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Abstract

The CRISPR/Cas system is a highly specific genome editing tool capable of distinguishing alleles differing by even
a single base pair. Target sites might carry genetic variations that are not distinguishable by sgRNA designing tools
based on one reference genome. AlleleAnalyzer is an open-source software that incorporates single-nucleotide
variants and short insertions and deletions to design sgRNAs for precisely editing 1 or multiple haplotypes of a
sequenced genome, currently supporting 11 Cas proteins. It also leverages patterns of shared genetic variation
to optimize sgRNA design for different human populations. AlleleAnalyzer is available at https://github.com/
keoughkath/AlleleAnalyzer.
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Background
CRISPR genome editing’s success depends on the efficiency
and specificity of the guide RNA (sgRNA) design. Current
sgRNA design tools primarily predict the efficiency and
specificity of sgRNAs using features such as prevalence of
off-target sites, epigenetic marks, and chromatin accessibility
[1–3]. Generally, sgRNAs are designed using reference
genomes, such as the hg38 assembly for human or the
GRCm38 assembly for mouse. However, these sgRNAs are
used on cell lines or organisms with many nucleotide differ-
ences from the reference (e.g., on average 0.1% of a human
genome [4]). While sgRNAs can sometimes tolerate a single
base pair mismatch, frequently, these mismatches negatively
impact sgRNA efficiency and render imprecise results of
specificity prediction [5, 6], with potentially serious effects
when sgRNAs are deployed.
Previous work analyzing data from ExAc and the 1000

Genomes Project determined that genetic variants could
have a large impact on sgRNA efficiency and specificity,
demonstrating the need for a tool to design sgRNAs using
genetic variation and to identify sgRNAs that could work in
many people to facilitate regulatory approval for therapeutic
use [6, 7]. The solution implemented in this previous work

aimed to avoid the negative effects of genetic variation
by identifying universal sgRNAs located in the sites
with little to no genetic variation and possessing few
predicted off-targets [6]. However, many loci one may
wish to edit lack variation-free regions for designing
such sgRNAs (see below). We propose personalized
sgRNA design, which uses the genetic variants in a gen-
ome or population, as a second approach that offers more
flexibility in sgRNA design. We further note that genetic
variation is not only a challenge for sgRNA design, but
also an opportunity. Specifically, the use of CRISPR in
research areas such as haploinsufficiency, genomic im-
printing, and dominant negative diseases requires allele-
specific sgRNA design, which may be accomplished using
heterozygous variants.
To address these needs, we developed AlleleAnalyzer,

an open-source Python software tool that designs person-
alized and allele-specific sgRNAs for individual genomes,
identifies pairs of sgRNAs to generate excisions likely to
block the expression of a gene, and leverages patterns of
shared genetic variation across thousands of publicly avail-
able genomes to design sgRNA pairs that will have the
greatest utility in a target population.

Results and discussion
Incorporating genetic variation into sgRNA design enables
personalized and allele-specific CRISPR experiments. We
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define a personalized sgRNA as an sgRNA designed to in-
corporate the genetic variants of the research subject. A
genetic variant can impact sgRNA sites by being located in
or near a protospacer adjacent motif (PAM site), potentially
generating or eliminating sgRNA sites in an individual in a
heterozygous or homozygous manner. Beyond being an
impediment to designing effective sgRNAs, these variants
enable the design of personalized, non-allele-specific
sgRNAs (incorporating homozygous variants and avoiding
heterozygous variants to match both alleles) and allele-
specific sgRNAs (incorporating heterozygous variants). The
way in which genetic variation impacts or is incorporated
into sgRNA design depends on the use case for the sgRNA
and variant zygosity (Fig. 1a).
Because Cas nucleases have different PAM sequences,

a variant may impact an sgRNA site for one Cas but not
another. We analyzed 11 Cas types (Additional file 1:
Table S1), genome-wide variants from > 2500 individuals
from the 1000 Genomes Project [8] (1KGP), and exome
variants from > 60,000 individuals in the Exome

