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Abstract

Data science allows the extraction of practical insights from large-scale data. Here, we contextualize it as an
umbrella term, encompassing several disparate subdomains. We focus on how genomics fits as a specific
application subdomain, in terms of well-known 3 V data and 4 M process frameworks (volume-velocity-variety and
measurement-mining-modeling-manipulation, respectively). We further analyze the technical and cultural “exports”
and “imports” between genomics and other data-science subdomains (e.g., astronomy). Finally, we discuss how
data value, privacy, and ownership are pressing issues for data science applications, in general, and are especially
relevant to genomics, due to the persistent nature of DNA.
Introduction
Data science as a formal discipline is currently popular
because of its tremendous commercial utility. Large
companies have used several well-established computa-
tional and statistical techniques to mine high volumes of
commercial and social data [1]. The broad interest
across many applications stirred the birth of data science
as a field that acts as an umbrella, uniting a number of
disparate disciplines using a common set of computa-
tional approaches and techniques [2]. In some cases,
these techniques were created, developed, or established
in other data-driven fields (e.g., astronomy and earth
science). In fact, some of these disciplines significantly
predate the formal foundation of data science and have
contributed to several techniques to cope with know-
ledge extraction from large amounts of data.
Many scholars have probed the origins of data science.

For example, in 1960 Tukey described a new discipline
called data analysis, which some consider being a
forerunner of data science. He defined data analysis as
the interplay between statistics, computer science, and
mathematics [3]. Jim Gray also introduced the concept
of data-intensive science in his book The Fourth
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Paradigm [4], and discussed how the developments in
computer science would shape and transform segments
of science to a data-driven exercise. More practically, the
maturation of modern data science from an amorphous
discipline can be tracked to the expansion of the tech-
nology industry and its adoption of several concepts at
the confluence of statistics and algorithmic computer
science, such as machine learning [5]. Somewhat less
explored is the fact that several applied disciplines have
contributed to a collection of techniques and cultural
practices that today comprise data science.
Contextualizing natural science within the data science
umbrella
Long before the development of formal data science,
and even computer science or statistics, traditional fields
of natural sciences established an extensive culture
around data management and analytics. For instance,
physics has a long history of contributions of several
concepts that are now at the foundation of data science.
In particular, physicists such as Laplace, Gauss, Poisson,
and Dirichlet have led the way for the development of
hypothesis testing, least squares fits, and Gaussian,
Poisson, and Dirichlet distributions [6].
More recently, physics also has contributed new data

techniques and data infrastructure. For example, Ulam
originally invented the Monte Carlo sampling method
while he was working on the hydrogen bomb [7] and
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Berners-Lee, from the CERN (European Organization
for Nuclear Research), developed the World Wide Web
[8] to enable distributed collaboration in particle physics.
While most disciplines are now experiencing issues with
rapid data growth [9, 10], we find it interesting that
physics had issues with data management long before
most disciplines. As early as the 1970s, for example,
Jashcek introduced the term “information explosion” to
describe the rapid data growth in astrophysics [11].
Fundamental contributions to data management and

analytics have not been exclusive to physics. The
biological sciences, perhaps most prominently genetics,
also have significantly influenced data science. For
instance, many of the founders of modern statistics,
including Galton, Pearson, and Fisher, pioneered principal
component analysis, linear regression, and linear discrim-
inant analysis while they were also preoccupied with
analyzing large amounts of biological data [6]. More
recently, methods such as logistic regression [12], cluster-
ing [13], decision trees [14], and neural networks [15]
were either conceptualized or developed by researchers
focused on biological questions. Even Shannon, a central
figure in information theory, completed a short PhD in
population genetics [16].

