated (FDR <
1%, with corrections for cancer type, CNA, and low pass versus high pass
WGS) with the total number of SSV events.

Additional file 12. Review history.
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