Aggregation Consortium (ExAc). From these analyses,
we discovered that most variants impact sgRNA sites for
at least one Cas type, even when considering only the
variants in PAMs, which are putatively more allele-
specific [9] (Fig. 1b). The likelihood that a variant im-
pacts an sgRNA site differs across Cas nucleases (1KGP:
range 19–98%; ExAc: range 13–99%), is positively corre-
lated with PAM frequency in the reference genome
(1KGP: Pearson rho = 0.89, p = 0.0002; ExAc: Pearson
rho = 0.84, p = 0.0011, Fig. 2a), and is negatively corre-
lated with PAM size (1KGP: Pearson rho = − 0.71,
p = 0.014; ExAc: Pearson rho = − 0.74, p = 0.0094). In
fact, > 3% of sgRNAs in each of three widely used
sgRNA libraries [10–12] contain at least one common
genetic variant (minor allele frequency > 5% in the
1KGP cohort), and > 2% of these sgRNAs contain a vari-
ant in the individual human genome of an induced pluri-
potent stem cell (iPSC) line WTC, commonly used for
disease modeling [13] (Fig. 1c, Additional file 1: Figure
S1). Failing to account for variants can reduce the

a

b c
Fig. 1 Analysis of allele-specific sgRNA sites. a In a sample genome, tools designing sgRNAs for the reference genome are imperfect matches due
to genetic variants, exemplified by guide 1. AlleleAnalyzer designs personalized sgRNAs, as demonstrated by guides 2 and 3, which incorporate
homozygous and avoid heterozygous variants, thus designing a guide perfectly matched to both alleles in a subject. It also designs personalized
allele-specific sgRNAs based on the incorporation of heterozygous variants, shown by guides 4–6. Guides 4 and 6 target the paternal allele, while
guide 5 targets the maternal allele. b Most variants annotated by the 1000 Genomes Project (1KGP) and the Exome Aggregation Consortium
(ExAc) are in or near a PAM site. c Analysis of common variants (minor allele frequency (MAF) greater than 5% in 1KGP) and all variants in an
individual cell line (WTC) within commonly used sgRNA libraries
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efficacy of sgRNAs and also generate unexpected off-
target effects [7]. These results emphasize the import-
ance of designing sgRNAs using the personal genome of
the patient or cell line where they will be deployed, or at
least accounting for both heterozygous and homozygous
genetic variants when interpreting the results using
sgRNA libraries designed for the reference genome.
Heterozygous genetic variants can be leveraged to

establish new therapeutic and research possibilities with
allele-specific genome editing. Questions that allele-
specific editing could help address include haploinsuffi-
ciency, imprinting, and allele-specific gene regulation, as
well as discovery and correction of heterozygous disease
variants. One promising example is genome surgery to
treat dominant negative disease by excising only the
disease-causing copy of a gene, an approach which
rescues healthy phenotypes in cell and animal models of
dominant negative diseases including Huntington’s
disease [14] and retinitis pigmentosa [15, 16].
We assessed the strategy of allele-specific gene editing

genome wide by identifying pairs of allele-specific
sgRNA sites for each human protein-coding gene that
could generate a genomic excision and eliminate protein
production from just one allele. Given a Cas nuclease,
an estimated maximum distance between the two
sgRNAs on the haplotype to be excised, and allele-
specific sgRNA sites based on the individual’s genetic

variants, it is possible to classify genes—or other gen-
omic elements such as enhancers—as putatively target-
able or not (Additional file 1: Figure S2). We use the
term putatively targetable when a pair of allele-specific
sgRNAs exists but has not yet been tested, because it
will not always be possible to cut specifically at a site
and coding exon excision will not always stop the ex-
pression. Previous work indicates that excision of large
genomic fragments (> 10 kb) is feasible and that excision
of coding exons via sgRNAs targeted to flanking non-
coding regions, such as promoter or intronic regions,
can mediate gene knockout [17–19].
As an example, suppose we choose a maximum dis-

tance of 10 kb between sgRNAs, requiring the sgRNAs
to be within the gene including introns, and consider 11
Cas varieties (Additional file 1: Table S1). Then, the
average individual from 1KGP is putatively targetable for
allele-specific excision at 64% of protein-coding genes
[14]. The rate of putatively targetable individuals per
gene is evenly distributed across the chromosomes but
varies by Cas nuclease and gene (Fig. 2b). For genes that
are not putatively targetable, additional allele-specific
sgRNA sites may be found by leveraging non-coding var-
iants up- and downstream of the gene, or even in distal
enhancers for the gene [14]. As a second example, we
found that by simply including the 5-kb flanking regions
of each gene, we can increase the mean proportion of