Genomics and data science
More recent biological disciplines such as macromol-
ecular structure and genomics have inherited many of
these data analytics features from genetics and other
natural sciences. Genomics, for example, emerged in
the 1980s at the confluence of genetics, statistics, and
large-scale datasets [17]. The tremendous advance-
ments in nucleic acid sequencing allowed the discip-
line to swiftly assume one of the most prominent
positions in terms of raw data scale across all the
sciences [18]. This pre-eminent role of genomics also
inspired the emergence of many “-omics” terms inside
and outside academia [19, 20]. Although today gen-
omics is pre-eminent in terms of data scale, this may
change over time due to technological developments
in other areas, such as cryo-electron microscopy [21]
and personal wearable devices [22]. Moreover, it is
important to realize that many other existing data-
rich areas in the biological sciences are also rapidly
expanding, including image processing (including neu-
roimaging), macromolecular structure, health records
analysis, proteomics, and the inter-relation of these
large data sets, in turn, is giving rise to a new sub-
field termed biomedical data science (Fig. 1a).
Here, we explore how genomics has been, and probably

will continue to be, a pre-eminent data science subdisci-
pline in terms of data growth and availability. We first
explore how genomics data can be framed in terms of the
3Vs (data volume, velocity, and variety) to contextualize
the discipline in the “big-data world”. We also explore
how genomics processes can be framed in terms of the
4Ms (measurement, mining, modeling, and manipulat-
ing) to discuss how physical and biological modeling
can be leveraged to generate better predictive models.
Genomics researchers have been exchanging ideas with
those from other data science subfields; we review some
of these “imports” and “exports” in a third section.
Finally, we explore issues related to data availability in
relation to data ownership and privacy. Altogether, this
perspective discusses the past, present, and future of
genomics as a subfield of data science.
Genomics versus other data science applications
in terms of the V framework
One way of categorizing the data in data science
disciplines is in terms of its volume, velocity, and
variety. Within data science, this is broadly referred
to as the V framework [23]. Over the years, the V
framework has been expanded from its original 3Vs
[24] (volume, velocity, and variety) to the most recent
versions with four and five Vs (3 V + value and
veracity; Fig. 1c) [25]. In general, the distinct V
frameworks use certain data-related parameters to
recognize issues and bottlenecks that might require a
new set of tools and techniques to cope with unstruc-
tured and high-volume data. Here, we explore how
we can use the original 3 V framework to evaluate the
current state of data in genomics in relation to other
applications in data sciences.
Volume
One of the key aspects of genomics as a data science is
the sheer amount of data being generated by sequencers.
As shown in Fig. 2, we tried to put this data volume into
context by comparing genomics datasets with other
data-intensive disciplines. Figure 2a shows that the total
volume of data in genomics is considerably smaller than
the data generated by earth science [26], but orders of
magnitude larger than the social sciences. The data
growth trend in genomics, however, is greater than in
other disciplines. In fact, some researchers have sug-
gested that if the genomics data generation growth trend
remains constant, genomics will soon generate more
data than applications such as social media, earth
sciences, and astronomy [27].
Many strategies have been used to address the in-

crease in data volume in genomics. For example,
researchers are now tending to discard primary data
(e.g., FASTQ) and prioritizing the storage of second-
ary data such as compressed mapped reads (BAMs),
variant calls (VCFs), or even only quantifications such
as gene expression [28].



a

b c

Fig. 1 A holistic view of biomedical data science. a Biomedical data science emerged at the confluence of large-scale datasets connecting genomics,
metabolomics, wearable devices, proteomics, health records, and imaging to statistics and computer science. b The 4M processes framework. c The 5
V data framework
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In Fig. 2b, we compare genomics to other data-
driven disciplines in the biological sciences. This
analysis clearly shows that the large amount of early
biological data was not in genomics, but rather in
macromolecular structure. Only in 2001, for example,
did the number of datasets in genomics finally sur-
pass protein-structure data. More recently, new trends
have emerged with the rapidly increasing amount of
electron microscopy data, due to the advent of cryo-
electron microscopy, and of mass-spectrometry-based
proteomics data. Perhaps these trends will shift the
balance of biomedical data science in the future.

