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MetaCell: analysis of single-cell RNA-seq
data using K-nn graph partitions
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Abstract

scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be
resampled, and robust analysis must separate the sampling effect from biological variance. We describe a
methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that
could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining
granular as opposed to maximal groups. We show how to use metacells as building blocks for complex
quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell

R/C++ software package.

Keywords: RNA-seq, scRNA-seq, Graph partition, Multinomial distribution, Sampling variance, Clustering, Smoothing

Background

Single-cell RNA-seq (scRNA-seq) is used extensively for
discovery and identification of cell types, for characteriz-
ing transcriptional states within them, and for inference
of continuous gene expression gradients linking these
states. These phenomenological observations are used
for creating cell type atlases and as a starting point for
analysis of different cellular processes, including differ-
entiation, cell cycle, and response to stimuli [1-9]
(reviewed in [10]). The advent of scRNA-seq increased
the resolution of models for transcriptional regulation by
orders of magnitude compared to prior bulk methods,
allowing precise and unbiased analysis of small cell pop-
ulations as well as opening the way to quantitative mod-
eling of subtle within-population effects.

As technology matures, the analytical basis for inter-
preting scRNA-seq experiments must become more
principled. In a way similar to other experimental strat-
egies aiming at improved resolution, scRNA-seq relies
on the ability to integrate a large number of highly noisy
measurements for inferring a high-resolution model of
some target sample. In analogy, when performing opti-
mal reconstruction of a microscopic sample, a typical
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microscopic sensor can reduce noise by resampling the
same pixel or voxel, trading instrument time with preci-
sion and resolution. In scRNA-seq, the major source of
technical noise (not to be confused with various system-
atic biases) is introduced through partial sampling of
some 1000-10,000 RNA-molecules from the pool of
RNA within a cell, generating a highly discrete and noisy
estimation for the concentration of any RNA species in
this cell except very few super-high abundance genes. In
contrast to the microscopy analogy, the same cell cannot
be revisited and resampled to decrease sampling noise,
since scRNA-seq technology involves lysing the cell. In-
stead, integration of data from different cells must be
used to simultaneously capture the true biological vari-
ance among cells and the purely technical sampling vari-
ance of the experiment.

When scRNA analysis is tuned toward cell type detec-
tion [6, 11], the implicit model assumption is that single
cells derived from the same transcriptional cluster are
approximately identical. In this case, sampling noise can
be overcome by pooling the molecules from a suffi-
ciently large number of cells, such that the expected
number of sampled transcripts (or unique molecular
identifiers (UMIs)) from each significantly expressed
gene allows precise inference of the concentration of this
RNA species in the idealized cell state that the cluster
represents. When aiming at modeling more subtle
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molecular states, in particular those involving dynamics
of cellular differentiation or response to stimuli, the
clustering state homogeneity assumption can no longer
hold. In these scenarios, current techniques combine
handling of sparse data with modeling (implicitly or ex-
plicitly) of cellular dynamics [3, 12—24]. Inference of ro-
bust cell-to-cell similarity metrics from sparse data is
commonly used for construction of K-nn graphs over
which dynamics are inferred. Smoothing sparse data
[25-27] or imputation of transcriptional states [25, 28—
30] was proposed as a possible pre-process for modeling
similarity in the data. Model-based inference of tran-
scriptional states from sparse data is on the other hand
still difficult to derive, since parametric models for
single-cell RNA-seq data are lacking. Even though a
basic parametric model for the sampling noise in
scRNA-seq profiles can be easily assumed, it is not rou-
tinely explicitly integrated within a broader context of
model inference from scRNA-seq data.

In this paper, we introduce the notion of metacells and
develop a methodology for inferring and using them. A
metacell (abbreviated MC) is in theory a group of
scRNA-seq cell profiles that are statistically equivalent
to samples derived from the same RNA pool. Such pro-
files should therefore be distributed multinomially with
predictable variance per gene (approximately propor-
tional to the mean) and near zero gene-gene covariance.
Moreover, given a set of scRNA-seq profiles that are de-
rived from the same multinomial distribution, it is trivial
to infer the model parameters and establish their statis-
tical confidence. If an entire scRNA-seq dataset could be
decomposed into disjoint metacells with sufficient cover-
age per metacell, many difficulties that follow from the
sparsity of the data would be circumvented. In practice,
one cannot assume a perfect metacell cover of the
scRNA-seq dataset a priori, and we found that directly
searching for metacells using a parametric approach is
highly sensitive to the many intricacies and biases of the
data. Instead, we propose to use non-parametric cell-to-
cell similarities and partition the resulting K-nn similar-
ity graphs into densely connected subgraphs, which are
filtered to derive approximately multinomial metacells.
Metacells can then serve as building blocks for describ-
ing complex gene expression distributions with minimal
parametric assumptions, scaling well with the number of
cells and providing a more accurate approximation when
increasing the number of sampled cells.

We implemented tools for deriving metacells and ana-
lyzing scRNA-seq data using them in the new R/C++
package MetaCell. The utility of the approach was re-
cently demonstrated in scenarios involving analysis of
mammalian hematopoiesis differentiation [31], immuno-
therapy [32], blood cancer [33], and inference of cell
type decompositions in comparative whole organism
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scRNA-seq [34, 35]. Here we perform in-depth analysis
of the model and its performance through re-analysis of
datasets including 8000 and 160,000 peripheral blood
mononuclear cells (PBMC), and by dissecting two
whole-organism single-cell RNA-seq maps from two
worm species. The data show that metacells approxi-
mate the expression distribution in a surprisingly accur-
ate fashion, dissecting the dataset into truly homogenous
local neighborhoods and providing quantitative building
blocks for exploring the global expression manifold. We
suggest that MetaCell provides, especially as the size of
single-cell atlases increases, an attractive universal first
layer of analysis on top of which quantitative and dy-
namic analysis can be developed further.

Results

Overview of the MetaCell method

The MetaCell construction pipeline partitions an
scRNA-seq dataset into disjoint cell groups using a non-
parametric graph algorithm (Fig. 1a). This partition pro-
vides initial metacells that can later be pruned and fil-
tered for homogeneity. First, feature genes are selected
and used to compute a raw cell-to-cell similarity matrix
S. Second, a balanced K-nn similarity graph G is con-
structed, connecting pairs of cells that represent recipro-
cally high-ranking neighbors. In contrast to a K-nn
graph built directly from S, which can be highly non-
symmetric, the graph G has more balanced ingoing and
outgoing degrees. Third, G is subsampled multiple times,
and each time the graph is partitioned into dense sub-
graphs using an efficient algorithm. The number of
times each pair of cells co-occurred in the same sub-
graph is used to define the resampled graph G***. After
these three layers of cell-to-cell similarity matrix
normalization, the metacell solution is derived using a
graph partitioning algorithm applied to G?*’.