a b
Fig. 2 Target availability by Cas enzyme. a PAM frequencies in the human reference genome hg19, colored by the size of the PAM site (number
of non-“N” nucleotides in motif). b In this faceted density plot, the height of the colored portion indicates the proportion of genes where the
specified percentage (on the x-axis) of the 1000 Genomes cohort is putatively targetable
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putatively targetable protein-coding genes per 1KGP in-
dividual to 75%. A caveat to this is that the specificity of
each sgRNA pair will vary greatly, potentially even be-
tween sgRNAs targeting the same pair of heterozygous
variants. Therefore, we conclude that allele-specific
excision may be applicable to the vast majority of genes
in most human genomes, but extensive experimental
optimization for efficiency and specificity will be needed.
Since some genes in a given individual do not have a

pair of allele-specific sgRNAs, we asked if gene silencing
with a single allele-specific sgRNA within the coding
sequence (single-guide strategy) makes more genes puta-
tively targetable. We compared paired-guide and single-
guide strategies for allele-specific gene knockout in the
individual human genome of the WTC iPSC line [13]
and found that more than twice as many genes are puta-
tively targetable with paired guides despite the require-
ment of two editing sites (Additional file 1: Figure S3).
This follows intuition, because one or both sgRNAs can
fall in introns or untranslated regions (providing more
potential editing sites with dual guides), whereas individ-
ual sgRNAs in the single-guide strategy are limited to
coding regions. Genes that are putatively targetable with
a single- and not paired-guide approach tend to have
less than two heterozygous variants in the gene, indicat-
ing that a lack of multiple variants is the primary reason
a paired-guide strategy fails. These genes could be puta-
tively targetable with a paired-guide strategy by incorp-
orating flanking, promoter, or other regulatory regions.
Again, putative editing sites and sgRNAs need to be ex-
perimentally validated. We conclude that in most cases,
allele-specific gene targeting may be greatly enhanced by
including paired guides in the experimental approach.
Genome editing sgRNAs do not need to be designed

one genome at a time. Variants that impact sgRNA sites
are often shared among large proportions of the individ-
uals within and sometimes between populations due to
haplotype structure. Previous work had a similar goal of
developing sgRNAs for broad use [6]. However, that work
focused on targeting invariant (or low variation) segments
of the genome towards homozygous, single-sgRNA-based
CRISPR editing while AlleleAnalyzer focuses on taking ad-
vantage of genome variation for allele-specific editing with
individual sgRNAs, or pairs of sgRNAs. Allele sharing var-
ies by population and locus, as individuals with common
ancestry will share haplotypes that harbor specific sets of
variants. We therefore developed an algorithm to identify
allele-specific sgRNA guide pairs for a given gene that
cover the maximum number of individuals in a popula-
tion; these have the broadest therapeutic potential, similar
to designing a drug to treat as many people as possible
(Additional file 1: Figure S4). Specifically, our method
seeks to cover the most people with the fewest sgRNA
pairs using their shared heterozygous variants; this is

similar to the “set cover” problem in that the algorithm
identifies an optimal combination rather than simply
selecting most shared sgRNA pairs, which could dispro-
portionately favor one group over another [20]. Our algo-
rithm generates optimized pairs of sgRNAs that can be
used to study or treat genetic diseases in large groups,
potentially eliminating the need to develop new sgRNA
pairs for each patient or cell line, with practical implica-
tions for the development of genome surgery as a field.
Our algorithm can also be used to identify sgRNA pair
combinations applicable to a custom cohort; this enables
researchers to design guides that are maximally shared
among multiple cell lines, for example, which would im-
prove the experimental efficiency. Optimized sgRNAs can
then be validated for each individual via targeted genotyp-
ing, reducing sequencing and sgRNA synthesis costs.
As a case study, we investigated the feasibility of excising