Velocity
There are two widely accepted interpretations of data
velocity: (i) the speed of data generation (Fig. 2) and
(ii) the speed at which data are processed and made
available [29].
We explored the growth of data generation in the

previous section in relation to genomics. The sequencing
of a human genome could soon take less than 24 h,
down from 2 to 8 weeks by currently popular technolo-
gies and 13 years of uninterrupted sequencing work by
the Human Genome Project (HGP) [30]. Other tech-
nologies, such as diagnostic imaging and microarrays,
have also experienced remarkable drops in cost and
complexity and, therefore, resulting data are much
quicker to generate.
The second definition of data velocity speaks to the

speed at which data are processed. A remarkable
example is the speed of fraud detection during a credit
card transaction or some types of high-frequency trading
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Fig. 2 Data volume growth in genomics versus other disciplines. a Data volume growth in genomics in the context of other domains and data
infrastructure (computing power and network throughput). Continuous lines indicate the amount of data archived in public repositories in genomics
(SRA), astronomy (Earth Data, NASA), and sociology (Harvard dataverse). Data infrastructure such as computing power (TOP500 SuperComputers) and
network throughput (IPTraffic) are also included. Dashed lines indicate projections of future growth in data volume and infrastructure capacity for the
next decade. b Cumulative number of datasets being generated for whole genome sequencing (WGS) and whole exome sequencing (WES) in
comparison with molecular structure datasets such as X-ray and electron microscopy (EM). PDB Protein Data Base, SRA Sequence Read Archive
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in finance [31]. In contrast, genomics data and data pro-
cessing have been traditionally static, relying on fixed
snapshots of genomes or transcriptomes. However, new
fields leveraging rapid sequencing technologies, such as
rapid diagnosis, epidemiology, and microbiome research,
are beginning to use nucleic acid sequences for fast,
dynamic tracking of diseases [32] and pathogens [33].
For these and other near-future technologies, we envi-
sion that fast, real-time processing might be necessary.
The description of the volume and velocity of gen-

omics data has great implications for what types of
computations are possible. For instance, when looking
at the increase of genomics and other types of data
relative to network traffic and bandwidth, one must
decide whether to store, compute, or transfer datasets.
This decision-making process can also be informed by
the 3 V framework. In Fig. 2, we show that the comput-
ing power deployed for research and development
(using the top 500 supercomputers as a proxy) is grow-
ing at a slower pace than genomic data growth. Add-
itionally, while the global web traffic throughput has
no foreseeable bottlenecks (Fig. 2a) [34], for re-
searchers the costs of transferring such large-scale
datasets might hinder data sharing and processing of
large-scale genomics projects. Cloud computing is one
way of addressing this bottleneck. Large consortia
already tend to process and store most of their data-
sets on the cloud [35–37]. We believe genomics
should consider the viability of public repositories
that leverage cloud computing more broadly. At the
current rate, the field will soon reach a critical point
at which cloud solutions might be indispensable for
large-scale analysis.

Variety
Genomics data have a two-sided aspect. On one side is
the monolithic sequencing data, ordered lists of nucleo-
tides. In human genomics, traditionally these are mapped
to the genome and are used to generate coverage or vari-
ation data. The monolithic nature of sequencing output,
however, hides a much more varied set of assays that are
used to measure many aspects of genomes. In Fig. 3 we
illustrate this issue by showing the growth in the diversity
of sequencing assays over time and displaying a few exam-
ples. We also display how different sequencing methods
are connected to different omes [19]. The other side of
genomics data is the complex phenotypic data with which
the nucleotides are being correlated. Phenotypic data can
consist of such diverse entities as simple and unstructured
text descriptions from electronic health records, quantita-
tive measurements from laboratories, sensors, and elec-
tronic trackers, and imaging data. The varied nature of the
phenotypic data is more complicated; as the scale and
diversity of sequencing data grow larger, more attention is
being paid to the importance of standardizing and scaling
the phenotypic data in a complementary fashion. For
example, mobile devices can be used to harness large-
scale consistent digital phenotypes [38].

