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Abstract

Background: Structural variations (SVs) or copy number variations (CNVs) greatly impact the functions of the genes
encoded in the genome and are responsible for diverse human diseases. Although a number of existing SV
detection algorithms can detect many types of SVs using whole genome sequencing (WGS) data, no single
algorithm can call every type of SVs with high precision and high recall.

Results: We comprehensively evaluate the performance of 69 existing SV detection algorithms using multiple
simulated and real WGS datasets. The results highlight a subset of algorithms that accurately call SVs depending on
specific types and size ranges of the SVs and that accurately determine breakpoints, sizes, and genotypes of the SVs.
We enumerate potential good algorithms for each SV category, among which GRIDSS, Lumpy, SVseq2, SoftSV, Manta,
and Wham are better algorithms in deletion or duplication categories. To improve the accuracy of SV calling, we
systematically evaluate the accuracy of overlapping calls between possible combinations of algorithms for every type
and size range of SVs. The results demonstrate that both the precision and recall for overlapping calls vary depending
on the combinations of specific algorithms rather than the combinations of methods used in the algorithms.

Conclusion: These results suggest that careful selection of the algorithms for each type and size range of SVs is
required for accurate calling of SVs. The selection of specific pairs of algorithms for overlapping calls promises to
effectively improve the SV detection accuracy.
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Background
Genomic structural variations (SVs) are generally defined
as deletions (DELs), insertions (INSs), duplications
(DUPs), inversions (INVs), and translocations (TRAs) of
at least 50 bp in size. SVs are often considered separately
from small variants, including single nucleotide variants
(SNVs) and short insertions, and deletions (indels), as
these are often formed by distinct mechanisms [1]. INVs
and TRAs are balanced forms, with no net change in a
genome, and the remaining SVs are imbalanced forms.
Imbalanced deletions (DELs) and duplications (DUPs)

are also referred to as copy number variations (CNVs),
with DUPs comprising tandem and interspersed types
depending on the distance between the duplicated copies
[2, 3]. INSs are categorized into several classes based on
the insertion sequences: mobile element insertions
(MEIs), nuclear insertions of mitochondrial genome
(NUMTs), viral element insertions (VEIs; referred to in
this study), and insertions of unspecified sequence.
SVs are largely responsible for the diversity and evolu-

tion of human genomes at both individual and popula-
tion level [3–6]. The genomic difference between
individuals caused by SVs has been estimated to be 3–10
times higher than that by SNVs [2, 6, 7]. Consequently,
SVs could have higher impacts on gene functions and
phenotypic changes than do SNVs and short indels. Ac-
cordingly, SVs are associated with a number of human
diseases, including neurodevelopmental disorders and
cancers [3, 8–11].
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Two types of methods have been used to detect SVs:
(1) array-based detection, including microarray com-
parative genome hybridization (array CGH), and (2)
sequencing-based computational methods [2, 12]. Array-
based methods are advantageous for high-throughput
analysis, but they only detect certain types of SVs, have a
lower sensitivity for small SVs, and have a lower reso-
lution for determining breakpoints (BPs) than the
sequencing-based methods. Although sequencing re-
quires more time and money than the array-based
method, it would be necessary for detecting a broad
range of SVs to adopt the sequencing-based methods, as
in recent projects aimed at identifying SVs on a popula-
tion scale [6, 13–15].
Sequencing-based methods take several conceptual ap-

proaches to derive information about SVs from short
read sequencing data [2, 9, 16–18]. Read pairs (RP) and
read depth (RD) approaches utilize the discordant align-
ment features and depth features of paired-end reads
that encompass or overlap an SV, respectively. The split
read (SR) approach uses split (soft-clipped) alignment
features of single-end or paired-end reads that span a BP
of a SV. The assembly (AS) approach detects SVs by
aligning the contigs, assembled with the entire or un-
mapped sequencing reads, to the reference sequence. A
number of recently developed SV detection algorithms
use a combination (CB) of the above four methods (here,
we refer to these five basic SV detection methods as
“methods” and each specific SV detection tool as an “al-
gorithm”). Irrespective of the strategy, sequencing-based
methods suffer from a high rate of miscalling of SVs be-
cause they involve errors in base call, alignment, or de
novo assembly, especially in repetitive regions unable to
be spanned with short reads. To overcome the short-
comings of short read sequencing, long reads generated
using single-molecule sequencing technology have re-
cently been used to detect SVs in a human sample using
the AS and/or SR approach [19–22]. However, the high
cost and the low throughput of this strategy currently
limits its general use.
Although the sequencing-based methods can in theory

detect any type of SV, no single computational algorithm
can accurately and sensitively detect all types and all
sizes of SVs [23]. Therefore, most projects use multiple
algorithms to call SVs, then merge the outputs to in-
crease the precision and/or the recall [6, 13–15, 17, 24–
29]. Many projects use popular SV detection algorithms,
including BreakDancer [30], CNVnator [31], DELLY
[32], GenomeSTRiP [33], Pindel [34], and Lumpy [35],
which give calls with relatively high accuracy. Although
one study has investigated for the performances of 13
SV detection algorithms [36], there has been no system-
atic investigation of which algorithms can accurately de-
tect which types of SVs. Importantly, while it is common

practice to do so, there has been no systematic investiga-
tion into optimal strategies to combine the results of
multiple algorithms to come to the most complete
characterization of SVs in a genome. In this study, we
evaluated 69 algorithms for their precision and recall for
both single and overlapping SV callings, using multiple
simulated and real datasets of WGS datasets.

Results
Evaluation of SV detection algorithms using simulated
and real WGS data
We accessed 79 publicly available SV detection algo-
rithms that can handle the human WGS data but do not
require multiple samples such as matched datasets (e.g.,
control and tumor samples). We excluded 10 algorithms
that did not work in our computational environment.
Completed results were obtained with 69 algorithms
using simulated and real human WGS data (Add-
itional file 1: Tables S1 and S2, please see Additional file
1: Table S1 for the reference for each algorithm de-
scribed below and Additional file 1: Table S2 for the list
of unworked algorithms) to calculate the precision and
recall. A simulated short read dataset was generated
using the VarSim simulator [37]: first, a simulated
GRCh37 human diploid genome into which known SVs
had been introduced at the known sites was generated,
then this was used to generate simulated paired-end
short reads (125 bp) with 500 bp insert size averaging
30× coverage of the simulated genome (Sim-A). The
number of simulated SVs of each type was slightly larger
than the mean numbers detected for an individual hu-
man genome in the 1000 Genome project [6] (e.g., 1.3-
fold higher for DELs, Additional file 1: Table S4-A and
S4-C). Four sets of the NA12878 Illumina short read
data (data1, data2, data3, and data4) and three sets of
PacBio long read data (PacBio-data1, PacBio-data2, and
PacBio-data3) were used as real datasets and were ac-
quired from different sources with different read lengths
and/or insert sizes (Additional file 1: Table S3). A refer-
ence SV dataset for the real data was generated by mer-
ging the DGV dataset corresponding to NA12878 and
the INS, DEL, and INV data detected from NA12878
long read assemblies (Additional file 1: Table S4; see the
“Methods” section for details).
These datasets, including the simulated data and four

or three NA12878 datasets, were aligned with the
GRCh37d5 reference genome using bwa [38] or other
specific alignment tools (see the “Methods” section). The
alignment data or read data were then used for calling
DELs, DUPs, INSs, and INVs in all but the Y chromo-
some for the real data. Translocations were not evalu-
ated because there are few known translocations in the
databases and VarSim cannot simulate translocations.
For DELs and DUPs, SVs were divided into four and
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three categories, respectively, depending on their sizes
(DEL-SS: 50–100 bp; DEL-S and DUP-S, 100 bp to 1 kb;
DEL-M and DUP-M, 1–100 kb; DEL-L and DUP-L, 100
kb to 1Mb). We defined true called SVs as the called
SVs that significantly overlap with the reference SVs by
proportions (≧ 50% [or ≧ 80% for the simulated data] re-
ciprocal overlap for DELs, DUPs, and INVs; overlap with a
BP ± 200 bp for INSs). The outline of the entire evaluation
processes is presented in Figure S1 in Additional file 1.
We observed changes in precision and recall by using

different filtering thresholds; the minimum number of
reads supporting the called SVs, termed “RSS” (Reads
Supporting SV) in this study (see Additional file 1: Fig-
ure S2 for representative examples). Thus, to compare
the performance of each algorithm as objectively as pos-
sible, we selected an RSS for each call set at which the
numbers of calls for an SV type approximates the simu-
lated reference data or the expected number of SVs in
an individual (see the “Methods” section for detail). Both
precision and recall were calculated for each size range
of DELs (Additional file 1: Figure S3), DUPs (Additional

file 1: Figure S4), INSs, and INVs (Additional file 1: Fig-
ure S5); for the real data, the mean precision and recall
from the four short read datasets are presented. The nu-
merical data for all the results for the Sim-A and mul-
tiple NA12878 real datasets are presented in Tables S5-
S9 in Additional file 3. The precision and recall values at
the selected RSSs for the four NA12878 real datasets
and the mean and the standard deviation (SD) are pre-
sented in Table S10 in Additional file 3.
The precision and recall for calling SVs varied greatly

depending on the algorithm, the SV type, and the size of
the SV. Figures 1 and 2 highlight a number of algorithms
that specifically and/or sensitively detected SVs for each
type of SV and for each size range of SV (also see Add-
itional file 1: Figures S3–S5 for precision–recall plots).
Figure 1 shows the combined statistics (F-measure) for
the precision and recall of each algorithm for calling
each SV type and highlights a subset of algorithms that
can call many SVs with a high level of precision and re-
call for both simulated and real datasets, which include
1-2-3-SV [39], DELLY [32], GRIDSS [40], inGAP-sv [41],
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(a) Sim-A data

DEL DUP INS INV
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(b) Real data

DEL DUP INS INV

RP                      SR                        RD                    AS                    RP-SR                   RP-RD     RP-AS    RP-SR-AS        RP-SR-RD      LR   Others

RP                      SR                        RD                    AS                    RP-SR                   RP-RD     RP-AS    RP-SR-AS        RP-SR-RD      LR   Others

Fig. 1 SV type specificity of SV detection algorithms. Precision and recall of DELs, DUPs, INSs, and INVs were determined with the simulated (a)
and the NA12878 real data (b). Modified F-measures (the combined statistics for precision and recall (see the “Methods” section for details)) are
shown for the algorithms indicated with blue (for DEL), red (for DUP), orange (for INS), and purple (for INV) bars. The mean values of the results
obtained with the four NA12878 real datasets (three PacBio datasets for long reads) are indicated. The algorithms were categorized according to
the methods used to detect SV signals (RP, read pairs; SR, split reads; RD, read depth; AS, assembly; LR, long reads) and their combined methods
(RP-SR, RP-RD, RP-AS, RP-SR-AS, and RP-SR-RD)

