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Abstract

Background: In high-throughput studies, hundreds to millions of hypotheses are typically tested. Statistical methods
that control the false discovery rate (FDR) have emerged as popular and powerful tools for error rate control. While
classic FDR methods use only p values as input, more modern FDR methods have been shown to increase power by
incorporating complementary information as informative covariates to prioritize, weight, and group hypotheses.
However, there is currently no consensus on how the modern methods compare to one another. We investigate the
accuracy, applicability, and ease of use of two classic and six modern FDR-controlling methods by performing a
systematic benchmark comparison using simulation studies as well as six case studies in computational biology.

Results: Methods that incorporate informative covariates are modestly more powerful than classic approaches, and
do not underperform classic approaches, even when the covariate is completely uninformative. The majority of
methods are successful at controlling the FDR, with the exception of two modern methods under certain settings.
Furthermore, we find that the improvement of the modern FDR methods over the classic methods increases with the
informativeness of the covariate, total number of hypothesis tests, and proportion of truly non-null hypotheses.

Conclusions: Modern FDR methods that use an informative covariate provide advantages over classic
FDR-controlling procedures, with the relative gain dependent on the application and informativeness of available
covariates. We present our findings as a practical guide and provide recommendations to aid researchers in their
choice of methods to correct for false discoveries.

Keywords: Multiple hypothesis testing, False discovery rate, RNA-seq, ScRNA-seq, ChIP-seq, Microbiome, GWAS,
Gene set analysis

Background
When multiple hypotheses are simultaneously tested, an
adjustment for the multiplicity of tests is often necessary
to restrict the total number of false discoveries. The use
of such adjustments for multiple testing has become stan-
dard in areas such as genomics [1, 2], neuroimaging [3],
proteomics [4], psychology [5, 6], and economics [7].Most
classically, methods which control the family-wise error
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rate (FWER), or probability of at least one false discov-
ery, have been developed and used to correct for multiple
testing. These include the Bonferroni correction [8, 9]
and other approaches [10–12]. Despite their popularity,
FWER-controlling methods are often highly conservative,
controlling the probability of any false positives (type I
errors) at the cost of greatly reduced power to detect true
positives. The trade-off of type I errors and power has
become exacerbated in the analysis of data from high-
throughput experiments, where the number of tests being
considered can range from several thousand to several
million.
The false discovery rate (FDR), or expected propor-

tion of discoveries which are falsely rejected [13], was
more recently proposed as an alternative metric to the
FWER in multiple testing control. This metric has been
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shown to have greater power to detect true positives,
while still controlling the proportion of type I errors
at a specified level [13, 21]. In high-throughput bio-
logical experiments where investigators are willing to
accept a small fraction of false positives to substantially
increase the total number of discoveries, the FDR is
often more appropriate and useful [22]. The Benjamini
and Hochberg step-up procedure (BH) [13, 23] was the
first method proposed to control the FDR. Soon after-
wards, the q-value was introduced as a more powerful
approach to controlling the FDR (Storey’s q-value) [14].
We refer to the BH procedure and Storey’s q-value as
“classic” FDR-controlling methods (Fig. 1), because they
can be easily computed with just a list of p values using
robust software [24, 25] and are arguably still the most
widely used and cited methods for controlling the FDR
in practice.
While the BH procedure and Storey’s q-value often pro-

vide a substantial increase in discoveries over methods
that control the FWER, they were developed under the
assumption that all tests are exchangeable and, there-
fore, that the power to detect discoveries is equally likely
among all tests. However, individual tests or groups of
tests often differ in statistical properties, such as their
level of precision, or underlying biology, which can lead
to certain tests having greater power than others [15, 18].
For example, in a genome-wide association study (GWAS)
meta-analysis where samples are pooled across studies,
the loci-specific sample sizes can be informative of the
differing signal-to-noise ratio across loci [16]. Addition-
ally, in an expression quantitative trait loci (eQTL) study,
tests between polymorphisms and genes in cis are known

a priori to be more likely to be significant than those in
trans [15].
Recently, a new class of methods that control the FDR

(Fig. 1, Additional file 1: Table S1) has been proposed to
exploit this variability across tests by combining the stan-
dard input (p values or test statistics) [13, 14, 26] with a
second piece of information, referred to as an “informative
covariate” [15–19, 27]. Intuitively, if a covariate is infor-
mative of each test’s power or prior probability of being
non-null, it can be used to prioritize individual or groups
of tests to increase the overall power of the experiment
[15]. To guarantee FDR control, the covariate must also
be independent of the p values under the null hypothesis.
In a similar vein, other approaches have been proposed
using two alternative pieces of information, namely effect
sizes and their standard errors [20], to adaptively con-
trol the FDR. These modern FDR-controlling methods
allow researchers to leverage additional information or
metadata and are particularly well suited for biological
studies.
However, due to their recent and concurrent develop-

ment, comparisons between these modern FDR meth-
ods have been limited, and the demonstration of each
method’s applicability and utility on real biological
problems is highly variable. Furthermore, each method
requires varying sets of input data and relies on differing
sets of methodological assumptions. As a result, the
answer to the simple question of which methods can, let
alone should, be used for a particular analysis is often
unclear.
To bridge the gap between methods and application,

we performed a systematic benchmark comparison of two

Fig. 1 FDR-controlling methods included in the comparison. Inputs, assumptions, output, and availability (R package) of two classic [13, 14] and six
modern [15–20] FDR-controlling methods. The outputs of the FDR-controlling methods vary, but they all can be used for the purpose of controlling
the FDR. Pairs of classic and modern methods are highlighted in gray if the modern method is an extension of the classic method
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classic and six modern FDR-controlling methods. Specif-
ically, we compared the classic BH approach [13] and
Storey’s q-value [14] with several modern FDR-controlling
methods, including the conditional local FDR (LFDR)
[17], FDR regression (FDRreg) [19], independent hypoth-
esis weighting (IHW) [15], adaptive shrinkage (ASH) [20],
Boca and Leek’s FDR regression (BL) [16], and adaptive
p-value thresholding (AdaPT) [18] (Fig. 1). Throughout,
we use lowercase when referring to the specific, typi-
cally default, implementation of each method detailed in
the “Methods” section. Both the theoretical and empiri-
cal null Empirical Bayes implementations of FDRreg were
compared, referred to as “fdrreg-t” and “fdrreg-e,” respec-
tively. AdaPT was compared using the default logistic-
Gamma generalized linear model option and is referenced
as “adapt-glm.” The q values returned by ASH were used
for comparison and are referred to as “ashq.”
Of the modern FDR-controlling methods included in

our comparison, IHW, BL, AdaPT, and LFDR can be
applied generally to any multiple testing problem with p
values and an informative covariate satisfying a minimal
set of assumptions (Fig. 1, Additional file 1: Table S1). In
contrast, FDRreg is restricted to multiple testing prob-
lems where normal test statistics, expressed as z-scores,
are available. Mostly, unlike the other modern methods,
ASH requires effect sizes and standard errors separately
for normal or t-distributed test statistics and cannot be
used with more general informative covariates. Further-
more, ASH requires that the true (unobserved) effect sizes
across all tests are unimodal, i.e., that most non-null effect
sizes are small and near zero. While this may be a reason-
able assumption in settings where most non-null effects
are believed to be small and larger effects are rare, it might
not necessarily be true for all datasets and applications.
While it is not possible to confirm whether the assump-
tion is true, it is simple to check whether the assumption
is blatantly violated, i.e., if the distribution of all observed
effect sizes shows clear multimodality.
While both the BH procedure and Storey’s q-value

serve as reference points for evaluating the modern FDR-
controlling methods, in Fig. 1 (and in Additional file 1:
Table S1), we highlight two pairs of modern and classic
methods with a special relationship: IHW with the BH
procedure and BL with Storey’s q-value. In the case that a
completely uninformative covariate is used, these modern
methods have the attractive property of reducing to their
classic counterparts, subject to some estimation error.
Therefore, when instructive, direct comparisons are also
made between IHW and the BH procedure, and similarly
between BL and Storey’s q-value.
In this paper, we first evaluate the performance and

validity of these methods using simulated data and in
silico RNA-seq spike-in datasets. Then, we investigate
the applicability of these methods to multiple testing

problems in computational biology through a series of six
case studies, including differential expression testing in
bulk RNA-seq, differential expression testing in single-cell
RNA-seq, differential abundance testing and correlation
analysis in 16S microbiome data, differential binding test-
ing in ChIP-seq, genome-wide association testing, and
gene set analysis. Combining these results with insights
from our simulation studies and in silico experiments, we
provide a key set of recommendations to aid investigators
looking to take advantage of advances in multiple testing
correction in future studies.