Genomics and the 4M framework
Two aspects distinguish data science in the natural
sciences from social science context. First, in the



Fig. 3 Variety of sequencing assays. Number of new sequencing
protocols published per year. Popular protocols are highlighted in
their year of publication and their connection to omes
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natural sciences much of the data are quantitative and
structured; they often derive from sensor readings from
experimental systems and observations under well-
controlled conditions. In contrast, data in the social
sciences are more frequently unstructured and derived
from more subjective observations (e.g., interviews and
surveys). Second, the natural sciences also have under-
lying chemical, physical, and biological models that are
often highly mathematized and predictive.
Consequently, data science mining in the natural

sciences is intimately associated with mathematical mod-
eling. One succinct way of understanding this relation-
ship is the 4M framework, developed by Lauffenburger
[39]. This concept describes the overall process in
systems biology, closely related to genomics, in terms of
(i) Measuring the quantity, (ii) large-scale Mining, which
is what we often think of as data science, (3) Modeling
the mined observations, and finally (4) Manipulating or
testing this model to ensure it is accurate.
The hybrid approach of combining data mining and

biophysical modeling is a reasonable way forward for gen-
omics (Fig. 1b). Integrating physical–chemical mechanisms
into machine learning provides valuable interpretability,
boosts the data-efficiency in learning (e.g., through
training-set augmentation and informative priors) and
allows data extrapolation when observations are expensive
or impossible [40]. On the other hand, data mining is
able to accurately estimate model parameters, replace
some complex parts of the models where theories are
weak, and emulate some physical models for compu-
tational efficiency [41].
Short-term weather forecasting as an exemplar of this
hybrid approach is perhaps what genomics is striving
for. For this discipline, predictions are based on sensor
data from around the globe and then fused with phys-
ical models. Weather forecasting was, in fact, one of
the first applications of large-scale computing in the
1950s [42, 43]. However, it was an abject flop, trying to
predict the weather solely based on physical models.
Predictions were quickly found to only be correct for a
short time, mostly because of the importance of the ini-
tial conditions. That imperfect attempt contributed to
the development of the fields of nonlinear dynamics
and chaos, and to the coining of the term “butterfly
effect” [43]. However, subsequent years dramatically
transformed weather prediction into a great success
story, thanks to integrating physically based models
with large datasets measured by satellites, weather
balloons, and other sensors [43]. Moreover, the public’s
appreciation for the probabilistic aspects of a weather
forecast (i.e., people readily dress appropriately based
on a chance of rain) foreshadows how it might respond
to probabilistic “health forecasts” based on genomics.
Imports and exports
Thus far, we have analyzed how genomics sits with other
data-rich subfields in terms of data (volume, velocity,
and variety) and processes. We argue that another aspect
of genomics as an applied data science subfield is the
frequent exchange of techniques and cultural practices.
Over the years, genomics has imported and exported
several concepts, practices, and techniques from other
applied data science fields. While listing all of the move-
ments is impossible in this piece, we will highlight a few
key examples.
Technical imports
A central aspect of genomics—the process of mapping
reads to the human reference genome—relies on a foun-
dational technique within data science: fast and memory-
efficient string-processing algorithms. Protein pairwise
alignment predates DNA sequence alignment. One of the
first successful implementations of sequence alignment
was based on Smith–Waterman [44] and dynamic pro-
gramming [45, 46]. These methods were highly reliant on
computing power and required substantial memory. With
advances in other string-alignment techniques and the
explosion of sequencing throughput, the field of
genomics saw a surge in the performance of sequence
alignment. As most sequencing technologies produce
short reads, researchers generated several new methods
using index techniques, starting around 2010. Several
methods are now based on the Burrows–Wheeler
transformation (BWA, bowtie) [47, 48], De Bruijn
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graphs (Kallisto, Salmon) [49, 50], and the Maximal
Mappable Prefix (STAR) [51].
Hidden Markov models (HMMs) are well-known algo-