Kosugi et al. Genome Biology          (2019) 20:117 Page 3 of 18



Lumpy [35], Manta [42], MetaSV [43], Pindel [34],
SoftSV [44], SvABA [45], and Wham [46]. Although
many of the algorithms that call DELs or DUPs covered
all the size ranges (S, M, and L) for both the simulated
and real datasets, a subset of algorithms exhibited a lim-
ited performance in a specific size range (Fig. 2). For ex-
ample, CLEVER [47] less effectively detected large DELs,
and depth-based algorithms (e.g., AS-GENESENG [48],
Control-FREEC [49], CNVnator, OncoSNP-Seq [50],
readDepth [51], and GenomeSTRiP [33]) less effectively
detected small DELs and/or DUPs.
The algorithms benchmarked in this study are based on

one of the 10 method classes, including RP, RD, SR, AS,
or LR alone, or one of five combined methods (RP-RD,

RP-SR, RP-AS, RP-RD-S, and RP-SR-AS) (Additional file
1: Table S1). For calling DEL and DUP, the SR, LR, and
RP-SR-AS methods achieved relatively good performance
both with the simulated and the real data as shown in the
precision–recall plots for the 10 categorized SV detection
methods (Additional file 1: Figure S6).
In addition, we determined potential false-positive

calls for each algorithm using NA12878 pedigree data,
NA12878 for child and NA12891 and NA12892 for par-
ents (Additional file 1: Table S3). The variants present
only in child but not in both parents are attributable to
Mendelian inheritance errors or de novo variants. Be-
cause the occurrence of de novo SVs is quite low and is
thus negligible [28], the SV calls from only child are
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(a) DEL [Sim-A data] DEL-S DEL-M DEL-L
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(b) DEL [Real data] DEL-S DEL-M DEL-L
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(c) DUP [Sim-A data] DUP-S DUP-M DUP-L
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(d) DUP [Real data] DUP-S DUP-M DUP-L

RP                       SR                         RD                  AS                   RP-SR                       RP-RD  RP  RP-SR-AS    RP-SR-RD         LR    Others
AS

RP SR              RD           AS      RP-SR       RP    RP       RP-SR    LR Others
RD  SR-AS      RD

RP SR              RD           AS       RP-SR       RP    RP       RP-SR   LR Others
RD  SR-AS      RD

RP                       SR                         RD                  AS                   RP-SR                       RP-RD  RP  RP-SR-AS    RP-SR-RD         LR    Others
AS

Fig. 2 Size range specificity of SV detection algorithms for DELs and DUPs. Precision and recall of each size range of DELs (a, b) and DUPs (c, d)
were determined with the simulated (a, c) and the NA12878 real data (b, d). Modified F-measures (the combined statistics for precision and
recall) are shown for the algorithms indicated with orange (for S, 100 bp to 1 kb), blue (for M, 1 to 100 kb), and red (for L, 100 kb to 1 Mb) bars.
The mean values of the results obtained with the four (or three) NA12878 real datasets are indicated. The algorithms were categorized according
to the methods used to detect SV signals, as in Fig. 1
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derived from Mendelian inheritance errors or false-
negative call in parents. We determined Mendelian in-
heritance error rate (MIER; the percentage of Mendelian
inheritance errors in the total calls) for each algorithm
in each SV type. We observed a weak correlation be-
tween “100 − MIER” and precision for each algorithm in
each SV type (the Spearman rank correlation coeffi-
cients, 0.31~0.46 for each SV type) (Additional file 1:
Figure S7 and Additional file 3: Tables S6–S10 for nu-
merical data). The weak correlation may be due to false-
negative calls in parents and/or the presence of false
positives that are called commonly between parents and
child.

Evaluation with HG00514 WGS data
We further evaluated SV detection algorithm using an-
other WGS real data of a Han Chinese individual
HG00514 (Additional file 1: Table S3), which is one of
the data used in the Human Genome Structural Vari-
ation Consortium (HGSV). In HGSV, a HG00514 SV set
had been generated using 13 short read-based SV detec-
tion algorithms and using an approach with long read-
based assemblies [36]. We used this SV set as a reference
SV set, although it was devoid of INVs (Additional file 1:
Table S4; see the “Methods” section for detail). We
showed the performance of each algorithm for each type
of SV and for each size range of SV using F-measure
(Additional file 1: Figures S8 and S9) and using preci-
sion–recall plots (Additional file 1: Figures S10 and S11,
and Additional file 3: Table S11 for numerical data), as
demonstrated for the NA12878 datasets in the previous
section. Although the tendency of precision and recall
between algorithms was similar to that of the NA12878
results, the overall precision values especially for DELs
were lower than those of NA12878 (mean precision in
HG00514: 53.6 for DEL, 22.5 for DUP, 42.9 for INS;
mean precision in NA12878: 62.0 for DEL, 27.9 for DUP,
47.7 for INS).
We examined the correlation in the SV calling accur-

acies between the six datasets (the four NA12878 real
datasets, one HG00514 real dataset, and one simulation
dataset), by comparing the accuracy ranks of algorithms
between SV types and/or datasets with the Spearman
rank correlation coefficients (Additional file 1: Figure
S12). The rank correlation coefficients for these algo-
rithms were high (> 0.7 for almost all cases) for all types
of SV between the five real datasets, suggesting that the
determined SV calling accuracies for the tested algo-
rithms were robust at least among the NA12878 and
HG00514 datasets. The accuracy ranks between the sim-
ulated and NA12878 real datasets correlated reasonably
well for DELs (0.72) and INSs (0.61) but weakly corre-
lated for INVs (0.57) and DUPs (0.48). This result sug-
gests that the simulated data fails to accurately model

the mechanisms of SV formation, especially the proper-
ties of the real DUPs and INVs, which often involve
complex SVs in which other types of SVs are integrated
[24]. Alternatively, DUPs and INVs for NA12878 may be
insufficiently represented in the reference databases. Ex-
ceptionally, the accuracy ranks for DUPs between the
simulated and HG00514 real datasets (0.72) were con-
siderably higher than those between the simulated and
NA12878 real datasets (0.49). This high correlation is
probably because HG00514 DUPs reported in HGSV
have been detected mainly with short read-based SV de-
tection algorithms [36], in contrast with NA12878 DUPs
that are derived mainly from array-based detection. On
the other hand, the high correlation between all the
datasets observed for DELs was probably because the
NA12878 reference DELs were covered with the datasets
derived from both array-based and assembly-based SV
detection.

Evaluation of algorithms that call MEIs, NUMTs, and VEIs
Based on the identity of the inserted sequence, some
INSs can be classified into special classes including
MEIs, NUMTs, and VEIs. Thus, we next evaluated the
subset of computational algorithms that detect specific
classes of INSs. We used three different simulated data-
sets (Sim-MEI, Sim-NUMT, and Sim-VEI, generated
using only the chr17 sequence; see the “Methods” sec-
tion) and the four NA12878 real datasets to evaluate the
performances of 12 algorithms and an additional five de-
rivatives of three algorithms (Fig. 3, and see Additional
file 3: Tables S5–S10 for the numerical data). For the
real data, the numbers of true positives (TPs) was deter-
mined in place of recall, because MEI, NUMT, and VEI
have not been defined for the NA12878 INS reference.
We added NUMT-compatible versions of Mobster [52],
MELT [53], and Tangram [54] (Mobster-numt, MELT-
numt, and Tangram-numt) and VEI-compatible versions
of Mobster and Tangram (Mobster-vei, Tangram-vei) to
NUMT- and VEI-detection algorithms, respectively (see
Additional file 4: Supplementary methods for detail).
For MEI calling, MELT and Mobster achieved higher

performances with both the simulated and real data than
the other algorithms (> 88% in precision and > 50% in
recall [> 900 TPs], Fig. 3a and b). Although MELT had
the highest recall for MEI calling, RetroSeq, Tangram,
and Mobster exhibited higher recall metrics in calling
simulated LINE1 than MELT (Additional file 3: Table
S5). For NUMT, MELT-numt exhibited the highest pre-
cision (> 92%) both with the simulated and the real data
but exhibited only 20% recall with the simulated data
(Fig. 3c and d). A more increased recall for NUMT call-
ing may be achieved by a combination with Tangram-
numt or DINUMT, because MELT-numt calls exhibited
only 67% overlap with the Tangram-numt or DINUMT
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calls. For VEI, Mobster-vei had the highest precision
(100%) and recall (~ 90%) in the simulated data (Fig. 3c).

Evaluation of algorithms with long read data
We evaluated the performances of three SV detection al-
gorithms with long read data, including PBHoney [22],
Sniffles [55], and pbsv [56]. We also added a modified
PBHoney algorithm (PBHoney-NGM), which used
NGM-LR as alignment tool (see the “Methods” section).
To generate a simulated dataset of long reads, PacBio
long reads (average 7.5–20 kb) aimed at 10× coverage
were simulated with Sim-A using the PBSIM simulator
[57] (Fig. 4, Additional file 1: Table S3). For real data, we
used long read datasets from three individuals: NA12878
(PacBio-data1 to PacBio-data3), HG002 (PacBio-
HG002), and HG00524 (PacBio-HG00524) to determine
precision and recall (Additional file 1: Table S3). pbsv
achieved the highest precision and recall in DEL calling
with the simulated data (Fig. 4, Additional file 3: Tables
S5-S10 for the numerical data). Overall, however, the
three algorithms exhibited similar accuracy in the real
data, especially in the HG002 data. Although the input
datasets used for evaluation of short read-based and long
read-based algorithms were different, we compared the
evaluation results of these three detection algorithms
with those of short read-based ones (Figs. 1 and 2,

Additional file 1: Figures S3–S5 and S8–S11). The long
read-based algorithms exhibited good performances in
calling short DELs (DEL-SS and DEL-S) and INSs des-
pite the lower coverage of the long read data (10×) than
that of the short read data (30×).

Effect of different properties of read data on detection
accuracy
We examined how read and library characteristics affect
the precision and recall of SV calling among algorithms
with relatively high precision and/or recall for each type
and each size range. We generated datasets with differ-
ent read lengths (100 bp, 125 bp, and 150 bp), read
coverage (10×, 20×, 30×, and 60×), and library insert size
(400 bp, 500 bp, and 600 bp) and evaluated the SV calling
accuracies of the algorithms with these datasets (Add-
itional file 2: Figure S13).
Changes in read coverage prominently affected recall

and precision (see Additional file 1: Tables S12 and S13
for the summarized and statistical results). Data with
higher coverage exhibited higher recall due to an in-
creased number of signals including discordant reads
and split reads. Interestingly, for many algorithms data
with higher coverage resulted in lower precision than
data with lower coverage when compared at the same
threshold of RSS (as representative examples, see
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Fig. 3 Precision and recall of MEIs, NUMTs, and VEIs called using existing algorithms. MEI (a, b), NUMT, and VEI (c, d) insertions were called using
the indicated algorithms and simulated data (a, c) and the real data (b, d). NUMTs and VEIs were called using algorithms including modified
versions of Mobster, MELT, and Tangram (Mobster-numt, Mobster-vei, MELT-numt, Tangram-numt, and Tangram-vei). For the real data, the mean
values of the results obtained with the four NA12878 real datasets (data1 to data4) are indicated. VirusFinder and HGT-ID could not be applied to
accomplish the runs for the real data due to unresolvable errors. The precision and recall percentages (or the number of true positives for the
real data) determined for the respective call sets are indicated on the x-axis and y-axis, respectively. The data labeled with (+len) were determined
considering insertion length in addition to breakpoints in (a). In this case, called sites were judged as true when the ratio of the called MEI
lengths and the matched reference MEI length was ≧ 0.5 and ≦ 2.0. The algorithms without the label do not output the defined length
of insertions
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Additional file 2: Figure S13-A, S13-N, S13-X, S13-Z,
S13-AJ, S13-AN, S13-AS, and S13-AU). In many cases,
the precision using high-coverage data was comparable
to that with lower coverage when the threshold values of
RSS were increased (Additional file 2: Figure S13-M,
S13-T, S13-X, S13-Y, S13-AB, S13-AD, S13-AH, S13-AL,
S13-AN, S13-AP, S13-AR, and S13-AU). These results
suggest that increasing the read coverage results in an
increased number of spuriously aligned reads that lead
to miscalling of SVs. In contrast to read coverage, nei-
ther read length nor insert size greatly affected recall
and precision. We noted overall moderate effects on re-
call and precision for INS calling, while larger insert
sizes led to greater than 10% decreased recall for DEL
calling for several algorithms including BreakDancer
[30], DELLY, inGAP-sv, Meerkat [58], and RAPTR-SV
[59] (Additional file 1: Tables S12 and S13).

