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Abstract

A recent study on human structural variation indicates
insufficiencies and errors in the human reference
genome, GRCh38, and argues for the construction of a
human pan-genome.

Introduction

The human reference genome is a critical foundation for
human genetics and biomedical research. The current
human reference genome, GRCh38, blends genomic seg-
ments from a few individuals, although clones of a single
individual predominate [1]. This invites criticisms of the
ability of such a reference genome to present the common
variants from multiple human populations accurately. In
addition, the current human reference genome harbors
many genomic segments that actually contain rare variants,
and these impact downstream sequence analyses including
read alignments and the identification of variants, espe-
cially the identification of structural variants (SVs) (that is,
insertions, deletions and rearrangements) that encompass
more than 50bp of DNA. Incorporating SVs that are
shared among major human populations into the current
reference genome can correct for biases and improves both
read alignments and the detection of variants in other indi-
viduals. Recently, a study based on deep (i.e., > 50%) long-
read PacBio whole genome sequencing (WGS) data for 15
individuals from five populations led to the discovery and
sequencing of a large fraction of common structural vari-
ation. These data can be used to genotype variants from
other short-read sequencing datasets and ultimately to re-
duce biases inherent in the GRCh38 version of the human
reference genome [2].

SV discovery based on long-read sequencing data
Audano et al. [2] sequenced 11 genomes (from three
African, three Asian, two European and three American
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samples) using single-molecule, real-time (SMRT) PacBio
RSII and Sequel long-read sequencing technology. They
further analyzed long-read sequencing data, including data
from four additional sources: CHM1 [3], CHM13 [3],
AK1 [4] and HX1 [5]. Reads were aligned against the
GRCh38 version of the human reference sequence using
the BLASR software and SVs were detected using the
SMRT-SV algorithm [6]. In total, 99,604 nonredundant
SVs were identified from these 15 sequenced genomes.
The analysis focused on around 95% of the human gen-
ome but excluded the pericentromeric and other regions
of the genome that are enriched for repetitive DNAs
(Fig. 1a). Among the 99,604 discovered SVs, the existence
of 2238 ‘shared type’ SVs (shared across all samples) and
13,053 ‘majority type’ SVs (present in more than half of
the genomes studied, but not in all samples) suggested
that the current reference genome either carries a minor
allele or contains an error at each of these positions. These
shared and majority SVs were enriched with repetitive se-
quences and reflect insertions (61. 6 %), deletions (38.1%)
and inversions (0.33%). Excluding analyses of the highly
repetitive regions of the human genome (which probably
contain many SVs), a logarithmic function conservatively
suggested that adding SV data from an additional hu-
man genome would probably increase the total SV
callset by 2.1%, adding 35 genomes would increase
the total SV callset by 39% and, finally, adding 327
genomes would identify twice as many SVs than were
identified from these 15 genomes.

Among the SVs discovered, 40.8% are novel when
compared to previously described SVs from several pub-
lished large-scale projects (Figure S1E in [2]). To assess
the allele frequency of the discovered SVs, Audano et al.
[2] went on to genotype these SVs across a total of 440
additional genomes, which were all sequenced using
short-read technologies, including those of 174 individ-
uals from the 1000 Genomes Project and 266 individuals
from the Simons Genome Diversity Project [7]. The
results showed that 92. 6% of the released SVs actually
appeared in more than half of the samples, further
confirming these biases in the GRCh38 version of the
human reference genome.
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Fig. 1 The human genome structural variant (SV) resource. a The detection of 99,604 nonredundant SVs in 15 samples from five populations
using a long-read sequencing technology. AK1 [4] and HX1 [5] are Asian individuals whose genomes were previously sequenced. b The
subtelomeric regions of human chromosomes are particularly enriched for SVs of the variable number of tandem repeats (VNTR) and short
tandem repeat (STR) types. Here, the frequency of black dots along the length of the chromosome indicates the relative density of SVs. ¢ About
15% of the discovered SVs can be found in more than 50% of the samples studied, indicating that these sites actually harbor minor alleles or
errors in the current reference genome. d Ultimately, a human pan-reference genome can be developed using genome graphs (or other
methods) to represent common SVs accurately. DEL deletion, INS insertion, INV inversion