Results
Although fdrreg-e was included in the benchmarking
study, we exclude it from the presentation of the main
results due to its unstable and inferior performance to
its counterpart fdrreg-t. For detailed results including
fdrreg-e, we refer the reader to Additional file 1.

False discovery rate control
The specificity of the FDR-controlling methods was eval-
uated using three approaches. First, a series of RNA-seq
differential expression studies were performed on yeast
in silico spike-in datasets generated by randomly select-
ing 2 sets of 5 and 10 samples each from a dataset of
48 biological replicates in a single condition [29] and
adding differential signal to a subset of genes to define
“true positives.” This was carried out for a variety of set-
tings of non-null effect size distributions, proportions
of null hypotheses, and informativeness of covariates
(Additional file 1: Table S2). Second, a similar differen-
tial expression study was performed using RNA-seq data
simulated with the polyester R/Bioconductor package
[28]. Finally, to explore a wider range of mutiple testing
scenarios, an extensive simulation study was carried out
across a range of test statistic distributions, non-null effect
size distributions, proportions of null hypotheses, infor-
mative covariates, and numbers of tests (Additional file 1:
Table S3).
All experiments and simulations were replicated 100

times. Performance metrics are reported as the mean
and standard error across replications. In all analy-
ses, covariate-aware modern FDR-controlling methods,
including adapt-glm, bl, fdrreg-t, ihw, and lfdr, were run
twice, once with an informative covariate and again with
an uninformative random covariate.
While the notion of an informative covariate was loosely

introduced above, for our in silico experiments and sim-
ulations, we concretely define “informative covariates”
by introducing a dependence between the proportion of
hypotheses that are null and the value of the covariate.
A strongly informative covariate in our simulations is one
where certain values of the covariate are highly enriched
for truly non-null tests, and aweakly informative covariate
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is one where certain values are only moderately enriched
for non-null tests. In contrast, an uninformative covari-
ate is not enriched for null or non-null hypotheses for any
values. We restrict the concepts of weakly and strongly
informative covariates in our analysis to the dependence
between the covariate and the null proportion described
above. No other dependence is introduced between the
covariate and the test statistics in our simulations and in
silico experiments.

Modernmethods do not always control the FDR
Across in silico experiments and simulation settings, we
found that most methods adequately controlled the FDR
in many situations. FDR control for a single setting of the
yeast RNA-seq in silico experiments and Polyester count
simulations is shown in Fig. 2a. In these experiments, 30%
of genes were differentially expressed (DE) between the
two groups of five samples each, with effect sizes sam-
pled from a unimodal distribution and using a strongly
informative covariate. Here, all methods controlled the
FDR at the target α-levels between 0.01 and 0.10, with

the exception of ashq and lfdr, which exhibited slightly
inflated FDR in the polyester simulations. Somemeth-
ods, most noticeably ihw, achieved lower FDR than oth-
ers. The trade-off between FDR, power, and classification
accuracy in the in silico experiments is summarized in
Additional file 1: Figure S1.
The settings of the in silico experiments were varied

to also consider a lower proportion of DE genes (7.5%),
bimodal effect size distribution, and a weakly informa-
tive covariate in addition to the uninformative random
covariate run with all covariate-aware methods (Addi-
tional file 1: Table S2). The FDR for covariate-aware
methods was not sensitive to covariate informativeness,
with nearly identical proportions of false discoveries
using weakly and strongly informative covariates. How-
ever, we found that with the bimodal effect size distri-
bution and smaller proportion of non-null hypotheses,
a subset of methods including ashq, and lfdr, failed to
control the FDR at the nominal FDR cutoff, leading to
an inflated rate of false discoveries (Additional file 1:
Figure S3).

A

B

Fig. 2 FDR control in in silico experiments and simulations. a Observed FDR (y-axis) for various α-level cutoffs (x-axis) in the yeast RNA-seq in silico
resampling experiment with spiked-in differentially expressed genes (left panel) and the simulation of yeast RNA-seq counts using the polyester
R/Bioconductor package [28]. b Observed FDR (y-axis) across simulation settings at α-level of 0.05. The left panel displays FDR for increasing
numbers of hypothesis tests and the right panel displays FDR for increasing proportions of non-null hypotheses. Note that the LFDR method is
displayed as a dotted line when the number of tests per bin falls below 200 (where the number of bins is fixed at 20), as fdrtools generates a
warning in this case that the estimation may be unreliable
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Similar trends were observed across simulation stud-
ies, where conditions were varied analogous to the yeast
experiments to consider a wider range of scenarios. While
most methods were consistently conservative or achieved
an accurate target FDR, a subset of methods clearly failed
to control the FDR under certain settings.

lfdr and fdrreg-t do not control FDRwith few tests
Since modern FDR-controlling methods must estimate
the covariate dependence from the set of hypotheses, the
effectiveness of these methods can depend on having a
sufficiently large number of tests. We performed a series
of simulations to assess the sensitivity of the covariate-
aware methods to the total number of hypotheses. We
observed that lfdr exhibited substantially inflated FDR
when applied to 10,000 or fewer tests (Fig. 2b, left panel).
This result could be due to our implementation of LFDR,
which groups hypotheses into 20 groups regardless of
the total number of tests, and suggests that the perfor-
mance of lfdr improves when the numbers of tests per bin
increases. We also observed that fdrreg-t showed slightly
inflated FDR with 1000 or fewer tests.

lfdr and ashq do not control FDR for extreme proportions of
non-null tests
The proportion of non-null tests is typically unknown but
can vary dramatically between datasets. While most sim-
ulations were performed with 10% non-null tests, to cover
a range of scenarios, a series of simulations covering non-
null proportions between 0 and 95% were also considered.
The yeast in silico experiments included settings of 0%,
7.5% and 30% non-null tests.
Most methods demonstrated the same general trend in

simulation, where the FDR of most methods was con-
trolled at the target α-level, and decreased as the pro-
portion of non-null hypotheses increased (Fig. 2b, right
panel). However, we also found that the ability of some
methods to control FDR was sensitive to the proportion
of tests that were non-null. Specifically, lfdr exhibited
inflated FDR when the proportion of non-null tests was
low (less than 20%). Likewise, ashq exhibited inflated FDR
when the proportion of non-null tests was high (greater
than 20%).
Similarly, ashq and lfdr failed to control FDR in the in

silico yeast experiments when the proportion of non-nulls
was 7.5% compared to 30% (Additional file 1: Figure S3).
We also note that for a sample size of five per group,
several methods exhibited inflated FDR in the extreme
setting when the non-null proportion of hypotheses was
0%, where FDR reduces to FWER. However, although the
proportion of replications with at least one false posi-
tive was greater than the target, the average proportion of
tests rejected was very small (Additional file 2; see https://
pkimes.github.io/benchmark-fdr-html/ [30]). Since the in

silico experiments were generated by splitting biological
replicates into two groups, it is possible that unmeasured
biological differences exist between them.

Power
In addition to FDR, we also evaluated sensitivity of the
FDR-controlling methods using the same in silico experi-
ment and simulation framework described above.

Modernmethods aremodestlymore powerful
We found that in general, modern FDR methods led to
a modestly higher true positive rate (TPR), or power, in
the yeast in silico RNA-seq experiments and polyester
simulations (Fig. 3a, Additional file 1: Figure S2). This
was also true when using a weakly informative rather
than a strongly informative covariate (Additional file 1:
Figure S3B). Much of the gain with modern methods,
most apparent with lfdr and ashq, was found in genes
with small to moderate effect sizes (Additional file 1:
Figure S1D). While the majority of discoveries were com-
mon among all or most methods, there were several
smaller sets of rejections that were unique to subsets of
methods (Additional file 1: Figure S1E).
Again, higher power was similarly observed for most

modern FDR methods over classic methods across sim-
ulation settings (Fig. 3b, Additional file 1: Figures S4, S5,
S6, S7, S8). The increase in TPR was generally modest for
all methods, as in the yeast experiments, with the excep-
tion of fdrreg-t which showed substantial improvement in
TPR over modern methods in several simulation settings
(Additional file 1: Figure S4B, D, and F).