rithms used for modeling the sequential or time-series
correlations between symbols or events. HMMs have
been widely adopted in fields such as speech recognition
and digital communication [52]. Data scientists also have
long used HMMs to smooth a series of events in a
varied number of datasets, such as the stock market, text
suggestions, and in silico diagnosis [53]. The field of
genomics has applied HMMs to predict chromatin
states, annotate genomes, and study ancestry/population
genetics [54]. Figure 4a displays the adoption of HMMs
in genomics compared with other disciplines. It shows
that the fraction of HMM papers related to genomics
has been growing over time and today it corresponds to
more than a quarter of the scientific publications related
to the topic.
Another major import into genomics has been

network science and, more broadly, graphs. Other sub-
fields have been using networks for many tasks, includ-
ing algorithm development [55], social network
research [56], and modeling transportation systems
[57]. Many subfields of genomics rely heavily on
networks to model different aspects of the genome and
subsequently generate new insights [58]. One of the
first applications of networks within genomics and pro-
teomics was protein–protein interaction networks [59].
These networks are used to describe the interaction be-
tween several protein(s) and protein domains within a
genome to ultimately infer functional pathways [60].
After the development of large-scale transcriptome
quantification and chromatin immunoprecipitation
sequencing (ChIP-Seq), researchers built regulatory
a b

Fig. 4 Technical exchanges between genomics and other data science sub
publications per year for the terms. a Hidden Markov model, b Scale-free n
fraction of papers related to topics in genomics and in other disciplines
networks to describe co-regulated genes and learn
more about pathways and hub genes [61]. Figure 4b
shows the usage of “scale-free networks” and “networks”
as a whole. While the overall use of networks has contin-
ued to grow in popularity in genomics after their intro-
duction, the specific usage of scale-free has been falling,
reflecting the brief moment of popularity of this concept.
Given the abundance of protein structures and DNA

sequences, there has been an influx of deep-learning
solutions imported from machine learning [62]. Many
neural network architectures can be transferred to bio-
logical research. For example, the convolutional neural
network (CNN) is widely applied in computer vision to
detect objects in a positional invariant fashion. Similarly,
convolution kernels in CNN are able to scan biological
sequences and detect motifs, resembling position weight
matrices (PWMs). Researchers are developing intriguing
implementations of deep-learning networks to integrate
large datasets, for instance, to detect gene homology
[63], annotate and predict regulatory regions in the
genome [64], predict polymer folding [65], predict
protein binding [66], and predict the probability of a
patient developing certain diseases from genetic variants
[67]. While neural networks offer a highly flexible and
powerful tool for data mining and machine learning,
they are usually “black box” models and often very diffi-
cult to interpret.

Cultural imports
The exchanges between genomics and other disciplines
are not limited to methods and techniques, but also in-
clude cultural practices. As a discipline, protein-structure
prediction pioneered concepts such as the Critical Assess-
ment of protein Structure Prediction (CASP) competition
c

disciplines. The background area displays the total number of
etwork, c latent Dirichlet allocation. Continuous lines indicate the
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format. CASP is a community-wide effort to evaluate pre-
dictions. Every 2 years since 1994, a committee of re-
searchers has selected a group of proteins for which
hundreds of research groups around the world will (i)
experimentally describe and (ii) predict in silico its struc-
ture. CASP aims to determine the state of the art in mod-
eling protein structure from amino acid sequences [68].
After research groups submit their predictions, independ-
ent assessors compare the models with the experiments
and rank methods. In the most recent instantiation of
CASP, over 100 groups submitted over 50,000 models for
82 targets. The success of the CASP competition has
inspired more competitions in the biological community,
including genomics. DREAM Challenges, for example,
have played a leading role in organizing and catalyzing
data-driven competitions to evaluate the performance of
predictive models in genomics. Challenge themes have
included “Genome-Scale Network Inference”, “Gene
Expression Prediction”, “Alternative Splicing”, and “in vivo
Transcription Factor Binding Site Prediction” [69].
DREAM Challenges was initiated in 2006, shortly before
the well-known Netflix Challenge and the Kaggle plat-
form, which were instrumental in advancing machine-
learning research [70].

