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Abstract

Background: The human genome contains “dark” gene regions that cannot be adequately assembled or aligned
using standard short-read sequencing technologies, preventing researchers from identifying mutations within these
gene regions that may be relevant to human disease. Here, we identify regions with few mappable reads that we
call dark by depth, and others that have ambiguous alignment, called camouflaged. We assess how well long-read
or linked-read technologies resolve these regions.

Results: Based on standard whole-genome lllumina sequencing data, we identify 36,794 dark regions in 6054 gene
bodies from pathways important to human health, development, and reproduction. Of these gene bodies, 8.7% are
completely dark and 35.2% are 2 5% dark. We identify dark regions that are present in protein-coding exons across
748 genes. Linked-read or long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore
Technologies reduce dark protein-coding regions to approximately 50.5%, 35.6%, and 9.6%, respectively. We present
an algorithm to resolve most camouflaged regions and apply it to the Alzheimer's Disease Sequencing Project. We
rescue a rare ten-nucleotide frameshift deletion in CR1, a top Alzheimer’s disease gene, found in disease cases but
not in controls.

Conclusions: While we could not formally assess the association of the CRT frameshift mutation with Alzheimer’s
disease due to insufficient sample-size, we believe it merits investigating in a larger cohort. There remain thousands
of potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-
read technologies.

Keywords: Camouflaged genes, Dark genes, Long-read sequencing, Pacific Biosciences (PacBio), Oxford Nanopore
Technologies (ONT), 10x Genomics, Alzheimer's Disease Sequencing Project (ADSP), CR1, APOE

Background

Researchers have known for years that large, complex
genomes, including the human genome, contain “dark”
regions—regions where standard high-throughput
short-read sequencing technologies cannot be adequately
assembled or aligned—thus preventing our ability to
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identify mutations within these regions that may be rele-
vant to human health and disease. Some dark regions
are what we term “dark by depth” (few or no mappable
reads), while others are what we term “dark by mapping
quality” (reads aligned to the region, but with a low
mapping quality). Regions that are dark by depth may
arise because the region is inherently difficult to se-
quence at the chemistry level (e.g., high GC content [1,
2]), essentially eliminating sequencing reads from that
region altogether. Other dark regions arise, not because
the sequencing is inherently problematic, but because of
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bioinformatic challenges. Specifically, many dark regions
arise from duplicated genomic regions, where confi-
dently aligning short reads to a unique location is not
possible; we term these regions as “camouflaged”. These
camouflaged regions are generally either large contigu-
ous tandem repeats (e.g., centromeres, telomeres, and
other short tandem repeats), or a larger specific DNA re-
gion that has been duplicated (e.g., a gene duplication)
either in tandem or in a more distal genome region. In
fact, many genes in the human genome were duplicated
over evolutionary time and are still transcriptionally and
translationally active (e.g., heat-shock proteins) [3-9],
while others have been duplicated, but are considered
inactive (i.e., pseudogenes). Regardless of whether the
duplication is active, however, any genomic region that
has been nearly identically duplicated and is large
enough to prevent sequencing reads from aligning un-
ambiguously will be “dark”, because the aligner cannot
determine which genomic region the read originated
from.

When confronted with a read that aligns equally well to
two or more camouflaged regions (commonly known as
multi-mapping reads [2, 10]), standard next-generation se-
quence aligners, such as the Burrows-Wheeler Aligner
(BWA) [11-13], randomly map the read to one of the re-
gions and assign a low mapping quality. For BWA, specif-
ically, reads that cannot be uniquely mapped are generally
assigned a mapping quality (MAPQ) of 0; though, in cer-
tain paired-end sequencing scenarios, BWA will assign a
high mapping quality if the read mate is confidently
mapped nearby (ie, within the estimated insert-size
length).

Recent work has characterized camouflaged regions, in
part, including a study that demonstrates how this issue
affects all standard RNA-Seq analyses [10] and another
that quantifies the number of nucleotides in human refer-
ence GRCh38 that are dark from mapping quality of 0O
(camouflaged regions), based on 1000 Genome Project
data [2]. Robert and Watson demonstrated that expression
for 958 genes were either over- or under-represented be-
cause of multi-mapping reads across 12 different
RNA-Seq processing methods, and no method was im-
mune to the problem [10]. They also demonstrated that
many of these genes are directly implicated in human dis-
ease. Zheng-Bradley et al. recently re-aligned genomes
from the 1000 Genomes Project to GRCh38, and, among
other findings, generally demonstrated the breadth of
multi-mapping reads across the genome [2]. These data
characterize the general problem and report specific genes
affected by this issue.