Accuracy for calling breakpoints, sizes, and genotypes of
SVs
We evaluated the accuracy with which each algorithm
called breakpoints (BPs) and SV length (both calculated
in root mean squared errors, RMSEs) using the Sim-A
data (Additional file 3: Table S14; also see the “Methods”
section for RMSEs). BreakSeek [60], BreakSeq2 [61],
CREST [62], DELLY, GRIDSS, PBHoney-NGM, pbsv,
SvABA, SVseq2 [63], and Wham achieved the highest
accuracy (< 60-bp RMSE) for calling BPs for all size
ranges of the DELs and/or DUPs. CREST, Manta, Fermi-
Kit [64], Pamir [65], pbsv, SVseq2, SoftSearch [66],
Wham, and the specific INS detection algorithms (MEI

and NUMT algorithms) exhibited the highest accuracy
(< 10-bp RMSE) for calling INS BPs. Most algorithms
that called BPs accurately used the split reads-based or
assembly-based methods whereas algorithms only using
the read depth-based alone approach exhibited poor BP
resolution. BreakSeek, BreakSeq2, CLEVER, CREST,
DELLY, FermiKit, GASVPro [67], GRIDSS, inGAP-sv,
laSV [68], Lumpy, Manta, PBHoney-NGM, pbsv, PRISM
[69], SvABA, SVseq2, and Wham provided higher accur-
acy (< 100-bp RMSV) for lengths of called DELs and/or
DUPs, and most of these algorithms used the read pair-
based or assembly-based method. These results suggest
that the basic method used in SV detection algorithms
affects the resolution of the called BPs and sizes.
Twenty-two algorithms used in this study call the ge-

notypes or copy number associated with the detected
SVs. We determined the precision and recall of the SV
genotypes called with these algorithms using the Sim-A
and NA12878 real datasets (Additional file 1: Figure S14
and Table S15). In the real datasets, only 335 DELs and
120 DUPs with specified genotype information were
available. For the real DEL data, most algorithms exhib-
ited > 95% precision. In contrast, most of the called
DUPs did not match the 120 reference DUPs, limiting
interpretation (Additional file 1: Table S15). For the sim-
ulated DEL data, Manta, Lumpy, Pindel, and ERDS [70]
exhibited top performance in terms of both precision (>
90%) and recall (> 1900 TPs). PennCNV-Seq, CNVnator,
BICseq2 [71], and readDepth exhibited high precision
(> 89%) and recall (> 800 TPs) for the DUP data. For the
INS data, Manta achieved the best performance, with >
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97% precision. We note that algorithms with high per-
formance genotype calling are also algorithms with good
SV detection precision and recall.

Run time and memory consumption
Figure 5 shows run time and maximum memory per
CPU for each SV detection algorithm, which were deter-
mined with 30× short read data (10× for long reads) of
the NA12878 data1 that were aligned to the NA12878
chromosome 8 (146Mb). SV detection algorithms dir-
ectly using fastq read files (FermiKit, laSV, MinThe-
Gap, Pamir, ITIS, and VirusSeq), many of which use
the assembly method, exhibited long run time and
large memory consumption. Algorithms requiring spe-
cific alignment tools, including VariationHunter [72]
and long read-based algorithms, took longer run time
than the standard algorithms using BWA. Pindel,
known as a popular algorithm, also took longer run

time although it exhibited good SV calling accuracy.
Many of algorithms using the read depth method or
detecting viral element insertions consumed larger
memory than the others.

Systematic identification of pairs of algorithms showing
high accuracy in their overlapping, called SVs
The above results revealed that the precision and recall
with which a given algorithm calls SVs varies widely and
depends on the types and size ranges of the SVs. How-
ever, few algorithms could call SVs with high precision,
especially for DUP, INS, and INV of the real data, al-
though the real dataset is likely to be incomplete (i.e.,
there are unidentified true SVs not present in our refer-
ence SV set). Several studies have taken the strategy of
selecting SVs that are commonly called by multiple algo-
rithms to increase the precision of the called SVs [13,
14, 24–29]. However, there has been no systematic
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Fig. 5 a, b Run time and memory consumption for SV detection algorithms. A bam or fastq files of the reads aligned to the NA12878
chromosome 8 (NA12878 data1 or PacBio-data1) was used as input data, and GRCh37 chr8 fasta file was used as reference. Each of the indicated
algorithms was run using a single CPU. For VH (VariationHunter) and PBHoney, the data obtained together with the run of the indicated
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NUMT/VEI, and others) and their combined methods (RP-SR, RP-RD, RP-AS, RP-SR-AS, and RP-SR-RD)
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investigation into optimal strategies to combine the re-
sults of multiple algorithms. We selected a total of 51 al-
gorithms (12–38 algorithms for each SV type and size
range) that exhibited relatively high precision and recall
[the sum of recall (or precision) of the simulated and the
NA12878 real data is > 10 for INS and INV or > 30 for
the other types of SVs] for each type and each size range,
and determined the precision and recall of the SVs that
were commonly called for each combination of pairs of
algorithms (Fig. 6 for INS and Additional file 1: Figures
S15–S22 for DEL, DUP, and INV, also see Additional file
3: Table S16). The set of SVs called in common by two
algorithms was more precise than the SVs called with ei-
ther algorithm alone, as expected, yet this came at the
cost of decreased recall. The degree of increased preci-
sion and decreased recall was varied depending on the
algorithm combination. Combinations of algorithms that
yielded more precise calls for a given type and size range
of SV in both the simulated and real data are highlighted
(Fig. 6 and Additional file 1: Figures S15–S22). We cal-
culated the mean precision and recall values of over-
lapped calls between pairs of algorithms for each SV

category (Additional file 1: Figure S23, Additional file 3:
Table S17). As expected, high precision in the over-
lapped calls was often observed in pairs containing an
algorithm exhibiting high precision by itself. Interest-
ingly, however, several algorithms with a moderate level
of precision in an SV category yielded higher precision
in their overlapped calls. Examples of such good “team
players” include CREST and VariationHunter in the DEL
category and BASIL-ANISE [73] and BreakSeek in the
INS category, each of which showed over twofold in-
crease in combination with another algorithm.
We then examined how precision and recall

change when combining algorithms across the six
SV detection methods, including RP, SR, RD, AS,
LR, and CB (Fig. 7 and Additional file 3: Table S18)
. The DEL-calling precision increased less than the
other types of SV because precision was already
high. In general, combinations of algorithms from
two different method class led to higher precision
but lower recall than two algorithms using the same
methods (mean fold change of precision: 1.63× for
the same method and 1.82× for different methods;