Technical exports
A few methods exported from genomics to other fields
were initially developed to address specific biological
problems. However, these methods were later general-
ized for a broader set of applications. A notable example
of such an export is the latent Dirichlet allocation (LDA)
model. Pritchard et al. [71] initially proposed this un-
supervised generative model to find a group of latent
processes that, in combination, can be used to infer and
predict individuals’ population ancestry based on single
nucleotide variants. Blei, Ng, and Jordan [72] independ-
ently proposed the same model to learn the latent topics
in natural language processing (NLP). Today, LDA and
its countless variants have been widely adapted in, for
example, text mining and political science. In fact, when
we compare genomics with other topics such as text
mining we observe that genomics currently accounts for
a very small percentage of work related to LDA (Fig. 4c).
Genomics has also contributed to new methods of

data visualization. One of the best examples is the Circos
plot [73], which is related to the import above of
network science. Circos was initially conceptualized as a
circular representation of linear genomes. In its concep-
tion, this method displayed chromosomal translocations
or large syntenic regions. As this visualization tool
evolved to display more generic networks, it was also
used to display highly connected datasets. In particular,
the media has used Circos to display and track customer
behavior, political citations, and migration patterns [73].
In genomics, networks and graphs are also being used in
order to represent the human genome. For instance,
researchers are attempting to represent the reference
genome and its variants as a graph [74].
Another prominent idea exported from genomics is

the notion of family classification based on large-scale
datasets. This derives from the biological taxonomies
dating back to Linnaeus, but also impacts the generation
of protein and gene family databases [75, 76]. Other
disciplines, for example, linguistics and neuroimaging,
have also addressed similar issues by constructing
semantic and brain region taxonomies [77, 78]. This
concept has even made its way into pop culture; for
example, Pandora initially described itself as the music
genome project [79]. Another example is the art genome
project [80], which maps characteristics (referred to as
“genes”) that connect artists, artworks, architecture, and
design objects across history.
Cultural exports
Genomics has also tested and exported several cultural
practices that can serve as a model for other data-rich
disciplines [81]. On a fundamental level, these practices
promote data openness and re-use, which are central
issues to data science disciplines.
Most genomics datasets, and most prominently data-

sets derived from sequencing, are frequently openly
accessible to the public. This practice is evidenced by
the fact that most genomics journals require a public
accession identifier for any dataset associated with a
publication. This broad adoption of data openness is
perhaps a reflection of how genomics evolved as a
discipline. Genomics mainly emerged after the conclu-
sion of HGP—a public initiative that, at its core, was
dedicated to release a draft of the human genome that
was not owned or patented by a company. It is also
notable that the public effort was in direct competition
with a private effort by Celera Genomics, which aimed
to privatize and patent sections of the genome. Thus,
during the development of the HGP, researchers elabo-
rated the Bermuda principles, a set of rules that called
for public releases of all data produced by HGP within
24 h of generation [82]. The adoption of the Bermuda
principles had two main benefits for genomics. First, it
facilitated the exchange of data between many of the
dispersed researchers involved in the HGP. Second, per-
haps due to the central role of the HGP, it spurred the
adoption of open-data frameworks more broadly. In fact,
today most large projects in genomics adopt Bermuda-
like standards. For example, the 1000 Genomes [83] and
the ENCODE [35] projects release their datasets openly
before publication to allow other researchers to use their
datasets [84]. Other subfields such as neuroscience (e.g.,
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the human connectome) were also inspired by the open-
ness and setup of the genomics community [81].
In order to attain a broad distribution of open data-