Here, we systematically analyze dark and camouflaged
genes to more fully characterize the problem, and we
highlight many disease-relevant genes that are directly
implicated in neurological diseases and conditions such
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as Alzheimer’s disease, autism spectrum disorder, amyo-
trophic lateral sclerosis (ALS), spinal muscular atrophy
(SMA), and others. We also show that linked-read and
long-read sequencing technologies substantially reduce
the number of dark and camouflaged regions, and we
present a method to address camouflaged regions, even
in standard short-read sequencing data. As a proof of
concept, we applied our method to the Alzheimer’s Dis-
ease Sequencing Project (ADSP) data and identified a
rare, ten-nucleotide frameshift deletion in the C3b and
C4b binding domain of CRI, a top Alzheimer’s disease
gene [14-22], that is present in five ADSP cases but zero
controls. The ADSP is not large enough to statistically
assess association between the CRI frameshift mutation
and Alzheimer’s disease, but this warrants further
investigation.

Results

To quantify the number of dark and camouflaged re-
gions in standard short-read whole-genome sequencing
data, we obtained whole-genome sequencing data for
ten unrelated males from the Alzheimer’s Disease Se-
quencing Project (ADSP) and scanned each sample for
dark and camouflaged regions, averaging across all ten
samples; we only used data from males in this study so
we could also assess dark and camouflaged regions on
the Y chromosome because large portions of the Y
chromosome are dark. We ignored incomplete genomic
regions (e.g., centromeres). For most of our analyses, we
then limited the dark and camouflaged regions to known
gene bodies, based on annotations from build 93 of the
GRCh38 human reference genome, excluding alternate
contig assemblies. For comparison, we performed the
same analyses on GRCh38 including alternate contig as-
semblies, and on build 87 of the Ensembl GRCh37 human
reference genome [23]. All ten samples were sequenced
using standard Illumina whole-genome sequencing with
100-nucleotide read lengths, where median genome-wide
read depths ranged from 33.0x to 45.0x coverage, with an
overall median of 37.5x. We performed the same analyses
on ten unrelated males from the 1000 Genomes Project
[24] that were sequenced using Illumina whole-genome
sequencing with 250-nucleotide read lengths, where me-
dian genome-wide read depths ranged from 30.0x to 61.0x
coverage, with an overall median of 58.5x. Similarly, we
assessed how well linked-read or long-read sequencing
technologies from 10x Genomics (52x median coverage),
PacBio (50x median coverage), and ONT (down-sampled
to ~ 52x median coverage) resolve dark and camouflaged
regions. Although we were only able to obtain a single
high-depth male genome for each long-read technology,
we believe our results are a reasonable estimate for how
well each technology addresses dark and camouflaged
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regions. Larger sequencing studies will further clarify our
results.

We consider a region “dark” for one of two reasons:
(1) insufficient number of reads aligned to the genomic
region (dark by depth) and (2) reads aligned to the re-
gion, but with insufficient mapping quality for a variant
caller to identify mutations in the region (dark by map-
ping quality). Specifically, we define regions that are dark
by depth as those with <5 aligned reads (Fig. 1la) and
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regions that are dark by mapping quality as those where
>90% of aligned reads have a mapping quality (MAPQ)
<10 (Fig. 1b). Defining dark-by-depth regions as those
with <5 reads is a relatively strict cutoff and likely un-
derestimates the number of dark regions because 20 to
30 reads is often considered a reasonable minimum to
confidently identify heterozygous mutations; overall me-
dian read depth is an important factor, however, and we
believe a strict cutoff provides a more conservative
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Fig. 1 Genomic regions may be “dark” by depth or mapping quality, many of which are “camouflaged”. Large, complex genomes are known to
contain “dark” regions where standard high-throughput short-read sequencing technologies cannot be adequately assembled or aligned. We split
these dark regions into two types: (1) dark because of low depth and (2) dark because of low mapping quality (MAPQ), which are mostly
“camouflaged”. a HLA-DRB5 encodes a Major Histocompatibility Complex protein that plays an important role in immune response and has been
associated with several diseases, including Alzheimer’s disease. It is well known to be dark (low depth); specifically, when performing whole-
genome sequencing using standard short-read sequencing technologies, an insufficient number of reads align, preventing variant callers from
assessing mutations. We calculated sequencing depth across HLA-DRB5 for ten male samples from the Alzheimer’s Disease Sequencing Project
(ADSP) that were sequenced using standard lllumina whole-genome sequencing with 100-nucleotide read lengths. Approximately 63.5% (49.6%
of coding sequence) of HLA-DRB5 is dark by depth (< 5 aligned reads; indicated by red lines). b HSPATA is a heat-shock protein from the 70-
kilodalton (kDa) heat-shock protein family and plays an important role in stabilizing proteins against aggregation. HSPATA is dark because of low
mapping quality (MAPQ < 10 for =2 90% of reads at a given position). Approximately 41.1% (53.0% coding sequence) of HSPATA is dark by
mapping quality (indicated by red line). Dark gray bars indicate sequencing reads with a relatively high mapping quality, whereas white bars
indicate reads with a low mapping quality (MAPQ = 0). ¢ Many genomic regions that are dark because of mapping quality arise because they
have been duplicated in the genome, which we term “camouflaged” (or “camo genes”). When confronted with a read that aligns equally well to
more than one location, standard sequence aligners randomly assign the read to one location and give it a low mapping quality. Thus, it is
unclear from which gene any of the reads indicated by white bars originated from. HSPATA and HSPATB are clear examples of camouflaged genes
arising from a tandem duplication. The two genes are approximately 14 kb apart and approximately 50% of the genes are identical
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estimate. We used a mapping quality threshold <10 to
define regions that are dark by mapping quality because
that is the standard cutoff used in the Genome Analysis
ToolKit (GATK) [25]. Camouflaged regions are those
that are dark by mapping quality because the region has
been duplicated in the genome (Fig. 1c). We identified
sets of camouflaged regions (regions camouflaged by
each other) using BLAT [26], where we required at least
98% sequence identity for two regions to be included in
the same set.