After the initial construction of a graph partition, we
perform pruning and filtering of metacells to increase
their homogeneity. We do not enforce a strict multi-
nomial model as empirical data only approximately sup-
ports it (see in-depth analysis below), and instead ensure
that clear violations of homogeneity are filtered. First,
outliers are detected and filtered using a simple para-
metric test for gene overexpression compared to their
metacell. Second, the metacells’ homogeneity is verified,
and metacells showing strong sub-cluster structure are
split. In practice, splitting is rarely necessary, but outlier
detection may require parameter tuning (see Add-
itional file 1: Table S1). Third, metacells representing
doublets (composed of groups of profiles that share a
similar doublet mixture) are searched for and filtered in
a supervised manner. Most of the doublets, however, are
identified as such during the outlier filtering stage.
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Fig. 1 (See legend on next page.)
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Fig. 1 Metacell analysis of the PBMC 8K dataset. a Schematics of the MC algorithmic pipeline. b Outlier/rare cells matrix showing color-coded
number of UMIs per cells (columns) for which at least one gene (rows) was shown to be expressed significantly beyond its MC expected number
of UMIs. Outlier/rare cells are ordered according to the annotation of the MC containing them (bottom color-coded bars). ¢ Shown are log-fold-
enrichment (Ifp, methods) values for metacells, color-coded according to initial cell type annotation, comparing the T cell marker (CD3D) to a B
cell (CD79A) and myeloid (LYZ) markers. d Heat map shows enrichment values for metacells (columns) and their maximally enriched gene
markers. @ Shown is the MC adjacency graph (numbered nodes connected by edges), color-coded according to their cell type and transcriptional
state annotation. Cells are shown as small color-coded points localized according to the coordinates of MCs adjacent to them. Additional file 2:
Figure S3 shows the adjacency matrix that was used to generate the projection

Figure la illustrates different types of metacells that
are obtained in different experimental scenarios. When a
limited number of single cells are sampled from a highly
distinct transcriptional behavior, a metacell may define a
completely isolated cluster (type I MCs). When a larger
number of cells are sampled from a cell state, several
metacells may cover it, defining variation in secondary
biological behaviors (e.g., cell cycle) or even equivalent
transcriptional distributions (type II MCs). More inform-
atively, when sampling a dynamic process that induces a
transcriptional gradient across single cells, metacells
may create a piecewise approximation of the process
(type III MCs). We note that in the latter cases, the MC
cover need not be uniquely defined.

Based on a filtered set of metacells, we can robustly
explore the scRNA-seq transcription manifold, perform-
ing marker-based annotation of the metacells, grouping
of metacells into higher-order clusters, and visualizing
the data by projecting metacells onto a 2D space. In es-
sence, the analysis downstream the identification of
metacells is similar to common scRNA-seq strategies,
but replacing sparse single cells, or smoothed single
cells, with fewer but more robust metacell profiles.

MetaCell is readily applicable as an R/C++ package
and is scalable to large datasets. The full method and
implementation details are given in the “Methods” sec-
tion. Information on feature selection is provided in
Additional file 3.

Metacells eliminate outliers and reconstruct cell type
structure in PBMC data

We first illustrate the use of the MetaCell algorithm and
pipeline through re-analysis of a small (n = 8276) dataset
of PBMC scRNA-seq profiles sampled from a healthy
donor and downloaded from the 10x website. In a pre-
processing step (see Additional file 2: Figure S1), we re-
moved cells with less than 800 UMIs (Additional file 2:
Figure S1A) and several non-coding RNAs linked with
stress or apoptotic signatures (“blacklisted genes”) (Add-
itional file 2: Figure S1B). We then applied the metacell
construction pipeline as outlined above, using 816 high
variance genes as features (Additional file 2: Figure S1C,
excluding ribosomal proteins) and deriving an initial set
of 82 MCs following 1000 resampling iterations using

K =100. The MC outlier/rare cell detection screen then
identified 182 cells with at least one outlier gene (8-fold
or more enrichment over the respective MC model) (Fig.
1b, Additional file 2: Figure S2). Most outlier cells
showed potential doublet profiles, co-expressing genes
associated with two different cell types. For example, this
effect was notable in the association of a coherent mega-
karyocytic gene module (including PF4, PPBP and more
genes) with signatures linked to other cell types. In fact,
pure megakaryocyte expression profiles are very rare in
the data, and the MC outlier analysis highlights their
identification (Additional file 2: Figure S2). In addition
to potential doublets, outlier cells also included repre-
sentatives of rare cell types, including cells expressing
progenitor markers (SOX4 [36]) or eosinophilic markers
(MS4A2, MS4A3 [37]).

Doublet outlier cells are observed when two cell types
are mixed rarely in the data, thereby contaminating a
metacell associated with one cell type with a few mixed
signatures. More frequent doublet scenarios can give rise
to homogeneous doublet MCs, as we observed for two
cases combining expression of T cell marker genes (e.g.,
CD3D) with either B cell (CD79A) or monocyte (LYZ)
markers (Fig. 1c). Following the removal of these two
doublet MCs, we ended up with a model organizing
7901 cells in 80 MCs (45-176 cells per MC, median size
95 cells) and marking 375 cells as outliers or doublets.
This model was annotated using enriched gene markers
(Additional file 2: Figure S3) and visualized using a
marker heat map (Fig. 1d) and a 2D layout computed
from the MC adjacency matrix (Fig. 1le). This
visualization organizes transcriptional states in the blood
into clear cell type groups representing T, NK, and B
cells; monocytes/macrophages; and DC populations.
Within these cell types, the maps show additional struc-
ture. For example, T cells were organized into CD8+ ef-
fector states (marked by GZMH and additional genes),
CD8+ pre-effector states (marked by GZMK+), CCR7+
CD8+ cells with variable degree of cathepsin-W (CTSW)
expression, naive CD8+ cells (IL7R+), and CD4+ cells
showing some activation of Treg genes (FOXP3+). Over-
all, when sampling at a depth of 8000 cells, the metacell
analysis allowed for robust identification of cell types
and initial modeling of gene expression distribution
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Fig. 2 Evaluation of within-MC transcriptional homogeneity. a Shown are the number of incoming and outgoing neighbors (or degree) per cell,
averaged over metacells that are color-coded by cell type annotation as in Fig. 1. The data represent the raw K-nn similarity graph (left), balanced
MC graph (center), and resampled co-occurrence graph (right). b Heat map summarizing the number of edges in the balanced MC graph that
link two cells associated with different MCs. Similar matrices generated based on the raw and co-occurrence graphs are shown in Additional file
2: Figure S4. ¢ Bar graph shows the closure per MC (fraction of intra-MC edges out of all edges linking cells in the MC). d Observed (blue) vs
predicted (red, based on binomial model) distributions of down-sampled UMI count per gene within MCs. For each of the 5 MCs depicted, the
plots show binomial fit for the top 8 enriched genes. Intervals give 10th and 90th percentiles over multiple down-samples of the cells within
each metacell to uniform total counts. e Over-dispersion of genes relative to a binomial model across genes and MCs. Colors encode ratio of
observed to expected variance across genes (rows) and MCs (columns). Only genes and MCs manifesting high over-dispersion are shown. f
Residual within-MC correlation patterns compared with global correlation patterns. Within-MC correlation matrix (left) was computed by
averaging gene-gene correlation matrices across MCs, where each matrix was computed using log-transformed UMIs over down-sampled cells.
Global correlation matrix (right) was computed in the same manner, but following permutation of the MC assignment labels. For both matrices,
only genes manifesting strong correlations are shown. g Examples of residual intra-MC correlated genes, showing observed correlations (Pearson

on log-transformed down-sampled UMIs) compared to correlations expected by sampling from a multinomial. MC #66 show weak residual
correlations reflecting mostly stress genes. MC #70 shows stronger residual correlations, reflecting residual intra-MC variation

within them. Additional coverage can lead to refined
modeling of transcriptional distributions within cell
types as we shall demonstrate below, but first, we will
use this basic model to evaluate the similarity structure
and homogeneity of metacells.