Power ofmodernmethods is sensitive to covariate
informativeness
Comparing across yeast experiments using weakly and
strongly informative covariates, we found that the TPR
was higher for strongly informative covariates com-
pared to weakly informative covariates (Additional file 1:
Figure S3). To further quantify the impact of covariate
informativeness, a series of simulations was performed
using covariates of varying informativeness. A rough scale
of 0–100 was used to describe the informativeness of
the covariate, with larger values of informativeness corre-
sponding to greater power of the covariate to distinguish
null and non-null tests (Additional file 1: Figure S9).
Echoing the results of the yeast experiments, the gain in
TPR of covariate-aware methods over other methods also
increased with informativeness in the simulation studies
(Additional file 1: Figure S4B). This gain tended to be
larger for some methods (fdrreg-t, lfdr, and adapt-glm)
than for others (ihw and bl).
Additionally, simulations were performed across four

different dependencies between the covariate and the
null proportion. The covariates were named step, cosine,

https://pkimes.github.io/benchmark-fdr-html/
https://pkimes.github.io/benchmark-fdr-html/
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A

B

Fig. 3 Power in in silico experiments and simulations. a True positive rate (y-axis) for increasing α-level cutoffs (x-axis) in the yeast RNA-seq in silico
resampling experiment with spiked-in differentially expressed genes (left panel) and the simulation of yeast RNA-seq counts using the polyester
R/Bioconductor package [28]. Similar plots in the style of [31] are displayed in Additional file 1: Figure S2. b True positive rate (y-axis) across
simulation settings at α-level of 0.05. The left panel displays increasing numbers of hypothesis tests, and the right panel displays increasing
proportions of non-null hypotheses. Note that the lfdr method is displayed as a dotted line when the number of tests per bin falls below 200 (where
the number of bins is fixed at 20), as fdrtools generates a warning in this case that the estimation may be unreliable

sine, and cubic for the shape of their dependence. We
found that in general, the above results were relatively
robust to the functional form of the dependence (Addi-
tional file 1: Figure S5A-C). However, the gain in TPR
varied across informative covariates, with the smallest
gains observed in the step covariate setting across all
covariate-aware methods, likely attributable to the lower
informativeness of the covariate relative to the other set-
tings. The gain in TPR also varied more for somemethods
than others. In the cosine covariate, where the depen-
dence between the covariate and null proportion was
strongly non-monotone, bl showed no gain over the clas-
sic qvalue. As bl attempts to model the covariate-null
proportion dependence using logistic regression, a mono-
tone function, the method was unable to capture the true
relationship. A small but noticeable increase in TPR was
observed in the remaining settings, where the covariate
dependence was monotone. In contrast, covariate-aware
methods with more flexible modeling approaches either
based on binning (ihw, lfdr) or spline expansion (fdrreg-t),
were generally more consistent across covariates.

Including an uninformative covariate is not harmful
A reasonable concern, closely related to weakly and
strongly informative covariates, is whether an uninfor-
mative covariate could mislead methods such as ihw, bl,
fdrreg, lfdr, or adapt-glm. Across the settings of the yeast
in silico experiments and simulations, we observed that
with the use of a completely uninformative covariate,
modern FDR methods generally had lower power (and
higher FDR) than with an informative covariate (Addi-
tional file 1: Figures S5D-E, S6D-E, S7D-E, S10, and S11B).
However, while modern FDR methods were modestly
more powerful than classic approaches when using an
informative covariate, they did not underperform clas-
sic approaches with a completely uninformative covariate
(Additional file 1: Figure S4A-B).
A notable exception was adapt-glm, which suffered from

lower power with the inclusion of a weakly informative
covariate than with the uninformative covariate, likely
due to overfitting (Additional file 1: Figures S4B and
S5E). In estimating the dependence between the covariate
and null proportion, adapt-glm includes a step of model
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selection. Based on a feedback from the method authors,
we considered modifying the default adaplt-glm parame-
ters by including a null dependence as one of the model
choices, allowing the method to ignore the dependence
when it cannot be properly estimated. When applied to
the weakly informative step covariate setting, this resulted
in improved performance with the method no longer suf-
fering from lower power with the inclusion of the weakly
informative covariate (Additional file 1: Figure S12). How-
ever, since this procedure was not used in [18] and is not
currently mentioned in the software documentation, we
have excluded it from our primary analyses. The authors
responded positively to the recommendation of docu-
menting this procedure in future releases of the package.

lfdr and adapt-glm are sensitive to the number of tests
We found that the power of some methods was more sen-
sitive to the number of hypothesis tests in the simulation
studies than others. Specifically, lfdr and adapt-glm per-
formed poorly in terms of TPR when there were fewer
than 1000 tests (Fig. 3B, left panel). The lfdr result may
again be due to our choice of the number of groups used
in the method, as described above. We also note that the
improvement in TPR of ihw over bh was not apparent
without at least several thousand tests (Additional file 1:
Figure S4D).

Applicability
To investigate the applicability of modern methods to a
variety of analyses and datasets, we used a combination of
simulation settings and empirical case studies.
Specifically, we evaluated the performance under sev-

eral different test statistic and effect size distributions in
simulation. We considered normal t with both 5 and 11
degrees of freedom and χ2 test statistics with 4 degrees
of freedom as in [16]. Additionally, we considered several
different effect size distributions, ranging from unimodal
to bimodal.
We also investigated the application of these methods

to a series of six case studies in computational biology,
including differential expression testing in bulk RNA-seq,
differential expression testing in single-cell RNA-seq, dif-
ferential abundance testing and correlation analysis in 16S
microbiome data, differential binding testing in ChIP-seq,
genome-wide association testing, and gene set analysis.
These results, along with a practical discussion of the
selection and assessment of informative covariates, are
included in the following sections.

ashq and fdrreg-t are sensitive to the sampling distribution of
the test statistic
Many of the modern FDR-controlling methods make
assumptions regarding a valid distribution of p values.
However, some methods also make assumptions about

the distribution of the test statistic or effect size. Specif-
ically, FDRreg and ASH both assume that test statistics
are normally distributed [19, 20]. However, ASH is also
described as being applicable to t-distributed statistics,
although currently only based on a rough approximation
[20]. The option to specify the degrees of freedom for
t-distributed statistics based on this approximation was
used for the ashq implementation in the t-distributed sim-
ulations. The sensitivity of these methods along with the
others to changes in the underlying distributions of the
test statistics was investigated through simulations across
the four distributions described above. These simulation
results are shown in Fig. 4a andAdditional file 1: Figure S6.
Since the assumptions for both FDRreg and ASH are
strongly violated with χ2 test statistics, these methods
were not applied in this setting.
We observed that FDR control for most methods,

namely those which take p values as input rather than
z-scores or effect sizes (Fig. 1), was not sensitive to the
distribution of test statistics (Fig. 4a and Additional file 1:
Figure S6B-C). However, violation of the normal assump-
tion of fdrreg-t led to inflated FDR when the test statistics
were t-distributed, and as expected, the increase in FDR
was greater for the heavier-tailed t distribution with fewer
degrees of freedom (Fig. 4a). Although it accommodates t-
distributed test statistics, inflated FDR was also observed
for ashq (both with and without specifying the correct
degrees of freedom). While not included in our com-
parisons, the authors of [20] have recently proposed an
adaptation of ashq for this case based on moderated stan-
dard error estimates using the limma R package which
may provide better FDR control [32, 33].

ashq is not sensitive to violation of the unimodal assumption
In addition to the distributional assumptions on the test
statistic, ASH assumes that the distribution of the true
(unobserved) effect sizes is unimodal, referred to as the
“unimodal assumption.” To investigate ASH’s sensitivity
to the unimodal assumption, multiple distributions of the
effect sizes were considered in both simulations and yeast
in silico experiments. While most simulations included
effect size distributions with most non-null effects away
from zero, simulations were also performed following the
unimodal assumption of ASH with a set of effect size dis-
tributions described in [20] (Additional file 1: Figures S6A,
S7 and S8). In the yeast in silico experiments, two condi-
tions were also investigated—a unimodal and a bimodal
case.
We observed that even when the unimodal assumption

of ASH was violated in simulation, ashq had only a slight
inflation in FDR and comparable TPR to other methods
(Additional file 1: Figure S7B-C). This was also observed
in the yeast in silico experiments (Additional file 1:
Figure S3).
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A

B

Fig. 4 Applicability of benchmarked methods to various test statistics and case study datasets. a The top panel displays various null and non-null
test statistic distributions used in simulations, with the corresponding observed FDR shown in the bottom panel. Note that although fdrreg-t
requires normally distributed test statistics, it is included in the evaluation of t11 and t5 statistics to illustrate the effect of a heavy tailed distribution.
In addition, neither ashq nor fdrreg-t is evaluated on χ2 statistics, as they violate the assumptions of the method. b Proportion of maximum
rejections (color) for each dataset and informative covariate (column, grouped by case study) and FDR correction method (row). In each column, the
maximum proportion of rejections out of the total possible number of comparisons is displayed. Where ashq and fdrreg-t could not be applied to a
case study to due violation of assumptions, the cell is colored in gray. Where the method lfdr was not applied due to practical limitations on the
number of tests, the cell is colored grey and marked with “*.” The informative covariate used in each case study is listed in Table 1. For case studies
with more than one covariate, the covariate is denoted in the x-axis labels