Standard short-read sequencing leaves 36,794 dark
regions across 6054 gene bodies, including protein-
coding exons from 748 genes

Using whole-genome Illumina sequencing data (100-nu-
cleotide read lengths) from ten unrelated males, we
identified 36,794 dark regions (> 15 million nucleotides)
in 6054 gene bodies (based on Ensembl GRCh38 build
93 gene annotations) that were either dark by depth or
dark by mapping quality (Table 1; Additional file 1:
Figure Sla; Additional file 2: Table S1; Additional file 3:
Table S2). Stratifying the gene bodies by GENCODE
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biotype [27], 3804 gene bodies were protein coding,
1232 were pseudogenes, and 753 were long intergenic
non-coding RNAs (lincRNA; Fig. 2a). Of all 36,794 dark
gene-body regions, 27,982 were intronic, 4351 were in
non-coding RNA exons (e.g., lincRNAs and pseudo-
genes), 2855 were in protein-coding exons (CDS), 908
were in 5'UTR regions, and 698 were in 3"UTR regions
(Fig. 2b; Additional file 2: Table S1). Any dark region
that spanned a gene element boundary (e.g., intron to
exon) was split into separate dark regions. Of the 6054
gene bodies, 527 (8.7%) were 100% dark, 1608 (26.6%)
were at least 25% dark, and 2128 (35.2%) were at least
5% dark (Additional file 1: Figure S1b; Additional file 2:
Table S1). In intragenic regions, there were a total of
68.7 million nucleotides that were dark in 84,174 re-
gions, totaling 83.8 million dark nucleotides and 90,228
regions, genome wide (Table 1). We also found that
aligning GRCh38+alt increased the number of dark nu-
cleotides > 3 times compared to GRCh37.

Focusing only on CDS regions, we identified 2855 dark
CDS regions (>460,000 nucleotides) across 748
protein-coding genes that were dark by either depth or

Table 1 Dark and camouflaged regions vary by genome build. We identified dark and camouflaged regions throughout the
genome for three different builds, including GRCh37, GRCh38, and GRCh38+alt, across five different sequencing technologies (or
read lengths for lllumina). Specifically, we measured dark regions for lllumina based on 100-nucleotide read lengths, lllumina based
on 250-nucleotide read lengths, 10x Genomics, PacBio, and Oxford Nanopore Technologies (ONT). Here, the counts for dark and
camouflaged regions are combined. We found that the number of dark regions and nucleotides, both within gene

bodies (represented as GB in the table) and outside gene bodies, varies dramatically by build and technology. Overall, each

technology has its respective strengths. GRCh38 including alternate contigs has > 3x more dark nucleotides than GRCh37, and more
than 2x more dark regions. Results presented throughout the manuscript are based on GRCh38 (in gray)