MetaCell graphs define a symmetrized and modular
adjacency structure between MCs

The impact of the procedures transforming raw cell-to-
cell similarities to the MetaCell graph are illustrated for
the PBMC data in Fig. 2a. The initial distribution of in-
degree in the K-nn graph (Y axis, left panel) shows sig-
nificant variation, which is corrected by a graph balan-
cing procedure (middle panel). The resampled co-
occurrence graph maintains the linkage between in and
out degrees, but decreases the connectivity of the graph
for specific cell types that are under-sampled (right
panel). This actual effect of these transformations on cell
type modularity is analyzed through the MC adjacency
matrices that summarize connectivity between cells
within each pair of MCs. Comparing raw K-nn, bal-
anced, and resampled MC similarities (Fig. 2b and com-
pare Additional file 2: Figure S4) shows for example
initial spurious connectivity from NK cells (MC #56) to-
ward T cells and from pDCs (MC #70) toward multiple
cell types in the raw matrix, which are eliminated in the
balanced and resampled matrices. This comparison also
highlights cases of myeloid MCs connecting a large
group of monocyte MCs and cDCs (#15) or monocytes
and macrophages (#17), that provide better separation
with the more differentiated MCs in the balanced and
resampled matrices. The resampled matrix in particular
provides improved modularity within the large group of
T cell MCs, for example, grouping of CCR7+ T cell
MCs into distinctive clusters. In summary, in a typical
scRNA-seq dataset, the combination of abundant and
rare states leads to an asymmetric K-nn structure linking
rare cells with hubs within large clusters, and the

MetaCell graph balancing procedure alleviates such ef-
fects. The approach is somewhat similar to methods
using mutual K-nn analysis to normalize batch effects
[38, 39], or more generally to approaches using symme-
trization of the K-nn graph to facilitate dimensionality
reduction [40].

Comparing metacells’ graph closure with their
transcriptional homogeneity

To quantify the accuracy of the MC approximation to
the similarity graph, we computed the fraction of K-nn
similarities captured within each MC, which we refer to
here as the MC’s closure. As shown in Fig. 2c, the level
of closure varies considerably between cell types. Dis-
tinct and low abundance cell types (type I MCs) can
show very high closure (up to 100%), while multiple
MCs that cover abundant cell types (type II or III MCs)
show overall low closure (as low as 10% within-MC adja-
cencies, 20-30% within the three most linked MCs). Im-
perfect closure may suggest that the MC partition is
suboptimal or, alternatively, that the K-nn local similar-
ity structure in large and diffused cell types is covered by
multiple, non-maximal but still homogeneous MCs
(Type II MCs in Fig. 1a). To test this, we compared the
intra-MC UMI distribution to the distribution predicted
by a simple multinomial model for specific genes and
MCs (Fig. 2d). We found that low closure MCs show
high degree of consistency with the multinomial model,
confirming their homogeneity. Interestingly, MCs with
very high closure may show a reciprocal behavior, where
additional high variance is present within K-nn consist-
ent clusters (e.g., MC #70; note the bimodal distributions
observed for most genes). This analysis highlights a key
property of the MC partition: MCs are not maximal, and
multiple highly similar MCs which are only weakly sepa-
rated in the similarity graph can together approximate a
larger cluster.



Baran et al. Genome Biology (2019) 20:206 Page 7 of 19
p
A —— . ¢ MetaCell MetaCell K:
+ ;*i'é&-- etaCe etaCell K-nn
) ml-!n*ﬂ SERE B z
O
5 |asw =
© T 1 3 3 4 5 € 7 % 3 B 0§ D W B T 11 3 & 5 & 7 % 3 e oos|
= FCER1G GNLY
= [ &
5 cesaskenllll "HI 2
o - ‘é
g
3 .. T L Seurat K-nn MAGIC
QEJ- e - O =
w W|F 1w§; o .
T RPL18 CD8A
g IT
£ v **".! T 0 ! ooy
observed counts with CV
B MetaCell Seurat K-nn MAGIC 20
:
o . - 2.5
o : i =
c 005 -3.0
2c @
¥ = -3.5 4=
£3 =
oQ o -4.0 O
> i
22 . A . -45 O
o 1 (@]
E - 5.0 =
method's correlation
D MetacCell MetaCell K-nn Seurat K-nn MAGIC
o
-5
°
-
- -7
|
g
v -8
-9 ﬁ
-10
o
-
-7
~
o 8
o o8
-10
°
-10
E
-4
-5
&
T
s 7
N
O s o
- Mb ° ﬁ“’“’,:é::r"
o
0o ”

10 9 -8 -7 -6 -5 -4

GZMK
Fig. 3 (See legend on next page.)
A

-10

-8

7 6 -5 4

-8
GZMK




Baran et al. Genome Biology (2019) 20:206

Page 8 of 19

(See figure on previous page.)

Fig. 3 MCs robustly approximate the expression manifold. a Boxplots show the distribution of predicted (using MC pool frequencies) UMI
fraction per cell stratified according to observed number of UMIs in down-sampled single cells. b Shown are per-gene Pearson correlations
between predicted and observed gene frequencies for genes, color coded according to the gene’s frequency across all cells. In all cases,
predictions are generated using a 100-fold cross-validation scheme (see the "Methods” section for exact description of the procedure and the
strategies compared). Predictions using K-nns over raw MC similarities (a different neighborhood per cell consisting of its k most similar
neighbors) are used as reference. It is compared to strategies defining cell neighborhoods using MCs (fixed disjoint grouping of cells), K-nn over
Seurat distances, and MAGIC distances (weighted neighborhood according to diffusion distances). ¢ Similar to panels in b but comparing
accuracy with and without applying cross validation. Points with high value along the y axis represent potential over-fitting. d, e Per-MC (left
most column) or smoothed per-cell (all other columns) expression values for pairs of genes, portraying putative transcriptional gradients