Not all methods can be applied to every case study
We discovered that some methods could not be applied
to some case studies due to restrictive assumptions. For
example, FDRreg could only be applied if the tests under
consideration yielded approximately normally distributed
statistics. As a result, FDRreg was applied to the bulk

RNA-seq and GWAS studies, but not considered in any of
the other case studies since the test statistics are decidedly
not normal. Likewise, ASH could only be applied if both
an effect size and corresponding standard error for each
test was available. As a result, ASH was excluded from
case studies involving tests that only output a p-value or
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test statistic, such as permutation tests or the Wilcoxon
rank-sum test (Fig. 4b). Further, the LFDRmethod was not
applied to 3 microbiome datasets where there were fewer
than 4000 total tests (200 tests per bin).
In the in silico experiments and simulations described

above where the underlying properties of the data are
known, it is easy to verify whether the assumptions of
each method are satisfied. In practice, however, some
assumptions are difficult or even impossible to check. For
example, while it is feasible to assess the overall unimodal-
ity of the observed effect sizes for input to ashq, it is
impossible to check the unimodal assumption for the true
(unobserved) effects. For this reason, it is possible that the
assumptions of ashq could be violated in some of the case
studies.

Choice of independent covariate is application-dependent
Several covariates have been suggested for t tests, rank-
based tests, RNA-seq DE analysis, eQTL analysis, GWAS,
and quantitative proteomics [15]. In the case studies, we
selected covariates based on these suggestions, as well as
our own hypotheses about covariates that could poten-
tially contain information about the power of a test, or
the prior probability of a test being non-null (Table 1).
We observed that the relationship between the covariates
explored in the case studies and the proportion of tests
rejected was highly variable (Additional file 1: Figure S13).
To select covariates for each case study, we visually eval-

uated whether each covariate was informative by examin-
ing a scatter plot of the independent covariate percentile
and the p-value. If this contained any noticeable trend
such that certain values of the informative covariate were
enriched for smaller p values, we considered the covariate
to be informative.
We also visually evaluated whether each covariate

was approximately independent under the null hypoth-
esis following the recommendations of [15]. Specifically,
we examined the histogram of p values stratified by
small, moderate, and large values of the covariate (Addi-
tional file 1: Figure S14). If the distribution of the moder-
ate to large p values appeared approximately uniform, we
considered the covariate to be approximately independent
of the p values under the null hypothesis.
For almost all choices of the covariate originally con-

sidered, we were able to substantiate evidence for infor-
mativeness and independence. One notable exception was
the set size covariate for the overrepresentation test in the
gene set analysis case study. Here, we found that although
the covariate appeared to be informative, it was not inde-
pendent under the null hypothesis (Additional files 22 and
23). We observed a dependence in the global enrichment
of smaller p values in small gene sets. This is a direct con-
sequence of the fact that a single DE gene represents a
larger proportion of a smaller gene set than it does a larger

gene set. As a result, we only show the results for gene
set analysis using gene set enrichment analysis (GSEA),
which, unlike the overrepresentation test, does not rely on
selecting a subset of DE genes. Instead, GSEA incorpo-
rates the rank of every gene into the evaluation of a gene
set. The gene set size covariate did satisfy the independent
and informative criteria for p values obtained from GSEA.

Consistency
We observed that the relative performance of modern
methods differed depending on the particular scenario. To
evaluate the consistency of the performance of modern
methods, we summarized the variability across the dif-
ferent simulation studies, in silico experiments, and case
studies.
Across all simulation studies and yeast in silico experi-

ments, we quantified the overall proportion of settings of
modern FDRmethods achieving FDR control (Fig. 5a) and
the average ranking of TPR (Fig. 5b). In addition, we quan-
tified the variability across simulation settings of modern
FDR methods relative to classic methods (Fig. 5c, d). We
also evaluated the consistency of the number of rejections
in case studies both with and without informative covari-
ates. Note that variability across case studies was not
evaluated for fdrreg and ashq, as the methods were only
applied to a subset of the datasets. Detailed discussion of
these results is provided in the following sections.

Consistency of FDR and power
We observed that adapt-glm, ihw, and bl achieved FDR
control in almost all simulation and in silico experiment
settings (Fig. 5a) and were on average ranked near the
median of all methods in terms of TPR (Fig. 5b). However,
adapt-glm frequently resulted in lower TPR than classic
methods (Fig. 5c) and had the highest variability of TPR
and FDR across all simulation settings (Fig. 5d). Note that
although ihw had lower TPR than bh and qvalue in about
10% of simulation settings (Fig. 5c), this difference was
usually small and the variability of ihw relative to classic
methods was smaller than most other modern methods
(Fig. 5d).
On the other hand, fdrreg-t and ashq were consistently

ranked among the top methods in terms of TPR (Fig. 5b),
but both failed to control FDR in more than 40% of simu-
lation settings (Fig. 5b) and exhibited higher variability of
both FDR and TPR than bl and ihw (Fig. 5d). lfdr showed
similar performance to ashq and fdrreg-t but was ranked
more favorably in terms of TPR in simulation studies
compared to in silico experiments (Fig. 5).

Number of rejections are highly variable in case studies
In the case studies, we found that lfdr and ashq (where
applied) made the most rejections on average (Additional
file 1: Figure S15), a similar trend to that observed in the
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Table 1 Independent and informative covariates used in case studies

Case study Covariates found to be independent and informative

Microbiome Ubiquity: the proportion of samples in which the feature is present. In microbiome data, it is common for many features to
go undetected in many samples.

Mean nonzero abundance: the average abundance of a feature among those samples in which it was detected. We note
that this did not seem as informative as ubiquity in our case studies.

GWAS Minor allele frequency: the proportion of the population which exhibits the less common allele (ranges from 0 to 0.5)
represents the rarity of a particular variant.

Sample size (for meta-analyses): the number of samples for which the particular variant was measured.

Gene set analyses Gene set size: the number of genes included in the particular set. Note that this is not independent under the null for
over-representation tests, however (see Additional file 1: Supplementary Results).

Bulk RNA-seq Mean gene expression: the average expression level (calculated from normalized read counts) for a particular gene.

Single-Cell RNA-seq Mean nonzero gene expression: the average expression level (calculated from normalized read counts) for a particular
gene, excluding zero counts.

Detection rate: the proportion of samples in which the gene is detected. In single-cell RNA-seq it is common for many genes
to go undetected in many samples.

ChIP-seq Mean read depth: the average coverage (calculated from normalized read counts) for the region

Window Size: the length of the region

A B

C D

Fig. 5 Summary metrics computed to rate methods for final recommendations. Several metrics were computed over all settings of the simulations,
and yeast experiments, as well as all datasets and covariates in the case studies to evaluate the a FDR control, b power, and c, d consistency of the
evaluated methods. In a and b, color denotes whether the metric is computed over simulations (Sims) or yeast in silico experiments (Yeast). In c and
d, color denotes whether the metric is computed for TPR or FDR in the simulations (“Sims (TPR)” and “Sims (FDR)”, respectively), or for the
percentage of rejections in the case studies “CS (%reject).” In all panels, the methods are shown on the x-axis, and the methods with superior
performance are those with a low value of the y-axis metric. Cutoffs used with the metrics shown are provided in the “Methods” section
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yeast in silico simulations (Additional file 1: Figure S16).
Otherwise, the relative ranking among the methods var-
ied among datasets and covariates used in each analysis
(Fig. 4b).
The adapt-glm and lfdr methods had the most variable

performance relative to classic methods across case stud-
ies (Fig. 5d). In particular, adapt-glm rejected fewer tests
than the classic methods in approximately 25% of case
study datasets (Fig. 5c). The performance pattern of bl
was very similar to qvalue (Fig. 4). Likewise, ihw exhibited
similar patterns to bh. The ashq method, where applied,
was usually among the methods with the most rejections,
and bh consistently found among the fewest discoveries
on average among all FDR-controlling methods.