at least 1 coding exon of BEST1, which can cause dominant
negative macular degeneration [21]. Considering the gene
plus 5 kb of flanking sequence on either side, and allowing
10 kb between each sgRNA in a pair, there are 563 pairs of
allele-specific sgRNA sites for SpCas9 that are shared by >
10% of all 1KGP individuals, with the number and compos-
ition of these pairs varying across 1KGP populations (Fig. 3a).
We sought to identify an optimal combination of 5 allele-
specific sgRNA pairs to potentially target the majority of the
1KGP cohort. We found that a combination of 5 allele-
specific sgRNA pairs could putatively excise at least 1 coding
allele of BEST1 while leaving the other allele intact in ~ 78%
of the overall 1KGP population. This compares to only 48%
that would be covered by the naïve approach of selecting a
combination of the top 5 most highly shared pairs (Fig. 3b,
c). At each sgRNA site, multiple sgRNAs are possible for
both the reference and alternate alleles (Fig. 3d) depending
on which is being targeted in the research subject. Each of
these sgRNAs has a unique off-target profile (Fig. 3e,
Additional file 1: Figure S5, Additional file 2: Table S2),
which we identified by integrating the tool CRISPOR
into AlleleAnalyzer [3]. Previous studies have predicted
that genetic variation may have a large impact on the
off-target landscape [6, 7]. One of these produced a set
of “platinum” sgRNAs for all coding genes identified
based on the target sites having low genetic variation
and predicted off-targets, including off-targets gener-
ated by genetic variation [6]. Using the WTC genome,
we compared these sgRNAs to those produced by
AlleleAnalyzer in the gene PCSK9. We determined that
the set of platinum sgRNAs indeed has high predicted
sensitivity and specificity in WTC, but some loci lack
platinum sgRNAs; AlleleAnalyzer is able to design
personalized sgRNAs in these loci, making it a flexible
option that we expect will be useful in practice
(Additional file 1: Figure S6). CRISPOR specificity scor-
ing will be robust to most variation as it searches for all
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similar sites in the genome to an sgRNA with up to 4
mismatches. Additionally, the predictive power of these
scores is low in general [3]. AlleleAnalyzer does allow
the user to filter sgRNAs for predicted specificity, and
doing so can impact relative coverage using either the
AlleleAnalyzer or the top 5 pair methods, as we
demonstrated in 6 therapeutically relevant genes (Fig. 4,
Additional file 1: Figure S7–S11). Therefore, particu-
larly in cases of therapeutic development, we recom-
mend rigorous experimental whole-genome off-target
analysis. Together, these results demonstrate important
considerations for allele-specific sgRNA design.
The bioinformatics methods from this study have been

implemented in AlleleAnalyzer, an open-source Python
software tool (Additional file 1: Figure S12, S13). This
tool designs personalized and allele-specific sgRNAs for
unique individuals and cohorts, given their genetic
variants, and optimizes sgRNA pairs to cover many
individuals based on shared variants. To our knowledge,

this is the first computational resource that designs per-
sonalized and allele-specific CRISPR sgRNAs. AlleleAna-
lyzer accounts for single-nucleotide variants and short
insertions and deletions, and currently supports 11 Cas
proteins while providing user options to add new Cas
proteins, thus expanding and building upon the existing
repertoire of sgRNA design tools (Additional file 3:
Table S3). The AlleleAnalyzer toolkit and tutorials are
available along with the database of annotated 1KGP
variants at https://github.com/keoughkath/AlleleAnaly
zer under the MIT license (DOI: https://doi.org/10.52
81/zenodo.3354488

Conclusions
The genetic-variation-aware sgRNA design tool AlleleAnaly-
zer is an important step towards effective deployment of
CRISPR-based technologies in diverse genomes, including
but not limited to research and therapeutic development for
once incurable dominant negative diseases.

a

c

d e

b

Fig. 3 Targeting pairs of allele-specific polymorphisms. a Common shared targetable variant pairs for SpCas9 and SaCas9 vary greatly by
population, as demonstrated in the gene BEST1 including the 5-kb flanking regions in the five 1KGP superpopulations. b AlleleAnalyzer optimizes
sgRNA pair combinations to best cover a cohort, which performs much better compared to the naïve approach of selecting the most highly
shared pairs (top 5). c The pairs identified by the AlleleAnalyzer and the top 5 approaches demonstrate disparate patterns of sharing among the
entire 1KGP population. The height of the arcs is only for visualization purposes and is not otherwise meaningful. d AlleleAnalyzer designs
sgRNAs, colored by Cas variety, here with SpCas9 represented by purple and SaCas9 by green. e For each variant, or sgRNA site, multiple sgRNAs
can be designed on both the reference and alternate alleles, depending which is to be targeted. Each sgRNA, then, has its own set of off-target
sites, predicted using the incorporation of the CRISPOR tool in AlleleAnalyzer
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Methods
PAM occurrence in the human reference genome
PAM frequency
The AlleleAnalyzer tool includes a script enabling scan-
ning of a reference genome fasta file for existing PAM
sites. We used this to identify PAM sites for 11 Cas types
(Additional file 1: Table S1) in the reference human ge-
nomes hg19 and hg38. These are viewable in publically
accessible UCSC Genome Browser sessions (hg19: https://
bit.ly/2GB9cXK, hg38: https://bit.ly/2BZAmVh), with a
sample view in Additional file 1: Figure S14.