Dark regions GRCh37 GRCh38 GRCh38+alt
i1100 i1250 10x PacBio  ONT i1100 i1250 10x PacBio  ONT i1100 PacBio  ONT
Non-GB nucs. 224AM 15.7M 54M 11.1M 6.7M 68.7M 42.5M 57.0M 56.8M 52.1M 88.4M 69.5M 59.1M
Non-GB regs. 38,931 16247 17481 10615 13441 84,174 54418 20650 20276 23613 91,263 35136 25,682
GB nucs. 16.3M 11.4M  42M 6.7M 3.7M 15.1M 122M 43M 6.4M 33M 41.6M 26.9M 16.2M
GBs 5857 4424 3828 2095 4454 6054 4227 3993 2170 4465 7396 3332 4465
Protein-coding 3792 2814 2845 1251 3464 3804 2437 2875 1275 3406 4291 1741 3041
Pseudogenes 1134 955 454 483 417 1232 1080 518 474 425 1701 876 668
lincRNAs 732 492 398 254 476 753 513 459 284 546 920 417 529
Others 199 163 131 107 97 265 197 141 137 88 484 298 227
GB regions 37874 20030 15076 9729 9757 36,794 21,052 14,878 8999 8701 59,703 29302 20,657
Intronic 28,751 13,971 11,700 6632 8000 27,982 14405 11322 6126 7371 41,219 18,842 14,029
ncRNA exons 4188 2799 1052 1734 959 4351 339% 1216 1738 878 6589 3573 2117
(@M 2657 1836 1313 731 416 2855 2221 1452 766 222 7885 4754 2952
5'UTR 1106 613 617 258 132 908 518 580 191 90 2238 1221 861
3'UTR 1135 785 381 369 233 698 512 307 178 140 1769 910 695
Other UTR 37 26 13 5 6 0 0 1 0 0 3 2 3
Total nucs. 387M  27OM  96M 178M  104M  838M 547M  613M  632M  554M  1300M  964M  753M
Total regs. 76805 36277 32557 20344 23,198 120968 75470 35528 29275 32314 150966 64438 46,339
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Fig. 2 Many dark regions involve protein-coding gene regions. We identified 36,794 dark regions (> 15 million nucleotides) in 6054 gene bodies
that were either dark by depth or dark by mapping quality. a Stratifying the gene bodies by GENCODE biotype, 3804 gene bodies were protein
coding, 1232 were pseudogenes, and 753 were long intergenic non-coding RNAs (lincRNA). b Of all 36,794 dark regions, 27,982 were intronic,
4351 were in ncRNA exons, 2855 were in protein-coding exons (CDS), 908 were in 5'UTR regions, and 698 were in 3'UTR regions. Any dark region
that spanned a gene element boundary (e.g., intron to exon) was split into separate dark regions

mapping quality (Fig. 3a; Additional file 2: Table SI;
Additional file 3: Table S2). We identified 117 (15.6%) of
the 748 protein-coding genes that were 100% dark in
CDS regions, 402 (53.7%) were at least 25% dark in CDS
regions, and 592 (79.1%) were at least 5% dark in CDS
regions (Fig. 3b; Additional file 2: Table S1).

Most dark protein-coding regions are specifically
camouflaged

Regions may be dark because of either low depth or
low mapping quality, but the majority of regions are
dark because of mapping quality, and many specific-
ally because they are camouflaged (low mapping qual-
ity because of a duplication). We found that 3782
(62.5%) of the 6054 dark gene bodies are dark be-
cause of mapping quality, where 2716 (44.9%) were,
in fact, camouflaged. Likewise, 436 (73.6%) of the 592
genes that were >5% dark in CDS regions were dark
because they were camouflaged. We also measured
the number of times each gene region was duplicated
and found that 71.1% of gene regions were replicated
three or fewer times in the genome, but 42 regions
were duplicated =100 times (Additional file 1: Figure
S2a), with the most repeated regions (six separate in-
tronic regions totaling 833 nucleotides from FGFI2
intron six) being replicated 530 times in aggregate.
Limiting to only CDS regions, we estimate that 76.2%
are replicated three or fewer times, with 45 replicated
>10 times (Additional file 1: Figure S2b), and the
most repeated region was from NBPF20, in which
109 nucleotides were replicated 32 times.

Linked- and long-read sequencing technologies resolve
substantial portions of the dark regions