sets, genomics has also adopted the usage of central,
large-scale public dataset repositories. Unlike several
other applied fields, genomics data are frequently
hosted on free and public platforms. The early adop-
tion of these central dataset resources, such as the
Sequence Read Archive (SRA), European Nucleotide
Archive (ENA), GenBank, and Protein Data Base
(PDB), to host large amounts of all sorts of genetics
data, including microarray and sequencing data, has
allowed researchers to easily query and promote re-
use datasets produced by others [85].
The second effect of these large-scale central dataset re-

positories, such as the National Center for Biotechnology
Information (NCBI) and ENA, is the incentive for early
adoption of a small set of standard data formats. This
uniformity of file formats encouraged standardized and
facilitated access to genomics datasets. Most computa-
tions in genomics data are hosted as FASTA/FASTQ,
BED, BAM, VCF, or bigwig files, which respectively repre-
sent sequences, coordinates, alignments, variants, and
coverage of DNA or amino acid sequences. Furthermore,
as previously discussed, the monolithic nature of genomic
sequences also contributes to the standardization of
pipelines and allows researchers to quickly test, adapt, and
switch to other methods using the same input format [86].
The open-data nature of many large-scale genomics

projects may also have spurred the adoption of open-
source software within genomics. For example, most
genomics journals require public links to source codes
to publish in silico results or computational methods.
To evaluate the adoption of open source in genomics,
we used the growth of GitHub repositories and activity
(commits) over time (Fig. 5). Compared with many fields
of similar scale (e.g., astronomy and ecology) genomics
has a particularly large representation on GitHub and
this is growing rapidly.

Data science issues with which genomics is
grappling
Privacy
In closing, we consider the issues that genomics and,
more broadly, data science face both now and in the
future. One of the major issues related to data science is
privacy. Indeed, the current privacy concerns related to
email, financial transactions, and surveillance cameras
are critically important to the public [87]. The potential
to cross-reference large datasets (e.g., via quasi-identifiers)
can make privacy leaks non-intuitive [70]. Although
genomics-related privacy overlaps with data science-
related privacy, the former has some unique aspects given
that the genome is passed down through generations and
is fundamentally important to the public [88]. Leaking
genomic information might be considered more damaging
than leaking other types of information. Although we may
not know everything about the genome today, we will
know much more in 50 years. At that time, a person
would not be able to take their or their children’s variants
back after they have been released or leaked [88]. Finally,
genomic data are considerably larger in scale than many
other bits of individual information; that is, the genome
carries much more individual data than a credit card or
social security number. Taken together, these issues make
genomic privacy particularly problematic.
However, in order to carry out several types of

genomic calculations, particularly for phenotypic associ-
ations like genome-wide association studies, researchers
can get better power and a stronger signal by using
larger numbers of data points (i.e., genomes). Therefore,
sharing and aggregating large amounts of information
can result in net benefits to the group even if the indi-
vidual’s privacy is slightly compromised. The Global
Alliance for Genomics and Health (GA4GH) has made
strides in developing technical ways to balance the
concerns of individual privacy and social benefits of data
sharing [89]. This group has discussed the notion of
standardized consents associated with different datasets.
The fields of security and privacy are undertaking
projects like homomorphic encryption, where one can
make certain calculations on an encrypted dataset with-
out accessing its underlying contents [90].