Algorithm 1-2-3-SV:3 BASIL:7 BreakSeek:10 GRIDSS:6
inGAP-
sv:10

Manta:6 MELT:3
MindThe

Gap:3
Mobster:3 Pamir:5

PBHoney
-NGM:3

pbsv:3 PopIns:4 Sniffles:3 SVseq2:5 Wham:5

1-2-3-SV:3
7.5/9.6
4.6/38.7

4.9/92.7
0.6/92.7

4.0/79.7
1.1/67.4

1.0/93.7
0/97.7

4.5/98.4
0.1/97.2

1.5/100
0.3/95.5

-/-
0/75.0

1.4/67.2
0.7/73.2

-/-
0/29.2

4.2/92.3
0.4/90.8

4.6/99.2
0.3/84.0

5.8/98.8
1.0/66.9

2.6/15.7
0.2/73.2

5.2/97.3
0.8/89.2

6.2/62.6
0.5/69.4

3.0/28.1
0.3/91.5

BASIL:7 4.9/92.7
0.6/92.7

46.0/60.3
9.8/40.7

15.5/96.6
2.3/79.9

2.2/87.6
0.9/57.9

30.3/100
2.7/93.2

5.0/98.6
3.8/92.7

-/-
0.5/92.0

4.4/85.1
1.9/73.2

-/-
0.4/92.1

10.5/95.4
2.3/76.7

9.9/98.2
2.6/96.8

15.9/97.8
3.9/69.7

25.2/80.1
2.3/93.2

20.3/93.6
3.5/76.5

44.2/91.9
4.1/65.0

5.7/92.0
0.6/90.9

BreakSeek:10
4.0/79.7
1.1/67.4

15.5/96.6
2.3/79.9

19.5/20.3
4.9/16.9

1.6/90.3
0.3/65.9

11.0/100
1.1/96.0

4.9/99.2
1.4/95.7

-/-
0.2/94.4

3.9/88.0
1.2/70.8

-/-
0.2/99.0

7.8/95.6
0.9/81.3

9.2/99.6
1.0/97.6

11.9/99.7
1.7/68.9

8.3/83.3
1.0/93.6

12.9/96.5
1.5/80.5

18.9/73.9
2.3/45.6

4.6/89.7
0.4/95.5

GRIDSS:6
1.0/93.7
0/97.7

2.2/87.6
0.9/57.9

1.6/90.3
0.3/65.9

4.1/81.1
1.8/44.6

1.9/100
0.3/97.9

2.9/98.8
1.0/86.5

-/-
0.4/99.3

0.9/70.2
0.5/33.8

-/-
0.3/99.7

2.4/91.8
0.3/45.2

2.9/100
0.5/98.8

3.7/97.2
0.6/68.4

0.9/96.4
0.2/97.0

3.0/83.6
0.6/46.1

3.6/85.2
0.9/40.6

1.0/93.7
0.1/76.2

inGAP-sv:10
4.5/98.4
0.1/97.2

30.3/100
2.7/93.2

11.0/100
1.1/96.0

1.9/100
0.3/97.9

58.4/99.8
11.1/86.5

3.8/100
1.1/99.0

-/-
4.6/92.5

3.7/100
0.6/97.7

-/-
4.3/92.0

8.4/100
0.4/99.3

11.0/100
2.3/99.9

18.5/100
3.8/73.4

21.4/99.8
1.4/97.6

22.8/100
3.1/97.5

52.4/100
3.2/88.9

3.8/99.0
0.1/100

Manta:6 1.5/100
0.3/95.5

5.0/98.6
3.8/92.7

4.9/99.2
1.4/95.7

2.9/98.8
1.0/86.5

3.8/100
1.1/99.0

11.9/96.5
8.0/81.5

-/-
0.3/100

3.2/97.8
1.6/89.4

-/-
0.3/99.7

7.0/97.0
2.1/90.1

8.5/98.3
2.7/98.0

10.9/96.5
3.5/67.0

1.4/100
0.7/98.8

9.4/96.4
3.0/88.3

10.8/99.3
2.9/90.3

3.2/97.8
0.5/89.2

MELT:3
-/-

0/75.0
-/-

0.5/92.0
-/-

0.2/94.4
-/-

0.4/99.3
-/-

4.6/92.5
-/-

0.3/100
-/-

8.4/89.8
-/-

0/64.6
-/-

6.7/92.8
-/-

0/75.0
-/-

2.2/99.3
-/-

2.9/73.9
-/-

0.1/100
-/-

2.3/98.3
-/-

1.8/93.2
-/-

0/50.0

MindTheGap:3
1.4/67.2
0.7/73.2

4.4/85.1
1.9/73.2

3.9/88.0
1.2/70.8

0.9/70.2
0.5/33.8

3.7/100
0.6/97.7

3.2/97.8
1.6/89.4

-/-
0/64.6

10.1/16.0
5.3/23.9

-/-
0/100

5.8/86.3
1.1/61.8

6.7/99.4
0.9/93.5

8.1/97.8
1.5/62.5

1.7/39.6
0.6/93.6

7.2/91.8
1.2/67.2

9.0/86.4
2.1/60.5

2.3/89.1
0.3/83.6

Mobster:3
-/-

0/29.2
-/-

0.4/92.1
-/-

0.2/99.0
-/-

0.3/99.7
-/-

4.3/92.0
-/-

0.3/99.7
-/-

6.7/92.8
-/-

0/100
-/-

7.0/87.9
-/-

0/75.0
-/-

2.0/99.7
-/-

2.6/73.8
-/-

0/87.5
-/-

2.0/98.5
-/-

1.6/91.3
-/-

0/25.0

Pamir:5 4.2/92.3
0.4/90.8

10.5/95.4
2.3/76.7

7.8/95.6
0.9/81.3

2.4/91.8
0.3/45.2

8.4/100
0.4/99.3

7.0/97.0
2.1/90.1

-/-
0/75.0

5.8/86.3
1.1/61.8

-/-
0/75.0

20.7/60.1
5.0/47.1

14.7/98.8
1.8/96.8

18.8/97.6
2.5/65.3

5.3/82.8
0.5/98.3

16.3/93.9
2.1/66.8

18.5/96.5
1.5/64.0

5.7/98.7
0.4/87.8

PBHoney-
NGM:3

4.6/99.2
0.3/84.0

9.9/98.2
2.6/96.8

9.2/99.6
1.0/97.6

2.9/100
0.5/98.8

11.0/100
2.3/99.9

8.5/98.3
2.7/98.0

-/-
2.2/99.3

6.7/99.4
0.9/93.5

-/-
2.0/99.7

14.7/98.8
1.8/96.8

24.7/78.0
13.8/75.5

24.9/96.7
12.2/91.2

2.5/98.6
0.6/98.8

23.9/97.7
8.6/90.5

21.2/98.5
2.4/96.5

5.7/99.3
0.3/98.4

pbsv:3
5.8/98.8
1.0/66.9

15.9/97.8
3.9/69.7

11.9/99.7
1.7/68.9

3.7/97.2
0.6/68.4

18.5/100
3.8/73.4

10.9/96.5
3.5/67.0

-/-
2.9/73.9

8.1/97.8
1.5/62.5

-/-
2.6/73.8

18.8/97.6
2.5/65.3

24.9/96.7
12.2/91.2

38.2/89.7
27.5/72.6

7.3/100
1.4/73.1

32.7/95.4
14.1/83.1

32.7/98.6
4.6/90.9

6.6/99.4
0.5/71.7

PopIns:4 2.6/15.7
0.2/73.2

25.2/80.1
2.3/93.2

8.3/83.3
1.0/93.6

0.9/96.4
0.2/97.0

21.4/99.8
1.4/97.6

1.4/100
0.7/98.8

-/-
0.1/100

1.7/39.6
0.6/93.6

-/-
0/87.5

5.3/82.8
0.5/98.3

2.5/98.6
0.6/98.8

7.3/100
1.4/73.1

31.4/13.5
3.4/65.8

11.2/93.2
1.1/96.6

28.3/86.4
1.4/95.1

2.8/15.1
0.2/98.3

Sniffles:3
5.2/97.3
0.8/89.2

20.3/93.6
3.5/76.5

12.9/96.5
1.5/80.5

3.0/83.6
0.6/46.1

22.8/100
3.1/97.5

9.4/96.4
3.0/88.3

-/-
2.3/98.3

7.2/91.8
1.2/67.2

-/-
2.0/98.5

16.3/93.9
2.1/66.8

23.9/97.7
8.6/90.5

32.7/95.4
14.1/83.1

11.2/93.2
1.1/96.6

42.0/82.8
15.5/51.9

36.7/94.1
3.1/72.0

6.4/93.8
0.4/90.0

SVseq2:5
6.2/62.6
0.5/69.4

44.2/91.9
4.1/65.0

18.9/73.9
2.3/45.6

3.6/85.2
0.9/40.6

52.4/100
3.2/88.9

10.8/99.3
2.9/90.3

-/-
1.8/93.2

9.0/86.4
2.1/60.5

-/-
1.6/91.3

18.5/96.5
1.5/64.0

21.2/98.5
2.4/96.5

32.7/98.6
4.6/90.9

28.3/86.4
1.4/95.1

36.7/94.1
3.1/72.0

85.2/58.5
9.3/25.7

7.7/79.5
0.5/79.9

Wham:5
3.0/28.1
0.3/91.5

5.7/92.0
0.6/90.9

4.6/89.7
0.4/95.5

1.0/93.7
0.1/76.2

3.8/99.0
0.1/100

3.2/97.8
0.5/89.2

-/-
0/50.0

2.3/89.1
0.3/83.6

-/-
0/25.0

5.7/98.7
0.4/87.8

5.7/99.3
0.3/98.4

6.6/99.4
0.5/71.7

2.8/15.1
0.2/98.3

6.4/93.8
0.4/90.0

7.7/79.5
0.5/79.9

8.0/17.7
1.1/79.7

Fig. 6 Recall and precision of SVs commonly called between a pair of SV detection algorithms for the INS category. INSs, called from the
indicated algorithms, were filtered with the minimum number of reads supporting the called SVs, indicated with the suffix number of the
algorithm name. The INSs overlapping between the filtered SV sets from a pair of the indicated algorithms were selected, and the recall and
precision of the selected INSs were determined. Recall and precision percentages are presented with an intervening slash, and the recall/precision
values for the simulated and real data are indicated in the upper and lower lines of each cell, respectively. Results for the real data represent the
mean values of the values determined with four different NA12878 datasets (three PacBio datasets for long reads). The recall/precision values for
the individual algorithm are indicated with blue letters and a white background. The data contained in the top 20th percentile of the combined
precision scores (see the “Methods” section for details) for the simulated and real data are highlighted with a red background, and the next data
contained in the top 21st to 50th percentile of the combined precision scores are shown with a pale red background. “–” indicates
undetermined data
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mean fold change of recall, 0.5× for the same
method and 0.33× for different methods) (Fig. 7).
These results suggest that combining algorithms
from two different methods is a better strategy for
obtaining an accurate representation of SV than
using two algorithms of the same class. However,
the results also suggest that the importance of
obtaining overlapping SV calls with high precision
and high recall to select good pairs of algorithms,
irrespective of the combination of methods used in
the algorithms.

Discussion
No previous study has comprehensively compared the
accuracies of existing SV detection algorithms. While
papers describing new SV detection algorithms often in-
clude some benchmarking, they have done so using only
a limited number of comparator algorithms. One recent
study has compared the performances of existing seven
MEI detection algorithms [74], and the results are well
correlated with our evaluation results of MEI detection
algorithms. Despite the overall consistency in accuracy
rank of algorithms between the datasets (Additional file
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Method 1

Method 2
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Method 1

Method 2

Method 1

Method 2
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Fig. 7 Increased or decreased rates of precision and recall of overlapped calls between various SV detection methods. Precision and recall values
of overlapped calls between pairs of algorithms based on the indicated six different methods were determined for different SV categories (DEL-M
(a), DEL-L (b), DUP-S (c), DUP-M (d), DUP-L (e), INS (f), and INV (g)) using four sets of NA12878 real data. The mean values (presented in Additional
file 3: Table S18 in detail) were summarized based on pairs of methods (method 1 and method 2) by calculating the fold increase of precision or
recall of overlapped calls relative to those for method 1 alone. RP, method using read pairs-based signal; RD, method using read depth-based
signal; SR, method using split (soft-clipped) reads-based signal; AS, assembly-based approach; LR, method using long reads, CB; combined
method using two or more methods out of RP, SR, RD, and AS
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1: Figure S12), the recall values for the real data were
overall low relative to those for the simulated data. This
would be in part due to the presence of overlapping re-
dundant SVs in the NA12878 reference SV data, because
the DGV data is derived from multiple sources of stud-
ies. Alternatively, several falsely detected SVs might be
included in the reference set. In addition, lower levels of
precision observed in the real data, especially for DUP
and INV calls, would in part be due to a number of un-
identified DUPs/INVs absent from the NA12878 refer-
ence SV dataset. More elaborate refinement, involving
experimental validation, of the NA12878 SV reference
data should be made in the future. Despite these short-
comings, the recall and precision values for the real data
can be considered as relative values for ranking the rela-
tive performances of the algorithms.
Based on our evaluation results, we list the algo-

rithms exhibiting higher precision and recall values
for both the simulated and NA12878 real datasets
(Table 1, see also Additional file 1: Table S19 for an

extended list), although this list can be changed de-
pending on what level of precision or recall is re-
quired. It shows the top 2–7 (the top 30% for Table
S19) algorithms for each category exhibiting high
values of the sum of the normalized F-measures of
the simulated and real data and exhibiting short run
time (< 200 min in Fig. 5). Overall, GRIDSS, Lumpy,
SVseq2, SoftSV, and Manta show good performances
in calling DELs of diverse sizes. TIDDIT [75], for-
estSV [76], ERDS, and CNVnator call large DELs well
whereas SV detection algorithms using long reads, in-
cluding pbsv, Sniffles, and PBHoney, are good at de-
tecting small DELs. For DUP detection, good choices
include Wham, SoftSV, MATCHCLIP, and GRIDSS.
CNVnator, ERDS, and iCopyDAV [77] achieve good
performances in calling large sizes of DUPs. For INSs,
MELT, Mobster, inGAP-sv, and SV detection algo-
rithms with long read data would effectively call reli-
able variants. AS-GENESENG, Control-FREEC,
OncoSNP-Seq, and GenomeSTRiP may more