Data from the samples sequenced using 250-nucleotide
Hlumina read lengths reduced the percentage of dark
nucleotides by 34.7%, 19.2%, and 8.1% genome-wide, for
all gene bodies, and for only CDS regions, respectively,
leaving 65.3%, 80.8%, and 91.9% of the original dark nu-
cleotides, respectively (Fig. 3¢, d; Additional file 4: Table
S3; Additional file 5: Table S4). Comparing linked- and
long-read sequencing technologies to the standard Illu-
mina 100-nucleotide read lengths, the ONT platform
performed best, both when assessing entire gene bodies,
and when considering only CDS regions. Specifically, ap-
proximately 42.8%, 28.7%, and 22.1% of the nucleotides
remained dark for all gene bodies for PacBio, 10x Gen-
omics, and ONT, respectively (Fig. 3c; Additional file 6:
Table S5; Additional file 7: Table S6; Additional file 8:
Table S7; Additional file 9: Table S8; Additional file 10:
Table S9; Additional file 11: Table S10). Similarly, ap-
proximately 22.3%, 41.2%, and 5.4% of CDS nucleotides
remained dark for PacBio, 10x Genomics, and ONT, re-
spectively (Fig. 3d; Additional file 6: Table S5; Additional
file 7: Table S6; Additional file 8: Table S7; Additional
file 9: Table S8; Additional file 10: Table S9; Additional
file 11: Table S10). We also calculated the area under the
curve (AUC) for each technology, where the AUC is
based on the percentage of each gene that is dark. Com-
pared to the AUC for 100-nucleotide Illumina read
lengths, Illumina-250 read lengths, PacBio, 10x Genom-
ics, and ONT resolved 12.1%, 64.4%, 49.5%, and 90.4%
of CDS gene regions, respectively (Fig. 3b). Only 15 of
117 genes that were originally 100% dark remained
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Fig. 3 Dark coding regions occur throughout the genome and are largely resolved with long-read sequencing technologies. We identified 2855
dark coding (CDS) regions in 748 protein-coding genes that were dark by either depth or mapping quality (Additional file 2: Table S1; Additional
file 3: Table S2). We identified 117 (15.6%) of the 748 protein-coding genes were 100% dark in CDS regions, 402 (53.7%) were at least 25% dark in
CDS regions, and 592 (79.1%) were at least 5% dark in CDS regions (Additional file 2: Table S1). a We mapped all protein-coding gene bodies
with a dark coding exon to the genome to visualize their genomic location and are generally spread throughout. There are several tight clusters
of dark CDS regions on chromosomes 1, 9, 10, and Y, however. b We assessed how well increasing read lengths would resolve dark regions by
assessing samples sequenced with lllumina whole-genome sequencing using 250-nucleotide read lengths, as well as long-read technologies 10x
Genomics, Oxford Nanopore Technologies (ONT), and Pacific Biosciences (PacBio). Data from the samples sequenced using 250-nucleotide
lllumina read lengths reduced the area under the curve (AUC) by 12.1% in CDS regions. Comparing long-read sequencing technologies to the
standard lllumina 100-nucleotide read lengths, 10x Genomics, PacBio, and ONT reduced the area under the curve for CDS regions by
approximately 49.5%, 64.4%, and 90.4%, respectively. The AUC for each technology is scaled in reference to lllumina sequencing based on
100-nucleotide read lengths (i.e, AUC for Illumina 100-nucleotide read lengths=1). In contrast to overall results, PacBio outperformed 10x
Genomics when looking only at CDS regions (see text). Most analyses focused on genes where at least 5% of the CDS nucleotides are
dark, indicated by the dashed line. ¢, d We also calculated the raw number of dark nucleotides for each technology in GRCh38, genome
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100% dark in the ONT data. In contrast to overall
gene-body results, PacBio outperformed 10x Genomics
when looking only at CDS regions (Fig. 3c, d). The
long-read technologies improved over Illumina mostly
by reducing the percentage of nucleotides that are dark
by mapping quality (Additional file 1: Figure Slc). Sur-
prisingly, the percentage of gene-body regions that are
dark because of low depth is higher for long-read

technologies than it is for Illumina (Additional file 1:
Figure Slc).

Important pathways and gene families are affected by
dark and camouflaged regions

Because such a large number of genes are dark, we char-
acterized the pathways for genes that are not fully repre-
sented in standard Illumina short-read sequencing
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(100-nucleotide reads) datasets. We included all genes
where at least 5% of the CDS regions were dark (565
unique gene symbols) and identified several pathways that
are important in human health, development, and repro-
ductive function (Fig. 4a; Additional file 12: Table S11). Spe-
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Fig. 4 Pathways relevant to human health, development, and reproductive function are affected by dark and camouflaged genes. We
characterized the pathways for dark and camouflaged genes using Metascape.org, including only genes where at least 5% of the CDS regions
were dark (565 unique gene symbols; based on standard lllumina 100 nucleotide read lengths). a Specific pathway groups included Ub-specific
processing proteases (R-HSA-5689880; logP = — 10.70), defensins (R-HSA-1461973; logP = — 9.43), ncRNA 3'-end processing (GO:0043628; logP = —
8.87), gonadal mesoderm development (GO:0007506; logP = — 8.76), spermatogenesis (GO:0007283; logP = — 8.29), spindle assembly (GO:0051225;
logP = —7.56), NLS-bearing protein import into nucleus (GO:0006607; logP = — 6.63), methylation-dependent chromatin silencing (GO:0006346;
logP = —4.98), activation of GTPase activity (GO:0090630; logP = —4.67), and others. b Looking specifically at known protein-protein interactions,
we found 103 proteins with 172 known interactions (Additional file 1: Figure S3) and, within those, identified four groups enriched for protein-
protein interactions using the MCODE algorithm [28] (Fig. 4b). All four MCODE groups combined are primarily associated with RNA transport
(hsa030313; logP = — 18.59; Additional file 1: Figure S4; accessed March 2019). Individually, the first group (MCODET1) is enriched for proteins
involved in systemic lupus erythematosus (hsa05322; logP = — 6.55), cellular response to stress (R-HSA-2262752; logP = — 6.13), and RNA transport
(hsa03013; logP = — 4.26; Additional file 1: Figure S5). The second group (MCODE2) is enriched with proteins involved in NLS-bearing protein
import into nucleus (GO:0006607; logP = — 18.44; Additional file 1: Figure S6). The third and fourth groups do not have significant enrichment
associations, likely because little is known about them; five of the six genes (PRR20C, PRR20D, PRR20E, SMNT, and SMN2) are completely or nearly
100% camouflaged, and several do not even have known expression measurements in GTEx [29] (Additional file 1: Figures S7-59)
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of GTPase activity (GO:0090630; logP = - 4.67), and others.
Some specific gene families involved in these pathways in-
clude 21 ubiquitin-specific 17-like family members (e.g.,
USP17L3), 12 defensin genes (e.g., DEFA1 and DEFB4A), 6
testis-specific proteins (e.g., TSPY2), and 13 golgin genes
(e.g, GOLGAG6B; Additional file 12: Table S11).