SVs enriched with tandem repeat sequences

Audano et al. [2] found that SVs are not randomly dis-
tributed across the genome, and in fact, there was as
much as a nine-fold increase in SV density within the
subtelomeric regions (the last 5 Mb) of human chromo-
somes. In addition, SVs in these subtelomeric regions
were significantly enriched with tandem repeats, particu-
larly for VNTRs (variable number of tandem repeats)
and STRs (short tandem repeats), rather than retrotran-
sposons (Fig. 1b). There was also a positive correlation
between the abundance of STRs (R=0.27) and VNTRs
(particularly larger VNTRs; R =0.48) with known hot-
spots of meiotic double strand breaks (DSBs), suggesting
a potential role for DSBs in the formation of SVs in
these genomic regions.

SVs affect gene structures and regulatory elements

How do the discovered SVs interfere with gene expres-
sion? To address this question, Audano et al. [2] anno-
tated the shared and majority SVs using RefSeq. The
analysis showed that 7550 of these SVs intersect with
gene regions (including coding regions, untranslated re-
gions (UTRs), introns, and 2-kb flanking regions), and

1033 of these SVs intersect with known regulatory ele-
ments. Some of the SVs disrupted gene structures: 841
intersected RefSeq-annotated coding regions and 667
intersected RefSeq-annotated noncoding RNA regions.
For example, a 1.6-kb insertion was located in the 5’
UTR of UBEQ2LI and extended into its promoter. In
another case, a 1.06-kbp GC-rich insertion was located
at the 3" UTR of ADARBI and incorporated motifs that
may promote the formation of a quadruplex structure.
Examples of SVs located in gene regulatory elements in-
cluded a 1.2-kb and a 1.4-kb fragment inserted upstream
of KDM6B and FGFRIOP, respectively. These insertions
intersected with H3K4Me3 and H3K27Ac sites. Audano
et al. [2] further investigated the impact of SVs on gene
expression using RNA-seq data from 376 European cell
lines and found that the expression of 411 genes was
significantly associated with the discovered SVs.

The discovered SVs can be helpful for re-constructing a
canonical human reference genome

GRCh38 currently contains 819 gaps, including minor
alleles or actual errors. Audano et al. [2] proposed that
the SVs discovered in their work could be included to
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correct the reference genome (Fig. 1c). They found 34
shared insertions that intersect with scaffold switch-
points of the GRCh38 version of the reference genome
and the new data could be used to correct possible mis-
assemblies in GRCh38. For instance, a 2159-bp shared
insertion overlaps with a switch-point in the NUTM1I gene
and indicates a misassembly by stitching two contigs to-
gether. Additional sequencing clones from BAC libraries
confirmed the misassembly. Adding the discovered SV
contigs to the reference genome could rescue 2.62% of
unmapped Illumina short reads, and 1.24% of the SV-
contig-mapped reads show increased mapping quality,
thus improving variant detection. This effect is most pro-
nounced for insertions, for which 25.68% of the reads
show increased mapping quality when compared to
the reference genome. Furthermore, GATK was able
to identify a substantial amount of variation within
SV insertions (i.e., 68,656 alternative alleles across the
30 whole-genome haplotypes) where no reference se-
quence previously existed. Taken together, these data
proved to be useful in re-constructing a more precise
canonical human reference genome.

Concluding remarks

Audano et al. [2] provided a sequence-resolved SV call-
set from analysis of 15 human genomes. They found the
reported SVs to be significantly enriched with VNTRs
and STRs and correlated with DSB. In addition, they
found that certain SVs impact gene regulatory elements
and affect gene expression, opening a door for additional
future studies correlating SVs with gene expression.
They further patched errors and biases in the current
human reference genome assembly using their SV call-
set, significantly improving the quality of future short-
read alignments and variant calling. This study also
promotes the concept of a pan-genome (Fig. 1d), which
incorporates SVs into the reference genome and can be
applied to recently published graph genome tools [8, 9].
The next steps will involve phasing human genomes to
reduce false negatives [10] and discovering complex
SVs and indels that map to large repetitive regions of
the human genome.

Abbreviations

DSB: Double strand break; SMRT: Single-molecule, real-time; STR: Short
tandem repeat; SV: Structural variant; UTR: Untranslated region;

VNTR: Variable number of tandem repeats
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