Multinomial sampling explains most of the intra-MC UMI
variance

Systematic screening for genes showing intra-MC over-
dispersion (Fig. 2e) provides a global view on the
consistency of the PBMC MC cover with simple multi-
nomial sampling. In this screening, MCs containing re-
sidual, non-homogeneous structure will be associated
with many over-dispersed genes. For example, this ana-
lysis associates the dendritic cells MC #70 with over-
dispersion of multiple megakaryocyte-associated and
other genes. This suggests that these poorly sampled cell
types show additional hidden structure and potential
remaining outlier cells. The screening also reveals spe-
cific genes that are consistently over-dispersed across
many MCs, such as the early-immediate response gene
module (including the transcription factors JUN, JUNB,
FOS). This over-dispersion is consistent with variable
levels of activity of this pathway in multiple cell types,
perhaps representing technical experimental stress.
Other genes are over-dispersed in a cell-type specific
fashion, for example cytotoxic (GNLY, CCL5) genes in
NK and T subtypes, and MHC-II and LYZ in myeloid
cell types. These highly expressed genes may be incom-
patible with a simple multinomial sampling model, and
their analysis may necessitate assuming prior biological
variance to allow for over-dispersion. Beyond these spe-
cific examples, however, intra-MC distributions for the
entire gene set (including genes that were not used as
features for defining similarities) are generally well ap-
proximated by Poisson sampling with no zero inflation
(Additional file 2: Figure S5). Together, the data shows
that the degree of residual, intra-MC over-dispersion is
relatively low in the PBMC MC cover, so that the vari-
ance of most genes is accounted for by a model assum-
ing partition of cells into MCs from which UMIs are
multinomially sampled.

Analysis of intra- and inter-MC gene-gene covariance
(Fig. 2f) provided an additional avenue for diagnosing
structure within and between MCs. We observed persist-
ent intra-MC correlations between a limited set of genes,
including the over-dispersed modules of early-immediate
genes, MHC class II genes, and S100 genes as well as a
correlated gene set including actin-related genes (ACTB,
ACTG1, COTL1, PEN1). We did not observe strong

intra-MC correlations of cytotoxic and many other func-
tional genes. The scarcity of strong intra-MC gene-gene
correlations (see for example Fig. 2g, MC #66) suggests
that little residual structure remains within the MCs,
and that the dataset is well summarized by the MC pro-
files. In the few cases where intra-MC correlations are
observed (Fig. 2g, MC #70), they indicate the need for a
more flexible intra-MC modeling, or alternatively call
for deepening the dataset with more cells defining the
transcriptional states underlying the MC.

Metacells are accurate local approximations of the
expression manifold

All approaches for analysis of scRNA attempt to describe
aspects of the expression manifold, each relying on different
assumptions. MetaCell generates a high-resolution partition
of the data, thereby focusing on approximating it locally.
We tested the quality of this approximation using a cross-
validation scheme, in which we predict the expression of
each gene using a MetaCell model trained on data from
which the gene was left out. Figure 3a illustrates the out-
come of such prediction, showing accurate prediction for
highly expressed genes and lower accuracy for low-UMI
counts, for which sampling variance is high. We wanted to
compare these predictions to those obtained using the
models that underlie commonly used approaches for
scRNA-seq analysis. To this end, we computed the cell-to-
cell similarity matrices inferred by Seurat’s [12] PCA-based
approach and by a diffusion strategy as implemented in
MAGIC [25]. We also included in the comparison the simi-
larity matrix S initiating the MetaCell balancing process.
For all similarities, we employed the same cross-validation
scheme that was applied to the MetaCell model, and com-
puted local predictions by averaging 50 nearest neighbors
for Seurat and S, and weighting all cells by their similarities
for MAGIC (see the “Methods” section for a complete
description).

Differences in prediction accuracy should reflect the
different similarity measures employed by each method
as well as the effect of disjoint partitioning applied in
MetaCell. In theory, the partitioning strategy should pro-
vide less modeling flexibility compared to approaches
that compute cell-specific neighborhoods. The latter ef-
fect should be particularly noticeable when several MCs
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discretize a continuum, such as differentiation trajectory
(type III MCs, Fig. 1a). In practice, we observed rela-
tively mild differences between the different approxi-
mations (Fig. 3b), with very few genes losing accuracy
when MCs are used. Moreover, analysis of the gain in
accuracy when including all genes in the models (Fig.
3c) suggested that MetaCell is significantly less ex-
posed to over-fitting than the K-nn approaches. The
diffusion-based smoothing approach showed minimal
overfitting, but also loss of accuracy (Fig. 3c). Overall,
the nearly multinomial intra-MC UMI distribution
observed above and the minimal loss of predictive
power entailed by the MetaCell disjoint partition, to-
gether suggest that MCs succeed in capturing most of

the biological variation in the data, while eliminating
most of the sampling noise.

Metacells avoid artefactual gradient effects

We showed that the cell partitioning induced by MetaCell
does not decrease local approximation accuracy and that,
in fact, it even reduces the model’s tendency to over-fit
the data. We speculated that another advantage of parti-
tioning would be robustness to over-smoothing. The dis-
cussion about over-smoothing recently arose in the
context of evaluating scRNA-seq imputation methods, i.e.,
methods that use the covariance patterns measured across
multiple cells and genes to refine per-gene, per-cell mea-
surements (reviewed here [41]). Most imputation methods
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Fig. 5 MC analysis of a 160K PBMC multi-batch dataset. a, b Matrix (a) and graph (b) visualization for the similarity structure associating MCs in a
model characterizing 162,000 PBMCs. Clusters in the MC matrix are used for linking specific groups of MCs with specific annotation and for color
coding. ¢ Shown are the fraction of cells from different sorting batches per MC, color coded white to red to black and visualized using the MC
2D projection as shown in Fig. 4B. d Shown are Ifp values for MCs in the PBMC 160K model, comparing intensity of Perforin expression (X axis) to
several genes correlated with the CD8+ effector program. e Similar to d for genes showing transient activation during the effector program
build-up. f Similar to d for CD8 genes, LAG3 (a T cell exhaustion marker) and a representative ribosomal protein gene

are local in the sense that they impute gene expression for
a cell using its inferred neighborhood. It has been ob-
served [27, 28] that in some cases imputation tends to en-
force spurious proximities between cells, which in turn
manifest as artefactual gradients, ie., discrete states per-
taining to be a series of cells gradually modulating expres-
sion of certain genes along a temporal process or a spatial
axis. While over-smoothing is detected directly when
evaluating imputation methods, it is in fact a potential
concern with any model regardless of its downstream ap-
plication, and stems from the manner in which cell-cell
similarities are defined.

We evaluated the susceptibility of the MetaCell model
to over-smoothing using the expression predictions ob-
tained in the previous section (the version without
cross-validation), comparing the different similarity
structures included in that experiment. Our results sup-
port the robustness of MetaCell to artefactual gradients
(Fig. 3d). For example, NK cells are known to be charac-
terized by high levels of KLRF1, but do not express the
T cell classical marker CD3 (Fig. 3d, top). Smoothing
based on K-nn similarity structures (MetaCell’s K-nn or
Seurat’s) or on diffusion similarities (MAGIC’s) gives rise
to phantom gradients that can be interpreted errone-
ously, for example, as supporting differentiation of NK
to T cells or vice versa. The MC statistics generate a
much less detailed, but likely more realistic map of joint
CD3D/KLRF1 expression. Similar phantom gradients are
observed when analyzing CCR7+ CD8+ and CCR7+
CD8- cells (Fig. 3d, bottom). On the other hand, the
MC model does reveal expression gradients in cases
where sampling adequately supports them, such as in
the trade-off expression of GZMK+ and GZMH+ in T
cells (Fig. 3e). These quantitative gradients are refined in
the denser dataset we analyze below. Robust modeling of
transcriptional gradients by MCs is also demonstrated
on simulated data (Additional file 2: Figure S6).