PAM size
PAM sizes were equated as the sum of non-N (A, C, G, or
T) bases in a PAM site. Thus “NGG” for SpCas9 would
have size 2, and “NNGRRT” for SaCas9 would have size 4.

Analysis of variants in commonly used sgRNA libraries
For each sgRNA library, genomic coordinates for the
protospacer regions were obtained from the relevant
supporting manuscript. These were converted into BED
files including the protospacer and PAM sites. Bcftools
[22] was then used to extract the variants with a minor
allele frequency (MAF) > 5% from the 1000 Genomes
data, or variants from WTC with no MAF restriction.
Variants that fell in the “N” position of the PAM were
removed.

AlleleAnalyzer analyses
Annotation of variants
Genetic variants were determined to generate or destroy
an allele-specific sgRNA site if they were proximal to or
in a PAM site (Fig. 1a). Sufficient proximity to a PAM

a b e

c f

d g

Fig. 4 sgRNA pair optimization for coverage of groups. a Variant pairs in NEFL and the flanking 5 kb that are shared by at least 10% of the 1KGP
cohort. These are pairs of variants, not pairs of sgRNAs, so reflect potential dual-guide editing sites prior to designing or filtering sgRNAs. Ten
percent was chosen for visualization purposes. b Five variant pairs identified by AlleleAnalyzer to achieve greatest possible coverage of the 1KGP
cohort. c Coverage of the 1KGP cohort with the AlleleAnalyzer set of five pairs at various minimum predicted specificity score thresholds. d Coverage
of each super population in the 1KGP cohort with the AlleleAnalyzer set of five pairs at various minimum predicted specificity score thresholds. e Top
5 shared variant pairs in the 1KGP cohort. f Coverage of the 1KGP cohort with the “top 5” set of pairs at various minimum predicted specificity score
thresholds. g Coverage of each super population in the 1KGP cohort with the “top 5” set of pairs at various minimum predicted specificity
score thresholds
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site was defined for this study as 20 bp based on the
common length of sgRNA recognition sequences. For all
Cas varieties, this was the 20-bp 5′ of the PAM, except
for cpf1 (Cas12a) for which it was 3′ of the PAM. The
sgRNA design tools that are part of AlleleAnalyzer allow
different user-defined sgRNA lengths and addition of
Cas enzymes and PAMs. There is evidence to suggest
that genetic variants that generate or destroy a PAM are
more likely to lead to allele-specific Cas activity com-
pared to those in the seed sequence [1]; AlleleAnalyzer
thus provides options to differentiate between CRISPR
sites in a PAM site versus the sgRNA recognition se-
quence. All variants genome wide were annotated for
the 1KGP cohort for reference genomes hg19 and hg38;
an example subset of these data for the first 100 variants
annotated by 1KGP on chromosome 1 in reference gen-
ome hg19 is available in Additional file 4: Table S4. All
variants in the ExAc dataset were annotated for the
reference genome hg19 only, as that dataset is not avail-
able in hg38.

Generation of gene set
The analyzed gene set was compiled using the canonical
transcripts for RefSeq gene annotations for human refer-
ence genome hg19 and hg38 downloaded using the
UCSC Table Browser [23]. Values reported in the text
are for hg19 unless stated otherwise, but 1KGP analyses
were conducted for both reference genomes with similar
results.

Allele-specific putative gene targetability genome wide
Putative allele-specific targetability of a gene is defined
here as whether a gene contains a pair of allele-specific
sgRNA sites for at least 1 of the 11 Cas enzymes
evaluated that are less than 10 kb apart on the same
haplotype in an individual that will disrupt a coding
exon (Additional file 1: Figure S2). This metric was
calculated for each gene for all 2504 1KGP individuals.
It was not calculated for the ExAc cohort as that data-
set contains only exome rather than whole-genome
variants.