Looking specifically at known protein-protein interac-
tions, we found 103 proteins with 172 known interactions
(Additional file 1: Figure S3) and, within those, identified
four groups enriched for protein-protein interactions
using the MCODE algorithm [28] (Fig. 4b). All four
MCODE groups combined are primarily associated with
RNA transport (hsa030313; logP = - 18.59; Additional file
1: Figure S4; accessed March 2019). Individually, the first
group (MCODE]1) is enriched for proteins involved in sys-
temic lupus erythematosus (hsa05322; logP = — 6.55), cel-
lular response to stress (R-HSA-2262752; logP = - 6.13),
and RNA transport (hsa03013; logP = - 4.26; Additional
file 1: Figure S5). The second group (MCODE2) is
enriched with proteins involved in NLS-bearing protein
import into nucleus (GO:0006607; logP =-18.44;
Additional file 1: Figure S6). The third and fourth groups
do not have significant enrichment associations, likely be-
cause little is known about them; five of the six genes
(PRR20C, PRR20D, PRR20E, SMNI, and SMN?2) are com-
pletely or nearly 100% camouflaged, and several do not
even have known expression measurements in GTEx [29]
(Additional file 1: Figures S7-S9).

There are 76 dark genes with known mutations
associated with 326 human diseases
To assess the potential impact missing mutations in dark
genes may have on human disease genetics, we mea-
sured the number of dark genes with at least 5% dark
CDS that have mutations known to be involved in hu-
man disease; we calculated the number of genes that are
>5% dark CDS with a mutation in the Human Gene
Mutation Database (HGMD) [30]. We found 76 genes
associated with 326 unique human diseases (Fig. 5a).
Some of the diseases with the most known associated
genes include autism spectrum disorder, schizophrenia,
hearing loss, spinal muscular atrophy, and inflammatory
bowel disease. Some of the diseases most represented in
our data are not surprising, given the number of genes
involved in the disease, but these data demonstrate the
number of diseases impacted by genes that are at least
5% dark CDS. We also performed an enrichment ana-
lysis, where the diseases most enriched for dark genes
included color blindness (protan color vision defect),
X-linked cone-rod dystrophy, and spinal muscular atro-
phy (Additional file 1: Figure S10).

Similarly, we quantified the number of diseases each
gene was associated with (Fig. 5b). We identified many
disease-relevant genes with large portions of dark CDS
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regions that may harbor critical disease-modifying muta-
tions that currently go undetected. Some of the genes
with the most known disease associations include ARX
(12.8% dark CDS), NEB (9.5% dark CDS), TBXI1 (10.6%
dark CDS), RPGR (8.6% dark CDS), HBA2 (9.5% dark
CDS), and CRI (26.0% dark CDS). The CRI gene is par-
ticularly notable given that CRI is a top-ten Alzheimer’s
disease gene. Other notable genes include SMNI1 (94.6%
dark CDS) and SMN2 (88.0% dark CDS), which are
known to be involved in spinal muscular atrophy (SMA)
and ALS [33-35]. HSPAIA (53.0% dark CDS) and
HSPAIB (51.5% dark CDS) also encode two primary
70-kilodalton (kDa) heat-shock proteins, a family of pro-
teins that have been implicated in ALS [31, 32].

Camouflaged genes are consistently dark in gnomAD, but
dark-by-depth genes may be sample or dataset specific