Table 1 List of tools providing good SV calling results for both the simulated and NA12878 real datasets

SV type Tools Simulated data Real data nF*1

Precision Recall Precision Recall

DEL GRIDSS 98.9 (5) 86.6 (2) 87.6 (7) 28.9 (2) 3.57 (1)

Lumpy 99.1 (4) 81.4 (6) 87.1 (8) 26.1 (4) 3.41 (2)

SVseq2 96.2 (11) 86.1 (3) 75.7 (17) 24.9 (5) 3.28 (3)

SoftSV 96.8 (10) 83.6 (4) 80.2 (13) 23.2 (8) 3.25 (7)

Manta 95.9 (12) 83.1 (5) 74.2 (20) 24.3 (6) 3.21 (5)

MATCHCLIP 99.4 (2) 71.7 (10) 91.6 (4) 20.9 (11) 3.12 (6)

inGAP-sv 91.1 (18) 78.6 (7) 78.3 (14) 22.5 (8) 3.10 (7)

DUP Wham 96.9 (4) 81.7 (4) 57.1 (4) 10.2 (5) 3.92 (1)

SoftSV 84.2 (14) 67.8 (13) 47.3 (6) 14.3 (3) 3.91 (2)

MATCHCLIP 87.6 (11) 77.5 (8) 58.0 (3) 9.9 (6) 3.79 (3)

GRIDSS 91.1 (9) 77.9 (7) 58.4 (2) 9.6 (7) 3.78 (4)

Manta 99.0 (1) 83.2 (1) 40.4 (9) 6.5 (11) 3.35 (5)

SvABA 82.6 (15) 69.6 (11) 42.7 (8) 7.2 (9) 3.02 (6)

INS [Unspecified] pbsv 89.7 (3) 38.2 (5) 72.7 (8) 27.5 (2) 6.68 (1)

inGAP-sv 99.7 (1) 58.5 (2) 85.5 (2) 11.8 (3) 6.27 (2)

Sniffles 74.8 (5) 52.5 (3) 65.9 (10) 9.0 (5) 5.08 (3)

SVseq2 70.4 (8) 64.2 (1) 38.5 (19) 7.1 (9) 4.87 (4)

INS [MEI] MELT 99.7 (3) 68.9 (3) 88.9 (1) 85.6 *2 (1) 3.21 (1)

Mobster 100 (1) 67.1 (4) 88.3 (2) 71.9 *2 (2) 3.04 (2)

INV DELLY 94.7 (8) 81.8 (4) 38.9 (4) 15.6 (2) 3.07 (1)

TIDDIT 89.2 (14) 77.9 (8) 49.1 (1) 11.7 (5) 2.89 (2)

1–2-3-SV 70.7 (19) 81.2 (5) 31.8 (9) 14.8 (3) 2.67 (3)

GRIDSS 96.6 (6) 84.7 (3) 34.2 (8) 10.4 (7) 2.67 (4)
*1Sum of normalized F-measures of the simulated and the real data. Normalized F-measure = F-measure/the mean F-measure for the corresponding category
*2Provisional recall value: the number of true positives was calculated by dividing by the provisional number of reference MEIs (1350), which was estimated using
the data from the 1000 Genome project
Ranks of tools for each result (precision, recall, or F-measure) are indicated within parentheses
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accurately detect SVs in other types of applications,
such as somatic SV detection or SV calling with
whole exome sequencing data or multiple sample data
because these algorithms have been more intensively
designed for such applications. We also listed the
poor performing algorithms in Table S20 in Add-
itional file 1.
In almost all cases, SVs called in common between

multiple algorithms exhibit higher precision and lower
recall than those called with a single algorithm, but the
degree of the increased precision and the decreased re-
call varies based on the specific combination of algo-
rithms, including both short read- and long read-based
algorithms. Mills et al. examined the accuracy of over-
lapping calls between five methods and demonstrated
that combining algorithms based on the same method
increased precision, but the increase was lower than
when combining algorithms based on different methods
[14]. This is consistent with our observations. However,
combining algorithms based on same methods gives a
moderate increase in precision and less decrease in re-
call. Previous studies have selected SV calls overlapping
between at least two sets from multiple SV call sets in
order to increase precision [13, 14, 24–28]. However,
this strategy could take overlapping calls from “bad”
pairs of algorithms whose overlapping calls give only a
small increase in precision with a considerable decrease
in recall. It is promising, therefore, to iteratively merge
the overlapping calls from the selected pairs of algo-
rithms, giving high quality of overlapping calls, thereby
generating an SV call set with high accuracy and recov-
ery. Furthermore, the use of overlapped calls should also
improve the accuracies of the BPs, sizes, and genotypes
of the SVs because we can select the BPs/sizes/genotypes
from algorithms providing higher accuracy for these SV
properties, shown in this study.

Conclusion
We evaluated the SV detection accuracy, including the
precision of BPs, sizes, and genotypes of called SVs, of
69 existing computational algorithms using simulated
and real data in terms of both precision and recall. This
is the largest benchmarking study for genomic variant
discovery performed to date. Our evaluation tests reveal
that most algorithms exhibit their best performance for
specific types of SV and, in several cases, for specific size
ranges. These findings indicate that specific algorithms
suitable for each type of and each size range of SV
should be selected to obtain the desired results. Further-
more, systematic evaluation for overlapping calls from
each combination of algorithm pairs demonstrates that
several specific pairs of algorithms give a higher preci-
sion and recall for specific SV types and size ranges
compared with other pairs.

Methods
WGS datasets
The simulated dataset Sim-A was generated with the
VarSim simulator [37] and the GRCh37d5 reference,
which contains 41.8Mb of extra decoy sequences com-
prising of 61 sequences. VarSim introduced a total of
8310 SVs (3526 DELs, 1656 DUPs, 2819 INSs, and 309
INVs) with sizes ranging from 50 bp to 1Mb, in addition
to SNPs and short indels corresponding to 0.1% and
0.02% of the genome size, respectively, into simulated
paternal and maternal haploid genomes, containing ap-
proximately 67% heterozygous alleles (Additional file 1:
Table S4). The number of introduced SVs was larger and
smaller than the number of SVs detected for an individ-
ual human genome in the 1000 Genome project [6] and
the numbers of SVs identified from the NA12878 assem-
bly generated with long reads [20], respectively. Eighty
percent of the introduced SVs were derived from known
SVs, and the remaining were derived from artificial novel
SVs automatically generated by the VarSim simulator.
The introduced known SVs in the Sim-A genome were
derived from the DGV variant data contained in the Var-
Sim package, and the sizes and chromosomal positions
of the introduced SVs faithfully reproduced the corre-
sponding DGV variants. The Sim-A read set generated
from both the paternal and maternal genomes consisted
of 125 bp of paired-end reads with 30× coverage and
with 500 bp insert size with 100 bp standard deviation
(Additional file 1: Table S3). A variety of read sets of
Sim-A with different statics in read length (100 bp, 125
bp, and 150 bp), insert size (400 bp, 500 bp, and 600 bp),
and coverage (10×, 20×, 30×, and 60×) were generated
with the simulated paternal and maternal genomes of
Sim-A using the ART simulator [78]. The simulated Pac-
Bio reads (Sim-A-PacBio) were generated with the simu-
lated paternal and maternal genomes of Sim-A using
PBSIM [57], which was conducted using the model-
based mode with the following options: --depth = 10,
--length-mean = 75,000, and --length-sd = 8000. The
other simulated datasets (Sim-MEI, Sim-NUMT, and
Sim-VEI) were generated with in-house scripts. The
NUMT sequences (766 NumtS sequences) to be intro-
duced were obtained from the UCSC Genome Browser
site (https://genome.ucsc.edu), and the genome se-
quences of 669 human-infectious viruses, including her-
pes simplex virus and adenovirus, were obtained from
NCBI (https://www.ncbi.nlm.nih.gov/genome/viruses/).
The MEI sequences were obtained by similarity searches
(minimum identity 90%, minimum coverage 10%) for
Alu, LINE1, SVA, and HERVK mobile elements against
human chromosome 1 with BLAST. The number of
identified sequences from Alu, LINE1, SVA, and HERVK
were 9548, 1663, 123, and 10, respectively. For Sim-MEI,
651 randomly selected sequences, in addition to SNPs
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and short indels corresponding to 0.1% and 0.02% of the
genome size, respectively, were introduced into chromo-
some 17 from the GRCh37d5 reference (Additional file
1: Table S4). Similarly, 200 randomly selected NUMT se-
quences at least 100 bp long and 100 randomly selected
VEI sequences were introduced into chromosome 17 to
generate Sim-NUMT and Sim-VEI, respectively. To di-
versify the VEI sequences, 500 bp to 10 kb fragments
were extracted from randomly selected regions of the
virus sequences, and random artificial substitutions were
made for 0–5% of the VEI nucleotide bases to be intro-
duced. Using the simulated paternal and maternal
chromosome 17 containing VEIs, NUMTs, or VEIs, sim-
ulated paired-end reads were generated with the ART
simulator, as with VarSim. The read length, insert size,
and coverage of the Sim-MEI, Sim-NUMT, and Sim-VEI
read sets were the same as the Sim-A data (Additional
file 1: Table S3).
The real datasets of NA12878, including Illumina

HiSeq and PacBio RS data, were downloaded from DDBJ
(http://www.ddbj.nig.ac.jp) and DNAnexus (https://plat-
form.dnanexus.com/login). The NA12878 short and long
read sets included four (data1 to data4) and three (Pac-
Bio-data1 to PacBio-data3) datasets from different
sources or libraries, respectively (Additional file 1: Table
S3). To determine Mendelian inheritance errors for SV
calling, Illumina HiSeq WGS datasets of NA12891 and
NA12892, which correspond to father and mother of
NA12878, were also downloaded from DDBJ. The real
datasets of HG00514, including Illumina HiSeq and Pac-
Bio RS data [36], and HG002 PacBio RS dataset from
the Genome in a Bottle (GIAB) Consortium [79] were
downloaded from DDBJ.