Data ownership
Privacy is an aspect of a larger issue of data ownership
and control. Although the individual or patient typically
is thought to own their personal data, a countervailing
trend in biomedical research is the idea that the
researcher who generates a dataset owns it. There is a
longstanding tradition among researchers who have
generated large datasets to progressively analyze their
data over the course of several papers, even a career, to
extract interesting stories and discoveries [91]. There is
also the notion that human data, particularly health data,
have obvious medical and commercial value, and thus
companies and nations often seek ownership and control
over large datasets.
From the data miner’s perspective, all information

should be free and open, since such a practice would
lead to the easy aggregation of a large amount of infor-
mation, the best statistical power, and optimally mined
results. Intuitively, aggregating larger datasets will, most
frequently, give progressively better genotypes being
associated to phenotypes.
Furthermore, even in an ideal scenario in which indi-

viduals consent to free access and the resulting dataset is
completely open and freely shared by users, we imagine



Fig. 5 Open source adoption in genomics and other data science subdisciplines. The number of GitHub commits (upper panel) and new GitHub
repositories (lower panel) per year for a variety of subfields. Subfield repositories were selected by GitHub topics such as genomics, astronomy,
geography, molecular dynamics (Mol. Dynamics), quantum chemistry (Quantum Chem.), and ecology
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complications will arise from collection and sharing
biases such as particular cohort ethnicity, diseases, and
phenotypes being more open to share their genetic data.
Socioeconomic status, education, and access to health-
care can all possibly cause skew in datasets, which would
further bias mining efforts such as machine learning
algorithms and knowledge extraction. For example,
ImageNet, a heavily used dataset in image classification,
has nearly half of the images coming from the USA.
Similarly, about 80% of genome-wide association study
catalog participants are of European descent, a group
which only makes up 16% of the world population [92].
For this reason, completely open data sharing will

probably not be reasonable for the best future genomic
association studies. One possible technical solution for
sharing genomics data might be the creation of a
massive private enclave. This is very different from the
World Wide Web, which is fundamentally a public
entity. A massive private enclave would be licensed only
to certified biomedical researchers to enable data sharing
and provide a way to centralize the storage and compu-
tation of large datasets for maximum efficiency. We be-
lieve this is the most practical viewpoint going forward.
On the other hand, the positive externality of data

sharing behaviors will become more significant as
genomic science develops and becomes more powerful
in aggregating and analyzing data. We believe that, in
the future, introducing data property rights, Pigouvian
subsidies, and regulation may be necessary to encourage
a fair and efficient data trading and use environment.
Furthermore, we imagine a future where people will
grapple with complex data science issues such as sharing
limited forms of data within certain contexts and pricing
of data accordingly.
Lastly, data ownership is also associated with extract-

ing profit and credit from the data. Companies and the
public are realizing that the value of data does not only
come from generating it per se, but also from analyzing
the data in meaningful and innovative new ways. We
need to recognize the appropriate approaches to not
only recognize the generation of the data but also to
value the analysis of large amounts of data and appropri-
ately reward analysts as well as data generators.

Conclusion
In this piece, we have described how genomics fits into
the emergence of modern data science. We have charac-
terized data science as an umbrella term that is increas-
ingly connecting disparate application subdisciplines.
We argue that several applied subdisciplines consider-
ably predate formal data science and, in fact, were doing
large-scale data analysis before it was “cool”. We explore
how genomics is perhaps the most prominent biological
science discipline to connect to data science. We investi-
gate how genomics fits in with many of the other areas
of data science, in terms of its data volume, velocity, and
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variety. Furthermore, we discuss how genomics may be
able to leverage modeling (both physical and biological)
to enhance predictive power, similar in a sense to what
has been achieved in weather forecasting. Finally, we
discuss how many data science ideas have been both
imported to and exported from genomics. In particular,
we explore how the HGP might have inspired many
cultural practices that led to large-scale adoption of
open-data standards.
We conclude by exploring some of the more urgent

issues related to data, and how they are impacting data
in genomics and other disciplines. Several of these issues
do not relate to data analytics per se but are associated
with the flow of data. In particular, we discuss how
individual privacy concerns, more specifically data
ownership, are central issues in many data-rich fields,
and especially in genomics. We think grappling with
several of these issues of data ownership and privacy will
be central to scaling genomics to an even greater size in
the future.
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