Dissecting complex cell type hierarchies with MetaCell

We tested the scaling of MetaCell to datasets consisting
of a large number of cell types and high variability in the
total number of UMIs per single cell. To this end, we
revisited two whole-organism scRNA-seq studies dis-
secting C. elegans (Caenorhabditis elegans) [42] and Pla-
naria (Schmidtea mediterranea) [43]. For C. elegans, we
compared the derived MC partition (349 MCs) (Fig. 4a,

Additional file 2: Figure S7) to the published model
grouping cells into 27 major cell types (Fig. 4b). We ob-
served a high degree of consistency between the two
models in classifying the major cell types, with higher
resolution in dissecting cell types into subtypes using
MCs (e.g., for body wall muscles, seam cells and more).
Importantly, we observed a large number of cells labeled
originally as “unclassified” or “unclassified neurons/glia”
that were organized within coherent MCs. Some of these
MCs were dominated completely or almost completely
by unclassified cells. Moreover, we observed a negative
correlation between the median number of UMIs per
cell in a metacell and the fraction of unclassified cells
within it (Fig. 4c). Comparing the number of UMIs per
cell within MCs showed consistently lower UMI counts
for unclassified cells (Fig. 4d). The transcriptional speci-
ficity of MCs containing large fractions of unclassified
cells was uniformly high, as confirmed by observation of
co-expression of specific transcription factors and genes
within such MCs (Fig. 4e). Similarly, MetaCell analysis
of the rich whole-organism cell type map of Planaria
showed extensive consistency between the MC partition
(564 MCs) and the iterative and highly supervised clus-
tering analysis (512 clusters) used to annotate the ori-
ginal map (Additional file 2: Figure S8). In summary,
while MetaCell is not designed to perform clustering in
its classical sense, a metacell partition facilitates robust
and sensitive cell type mapping of scRNA-seq data, in
particular when gene expression and cell type sizes are
extremely heterogeneous.

High-resolution analysis of inter- and intra-cell type states
in the blood

We next tested the scaling of the MetaCell algorithmic
pipeline when applied to datasets sampling deeply a rela-
tively small number of cell types by analyzing RNA from
160K single blood cells, including 68K unsorted PMBCs
and 94K cells from ten different bead-enriched popula-
tions [44]. We hypothesized that, with increased number
of cells, we could derive MCs with enhanced quantitative
resolution and increased homogeneity, thereby allowing a
more accurate identification of regulatory states and dif-
ferentiation gradients in the blood. We derived a model
organizing 157,701 cells in 1906 metacells, identifying
4475 cells as outliers. Figure 5a summarizes the similarity
structure over the inferred MCs, indicating partitioning of
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the dataset into T cells, NK cells, B cells, myeloid cells,
megakaryocytes, and progenitor cells. In-depth analysis of
the emerging cluster and sub-cluster structure in this
matrix allowed us to identify groups of related MCs for
further analysis, in many cases providing us with the abil-
ity to zoom into transcriptional programs (cell groups
numbered 1-13 on Fig. 5a) within large-scale clusters that
were identified in the global metacell 2D projection graph
(Fig. 5b). Visualization of genes that were specifically
enriched in such programs demonstrates both bimodal
markers and putative quantitative gradients organizing
MCs within and between types (Additional file 2: Figure
S9). For example, we observed the correlated (and bifur-
cated) intensity of CD8A and CD8B expression in cyto-
toxic and memory T cells, the variable MHC-I expression
(HLA-A,HLA-C) in different cell sub-types (group [6]),
variable levels of granzyme K and granzyme H expression
along a putative cytotoxic gradient of CD8+ cells (groups
[1], [3]), and a group of MCs expressing cathepsin W and
CCR7+ but without the cytotoxic gene module (group
[5]). The analysis of specific gene families (see Additional
file 2: Figure S10) illustrates how multiple effector genes
are activated in different cell types in a convergent fashion
(Additional file 2: Figure S10A). Analysis of transcription
factor expression across the different subtypes (Additional
file 2: Figure S10B) provided an initial blueprint for the
regulatory mechanisms defining the observed transcrip-
tional states. Importantly, the integration of different sort-
ing batches allowed for enhanced resolution in several
hematopoietic lineages, in particular CD34+ progenitor
cells (Fig. 5a, group [11]). Nevertheless, all MCs within the
non-progenitor cell types represented a balanced mixture
of sorted and non-sorted batches (Fig. 5c). We note that
the metacells produced by MetaCell’s specialized partition
algorithm cannot be reproduced by conventional cluster-
ing, at least when used naively. We demonstrate this by
clustering the PBMCs with Seurat using parameters that
force fine clustering, generating 817 clusters (Additional
file 2: Figure S11). As shown in Additional file 2: Figure
S11A, the MC partition is consistent with these fine clus-
ters at the level of the coarse-grained cell types, but not at
higher resolutions. The fine clustering solution generates
clusters that are likely to be overfitting specific genes
(Additional file 2: Figure S11B). In summary, for the
densely covered, multi-batch 160,000 PBMC datasets,
MetaCell provides analysts with a platform for distinguish-
ing cell types and their internal hierarchies, and a robust
scheme for characterizing quantitative expression gradi-
ents with guarantees against spurious smoothing effects.

Using MCs to define gradients of CD8+ effector T cell
activation

Finally, we demonstrate the potential of applying Meta-
Cell for in-depth analysis of differentiation gradients
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through analysis of the transcriptional signatures in ef-
fector CD8+ T cells. Activation of the T cell effector
program ultimately depends on expression of units of
the cytotoxic granule (granzymes, cathepsins, granulysin)
and of the machinery required for perforating target
cells (e.g., perforin) [45]. Elevated expression of Perforin
1 (PRF1) is indeed observed in a subset of the CD8+
MCs, spanning a spectrum of intensity from background
level to 10-fold enrichment over it. We observed PRF1
enrichment to correlate strongly with multiple additional
effector genes, for example granzyme H and B, FCGR3A,
and KLRD1 (Fig. 5d), consistent with the idea of a
spectrum of transcriptional states with variable effector
gene toolkit expression in the blood. Remarkably, we
identified a second set of genes showing elevated expres-
sion in MCs with low-to-intermediate effector program
expression (Fig. 5e), including most notably granzyme K
(GZMK) and the phosphatase DUSP2, but possibly also
the chemokine receptor CXCR4 and the adhesion/motil-
ity molecule AMICA1/JAML. The effector program ex-
pression gradient was also associated with decrease in
relative housekeeping gene expression (e.g., ribosomal
proteins, Fig. 5f). We note that the association between
the transcriptional gradient of effector genes and tem-
poral or differentiation processes cannot be assumed im-
mediately. It is nevertheless tempting to suggest that
effector program activation involves transient expression
of the GZMK-linked genes observed here, suggesting
several experimental directions for follow-up toward a
better understanding of T cell commitment and regula-
tion in the blood and other organs, and in particular
within tumors [29, 46].