Gain over uninformative covariates is highly variable in case
studies
To investigate how each method uses information from
covariates and to assess performance in the case that a
covariate is completely uninformative, we also included a
randomly generated uninformative covariate in each case
study that was independent of the p values under the null
and alternative.
The average gain from using an informative covariate

as compared to an uninformative covariate was usually
modest but, in rare cases, resulted in order of magni-
tude differences (Additional file 1: Figure S11A). The gain
was also highly variable across case studies, covariates,
and datasets. In some cases, the adapt-glm and bl meth-
ods made fewer rejections using the informative covariate
(Additional file 1: Figure S17).

Discussion and conclusions
We have presented a systematic evaluation to guide
researchers in their decisions regarding the methods to
control for false discoveries in their own data analysis. A
series of case studies and simulations were performed to
investigate which methods maximize the number of dis-
coveries while controlling FDR at the nominal α-level. We
conclude by highlighting several key results and practical
recommendations, which are summarized in Fig. 6.
We found that modern methods for FDR control were

more powerful than classic approaches, but the gain
in power was generally modest. In addition, with the
exception of AdaPT, most methods that incorporate an
independent covariate were not found to underperform
classic approaches, even when the covariate was com-
pletely uninformative. Because adapt-glm sometimes per-
formed worse with the use of a covariate, we recommend
including a null model as an input along with the covariate
model when applying AdaPT.
Overall, we found the performance of the modern FDR

methods generally improved over the classic methods as
(1) the informativeness of the covariate increased, (2) the

Fig. 6 Summary of recommendations. For each method (row) and
evaluation criteria (column), a filled circle denotes the method was
superior, a half-filled circle denotes the method was satisfactory, and
an empty circle denotes the method was unsatisfactory. Gray circles
are used to denote that BH and qvalue were not evaluated for the
consistency criteria. An asterisk is used to denote that applicability
was assessed slightly differently for AdaPT. Detailed evaluation criteria
are provided in the “Methods” section

number of hypothesis tests increased, and (3) the pro-
portion of non-null hypotheses increased. Although it is
not possible to assess (1) and (3) in practice, most meth-
ods still controlled FDR when the covariate was weakly
informative and the proportion of non-nulls was high.
Across our simulation and case study evaluations, we

found that IHW and BL generally had the most consistent
gains in TPR over classic methods, while still controlling
the FDR (Fig. 6). While the TPR of BL was often higher
than IHW, we note that the gain in power of BL rela-
tive to IHW should be interpreted in light of any gain
in power of qvalue to BH, due to the special relationship
between these pairs of methods. Specifically, IHW and BL
reduce to BH and qvalue, respectively, when the covari-
ate is uninformative. The power of IHW was generally
superior to BH when the covariate was sufficiently infor-
mative, but almost identical to BH when the covariate was
not informative enough or when there were only a few
thousand tests. Likewise, the power of BL was generally
superior to Storey’s q-value when the covariate was suffi-
ciently informative and had a monotonic relationship with
the probability of a test being non-null.
We also found that although the majority of methods

performed similarly in controlling the FDR, some meth-
ods were not able to control FDR at the desired level under
certain settings. This occurred for empirical FDRreg when
the proportion of non-nulls was near 50%, LFDR when
there were fewer than 5000 tests, and ASH when the test
statistic was t-distributed.
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We have provided several useful examples of how to
use an informative covariate in biological case studies.
When choosing a covariate for a particular analysis, it is
important to evaluate whether it is both informative and
independent under the null hypothesis. In other words,
while the covariate should be informative of whether a
test is truly positive, if a test is truly negative, knowl-
edge of the covariate should not alter the validity of the
p-value or test statistic. Violation of this condition can
lead to loss of type I error control and an inflated rate
of false discoveries [34]. To avoid these pitfalls, we rec-
ommend using previously proposed visual diagnostics to
check both the informativeness and independence of the
selected covariate [15].
We also note that although in this study we only considered

a single (univariate) covariate in the simulations and case
studies, some of the modern methods are able to incorpo-
rate multiple covariates. BL, AdaPT, and FDRreg can all
accommodate an arbitrary set of covariates through the
specification of a design matrix. In particular, AdaPT is
well-suited to high-dimensional problems, as it provides an im
plementation that uses L1-penalized generalized linear mod-
els for feature selection. Further investigation is needed in
the selection of multiple covariates and the potential gain
in performance over using a single covariate.
Finally, we rank IHW, BH, and Storey’s q-value as supe-

rior in terms of user-friendliness and documentation,
critical for lasting use and impact in the community. All
methods were implemented and evaluated in R. With the
exception of LFDR and the latest version of FDRreg, meth-
ods were easily accessible from packages in CRAN or
Bioconductor, the primary repositories for R packages.
Implementing LFDR and installing FDRreg both required
additional work (see the “Methods” section). In their
implementations, most methods provide direct measures,
such as adjusted p values or q values, as outputs directly
to users. In contrast, bl provides null hypothesis weights
which must be manually applied to BH-adjusted p val-
ues by the user to control FDR. In addition, bl, adapt-glm,
and fdrreg all require specifying a functional relationship
between the covariate and null proportion in the form of
a model or formula. While this provides the user signif-
icant flexibility, it can also be unintuitive for researchers
not familiar with the underlying modeling frameworks of
these methods. A benchmarking experiment to determine
reasonable default values for parameters to improve the
user-friendliness of these methods is left as future work.

Methods
Assessing assumptions
ASH and FDRreg differ substantially from the remain-
ing methods, and care should be taken to verify that the
appropriate inputs are available and that the underlying
assumptions are indeed valid. Based on these criteria,

both methods were excluded from most case studies
and several simulation settings considered in this bench-
mark. A more detailed discussion of these assumptions is
included below. For FDRreg and adapt-glm, the informa-
tive covariate must be specified in the form of a model
matrix or formula (respectively). In both cases, we use
the same type of formula or model matrix used in the
authors’ original publications [18, 19]. For lfdr, the infor-
mative covariate must be a discrete group label. We follow
the implementation of lfdr developed in [15], which auto-
matically bins the input covariate into 20 approximately
equally sized bins before estimating the within-group local
FDR (source code to implement this procedure available
on the GitHub repository linked in “Availability of data
and materials” section [35]).
Common to all modern FDR-controlling procedures

included in Fig. 1 is the requirement that the informative
covariate also be independent of the p-value or test statis-
tic under the null. That is, while the covariate should be
informative of whether a test is truly positive, if a test is
truly negative, knowledge of the covariate should not alter
the validity of the p-value or test statistic. Violation of this
condition can lead to loss of type I error control and an
inflated rate of false discoveries [34]. To avoid these pit-
falls, previously proposed visual diagnostics were used to
check both the informativeness and independence of the
selected covariate [15].

Implementation of benchmarkedmethods
All analyses were implemented using R version 3.5.0
[24]. We used version 0.99.2 of the R package Sum-
marizedBenchmark [36] to carry out the benchmark
comparisons, which is available on GitHub at the
“fdrbenchmark” branch at https://github.com/areyesq89/
SummarizedBenchmark/tree/fdrbenchmark [37].
While other modern FDR-controlling methods have also

been proposed, methods were excluded if accompanying
software was unavailable or if the available software could
not be run without substantial work from the user [38].

BH
Adjusted p values by BH were obtained using the
p.adjust function from the stats base R package,
with option method="BH".

q value
Storey’s q-values were obtained using the qvalue function
in version 2.12.0 of the qvalue Bioconductor R package.

IHW
Adjusted p values by IHW were obtained using the
adj_pvalues function on the output of the ihw func-
tion, both from version 1.8.0 of the IHW Bioconductor R
package.

https://github.com/areyesq89/SummarizedBenchmark/tree/fdrbenchmark
https://github.com/areyesq89/SummarizedBenchmark/tree/fdrbenchmark
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BL
Adjusted p values by BL were obtained by multiplying
BH adjusted p values (see above) by the π0,i estimates
obtained using the lm_pi0 function from version 1.6.0 of
the swfdr Bioconductor R package.

lfdr
Adjusted p values by lfdr were obtained by first binning
the independent covariate into 20 approximately equal-
sized groups using the groups_by_filter function the
IHW R package. Next, the fdrtool function from ver-
sion 1.2.15 of the fdrtool CRAN R package was applied
to the p values within each covariate bin separately, with
the parameter statistic="pvalue". We require that
at least 200 tests per bin, as recommended by fdrtool.
Note that we follow [15] and use fdrtool rather than the
locfdr package recommended by [17] to obtain local fal
se discovery rates, as the former may operate directly on p
values instead of requiring z-scores as in the latter.