Set cover analysis
In order to find the optimal set of sgRNAs, we initialized
two vectors of indicator variables that are constrained to
be binary, one for sgRNAs and one for individuals.
When these indicator variables are set to 1, this means a
sgRNA is chosen or a person is covered, respectively.
We then specified the objective function to maximize
the sum of person indicator variables. Next, we set the
constraint on maximum value allowed for the sum of
sgRNA indicator variables. Finally, we set up the con-
straints we have deduced from the data, the bipartite
graph of sgRNAs and patients targetable by them. This

graph gets translated into multiple inequality constraints
that specify that if a person indicator is 1, then at least
one of its connected sgRNA indicators must also be 1.
Having specified all these elements of the problem, we
are free to solve it with any number of integer linear
programming solvers; we used the Python package PuLP
[24]. We then extract the final values of the indicator
variables from the solution and have our set of sgRNAs
that fulfill the chosen objective. The specific Python im-
plementation of the constraints and objective function
and subsequent call to an integer linear programming
solver can be seen in the GitHub repository for this tool.
This is visualized in Additional file 1: Figure S4.

Comparison of AlleleAnalyzer to platinum sgRNAs from
Scott and Zhang [6]
Platinum sgRNAs for SpCas9 were obtained from the
supplementary materials of their paper [6]. Personalized
non-allele-specific sgRNAs were designed for PCSK9
exon 1 in WTC using AlleleAnalyzer. This analysis was
done in reference genome hg19.

WTC sequencing
The genome for the iPSC line WTC [13] was se-
quenced by the Allen Institute for Cell Science.
Analysis and variant calls in the reference genome hg19
were done according to GATK version 3.7 best prac-
tices [25] and phased using Beagle version 4.1 with
default settings [26].

WTC targetability analysis
Variant annotation procedures were the same as in the
1KGP analysis and ExAc.

Packages used
Python
Docopt was used for handling of command-line argu-
ments. Pandas [27] version 0.21.0, NumPy [28] version
1.13.3, and elements of the standard Python distribution
sys, os, and regex were used for multiple aspects of data
analysis. PuLP [24] version 1.6.8 was used for set cover
analysis. PyTables [29] was used for data management.
Biopython [30] and pyfaidx [31] were used for fasta pro-
cessing. Scripts from CRISPOR [3] were integrated into
AlleleAnalyzer to facilitate specificity scoring of sgRNAs.
Seaborn [32], matplotlib [33] and PyUpset [34] were
used for plotting.

R
Packages used to generate arcplots included viridis ver-
sion 0.5.1, viridisLite version 0.3.0, igraph version 1.1.2,
ggraph version 1.0.0, ggplot2 version 2.2.1, reshape2
version 1.4.3, dplyr version 0.7.4, tidyr version 0.7.2, and
readr version 1.1.1.
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Bioinformatics
Bcftools version 1.9 was used to manipulate VCF and
BCF files.

Code availability and scripts
All data processing and analysis scripts as well as the
sgRNA design tool are located at github.com/keough
kath/AlleleAnalyzer, available under the MIT license
(DOI: https://doi.org/10.5281/zenodo.3354488). Scripts
were written in Python version 3.6.1, R version 3.3.2,
and Bash version 3.2.57.

Additional files

Additional file 1: Supplementary Figure S1-S14 and supplementary
Table S1. (DOCX 12973 kb)

Additional file 2: Table S2. AlleleAnalyzer guides for SpCas9 and
SaCas9 in BEST1 for optimal coverage of the 1000 genomes cohort, as
shown in Fig. 3b-e. Guides with “---” as sequence indicate loss of PAM
site due to a variant, and therefore non-targetability of that allele. (XLSX
13 kb)

Additional file 3: Table S3. Comparison of AlleleAnalyzer features with
other commonly used CRISPR sgRNA design tools. (XLSX 12 kb)

Additional file 4: Table S4. PAM site annotation example set for the
first 100 variants from the 1KGP on chromosome 1. Full dataset is
available as denoted in the data availability section. (XLSX 21 kb)
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7165&hgsid=710108079_SecTcyDrgBPU4AocIPTRF2Uq4Omd). WTC whole-
genome sequencing data is made available by the Allen Institute at https://
www.allencell.org/genomics.html. In addition to the GitHub repository for
AlleleAnalyzer (github.com/keoughkath/AlleleAnalyzer, available under the
MIT license) [35], an archived release of the software is available under
DOI:https://doi.org/10.5281/zenodo.3354488 provided through Zenodo.
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