Discussion and conclusions

We introduce here the use of metacells for analyzing
scRNA-seq data. Metacells are defined as groups of
single-cell profiles that ideally represent re-sampling
from the same cellular state. In practice, we compute
MCs as a graph partition using adequately processed
similarities between single-cell profiles. We demonstrate
that in real data, we can construct partitions such that
the intra-MC UMI distribution can be approximated as
sparse multinomial sample, representing sampling from
a highly specific transcriptional state with no significant
additional variance. We show how to screen for MCs
with over-dispersion or residual pairwise gene correla-
tions, reflecting deviation from this model and residual
intra-MC biological variation. We then demonstrate
how the MCs can be used for in-depth exploration of
large data sets involving either a rich set of cell types
(whole organism) or a limited and over-sampled set
(PBMCs). The analysis methodology we advocate in-
volves direct inspection of the MC adjacency matrix,
which provides analysts with complete information
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about cell type hierarchy and supports clustering at ap-
propriate resolution. Combined with visual examination
of correlation patterns between MC-enriched genes, the
result is a detailed and unbiased characterization of cell
types and expression gradients that we have already used
in several challenging analysis scenarios [31-35].

The main property that makes metacells a powerful
analysis tool is their ability to increase the signal-to-
noise ratio in the data without introducing biases stem-
ming from mistaken modeling assumptions or over-
smoothing of the data. The only manipulation per-
formed by MetaCell on the data is the pooling of highly
similar cells, thereby forming a partition of the data. The
analyses we present show that, despite enforcing this
partitioning, a metacell cover provides accurate local ap-
proximations of the expression manifold. At the same
time, partitioning entails multiple advantages. Statisti-
cally, it greatly reduces the effective number of parame-
ters of the model, making it less prone to over-fitting
and to over-smoothing compared with naive smoothing
approaches. For the analyst, it allows for the
characterization of well-defined, discrete and highly
granular states in a conservative and easy-to-interpret
framework.

In cases where residual intra-MC structure is detected
in the cover, additional cells can be sampled to refine
the MC cover and tighten the approximation. Funda-
mentally however, in any realistic data set, there will al-
ways remain some under-sampled behaviors regardless
of sampling depth, and our current model will not pro-
vide a constructive approach for understanding such be-
haviors beyond signaling them out as non-
homogeneous. Fitting more flexible intra-MC models,
capable of accounting for not only sampling noise but
also convergent processes such as cell cycle or stress [47,
48], or embedding the metacells in hierarchical or multi-
resolution structures [49, 50] should allow for more effi-
cient extraction of the signals of interest. We view the
integration of such models as an important future exten-
sion of this work.

Methods

Notation and definitions

We assume raw scRNA-seq reads are mapped to gen-
ome sequences and assigned to cell barcodes and unique
molecular identifiers (UMI) using pipelines that elimin-
ate most of the UMI duplications induced by PCR and
sequencing errors. We summarize all UMIs in the mol-
ecule count matrix U = [u,] on genes g€ G and cells i e
I. We define u, as the total molecule count for gene g
on the raw count matrix, and u; as the total number of
molecules for a cell (sometime referred to as the cell’s
depth). The procedures below are designed to robustly
define a metacell partition over the cells, which is
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denoted by a set of cell subsets M and a set of outliers
O such that (%(J M)uO = L.

We assume a set of gene features F S G is specified
and focus our analysis on a similarity graph between
cells derived using data from these features (see below).
We discuss several strategies for selecting genes in Add-
itional file 3. We note that our features represent indi-
vidual genes rather than principle components or other
forms of reduced dimensions. This enables some direct
approaches to testing and correcting the gene expression
distributions within metacells. It also forces the model-
ing of similarities and derivation of metacells to work
over high-dimensional spaces and to account for noise
and sparse data directly. Applying the metacell algorith-
mic pipeline to similarity structures derived using popu-
lar dimensionality reduction techniques is easily
applicable as well, as we demonstrate in the results
section.

The metacell balanced K-nn cell similarity graph

A well-founded parametric generative model for scRNA-
seq data is currently missing, mainly due to the limited
understanding of the biological variation in transcrip-
tional states within different cell populations, and the re-
markable diversity of coupled (e.g., developmental) and
uncoupled (e.g., cell cycle, stress) biological processes
that are captured in typical single-cell RNA-seq maps.
We therefore use a simple non-parametric approach for
modeling raw pairwise local similarities, which is then
refined by additional analysis of the derived cell K-nn
similarity structure. We transform the raw UMI count U
on the gene features F as U " = [u'y] = [loga(e + ug))oc r
and compute the raw similarity matrix using the Pearson
correlations on the transformed features R = [r(u’g;, u’
gl A simple variation on this procedure may include
prior normalization of the U matrix by down-sampling
(sampling min(z;) UMIs from each cell without replace-
ment) so as to avoid biases associated with improved ac-
curacy (and thereby higher similarity) between deeper
UMI profiles. We however avoid down-sampling when
the distribution of the number of UMIs per cell is highly
variable and correct for the sampling bias when manipu-
lating the similarity graph as described below.

Next, we use the raw similarity matrix R to generate a
weighted adjacency matrix for a directed cell graph, in
which a heavy edge from cell i to cell j indicates strong
attraction of the former to the latter. We first perform a
non-parametric transformation by computing S=[s;] = [
ranky(ry)]. Here rank is the ranking function, and each
row represents the order of similarity between all cells j
and a specific cell i. The S matrix is highly non-
symmetric, for example when the similarities going from
an outlier cell are linking it to members of a large,
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homogeneous, and highly connected cell group. To bet-
ter control for such effects, we perform the following
balancing operation. We first symmetrize S by multiply-
ing ranks s;=s;, followed by initial regularization of
edges using a threshold ak® (setting a = 10 by default)
on the rank product:
{Sﬂ = [max(aKz—sij*sji,O)]
We then perform two rounds of additional

regularization, first keeping maximum scoring SK in-
coming edges for each node (8 =3 by default):

2] = [ man (8- ranki(}).0)]

and then further filtering to keep maximum K outgoing
edges for each node:

[ai,} = [ max <K— rank (sfj),O)}

A weighted directed graph G is then constructed using
[a;] as the weighted adjacency matrix. Note that nodes
with degrees lower than K are possible following this
procedure, since outlier cells may become disconnected
or poorly connected during the balancing operations.

Seeding and optimizing graph partitions

We partition the balanced similarity graph G into dense
subgraphs using an adaptation of k-means to graphs. Let
the parameter K define the typical desired size of sub-
graphs in the partition (which is also the maximum out-
degree of the graph G as constructed). Denote by N°“(j)
the set of graphic outgoing neighbors of i. We initialize
an empty assignment of cells to subgraphs mc(i) = -1,
define the set of covered nodes as C={i | mc(i) > - 1}
and the cover-free score for each node as f(i) = |[N°"'(i) —
C|. We then sample subgraph seeds using an iterative
procedure:

Initialize k = 0

While max f(i) > size- min do:
sample’a new seed cell j by drawing a sample from
cells in I - C with weights proportional to f{i)*
update mc(u) = k for u =j, u € N°“(j) - C
Increment k and update C, f.