Reference SV dataset for real data
A reference SV dataset corresponding to NA12878 was
generated by combining the DGV variant data (the
2016-05-15 version for GRCh37) obtained from the
Database of Genomic Variants (http://dgv.tcag.ca/dgv/
app/home) with the PacBio SV data identified from the
NA12878 assembly generated with long reads [20]. The
DGV data contained 1127 DELs (28% of the total DELs)
with < 1 kb and 3730 INSs (79% of the total INSs) with
< 1 kb or undefined length. We removed these short
DELs and INSs from the DGV data because the long
read-/assembly-based data covers a higher number of
these size ranges of DELs (6550) and INSs (13,131) and
is likely to be more reliable than the DGV data. We fur-
ther removed DELs, DUPs, and INVs with ≧ 95% recip-
rocal overlap (≧ 90% reciprocal overlap for > 1 kb
variants) in the DGV and long read/assembly data,
resulting in the removal of 450 variants in total. The
merge of both the datasets was conducted by removing
shorter ones of overlapped DELs with ≧ 70% reciprocal

overlap, resulting in the inclusion of 1671 DELs, 979
INSs, 2611 DUPs, and 233 INVs specific to the DGV SV
data. Although there were still many overlaps within this
SV data, they were not removed, because we were un-
able to judge which sites were inaccurately defined SVs.
All the SVs < 50 bp, except for INSs, were removed. In
addition, a high confidence NA12878 SV set (2676 DELs
and 68 INSs) of the svclassify study [80], which has been
deposited in GIAB (ftp://ftp-trace.ncbi.nlm.nih.gov//
giab/ftp/technical/svclassify_Manuscript/Supplemen-
tary_Information), was merged, resulting in inclusion of
248 DELs (7%) and 4 INSs (6%) as nonoverlapping vari-
ants. Furthermore, 72 experimentally verified nonredun-
dant INV dataset from the studies with the long reads
[20, 81] and the InvFEST database (http://invfestdb.uab.
cat) was merged, resulting in inclusion of 41 unique
INVs. For the HG00514 SV reference, a minimal 30 bp
of HG00514 variants was extracted from
nstd152.GRCh37.variant_call.vcf.gz, which was obtained
at the NCBI dbVar site (ftp://ftp-trace.ncbi.nlm.nih.gov//
pub/dbVar/data/Homo_sapiens/by_study/vcf ) (Add-
itional file 1: Table S4). Variants specified as “BND” type
were removed, and variants specified as “CNV” were
reassigned to both DEL and DUP as SV type. For the
HG002 SV reference, a minimal 30 bp of variants was
extracted from HG002_SVs_Tier1_v0.6.vcf, which was
obtained at the GIAB download site (ftp://ftp-trace.ncbi.
nlm.nih.gov//giab/ftp/data/AshkenazimTrio/analysis/
NIST_SVs_Integration_v0.6) (Additional file 1: Table S4)
.

SV calling with simulated and real datasets
The simulated and real datasets were each aligned with
the GRCh37d5 reference using bwa mem to generate
bam files. For Meerkat and Mobster, bam files were
modified by adding XA tags and with removing hard-
clipped reads to mimic bam files generated with bwa aln
although later versions of these algorithms can use bam
files generated using bwa mem. For Tangram, bam files
were generated by aligning the read set with a reference
containing a subset of mobile element sequences using
Mosaik [82]. For VariationHunter, reads were aligned
using mrfast [8] to generate divet files. PacBio long reads
were aligned with blasr [83] for PBHoney and using
NGM-LR [55] for PBHoney-NGM, Sniffles, and pbsv.
These alignment data were used for calling SVs with all
the algorithms, except for FermiKit, laSV, BatVI, Mind-
TheGap, Pamir, and VirusSeq, for which read data was
directly used. PBHoney-NGM was conducted with a
custom PBHoney setting, obtained from Dr. Aaron
Wenger at Pacific Biosciences (http://www.pacb.com/
blog/identifying-structural-variants-na12878-low-fold-
coverage-sequencing-pacbio-sequel-system/). For calling
NUMTs and VEIs, we enabled Mobster, MELT, and
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Tangram to call NUMTs or VEIs by modifying their ref-
erence or input files, although these algorithms were ori-
ginally designed to detect only MEIs (see Additional file
4: Supplementary methods for detail). Detailed explana-
tions for calling SVs with each algorithm are provided in
Supplementary methods in Additional file 4.

Evaluation of the SV detection accuracy of SV algorithms
For DELs and DUPs, called SVs were divided into four
and three fractions, respectively, depending on their size,
and precision and recall were calculated for each SV-
type and for each size range. Precision was calculated by
dividing the number of truly called sites with the total
number of called sites, and recall was calculated by div-
iding the number of truly called sites with the total
number of corresponding reference SVs. The true posi-
tive (TP) calls were judged when the called DELs, DUPs,
and INVs exhibited ≧ 80% reciprocal (60% reciprocal for
≦ 1 kb) and ≧ 50% reciprocal overlaps with the reference
SVs for the simulated and real data, respectively, or
when the BPs of the called INSs were placed within 200
bp of those of the reference INSs. We further deter-
mined the SV calls exhibiting Mendelian inheritance er-
rors with the WGS datasets of NA12878, NA12891, and
NA12892 trio. When the SV calls of the child NA12878
overlap with neither from the parent SV call sets (≦ 200
bp distance for INSs and ≧ 50% overlaps for the others),
the corresponding sites were regarded as Mendelian in-
heritance errors. Because these sites could attribute to
false negatives in parents, we used 1.7-fold coverage of
parent WGS datasets relative to the child data to
minimize false negatives in parents. Called DELs or
DUPs were divided into size ranges and searched against
the total DEL or DUP reference sets but not against the
divided reference set for the corresponding size range,
because the overlap-based search sometimes hits sites
with out of the size range. When size-ranged DEL/DUP
calls matched the reference, the matched calls were used
as true calls for calculating precision for the correspond-
ing size range; in contrast, for the calculation of recall,
the matched calls were used for the size range of the
matched reference site. INSs and DUPs are sometimes
complementary [84] and could be confusedly called by
several types of algorithms. Thus, to judge whether the
called INSs are true, we also searched them against the
reference DUPs when the called INSs had no matched
INS references. When INS calls were matched with the
DUP references, the number of hit was added to both
the TP calls and the INS reference to calculate precision
and recall, respectively. Similarly, called DUPs were also
searched against the reference INSs. The precision and
recall values for many algorithms varied depending on
the RSS threshold values. For several algorithms (e.g.,
CNVnator, readDepth), information on RSS values was

lacking and thus other information, such as read depth
or scores, was converted to a provisional number of RSS
value (see Additional file 4: Supplemental methods). To
determine the best precision/recall points for each algo-
rithm and for each SV category, we selected an RSS
threshold at which the numbers of calls for an SV type
approximates but does not exceed 90% of the corre-
sponding simulated reference data or the expected SV
number in an individual (DEL: 3500, DUP: 550, INS:
3000, and INV: 100, estimated from the previous stud-
ies).

Evaluation of accuracy for BP, SV length, and genotype
calls
To determine the accuracies of the called BPs and the
called SV lengths for each algorithm and for each SV
category, we calculated the root mean squared errors
(RMSEs) using the results obtained with the Sim-A data
(the formula used to calculate RMSEs is presented
below). The genotyping accuracy (i.e., homozygous or
heterozygous) of called SVs was determined with the
Sim-A and the NA12878 real datasets. The reference
data (Real-GT, Additional file 1: Table S4) for NA12878
were generated by merging the array-based CNV data
(estd195, nstd22, and nest6) from the dbVar database
(https://www.ncbi.nlm.nih.gov/dbvar). Genotyping of
DELs/DUPs called with the depth-based SV detection al-
gorithms, including AS-GENSENG, CNVnator, Control-
FREEC, and readDepth, is described in detail in Supple-
mentary methods in Additional file 4 in detail. Precision
was calculated by dividing the number of correctly called
genotypes with the number of truly called sites (Preci-
sion1) or with the number of truly called sites with ge-
notyped information (Precision2), and recall was
calculated by dividing the number of correctly called ge-
notypes by the total number of the corresponding refer-
ence SVs.

Evaluation of overlapped calls between pairs of
algorithms
Based on the evaluation results for SV detection algo-
rithms, we selected 51 algorithms (12–38 algorithms for
each SV type and size range) that exhibited relatively
high precision and/or recall [the sum of recall (or preci-
sion) of the simulated and the real data is > 10 for INSs
and INVs or > 30 for the other types of SVs] for each
type and each size range. First, we determined the opti-
mal RSSs at which the sum of the precision and recall
values was highest for each algorithm and for each cat-
egory. Next, to increase recall, we selected specific test
RSSs that were lower by a few points than the deter-
mined optimal RSSs. We expected that this setting of
RSS could achieve higher accuracy in precision and re-
call for the overlapped calls and would be helpful for
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practical use. For every combination of algorithm pairs
for each SV category, we selected overlapped calls with
≧ 60% reciprocal overlap between the call sets from the
two algorithms (filtered with the specified RSS thresh-
olds). Both the mean precision and mean recall values
for the overlapped calls were calculated with the TP calls
determined for each of the algorithm pair. The tested al-
gorithms, except for MetaSV, were categorized into six
groups based on SV detection methods (RP, SR, RD, AS,
long-read (LR) and combined (CB)) that involved any
combinations of RP, SR, RD, and AS, and the method-
based results of the overlapped calls were summarized
by determining the mean values.

Statistical analysis for SV detection accuracy
Precision (Pr) and recall (Rc) were calculated as follows:

Pr ¼ TP
Call

� 100

Rc ¼ TP
Ref

� 100

where TP, Call, and Ref are the numbers of true posi-
tives, called SVs, and the corresponding reference SVs,
respectively.
To determine the degree of variance in both precision

and recall between the different library properties (e.g.,
different ranges in read length), the coefficient of vari-
ation (CV; the ratio of the standard deviation to the
mean) in precision and recall was determined for each
algorithm for each SV category. The determined CVs
were further summarized for each SV category by taking
the mean of the CVs of 6–18 algorithms belonging to
the same SV category.
To determine the rank of precision of overlapped calls

for each SV category, a combined precision score (cPr),
in which the precision values both for the simulated and
real data were integrated, was calculated as follows:

cPr ¼ Pr simð Þ � Pr realð Þ
mPr simð Þ �mPr realð Þ

where Pr(sim) and Pr(real) are precision (%) of over-
lapped calls for the simulated and real data, respectively,
and mPr(sim) and mPr(real) are the mean precision
values (%) for the simulated and real data, respectively.
These values were calculated using all the overlapped
calls in each SV category.
To examine the consistency of the determined SV call-

ing accuracies between the simulated and the five real
datasets, the accuracy ranks of the algorithms were com-
pared between SV types and/or datasets using the Spear-
man rank correlation coefficients. The accuracy of
algorithms within a dataset was ranked with a modified
F-measure (F) using the following equations:

F ¼ 2 Pr� Rc�Nrc
Prþ Rc�Nrcð Þ � 0:01

where Pr, Rc, and Nrc are precision (%), recall (%), and
the normalization index for an algorithm, respectively.
Because the recall values for the real datasets were con-
siderably lower than those for the simulated dataset due
to an excess of overlapped reference SVs for the real
data, we normalized the recall values between the simu-
lated and real datasets with the normalization index.
The normalization index is a constant value specific to
the SV type to normalize recall values for the real data;
its value were 2.9, 4.0, 2.4, and 2.4 for DEL, DUP, INS,
and INV, respectively.
When the accuracies of the algorithms were ranked

using the F-measures for two datasets, the Spearman
rank correlation coefficients (rs) between the two data-
sets were determined as follows:

rs ¼ 1−
6
P

di
2

n3−n

where di is the difference between the ith algorithm’s
ranks of each dataset, and n is the number of algorithms
for either dataset.
The root mean squared errors (RMSEs) were calcu-

lated according to the following formula to determine
the statistical errors of the called BPs and SV lengths for
each algorithm:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

Ci−Rið Þ2
v
u
u
t

where N is the number of truly called SVs, Ci is a break-
point (or SV length) of the ith truly called SV, and Ri is
a breakpoint (or SV length) of the corresponding refer-
ence SV.