FDRreg
For applications where the test statistic was assumed to
be normally distributed, Bayesian FDRs were obtained by
the FDRreg function from version 0.2-1 of the FDRreg
R package (obtained from GitHub at https://github.com/
jgscott/FDRreg). The features parameter was specified
as a model matrix with a B-spline polynomial spline
basis of the independent covariate with 3 degrees of free
dom (using the bs function from the splines base
R package) and no intercept. The nulltype was set to
"empirical" or "theoretical" for the empirical
andtheoreticalnull implementations of FDRreg, respectively.

ASH
q values were obtained using the get_qvalue func-
tion on the output of the ash function, both from ver-
sion 2.2-7 of the ashr R CRAN package. The effect sizes
and their corresponding standard errors were input as
theeffect_sizeandsebetahatparameters, respectively.

AdaPT
q values were obtained using the adapt_glm func-
tion version 1.0.0 of the adaptMT CRAN R package.
The pi_formulas and mu_formulas arguments were
both specified as natural cubic B-spline basis matrices
of the independent covariate with degrees of freedom ∈
{2, 4, 6, 8, 10} (using the ns function from the splines
base R package).

Yeast in silico experiments
Preprocessed RNA-seq count tables from [29] were down-
loaded from the authors’ GitHub repository at https://
github.com/bartongroup/profDGE48. All samples that
passed quality control in the original study were included.
All genes with a mean count of at least 1 across all samples

were included, for a total of 6553 genes. Null compar-
isons were constructed by randomly sampling 2 groups
of 5 and 10 samples from the same condition (Snf2-
knockout). Non-null comparisons of the same size were
constructed by adding differentially expressed (DE) genes
in silico to null comparisons. In addition to different sam-
ple sizes, several different settings of the proportion of
non-null genes, the distribution of the non-null effect
sizes and informativeness of the covariate were explored.
An overview of the different settings is provided in
Additional file 1 :Table S2.
We evaluated the results using a low proportion of non-

null genes (500, or approximately 7.5% non-null) as well
as a high proportion (2000 or approximately 30% non-
null). The non-null genes were selected using probability
weights sampled from a logistic function (where weights
w(u) = 1

1+e−10u+5 , and u ∼ U(0, 1)). Three types of
informative covariates were explored: (1) strongly infor-
mative, (2) weakly informative, and (3) uninformative. The
strongly informative covariate Xs was equal to the logistic
sampling weight w. The weakly informative covariate Xw
was equal to the logisitic sampling weight plus noise:w+ε,
where ε ∼ N(0, 0.25), truncated such that Xw ∈[ 0, 1]. The
uninformative Xu covariate was unrelated to the sampling
weights and drawn from a uniform distribution such that
Xu ∼ U(0, 1).
We also evaluated the results under two different dis-

tributions of non-null effect sizes: (1) unimodal and (2)
imodal. For unimodal alternative effect size distributions,
the observed fold changes for the selected non-null genes
in a non-null empirical comparison of the same sample
size were used. For bimodal alternatives, observed test
statistics z from an empirical non-null comparison of the
same sample size were sampled with probability weights
w(z) = f (|x|;α,β), where f is the Gamma probability den-
sity function (with shape and rate parameters α = 4.5
and β = 1− 1e−4, respectively). The corresponding effect
sizes (fold changes, FC) for ashq were calculated assuming
a fixed standard error: FC = zσm, where σm is the median
standard error of the log2 fold change across all genes.
To add differential signal to the designated non-null

genes, the expression in one randomly selected group
was then multiplied by their corresponding fold change.
Differential expression analysis using DESeq2 [39] was
carried out on both the null and non-null comparisons
to assess specificity and sensitivity of the FDR correc-
tion methods. Genes for which DESeq2 returned NA p
values were removed. In each setting, simulations were
repeated 100 times and the average and standard error
are reported across replications. The results displayed
in the main manuscript contain 2000 DE genes, use the
strongly informative covariate, and have a sample size of 5
in each group. The results for all settings are presented in
Additional files 2, 3, 4, and 5.

https://github.com/jgscott/FDRreg
https://github.com/jgscott/FDRreg
https://github.com/bartongroup/profDGE48
https://github.com/bartongroup/profDGE48
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Polyester in silico experiments
The yeast RNA-seq data described in the previous section
was used to estimate the model parameters using ver-
sion 1.16.0 of the polyester [28] R Bioconductor
package. All samples that passed quality control in the
original study were included. A baseline group con-
taining all the samples in the wild-type group was
used, and genes with mean expression of less than
1 count were filtered out. Counts were library size
normalized using DESeq2 size factors [39], and the
get_params function from the polyester package
was used to obtain the model parameters. Counts were
simulated using the create_read_numbers function.
Using the same sample sizes as the yeast in silico
experiments (5 or 10 samples in each group), we evalu-
ated a null comparison, where the beta parameters of
the create_read_numbers function (which represent
effect size) were set to zero for all genes.We also evaluated
non-null comparisons where the beta parameters were
drawn from a standard normal distribution for 2000 non-
null genes. The non-null genes were selected in the same
way as the yeast in silico experiments described in the
previous section. Differential expression analysis and eval-
uation of FDR correction methods was also carried out as
described for the yeast experiments. Results are presented
in Additional file 6.

Simulation studies
We performed Monte Carlo simulation studies to assess
the performance of the methods with known ground
truth information. In each simulation, M observed effect
sizes, {di}Mi=1, and standard errors, {si}Mi=1, were sampled to
obtain test statistics, {ti = di/si}Mi=1. Letting {δi}Mi=1 denote
the true effect sizes, each ti was tested against the null
hypothesisHi

0 : δi = 0. Observed effect sizes and standard
errors were simulated to obtain test statistics following
one of four distributions under the null:

– Standard normal distribution
– t distribution with 11 degrees of freedom
– t distribution with 5 degrees of freedom
– χ2 distribution with 4 degrees of freedom.

For each test i, let hi denote the true status of the test, with
hi = 0 and hi = 1 corresponding to the test being null
and non-null in the simulation. True effect sizes, δi, were
set to 0 for {i|hi = 0} and sampled from an underlying
non-null effect size distribution for {i|hi = 1}. For normal
and t distributed test statistics, observed effect sizes were
simulated by adding standard normal noise to the true
effect sizes such that di ∼ N(δi, 1). The standard errors
were all set to 1 to obtain normal test statistics and set to
si = √

vi/ν with each vi ∼ χ2
ν independent to obtain t

statistics with ν degrees of freedom. For χ2 test statistics,

observed effect sizes were sampled from non-central χ2

distributions with non-centrality parameters equal to the
true effect sizes such that di ∼ χ2

4 (ncp = δi). Standard
errors were not used to simulate χ2 statistics and were
simply set to 1. The p-value was calculated as the two-tail
probability of the sampling distribution under the null for
normal and t statistics. The upper-tail probability under
the null was used for χ2 statistics.
In all simulations, independent covariates, {xi}Mi=1, were

simulated from the standard uniform distribution over
the unit interval. In the uninformative simulation setting,
the {hi}Mi=1 were sampled from a Bernoulli distribution
according to the marginal null proportion, π̄0, indepen-
dent of the {xi}. In all other settings, the {hi}Mi=1 were
sampled from Bernoulli distributions with test-specific
probabilities determined by the informative covariates
through a function, p(xi), taking values in [ 0, 1]. Sev-
eral forms of p(xi) were considered in the simulations.
The p(xi) were chosen to explore a range of relation-
ships between the covariate and the null probability of
a test. For further flexibility, the functional relationships
were defined conditional on the marginal null probability,
π̄0, so that similar relationships could be studied across a
range of π̄0. The following p(xi; π̄0) relationships, shown
in Additional file 1: Figure S5A for π̄0 = 0.90, were
investigated in the simulations.

pcubic(x; π̄0) = 4(1 − π0)(1 − x)1/3 + 4π0 − 3

pstep(x; π̄0) =

⎧
⎪⎪⎨

⎪⎪⎩

π̄0/2 − 1/2 if x ∈[ 0, 1/4)
π̄0/4 − 1/4 if x ∈[ 1/4, 1/2)
−π̄0/4 + 1/4 if x ∈[ 1/2, 3/4)
−π̄0/2 + 1/2 if x ∈[ 3/4, 1]

psine(x; π̄0) =

⎧
⎪⎪⎨

⎪⎪⎩

π̄0 − π̄0 sin(2π · x)
if π̄0 ∈[ 0, 1/2)

π̄0 + (1 − π̄0) sin(2π · x)
if π̄0 ∈[ 1/2, 1]

pcosine(x; π̄0) =

⎧
⎪⎪⎨

⎪⎪⎩

π̄0 − π̄0 cos(2π · x)
if π̄0 ∈[ 0, 1/2)