We terminate seeding using a minimum subgraph size
parameter size _ min < K. When we meet the stop cri-
terion, cells that are not associated with a seed (i.e., cells
for which mc(i) = - 1) have at most size _ min uncovered
neighbors and in particular will almost always have at
least one covered neighbor (since the degree in the bal-
anced graph is typically K).
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The seeding step produces an initial set of subgraphs
Mi={i | mc(i)=k; that forms a basis for further
optimization. Define the outgoing association of each
cell to a subgraph as woy = Z{ jeNo (i)} B (recall a
are the graph weights), and analogously the incoming
subgraph association for each «cell as Wig =
2 {jen(iyom; 1 %i- The combined cell-to-subgraph associ-
ation is computed by multiplying the outgoing and in-
coming weights and normalizing by the respective
subgraph size: wy = wig woy/ |Mk|2. We use this scoring
scheme to iteratively optimize the initial graph cover,
and ensure that it includes all cells:

Until convergence:
Select a cell i
Reassign mc(i) = argmax, wy
Update weights

Convergence is defined by deriving a partition in
which all cells are associated with their highest scoring
subgraph. To enforce convergence (which is not guaran-
teed to occur in general), we slowly increase the score
association between cells and their current subgraph
after each reassignment. This is especially useful when a
large subset of cells (i.e., larger than K) are very homoge-
neous, which may result in unstable exchange of nodes
between several modules covering this subset.

After convergence, there are no formal guarantees on
size distribution of the subgraphs produced by the algo-
rithm. Empirically, however, the connectivity of the
graph (maximum K outgoing edges) and the seeding
process promote a relatively uniform cover partition
and prevent convergence toward solutions with very
large subgraphs. Rare cases of cells that reside in con-
nected components whose size is smaller than size _ min
and were left uncovered during seeding are defined as
outliers.

Importantly, the complexity of the entire procedure
(seeding and optimization) is linear in the number of
cells and the maximum degree K (or alternatively, linear
in the number of edges in the graph). An efficient imple-
mentation of the algorithm therefore scales well to large
datasets, as does its integration within an extensive re-
sampling strategy, as we discuss next.

Resampling graph partitions and computing metacells

We improve the robustness of the above randomized
graph partition algorithm using a resampling approach.
Given the balanced graph G, we generate a series of sub-
graphs b =1. . Np (typically Ng=500) by sampling cells
independently without replacement with probability p
(typically p=0.75) and adding all edges connecting
them, forming Gl = (V% EY), VPcV, E°cE. For each
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resampled G”, we apply the partition algorithm, thereby
generating a set of partial graph partitions mc®(i) for
each i€ V’. We summarize all partitions using the
matrices O=[o;] and C=][c;], specifying how many
times the pair of cells i, j were resampled together,
and how many times they were both assigned to the
same subgraph in the resampled partition, respect-
ively. We then define the resampled co-occurrence
matrix as S?°° = [s7°] = [eij/0g]-

The values in $”” are now used to compute a
weighted, non-directed graph, discarding the original
correlation distances. We compute for each cell i the
value of the K (typically 30) highest frequency neigh-
bors (denoted 7;) and then define a co-occurrence
threshold for each pair of cells using the maximal of the
two critical values multiplied by a factor Tj;= max (T
T;) = 0.5. Pairs with Sibj""t > T are used as the edges in a
new graph denoted as G’ on all cells. Note that G"*
is still of non homogeneous degrees, as setting fixed
thresholds on edges implies that nodes in large and dif-
fused clusters will have a lower 7; values and thereby
higher degree than nodes in tight and robust clusters
that always cluster in the same subgraphs. The param-
eter K provides users of the algorithm with flexible
control over the degrees in the derived graph. The final
partition solution is obtained by re-applying the same
partition algorithm on the graph G"*”, resulting in a
new set of subgraphs M; and a potential list of outliers.
This solution is subject to further filtering and verifica-
tion, as described next.

Filtering clear parametric outliers from a metacell cover
As commented above, even though we lack a proper
parametric model for single-cell RNA-seq, our idealized
metacell cover is expected to group together single-cell
profiles that are approximately consistent with multi-
nomial sampling. Testing a given metacell cover for
gross inconsistencies with this assumption can help de-
tecting outlier cells emerging from experimental errors
(such as doublets), as well as diagnose rare states that
are not sufficiently abundant to define a separate meta-
cell. We currently approach this detection problem
heuristically, by summarizing the metacell's pool
frequencies:

Mk:ZMi

ieM;

1
Pgc = u_kZ{iEMk}ugi

and computing an approximate, regularized observed/
expected value for each gene and cell:
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1+M,‘
= log, | ——= |, ieM
fgl Og2<1+uipgk>7l k

Note that the regularization (adding 1 to observed and
expected count) implies that high fold change values
(e.g., >2) cannot be attained for genes with very low
overall UMI counts. However, this regularization is suffi-
cient to ensure robust detection of clear outliers. Cells
with one or more genes showing high f; values are la-
beled as potential outliers and removed from their meta-
cell cover prior to in-depth quantitative analysis of the
model.

Verifying metacells homogeneity

Outlier filtering does not guarantee metacell homogen-
eity in cases where two distinct and significantly sepa-
rated transcriptional states are grouped together. To
screen for such scenarios, we attempt to cluster cells
within each metacell M; de novo. Clustering is per-
formed by applying the DBSCAN density-based cluster-
ing algorithm to the intra-metacell similarity matrix,
computed as the correlation distances described above
but restricted to genes exhibiting mildly high intra-
metacell variance (normalized variance/mean >1.2). If
more than one cluster is detected, we split the metacell
accordingly. In practice, metacells almost never include
hidden sub-clusters and testing for splits is used mostly
for validation purposes.

Defining the metacell gene expression profile
We approximate the gene expression intensity within
each metacell by a regularized geometric mean:

1 1
ra = 2| (g Xy 0500+ 80 )1 (i )

We then quantify relative expression as the log fold
enrichment over the median metacell value:

1y = log, ((pg + €)/mediani (py- + €))

Note that the Ifp values are affected by the compos-
ition of metacells in the dataset up to a constant and
that e (typically set to 10™*) should be adapted to the
typical total molecule count within a metacell.

Metacell regularized force directed 2D projection

We use the MetaCell cover to regularize the similarity
graph among single cells and therefore simplify their 2D
projection as follows. We start by projecting edges in the
graph G over metacells:
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B (b K?
= l = ———
" [V M| {i€M,jeM}

[a;/C]

(here C= mediang(| My|) is a scaling constant). We
symmetrize B by replacing it with B’, the sum of its row
and column-normalized forms, and retain as candidate
edges only pairs for which &', > T 4. We then con-
struct a graph over the metacells G = (M, E™), by add-
ing the D highest scoring candidate edges (if they exist)
for each metacell. This results in a graph with maximum
degree D and any number of connected components.
We compute coordinates (xm1;, ymy) for each metacell by
applying a standard force-directed layout algorithm to
the graph G™. We then position cells by averaging the
metacell coordinates of their neighbor cells in the ori-
ginal balanced graph G, but filter neighbors that define a
metacell pair that is not connected in the graph G™.
Averaging allows for layout flexibility along one or few
edges in the metacell graph when positioning large cell
clusters that are dissected by several metacells.