Although many dark genes are specifically camouflaged
(Additional file 13: Table S12; Additional file 14: Table
S13), many are dark by depth in the ADSP data; upon
manual comparison between whole-genome sequencing
data from the ten ADSP males and coverage plots from
the gnomAD consortium dataset (http://gnomad.broadin-
stitute.org/) [36], we found that camouflaged regions in
the ADSP males are consistently dark in the gnomAD
data, demonstrating that these camouflaged regions are
consistent across datasets. The ADSP data are also in-
cluded in gnomAD, but they only make up approximately
15% of the data. The dark-by-depth regions are more vari-
able between samples and datasets, however, suggesting
these regions may be sensitive to specific aspects of
whole-genome sequencing (e.g., library preparation) or
downstream analyses. Specific camouflaged genes include
SMNI and SMN2 (Fig. 6a), HSPAIA and HSPAIB
(Fig. 6b), NEB (9. Fig. 6¢), and CRI (Fig. 6d). Specific
dark-by-depth genes include HLA-DRB5 (Fig. 6e), RPGR
(Fig. 6f), ARX (Fig. 6g), and TBXI (Fig. 6h). All four
camouflaged genes are also dark in the gnomAD data. A
manual inspection of our dark-by-depth gene list, how-
ever, suggests most are not completely dark in gnomAD,
but vary by sample or dataset. Specifically, HLA-DRB5
and RPGR in gnomAD appear to be consistent with the
ADSP data; ARX and TBX1, however, only appear to be
dark in a portion of the gnomAD samples, where about
30% of samples have <5 reads in their respectively defined
dark regions. Dark regions are either similar or more
pronounced in the gnomAD whole-exome data than what
we observed in the whole-genome data (Figs. 6a-h),
highlighting that dark and camouflaged regions are gener-
ally magnified in whole-exome data; this is likely because
of differences in library preparation and shorter read
lengths in exome data. For interest, we also found that
APOE—the top genetic risk for Alzheimer’s disease [44—
46]—is approximately 6% dark CDS (by depth) for certain
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Fig. 5 Seventy-six dark genes (= 5% CDS) are associated with 326 human diseases, including autism, inflammatory bowel disease, and others. We
found 76 genes = 5% dark CDS that harbor mutations associated with 326 unique human diseases, according to the Human Gene Mutation
Database (HGMD). a Some of the diseases with the most known associated genes include autism spectrum disorder, schizophrenia, hearing loss,
spinal muscular atrophy, and inflammatory bowel disease. Word size represents the number of genes associated with each disease. These data
demonstrate the number of diseases impacted by genes that are at least 5% dark CDS, and how important it is to completely resolve dark
regions. We also performed an enrichment analysis, where the diseases most enriched for dark genes included color blindness (protan color
vision defect), X-linked cone-rod dystrophy, and spinal muscular atrophy (Additional file
diseases each gene was associated with and identified many disease-relevant genes with large portions of dark CDS regions that may harbor
critical disease-modifying mutations that currently go undetected. Some of the genes with the most known disease associations include ARX
(12.8% dark CDS), NEB (9.5% dark CDS), TBX1 (10.6% dark CDS), RPGR (8.6% dark CDS), HBA2 (9.5% dark CDS), and CRT (26.0% dark CDS). CR1 is
particularly notable for neuroscientists and Alzheimer's disease geneticists, patients, and their caregivers, given that CR1 is a top-ten Alzheimer's
disease gene. Other notable genes include SMN1 (94.6% dark CDS) and SMN2 (88.0% dark CDS), which are known to harbor mutations (in
camouflaged regions) that are involved in spinal muscular atrophy (SMA) and are implicated in ALS. HSPATA (53.0% dark CDS) and HSPA1B
(51.5% dark CDS) also encode two primary 70-kilodalton (kDa) heat-shock proteins. Heat-shock proteins have been implicated in ALS [31, 32]
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1: Figure S10). b Similarly, we quantified the number of

ADSP samples with whole-genome sequencing, and the
same region is dark in gnomAD whole-exome data
(Additional file 1: Figure S11). It is possible some of the
dark regions we identified in standard short-read
whole-genome data are specific to the ADSP samples, but
additional work can clarify this issue. In either case, dark-
by-depth regions (Additional file 15: Table S14; Additional
file 16: Table S15) should be interrogated within individual
datasets, and perhaps for individual samples as a quality
control measure.

SMNI and SMN2 are camouflaged by each other,
where both genes are known to contribute to spinal
muscular atrophy, and have been implicated in ALS.
HSPAIA and HSPAIB are also camouflaged by each
other, and the heat-shock protein family has been impli-
cated in ALS [33, 35]. NEB is a special case that is
camouflaged by itself (rather than another gene), and is
associated with 24 diseases in the HGMD, including
nemaline myopathy, a hereditary neuromuscular dis-
order. NEB is a large gene (249,151 nucleotides; 25,577

CDS nucleotides); thus, ~9.5% dark CDS translates to
2424 dark protein-coding bases. CRI is a top Alzheimer’s
disease gene that plays a critical role in the complement
cascade as a receptor for the C3b and C4b complement
components, and potentially helps clear amyloid-beta
(AB) [37-39]. Like NEB, CRI is also camouflaged by itself,
where the repeated region actually includes the extracellu-
lar C3b and C4b binding domain. The number of repeats
and density of certain isoforms have been associated with
Alzheimer’s disease [21, 40-43].