Additional files

Additional file 1: Figures S1-S12, Figures S14-S23, and Tables S1-S4,
S12, S13, S15, S19, S20. (PDF 1464 kb)

Additional file 2: Figure S13. Effect of read length, read coverage, and
insert size on recall and precision for various SV algorithms. (PDF 2174 kb)

Additional file 3: Table S5. Recall and precision of SV-calling results
with the simulated data (Sim-A, Sim-MEI, Sim-NUMT, Sim-VEI). Table S6.
Recall and precision of SV-calling results with the real data (NA12978
data1 or PacBio-data1). Table S7. Recall and precision of SV-calling results
with the real data (NA12978 data2 or PacBio-data2). Table S8. Recall and
precision of SV-calling results with the real data (NA12978 data3 or
PacBio-data3). Table S9. Recall and precision of SV-calling results with
the real data (NA12978 data4 or PacBio-HG002). Table S10. SV calling re-
sults (recall, precision, Mendelian inheritance error, mean, and standard
error) obtained with the four (or three) NA12878 real datasets. (including
the numerical data of Fig. 3 and Additional file 1: Figures S3–S5). Table
S11. Recall and precision of SV-calling results with the HG00514 real data.
Table S14. Root mean squared errors of breakpoints (BPs) and lengths of

Kosugi et al. Genome Biology          (2019) 20:117 Page 15 of 18

https://doi.org/10.1186/s13059-019-1720-5
https://doi.org/10.1186/s13059-019-1720-5
https://doi.org/10.1186/s13059-019-1720-5


called SVs for SV detection algorithms. Table S16. Recall and precision of
SVs commonly called between a pair of SV detection algorithms with the
simulated and the NA12878 real datasets. Table S17. Mean precision and
recall of overlapped calls for each algorithm and for each SV category.
Table S18. Fold change of precision and recall of overlapped calls be-
tween algorithm pair for the four (or three) sets of NA12878 real data.
(XLSX 1162 kb)

Additional file 4: Supplementary methods. SV calling processes for 69
SV detection algorithms used in this study. (PDF 430 kb)

Abbreviations
AS: Assembly; bp: Base pair; BP: Breakpoint; CB: Combined method;
CNV: Copy number variation; DEL: Deletion; DGV: Database of genome
variants; DUP: Duplication; GIAB: The Genome in a Bottle Consortium;
HGSV: The Human Genome Structural Variation Consortium; indel: Short
insertion and deletion; INS: Insertion; INV: Inversion; kb: Kilobase pair;
LR: Long read; Mb: Megabase pair; MEI: Mobile element insertion;
MIER: Mendelian inheritance error rate; NUMT: Nuclear insertion of
mitochondrial genome; RD: Read depth; RMSE: Root mean squared error;
RP: Read pairs; RSS: Reads supporting the called SVs; SNV: Single nucleotide
variant; SR: Split read; SRA: Sequence read archive; SV: Structural variation;
VEI: Viral genome insertion; WGS: Whole genome sequencing

Acknowledgements
We greatly thank Dr. Nicholas Parrish in IMS, RIKEN, for editing the
manuscript and for helpful suggestions on the manuscript. We thank all the
members of the laboratory of statistical analysis in IMS, RIKEN, for helpful
comments and useful discussion.

Authors’ contributions
SK, MK, YM, and YK designed the entire work. SK analyzed the data. XL and
CT checked and confirmed the results. SK and YK wrote the paper. All
authors read and approved the final manuscript.

Funding
This work is supported by the Tailor-made Medical Treatment Program (the
BioBank Japan Project) of the Ministry of Education, Culture, Sports, Science,
and Technology (MEXT) and the Japan Agency for Medical Research and De-
velopment (AMED) and by JSPS KAKENHI Grant Number 17 K07264.

Availability of data and materials
The scripts used for the evaluation of algorithms’ performance and the
simulated data (genome sequences and reference SV set) are available at
https://github.com/stat-lab/EvalSVcallers [85]. All the sequence data used in
this study were downloaded from DDBJ (http://www.ddbj.nig.ac.jp/) and
DNAnexus (https://platform.dnanexus.com/login), with accession numbers
shown in the supplemental information (Additional file 1: Table S3). The
reference SV sets of NA12878 were constructed with the datasets
downloaded from the Database of Genomic Variants (http://dgv.tcag.ca/dgv/
app/home) and the long read-derived SV data [20]. The reference SV datasets
of HG00514 and HG002 were downloaded from the NCBI dbVar site (ftp://
ftp-trace.ncbi.nlm.nih.gov//pub/dbVar/data/Homo_sapiens/by_study/vcf) [36]
and the GIAB download site (ftp://ftp-trace.ncbi.nlm.nih.gov//giab/ftp/data/
AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6) [79], respectively. The SV
detection algorithms used in this study were obtained from the reference list
in the supplemental information (Additional file 1: Table S1).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical
Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
2Laboratory for Statistical and Translational Genetics, RIKEN Center for

Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama
230-0045, Japan. 3Laboratory for Genotyping Development, RIKEN Center for
Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama
230-0045, Japan. 4RIKEN Center for Integrative Medical Sciences, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Received: 15 October 2018 Accepted: 20 May 2019

References
1. Abyzov A, Li S, Kim DR, Mohiyuddin M, Stutz AM, Parrish NF, et al. Analysis

of deletion breakpoints from 1,092 humans reveals details of mutation
mechanisms. Nat Commun. 2015;6:7256.

2. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and
genotyping. Nat Rev Genet. 2011;12:363–76.

3. Stankiewicz P, Lupski JR. Structural variation in the human genome and its
role in disease. Annu Rev Med. 2010;61:437–55.

4. Dennis MY, Eichler EE. Human adaptation and evolution by segmental
duplication. Curr Opin Genet Dev. 2016;41:44–52.

5. Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J,
et al. Global diversity, population stratification, and selection of human
copy-number variation. Science. 2015;349:aab3761.

6. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J,
et al. An integrated map of structural variation in 2,504 human genomes.
Nature. 2015;526:75–81.

7. Pang AW, MacDonald JR, Pinto D, Wei J, Rafiq MA, Conrad DF, et al.
Towards a comprehensive structural variation map of an individual human
genome. Genome Biol. 2010;11:R52.

8. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, et
al. Personalized copy number and segmental duplication maps using next-
generation sequencing. Nat Genet. 2009;41:1061–7.

9. Liu B, Conroy JM, Morrison CD, Odunsi AO, Qin M, Wei L, et al. Structural
variation discovery in the cancer genome using next generation sequencing:
computational solutions and perspectives. Oncotarget. 2015;6:5477–89.

10. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al.
Landscape of somatic mutations in 560 breast cancer whole-genome
sequences. Nature. 2016;534:47–54.

11. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of
genomic structural variation: insights from and for human disease. Nat Rev
Genet. 2013;14:125–38.

12. Li W, Olivier M. Current analysis platforms and methods for detecting copy
number variation. Physiol Genomics. 2013;45:1–16.

13. Genome of the Netherlands C. Whole-genome sequence variation, population
structure and demographic history of the Dutch population. Nat Genet. 2014;46:
818–25.

14. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping
copy number variation by population-scale genome sequencing. Nature.
2011;470:59–65.

15. Nagasaki M, Yasuda J, Katsuoka F, Nariai N, Kojima K, Kawai Y, et al. Rare
variant discovery by deep whole-genome sequencing of 1,070 Japanese
individuals. Nat Commun. 2015;6:8018.

16. Guan P, Sung WK. Structural variation detection using next-generation
sequencing data: a comparative technical review. Methods. 2016;102:36–49.

17. Lin K, Smit S, Bonnema G, Sanchez-Perez G, de Ridder D. Making the
difference: integrating structural variation detection tools. Brief Bioinform.
2015;16:852–64.

18. Pirooznia M, Goes FS, Zandi PP. Whole-genome CNV analysis: advances in
computational approaches. Front Genet. 2015;6:138.

19. Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari
F, et al. Resolving the complexity of the human genome using single-
molecule sequencing. Nature. 2015;517:608–11.

20. Pendleton M, Sebra R, Pang AW, Ummat A, Franzen O, Rausch T, et al.
Assembly and diploid architecture of an individual human genome via
single-molecule technologies. Nat Methods. 2015;12:780–6.

21. Seo JS, Rhie A, Kim J, Lee S, Sohn MH, Kim CU, et al. De novo assembly and
phasing of a Korean human genome. Nature. 2016;538:243–7.

22. English AC, Salerno WJ, Reid JG. PBHoney: identifying genomic variants via long-
read discordance and interrupted mapping. BMC Bioinformatics. 2014;15:180.

23. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, et al. A
survey of tools for variant analysis of next-generation genome sequencing
data. Brief Bioinform. 2014;15:256–78.

Kosugi et al. Genome Biology          (2019) 20:117 Page 16 of 18

https://doi.org/10.1186/s13059-019-1720-5
https://github.com/stat-lab/EvalSVcallers
http://www.ddbj.nig.ac.jp/
https://platform.dnanexus.com/login
http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
ftp://ftp-trace.ncbi.nlm.nih.gov//pub/dbVar/data/Homo_sapiens/by_study/vcf
ftp://ftp-trace.ncbi.nlm.nih.gov//pub/dbVar/data/Homo_sapiens/by_study/vcf
ftp://ftp-trace.ncbi.nlm.nih.gov//giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6
ftp://ftp-trace.ncbi.nlm.nih.gov//giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6


24. Brandler WM, Antaki D, Gujral M, Noor A, Rosanio G, Chapman TR, et al.
Frequency and complexity of de novo structural mutation in autism. Am J
Hum Genet. 2016;98:667–79.

25. Gokcumen O, Tischler V, Tica J, Zhu Q, Iskow RC, Lee E, et al. Primate
genome architecture influences structural variation mechanisms and
functional consequences. Proc Natl Acad Sci U S A. 2013;110:15764–9.

26. Li Y, Zhang W, Zheng D, Zhou Z, Yu W, Zhang L, et al. Genomic evolution
of Saccharomyces cerevisiae under Chinese rice wine fermentation.
Genome Biol Evol. 2014;6:2516–26.

27. Zichner T, Garfield DA, Rausch T, Stutz AM, Cannavo E, Braun M, et al.
Impact of genomic structural variation in Drosophila melanogaster based
on population-scale sequencing. Genome Res. 2013;23:568–79.

28. Kloosterman WP, Francioli LC, Hormozdiari F, Marschall T, Hehir-Kwa
JY, Abdellaoui A, et al. Characteristics of de novo structural changes
in the human genome. Genome Res. 2015;25:792–801.

29. Werling DM, Brand H, An JY, Stone MR, Zhu L, Glessner JT, et al. An
analytical framework for whole-genome sequence association studies
and its implications for autism spectrum disorder. Nat Genet. 2018;50:
727–36.

30. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al.
BreakDancer: an algorithm for high-resolution mapping of genomic
structural variation. Nat Methods. 2009;6:677–81.

31. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to
discover, genotype, and characterize typical and atypical CNVs from
family and population genome sequencing. Genome Res. 2011;21:
974–84.

32. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY:
structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics. 2012;28:i333–i9.

33. Handsaker RE, Korn JM, Nemesh J, McCarroll SA. Discovery and genotyping
of genome structural polymorphism by sequencing on a population scale.
Nat Genet. 2011;43:269–76.

34. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth
approach to detect break points of large deletions and medium sized
insertions from paired-end short reads. Bioinformatics. 2009;25:2865–71.

35. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework
for structural variant discovery. Genome Biol. 2014;15:R84.

36. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al.
Multi-platform discovery of haplotype-resolved structural variation in human
genomes. Nat Commun. 2019;10:1784.

37. Mu JC, Mohiyuddin M, Li J, Bani Asadi N, Gerstein MB, Abyzov A, et al.
VarSim: a high-fidelity simulation and validation framework for high-
throughput genome sequencing with cancer applications. Bioinformatics.
2015;31:1469–71.

38. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25:1754–60.

39. Guryev V. 1-2-3-SV. 2012. https://github.com/Vityay/1-2-3-SV. Accessed 25
Oct 2018.

40. Cameron DL, Schroder J, Penington JS, Do H, Molania R, Dobrovic A, et al.
GRIDSS: sensitive and specific genomic rearrangement detection using
positional de Bruijn graph assembly. Genome Res. 2017;27:2050–60.

41. Qi J, Zhao F. inGAP-sv: a novel scheme to identify and visualize
structural variation from paired end mapping data. Nucleic Acids Res.
2011;39:W567–75.

42. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, et al.
Manta: rapid detection of structural variants and indels for germline and
cancer sequencing applications. Bioinformatics. 2016;32:1220–2.

43. Mohiyuddin M, Mu JC, Li J, Bani Asadi N, Gerstein MB, Abyzov A, et al.
MetaSV: an accurate and integrative structural-variant caller for next
generation sequencing. Bioinformatics. 2015;31:2741–4.

44. Bartenhagen C, Dugas M. Robust and exact structural variation detection
with paired-end and soft-clipped alignments: SoftSV compared with eight
algorithms. Brief Bioinform. 2016;17:51–62.

45. Wala JA, Bandopadhayay P, Greenwald NF, O'Rourke R, Sharpe T, Stewart C,
et al. SvABA: genome-wide detection of structural variants and indels by
local assembly. Genome Res. 2018;28:581–91.

46. Kronenberg ZN, Osborne EJ, Cone KR, Kennedy BJ, Domyan ET, Shapiro MD,
et al. Wham: identifying structural variants of biological consequence. PLoS
Comput Biol. 2015;11:e1004572.

47. Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, Schliep A, et al. CLEVER:
clique-enumerating variant finder. Bioinformatics. 2012;28:2875–82.

48. Wang W, Wang W, Sun W, Crowley JJ, Szatkiewicz JP. Allele-specific copy-
number discovery from whole-genome and whole-exome sequencing.
Nucleic Acids Res. 2015;43:e90.

49. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al.
Control-FREEC: a tool for assessing copy number and allelic content using
next-generation sequencing data. Bioinformatics. 2012;28:423–5.

50. Yau C. OncoSNP-SEQ: a statistical approach for the identification of somatic
copy number alterations from next-generation sequencing of cancer
genomes. Bioinformatics. 2013;29:2482–4.

51. Miller CA, Hampton O, Coarfa C, Milosavljevic A. ReadDepth: a parallel R
package for detecting copy number alterations from short sequencing
reads. PLoS One. 2011;6:e16327.

52. Thung DT, de Ligt J, Vissers LE, Steehouwer M, Kroon M, de Vries P, et al.
Mobster: accurate detection of mobile element insertions in next
generation sequencing data. Genome Biol. 2014;15:488.

53. Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Pittard WS, et al. The
Mobile Element Locator Tool (MELT): population-scale mobile element
discovery and biology. Genome Res. 2017;11:1916–29.

54. Wu J, Lee WP, Ward A, Walker JA, Konkel MK, Batzer MA, et al. Tangram: a
comprehensive toolbox for mobile element insertion detection. BMC
Genomics. 2014;15:795.

55. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler
A, et al. Accurate detection of complex structural variations using single-
molecule sequencing. Nat Methods. 2018;6:461–8.

56. Pacific Biosciences. pbsv. 2017. https://github.com/PacificBiosciences/pbsv.
Accessed 17 Aug 2017.

57. Ono Y, Asai K, Hamada M. PBSIM: PacBio reads simulator--toward accurate
genome assembly. Bioinformatics. 2013;29:119–21.

58. Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh CH, et al. Diverse
mechanisms of somatic structural variations in human cancer genomes.
Cell. 2013;153:919–29.

59. Bickhart DM, Hutchison JL, Xu L, Schnabel RD, Taylor JF, Reecy JM, et al.
RAPTR-SV: a hybrid method for the detection of structural variants.
Bioinformatics. 2015;31:2084–90.

60. Zhao H, Zhao F. BreakSeek: a breakpoint-based algorithm for full spectral
range INDEL detection. Nucleic Acids Res. 2015;43:6701–13.

61. Lam HY, Mu XJ, Stutz AM, Tanzer A, Cayting PD, Snyder M, et al. Nucleotide-
resolution analysis of structural variants using BreakSeq and a breakpoint
library. Nat Biotechnol. 2010;28:47–55.

62. Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J, et al. CREST
maps somatic structural variation in cancer genomes with base-pair
resolution. Nat Methods. 2011;8:652–4.

63. Zhang J, Wang J, Wu Y. An improved approach for accurate and efficient
calling of structural variations with low-coverage sequence data. BMC
Bioinformatics. 2012;13(Suppl 6):S6.

64. Li H. FermiKit: assembly-based variant calling for Illumina resequencing data.
Bioinformatics. 2015;31:3694–6.

65. Kavak P, Lin YY, Numanagic I, Asghari H, Gungor T, Alkan C, et al. Discovery
and genotyping of novel sequence insertions in many sequenced
individuals. Bioinformatics. 2017;33:i161–i9.

66. Hart SN, Sarangi V, Moore R, Baheti S, Bhavsar JD, Couch FJ, et al.
SoftSearch: integration of multiple sequence features to identify breakpoints
of structural variations. PLoS One. 2013;8:e83356.

67. Sindi SS, Onal S, Peng LC, Wu HT, Raphael BJ. An integrative probabilistic
model for identification of structural variation in sequencing data. Genome
Biol. 2012;13:R22.

68. Zhuang J, Weng Z. Local sequence assembly reveals a high-resolution
profile of somatic structural variations in 97 cancer genomes. Nucleic Acids
Res. 2015;43:8146–56.

69. Jiang Y, Wang Y, Brudno M. PRISM: pair-read informed split-read mapping
for base-pair level detection of insertion, deletion and structural variants.
Bioinformatics. 2012;28:2576–83.

70. Zhu M, Need AC, Han Y, Ge D, Maia JM, Zhu Q, et al. Using ERDS to infer
copy-number variants in high-coverage genomes. Am J Hum Genet. 2012;
91:408–21.

71. Xi R, Lee S, Xia Y, Kim TM, Park PJ. Copy number analysis of whole-genome
data using BIC-seq2 and its application to detection of cancer susceptibility
variants. Nucleic Acids Res. 2016;44:6274–86.

72. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC. Combinatorial algorithms for
structural variation detection in high-throughput sequenced genomes.
Genome Res. 2009;19:1270–8.

Kosugi et al. Genome Biology          (2019) 20:117 Page 17 of 18

https://github.com/Vityay/1-2-3-SV
https://github.com/PacificBiosciences/pbsv


73. Holtgrewe M, Kuchenbecker L, Reinert K. Methods for the detection and
assembly of novel sequence in high-throughput sequencing data.
Bioinformatics. 2015;31:1904–12.

74. Rishishwar L, Marino-Ramirez L, Jordan IK. Benchmarking computational
tools for polymorphic transposable element detection. Brief Bioinform. 2016;
6:908–18.

75. Eisfeldt J, Vezzi F, Olason P, Nilsson D, Lindstrand A. TIDDIT, an efficient and
comprehensive structural variant caller for massive parallel sequencing data.
F1000Res. 2017;6:664.

76. Michaelson JJ, Sebat J. forestSV: structural variant discovery through
statistical learning. Nat Methods. 2012;9:819–21.

77. Dharanipragada P, Vogeti S, Parekh N. iCopyDAV: integrated platform for
copy number variations-detection, annotation and visualization. PLoS One.
2018;13:e0195334.

78. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read
simulator. Bioinformatics. 2012;28:593–4.

79. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive
sequencing of seven human genomes to characterize benchmark reference
materials. Sci Data. 2016;3:160025.

80. Parikh H, Mohiyuddin M, Lam HY, Iyer H, Chen D, Pratt M, et al. Svclassify: a
method to establish benchmark structural variant calls. BMC Genomics.
2016;17:64.

81. Shao H, Ganesamoorthy D, Duarte T, Cao MD, Hoggart CJ, Coin LJM. npInv:
accurate detection and genotyping of inversions using long read sub-
alignment. BMC Bioinformatics. 2018;19:261.

82. Lee WP, Stromberg MP, Ward A, Stewart C, Garrison EP, Marth GT. MOSAIK:
a hash-based algorithm for accurate next-generation sequencing short-read
mapping. PLoS One. 2014;9:e90581.

83. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application and
theory. BMC Bioinformatics. 2012;13:238.

84. Kidd JM, Sampas N, Antonacci F, Graves T, Fulton R, Hayden HS, et al.
Characterization of missing human genome sequences and copy-number
polymorphic insertions. Nat Methods. 2010;7:365–71.

85. Kosugi S MY, Liu X, Terao C, Kubo M and Kamatani Y. Comprehensive
evaluation of structural variation detection algorithms for whole genome
sequencing. Data set and source code. 2019. Github https://github.com/
stat-lab/EvalSVcallers.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kosugi et al. Genome Biology          (2019) 20:117 Page 18 of 18

https://github.com/stat-lab/EvalSVcallers
https://github.com/stat-lab/EvalSVcallers

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Evaluation of SV detection algorithms using simulated and real WGS data
	Evaluation with HG00514 WGS data
	Evaluation of algorithms that call MEIs, NUMTs, and VEIs
	Evaluation of algorithms with long read data
	Effect of different properties of read data on detection accuracy
	Accuracy for calling breakpoints, sizes, and genotypes of SVs
	Run time and memory consumption
	Systematic identification of pairs of algorithms showing high accuracy in their overlapping, called SVs

	Discussion
	Conclusion
	Methods
	WGS datasets
	Reference SV dataset for real data
	SV calling with simulated and real datasets
	Evaluation of the SV detection accuracy of SV algorithms
	Evaluation of accuracy for BP, SV length, and genotype calls
	Evaluation of overlapped calls between pairs of algorithms
	Statistical analysis for SV detection accuracy

	Additional files
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