π̄0 + (1 − π̄0) cos(2π · x)
if π̄0 ∈[ 1/2, 1]

The functions pcubic and pstep are valid, i.e., map to [ 0, 1],
for π̄0 ∈[ 3/4, 1] and π̄0 ∈[ 1/2, 1], respectively. All other
p(xi) are valid for π̄0 ∈[ 0, 1]. In addition to these func-
tional relationships, we also considered two specialized
relationships with π̄0 fixed at 0.80. These specialized
relationships were parameterized by an informativeness
parameter, δ ∈[ 0, 1], such that when δ = 0, the covariate
was completely uninformative and stratified the hypothe-
ses more effectively as δ increased.

pc-info(x; δ) = 0.8 · (1 − δ) + δ/(1 + e5−25x)

pd-info(x; δ) =
{
0.2 · (4 + δ) if x ∈[ 0, 4/5]
0.8 · (1 − δ) if x ∈ (4/5, 1]
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The first, pc-info, is a continuous relationship between the
covariate, x and the null proportion, π0, while the second,
pd-info, is discrete. The results of simulations with pc-info
are shown in Additional file 1: Figure S4A-B, where the
“informativeness” axis is simply 100 ·δ. The covariate rela-
tionships, pc-info and pd-info, are shown in Additional file 1:
Figure S9 across a range of δ informativeness values.
Simulations were formulated and performed as sev-

eral distinct case studies, with full results presented in
Additional files 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, and 20. The complete combination of settings used in
each simulation case study is given in Additional file 1:
Table S3. In each case study, simulations were repeated
100 times, and performance metrics are reported as the
average across the replications.
FDRreg and ASH were excluded from simulations with

χ2 distributed test statistics because the setting clearly
violated the assumptions of both methods (Fig. 1).

Case studies
We explored several real case studies using publicly avail-
able datasets. Unless otherwise stated, we use an α = 0.05
level to define a positive test. In all cases, we also eval-
uate the results using an independent but uninformative
covariate (sampled from a standard uniform distribution).
The locations of where the data can be found and themain
details for each case-study is described below. For more
specific analysis details, please refer to Additional files 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, and 41 which contain complete reproducible code
sets.

Genome-wide association study
GWAS analysis results were downloaded from http://
portals.broadinstitute.org/collaboration/giant/images/
3/3a/BMI.SNPadjSMK.zip [40, 41]. We used the results
subset by European ancestry provided in the file BMI.SNP
adjSMK.CombinedSexes.EuropeanOnly.txt to avoid the
impact of population stratification on our results. We
followed [42] and implemented a linkage disequilibrium
(LD)-based pruning step (using the clump command
of PLINK v1.90b3s [43]) to remove SNPs in high LD
(r2 < 0.2) with any nearby SNP (< 250 Kb), based LD
estimates from the 1000 Genomes phase three CEU
population data [44], available at http://neurogenetics.
qimrberghofer.edu.au/iSECA/1000G_20101123_v3_
GIANT_chr1_23_minimacnamesifnotRS_CEU_MAF0.
01.zip. We explored the use of both sample size and
minor allele frequency for each SNP as informative
covariates. For fdrreg-e and fdrreg-t, which require a
normally distributed test statistic as input, the t statis-
tic (effect size divided by standard error) was used.
Because of the large sample sizes in this study (median
161,165), the t statistics were approximately normal.

For ashq, we used the provided effect size and standard
error of the test statistics. Full results are provided in
Additional file 21.

Gene set analysis
We used two RNA-seq datasets that investigated the
changes in gene expression (1) between the cerebellum
and cerebral cortex of 5 males from Genotype-Tissue
Expression Project [45] and (2) upon differentiation of
hematopoietic stem cells (HSCs) into multipotent pro-
genitors (MPP) [46] (processed data for both available
at https://doi.org/10.5281/zenodo.1475409 [47]) . For the
independent and informative covariate, we considered the
size of the gene sets. We considered two different gene set
analysis methods: gene set enrichment analysis (GSEA)
[48] and overrepresentation testing [49]. To implement
the overrepresentation test, we first used version 1.20.0
of the DESeq2 R Bioconductor package to obtain a sub-
set of differentially expressed genes (with adjusted p-value
< 0.05), on which a test of overrepresentation of DE genes
among gene sets was performed using version 1.32.0 of
the goseq R Bioconductor package [49]. To implement
GSEA, we used version 1.6.0 of the fgsea R Bioconduc-
tor package [50] and used the DESeq2 test statistics to
rank the genes. For both methods, Gene Ontology cate-
gories obtained using version 2.36.1 of the biomaRt R
Bioconductor package containing at least 5 genes were
used for the gene sets. For fgsea, 10,000 permutations
were used and gene sets larger than 500 genes were
excluded as recommended in the package documentation.
The methods fdrreg-e, fdrreg-t, and ashq were excluded
since they require test statistics and/or standard errors
that GSEA does not provide. For goSeq, we also filtered
on gene sets containing at least one DE gene. Full results
are provided in Additional files 22, 23, 24, and 25.

Bulk RNA-seq
We used two RNA-seq datasets to asses the performance
of modern FDR methods in the context of differential
expression. The first dataset consisted of 20 paired sam-
ples of the GTEx project. These 20 samples belonged
to 2 tissues (Nucleus accumbens and Putamen) of 10
female individuals. These samples were preprocessed as
described in [51] (processed data available at https://
doi.org/10.5281/zenodo.1475409 [47]). We used a sec-
ond dataset from an experiment in which the microRNA
mir200c was knocked down in mouse cells [52]. The
transcriptomes of knockdown cells and control cells were
sequenced in biological duplicates. The processed sam-
ples of the knockdown experiment were downloaded
from the recount2 database available at http://duffel.rail.
bio/recount/v2/SRP030475/rse_gene.Rdata [53, 54]. For
each dataset, we tested for differential expression using
DESeq2. For FDR methods that can use an informative
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covariate, we used mean expression across samples, as
indicated in the DESeq2 vignette. Full results are pro-
vided in Additional files 26 and 27.

Single-cell RNA-seq
We selected two datasets from the conquer [55] database
available at http://imlspenticton.uzh.ch/robinson_lab/con
quer/data-mae/GSE84465.rds and http://imlspenticton.
uzh.ch/robinson_lab/conquer/data-mae/GSE94383.rds
[56]. First, we detected differentially expressed genes
between glioblastoma cells sampled from a tumor core
with those from nearby tissue (GSE84465) [57]. In addi-
tion, we detected DE genes between murine macrophage
cells stimulated to produce an immune response with an
unstimulated population (GSE94383) [58]. We filtered
out cells with a mapping rate less than 20% or fewer than
5% of genes detected. Genes detected in at least 5% of
cells were used in the analysis and spike-in genes were
excluded. We carried out DE analyses using two different
methods developed for scRNA-seq: scDD [59] andMAST
[60], along with the Wilcoxon rank-sum test. MAST was
applied to log2(TPM + 1) counts using version 1.6.1 of the
MAST R Bioconductor package. scDD was applied to raw
counts normalized by version 1.8.2 of the scran R Bio-
conductor package [61] using version 1.4.0 of the scDD R
Bioconductor package. Wilcoxon was applied to counts
normalized by TMM (using version 3.22.3 of the edgeR
R Bioconductor package [62]) using the wilcox.test
function of the stats base R package. We examined the
mean non-zero expression and detection rate (defined as
the proportion of cells expressing a given gene) as poten-
tially informative covariates. The fdrreg-e and fdrreg-t
methods were excluded since none of the test statis-
tics used are normally distributed. Likewise, ashq was
excluded since none of the methods considered provide
effect sizes and standard errors. Full results are provided
in Additional files 28, 29, 30, 31, 32, and 33.