Implementation

We implemented MetaCell using a combination of C++
and R code. We used parallelization over multi-core ma-
chines. On a strong Xeon-E5-2660 dual-CPU machine,
the entire analysis pipeline for a small 8200 cells dataset,
including bootstrap iterations and computing 2D visuali-
zations, required 2 min and 20 cores, and a maximum of
4.8 GB of RAM. The entire analysis pipeline for a 160K
cells’ dataset required 112 min and a maximum of 79-
GB RAM on the same machine.

Evaluating within-MC homogeneity

Following the computation of the MetaCell partition,
our pipeline produces diagnostic statistics and plots to
evaluate the level of adherence of the metacells to a
multinomial sampling model. To visualize large-scale ad-
herence across all genes, we produce per MC plots com-
paring the coefficient of variation and the fraction of
zero counts to the expected under a Poisson model (see
examples in Additional file 2: Figure S5). In addition, we
visualize adherence to binomial sampling of the top
enriched genes per MC by plotting the observed distri-
bution of UMI count and the same distribution sampled
from a binomial model (see examples in Fig. 2d). For
both observed and expected, counting is done after
down-sampling all cells within a metacell to uniform
total counts. Finally, global diagnostic matrices over all
MCs and marker genes (see example in Fig. 2e) are com-
puted as follows: We down-sample the UMIs to uniform
total counts per MC and compute the binomial likeli-
hood of the observed counts, as well as their over-
dispersion (observed divided by expected variance). We
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average these statistics over multiple down-samples and
repeat the whole procedure over 999 fake count matrices
drawn from the per-MC multinomial model. Per gene
and per MC, we compute the empirical p value of its
likelihood with respect to the binomial null. We output
the p values and the over-dispersion values and visualize
a summarizing heatmap of the latter. Note that when
computing binomial statistics, we down-sample with re-
spect to feature and enriched genes only, and that the
expected distributions are derived from the pool fre-
quencies constrained to these genes.

Comparing local approximation accuracy using
expression prediction

We designed a cross-validation experiment to quantify
how well the MetaCell partition captures local cell-to-
cell similarities. We divided the gene set into 100 folds,
and leaving out each fold at a time computed cell-to-cell
similarities on the remaining genes using four different
strategies. We next used these similarities to predict, per
cell, the expression level of the left-out genes. Finally, we
compared the quality of predictions across all genes. A
model that captures accurately local similarities in the
expression manifold is expected to produce accurate
predictions.

The compared approaches are as follows: (1) predict-
ing using the per-metacell pool frequencies, (2) predict-
ing using the pool frequencies among the top 50
neighbors according to the raw MC similarity matrix R,
(3) predicting using the pool frequencies of the top 50
neighbors according to Euclidean distances in Seurat’s
PCA space, and (4) predicting using the weighted pool
frequencies of all cells, where the weights are set as
MAGIC’s diffusion similarities (more specifically,
MAGIC’s powered Markov affinity matrix). Pool fre-
quencies were computed as regularized geometric
means, denoting by w; the weight of cell i in the pool
(for strategies 1-3 all weights are 1):

1 1
oot = | (g1 X 108200 700) ) 1] (5 )

The extent of over-fitting was tested by avoiding the
cross-validation design and computing a single similarity
matrix using all genes per modeling approach. Regard-
less of whether cross-validation was used, a cell was
never a part of its own prediction pool when comparing
prediction accuracy (Fig. 3b, c). In contrast, for plotting
the gradients (Fig. 3d, e), the predicted values were gen-
erated using all genes and all cells, as in a typical
analysis.

Combining Seurat and MetaCell’s filtering criteria,
only cells with at least 800 UMIs, number of expressed
genes between 800 and 4000, and mitochondrial gene
fraction below 0.1 are included. We omitted from the
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modeling and the evaluation mitochondrial genes and
immunoglobulin genes. For MetaCell, we used MC size
parameter K =100 and 500 down-samples of 0.75 of the
data during the graph resampling stage. For Seurat
(package downloaded on 18/3/26), we used gene selec-
tion parameters x.low.cutoff =0, y.cutoff = 0.8, negative
binomial scaling over mitochondrial fraction and num-
ber of UMIs, and 40 PCs. For MAGIC (code down-
loaded on 18/3/19), we used 30 PCs, k =5, ka=4,
epsilon=1, and ¢ = 6.

Whole organism scRNA-seq analysis

For the Caenorhabditis elegans map, we analyzed the
whole-organism single-cell dataset published by Cao
et al. [42] and generated using methanol-fixed larval L2
stage cells and a split&pool scRNA-seq strategy. We
started from a UMI matrix containing 41,449 single
cells. We filtered out cells with less than 100 and more
than 8000 total UMIs. We used MetaCell to select
marker genes with the following criteria: (1) a normal-
ized size correlation below - 0.1 and/or a niche score
over 0.1, (2) a minimum of 300 total UMIs observed,
and (3) a minimum of 3 UMIs observed in at least three
single cells. For MetaCell, we used MC size parameter
K =150 and 1000 down-samples of 0.75 of the data dur-
ing the graph resampling stage. We computed the final
partition from the co-occurrence matrix using a size
parameter K = 30, a minimum MC size parameter of 30
and alpha =2. We filtered outlier cells using a filtering
parameter T_lfc = 4, resulting in a final filtered set of 38,
149 cells.

For Schmidtea mediterranea, we analyzed the whole-
adult single-cell dataset published by Fincher et al. [43]
and generated using fresh cells from whole-adult and
head area planarian samples and the Drop-seq scRNA-
seq technology. We started from a UMI matrix contain-
ing 58,328 single cells. We filtered out cells with less
than 500 and more than 18,000 total UMIs. We used
MetaCell to select marker genes with the following cri-
teria: (1) a normalized size correlation below — 0.1 and/
or a niche score over 0.05, (2) a minimum of 300 total
UMISs observed, and (3) a minimum of 3 UMIs observed
in at least three single cells. In the graph partitioning
stage, we used the same parameters as in the C. elegans
analysis. We filtered outlier cells using a filtering param-
eter T_lfc = 4.5, resulting in a final filtered set of 56,627
cells.

Fine clustering using Seurat

Seurat’s clustering algorithm was used for producing a
high-resolution clustering of the 160K PBMCs dataset
by applying the following procedure: Data was log-
normalized and scaled to 10,000 UMIs per cell, 1000
genes with top variance/mean ratio were used as highly
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variable genes, these genes were rescaled by regressing
on per-cell number of UMIs, and PCA reduction to 45
dimensions was applied to the rescaled variable genes. In
order to generate a fine clustering solution, we set Seur-
at’s resolution parameter to 100, using the approxima-
tion parameters nn.eps=0.5 and n.start=10, which
yielded 817 clusters. We note that Seurat is typically ex-
ecuted with much lower resolution values (0.6—3).
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