ChIP-seq
ChIP-seq analyseswere carried out on two separate datasets.
First, H3K4me3 data from two cell lines (GM12878 and
K562) were downloaded from the ENCODE data portal
[63] at http://hgdownload.cse.ucsc.edu/goldenpath/hg19/
encodeDCC/wgEncodeBroadHistone/ [64]. In each cell
line, four replicates were selected with half of them from
one laboratory and the other half from another labo-
ratory. We performed two types of differential binding
analyses between cell lines. First, following the workflow
of [65], we used the csaw [66] method (version 1.14.1 of
the csaw Bioconductor R package) to identify candidate
de novo differential windows and applied the edgeR [62]
method (version 3.22.3 of the edgeR R Bioconductor
package) to test for significance. Second, we tested for
differential binding only in predefined promoter regions

using DESeq2 [39]. Promoter regions were obtained from
the UCSC “Known Gene” annotations for human genome
assembly hg19 (GRCh37). The csaw-based analysis was
also carried out on a second ChIP-seq dataset comparing
CREB-binding protein in wild-type and CREB knockout
mice [65, 67] (GSE54453) obtained from the European
Nucleotide Archive at https://www.ebi.ac.uk/ena/data/
view/PRJNA236594 [68]. For the csaw-based analyses,
we used the region width as the informative covariate.
For the promoter region-based analysis, we used mean
coverage as the informative covariate. The fdrreg-e and
fdrreg-t methods were excluded from csaw analyses since
the test statistics used are non normally distributed.
Likewise, ashq was excluded since csaw does not provide
effect sizes and standard errors. Full results are provided
in Additional files 34, 35, and 36.

Microbiome
Weperformedtwotypesofanalyses (1) differential abundance
analysis, and (2) correlation analysis. For the differential
abundance analyses, we used four different datasets from the
MicrobiomeHD database [69] available at https://doi.org/
10.5281/zenodo.840333 [70]: (1) obesity [71], (2) inflam-
matory bowel disease (IBD) [72], (3) infectious diarrhea
(clostridium difficile (CDI) and non-CDI) [73], and (4)
colorectal cancer (CRC) [74]. These studies were processed
as described in [69]. We performed Wilcoxon rank-sum
differential abundance tests on the operational taxonomic
units (OTUs, sequences clustered at 100% genetic similar-
ity) and on taxa collapsed to the genus level as in [69]. Full
results are provided in Additional files 37, 38, 39, and 40.
For the correlation analyses, we used a previously pub-

lished dataset of microbial samples from monitoring
wells in a site contaminated by former waste disposal
ponds, where all sampled wells have various geochem-
ical and physical measurements [75]. Paired-end reads
were merged using PEAR (version 0.9.10) and demulti-
plexed with QIIME v 1.9.1 split_libraries_fastq.py (max-
imum barcode error of 0 and quality score cutoff of
20) [76, 77]. Reads were dereplicated using USEARCH
v 9.2.64 -fastx_uniques, and operational taxonomic units
(OTUs) were called with -cluster_otus and an identity
threshold of 0.97 [78]. These data were processed with the
amplicon sequence analysis pipeline http://zhoulab5.
rccc.ou.edu/pipelines/ASAP_web/pipeline_asap.php and
are available at https://doi.org/10.5281/zenodo.1455793
[79]. We carried out a Spearman correlation test (H0 :
ρ = 0) between OTU relative abundances across wells and
the respective values of three geochemical variables: pH, Al,
and SO4. Full results are provided in Additional file 41.
For all analyses, we examined the ubiquity (defined

as the percent of samples with non-zero abundance of
each taxa) and mean non-zero abundance of taxa as
potentially informative covariates. The results in the main
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manuscript are shown for theOTU level, unless there were
no rejections in the vast majority of methods, and then
the results are shown for genus level. The SO4 dataset was also
excluded from the main results since most methods find
no rejections. We excluded fdrreg-e, fdrreg-t, and ashq
since neither the Wilcoxon nor Spearman test statistics
are normally distributed, nor do they provide an effect size
and standard error. Due to small numbers of tests, lfdr was
excluded from the obesity and IBD genus level analyses.

Evaluation metrics
All studies (in silico experiments, simulations, and case
studies) were evaluated on the number of rejections at
varying α levels, ranging from 0.01 to 0.10. The overlap
among rejection sets for eachmethod was examined using
version 1.3.3 of the UpSetR R CRAN package. In silico
experiments and simulation studies were also evaluated
on the following metrics at varying α levels, ranging from
0.01 to 0.10: TPR, observed FDR, and true negative rate
(TNR). Here, we define TPR as the number of true posi-
tives out of the total number of non-null tests, observed
FDR as the number of false discoveries out of the total
number of discoveries (defined as 0 when there are no dis-
coveries), and TNR as the number of true negatives out of
the total number of null tests.

Summary metrics
Thefinalratingspresented in Fig. 6 were determined from the
aggregated results of the simulations, yeast experiments,
and case studies.

FDR control
Ratings were determined using the results from non-null
simulations where all methods were applied, i.e., excluding
χ2 settings, and all non-null yeast experiments. In each
setting or experiment, a method was determined to con-
trol FDR at the nominal 5% cutoff if the mean FDR across
replications was less than one standard error above 5%.
The following cutoffs were used to determine superior,
satisfactory, and unsatisfactory methods.

– Superior: failed to control FDR in less than 10% of
settings in both simulations and yeast experiments.

– Satisfactory: failed to control FDR in less than 10% of
settings in either simulations or yeast experiments.

– Unsatisfactory: otherwise.

The computed proportion of simulation and yeast settings
exceeding the nominal FDR threshold are shown in Fig. 5a.

Power
Similar to the above, ratings were determined using the
results from non-null simulations where all methods were
applied and all non-null yeast experiments. In each setting

or experiment, methods were ranked in descending order
according to themeanTPR across replications at the nom-
inal 5% FDR cutoff. Ties were set to the intermediate value,
e.g., 1.5, if two methods tied for the highest TPR. The
mean rank of each method was computed across simula-
tion settings and yeast experiments separately and used to
determine superior, satisfactory, and unsatisfactory meth-
ods according to the following cutoffs.

– Superior: mean TPR rank less than 5 (of 8) in both
simulations and yeast experiments.

– Satisfactory: mean TPR rank less than 6 (of 8) in both
simulations and yeast experiments.

– Unsatisfactory: otherwise.

Mean TPR ranks for methods across simulation and
yeast settings are shown in Fig. 5b.

Consistency
Ratings were determined using results from non-null sim-
ulations where all methods were applied and all case stud-
ies. Here, ashq and fdrreg-t were excluded from metrics
computed using the case studies, as the twomethods were
only applied in 4 of the 26 case studies. In each simulation
setting, the TPR and FDR of each covariate-aware method
were compared against the TPR and FDR of both the BH
approach and Storey’s q-value at the nominal 5% FDR
cutoff. Similarly, in each case study, the number of rejec-
tions of each method was compared against the number
of rejections of BH and Storey’s q-value. Based on these
comparisons, twometricswere computed for each method.
First, in each setting and case study, a modern method

was determined to underperform the classical approaches
if the TPR or number of rejections was less than 95% of the
minimum of the BH approach and Storey’s q-value. The
proportion of simulation settings and case studies where a
modern method underperformed was used to determine
the consistent stability of an approach (Fig. 5c). The FDR
of the methods was not used for this metric.
Second, in each simulation setting and case study, the

log-ratio FDR, TPR, and number of rejections were com-
puted against a baseline for each modern method. For
each setting, the average across the classical methods was
used as the baseline. Methods were then ranked according
to the standard deviation of these log ratios, capturing the
consistency of the methods across simulations and case
studies (Fig. 5d).
These two metrics were used to determine superior,

satisfactory, and unsatisfactory methods according to the
following cutoffs.

– Superior: in top 50% (3) of methods according to
variance of log-ratio metrics.

– Satisfactory: not in top 50% (3) of methods according
to variance of log-ratio metrics, but underperformed
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both BH and Storey’s q-value in less than 10% of case
studies or simulation settings.

– Unsatisfactory: not in top 50% (3) of methods
according to variance of log-ratio metrics, and
underperformed both BH and Storey’s q-value in
more than 10% of case studies or simulation settings.

Applicability
Ratings were determined using the proportion of case
studies in which each method could be applied. The pro-
portion was calculated first within each type of case stud-
ies, followed by averaging across all case studies. This was
done to prevent certain types, e.g., scRNA-seq DE anal-
ysis, from dominating the average. The following cutoffs
were used to determine superior, satisfactory, and unsat-
isfactory methods. For this metric, cases when adapt-glm
returned exactly zero positive tests while all other meth-
ods returned non-zero results where labeled as data sets
where the method could not be applied. This is denoted
by an asterisk in Fig. 6.

– Superior: applied in 100% of case studies.
– Satisfactory: applied in more than 50% of case studies.
– Unsatisfactory: otherwise.

Usability
Ratings were determined based on our experience using
the method for our benchmark comparison and rated
according to the following criteria.

– Superior: a well-documented implementation is
available.

– Satisfactory: an implementation is available, but lacks
extensive documentation or requires additional work
to install.

– Unsatisfactory: no implementation is readily available.
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