We found HLA-DRBS is dark by depth in the ADSP
and gnomAD data and has been implicated in several
diseases, including Alzheimer’s disease. RPGR is likewise
dark in ADSP and gnomAD and is associated with sev-
eral eye diseases, including retinitis pigmentosa and
cone-rod dystrophy. We identified ARX as a
dark-by-depth gene, but this gene appears to vary by
sample or cohort, as only approximately 30% of gno-
mAD samples are strictly dark by depth, using our cutoff
of <5 reads. ARX is associated with diseases including
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Fig. 6 Camouflaged genes are consistently dark in gnomAD, but dark-by-depth genes may be sample or dataset specific. Many dark genes are
specifically camouflaged (Additional file 13: Table S12; Additional file 14: Table S13), but many are dark by depth; we found that camouflaged
regions in the ADSP are consistently dark in the gnomAD consortium data (http://gnomad.broadinstitute.org/) [36]. Dark-by-depth regions may
be more variable between samples and datasets, however, suggesting these regions may be sensitive to specific aspects of whole-genome
sequencing (e.g., library preparation) or downstream analyses. a SMNT and SMN2 are camouflaged by each other (only SMNT shown). Both genes
contribute to spinal muscular atrophy and have been implicated in ALS. b HSPATA and HSPATB are also camouflaged by each other (only HSPATA
shown). The heat-shock protein family has been implicated in ALS. ¢ NEB (9.5% dark CDS) is a special case that is camouflaged by itself. NEB is
associated with 24 diseases in the HGMD, including nemaline myopathy, a hereditary neuromuscular disorder. NEB is a large gene; thus, 9.5% dark
CDS translates to 2424 protein-coding bases. d CR1 is a top Alzheimer's disease gene that plays a critical role in the complement cascade as a
receptor for the C3b and C4b complement components, and potentially helps clear amyloid-beta (AB) [37-39]. CR1 is also camouflaged by itself,
where the repeated region includes the extracellular C3b and C4b binding domain. The number of repeats and density of certain isoforms have
been associated with Alzheimer's disease [21, 40-43]. e HLA-DRB5 is dark by depth in the ADSP and gnomAD data. HLA-DRB5 has been
implicated in several diseases, including Alzheimer's disease. f RPGR is likewise dark in ADSP and gnomAD and is associated with several eye
diseases, including retinitis pigmentosa and cone-rod dystrophy. g ARX is dark-by-depth, but varies by sample or cohort, as approximately 70% of
gnomAD samples are not strictly dark by depth. ARX is associated with diseases including early infantile epileptic encephalopathy 1 (EIEET) and
Partington syndrome. h Similarly, TBXT is not strictly dark by depth in approximately 70% of gnomAD samples. The Y axes for figures a—f indicate
median coverage in gnomAD (blue = exomes; green = genomes), whereas the Y axes in g, h represent the proportion of gnomAD samples that
have > 5x coverage. Dark and camouflaged regions, as well as the percentage of each gene's CDS region that is dark, are indicated by red lines.
Dark regions in exome data are either similar or more pronounced than what we observed in whole-genome data, highlighting that dark and
camouflaged regions are generally magnified in whole-exome data. For interest, we also discovered that APOE—the top genetic risk for
Alzheimer's disease [44-46]—is approximately 6% dark CDS (by depth) for certain ADSP samples with whole-genome sequencing, and the same
region is dark in gnomAD whole-exome data (Additional file 1: Figure S11)

early infantile epileptic encephalopathy 1 (EIEE1) [47]
and Partington syndrome [48]. Similarly, T7BX1, which
harbors mutations that cause the same phenotype as
22q11.2 deletion syndrome [49], is dark by depth in only
approximately 30% of gnomAD samples.

Linked- and long-read technologies resolve many
camouflaged regions, with variable success

We selected three camouflaged gene regions to highlight
common strengths and differences for how well each
linked- or long-read sequencing technology addresses
the camouflaged region, including SMNI and SMN2
(Fig. 7a), HSPAIA and HSPAIB (Fig. 7b), and CRI
(Fig. 7c). The SMNI and SMN2 genes are camouflaged
by each other (gene duplication), as are HSPAIA and
HSPAI1B. CRI1, however, is a special case, where it is
camouflaged by a repeated region within itself. Only

ONT appeared to be capable of fully addressing the
camouflaged region for all three genes. 10x Genomics
also performed well under certain circumstances, such
as SMINI and SMN2 (regions where the duplication is >
50 kb away), but did not perform well for HSPAIA and
HSPA1B. PacBio performed well for HSPAIA/HSPA1B,
but did not perform as well as ONT in CRI and the
SMN1/SMN?2 region.

Many camouflaged regions can be rescued, including in
standard short-read sequencing data

There are many large-scale whole-genome or
whole-exome sequencing projects across tens of thou-
sands of individuals that are either completed or under-
way for a variety of diseases, including cancer (e.g., The
Cancer Genome Atlas (TCGA)), autism spectrum dis-
order (e.g., The Autism Sequencing Consortium (ASC)),
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s Using a strategy similar to that proposed by Robert
E‘[O-73] and Watson [10], we have developed a method to rescue
) mutations in most camouflaged regions, including for

standard Illumina short-read sequencing data. When
confronted with a sequencing read that aligns to two or
more regions equally well (with high confidence), most
aligners (e.g., BWA [11-13]) will randomly map the read
to one of the regions and assign a low mapping quality
(MAPQ =0 for BWA, or MAPQ =1 for novoalign). Be-
cause the reads are already aligned to one of the regions,
we can use the following steps to rescue mutations in
most camouflaged regions (Fig. 8): (1) extract reads from
camouflaged regions; (2) mask all highly similar regions
in the reference genome, except one, and re-align the ex-
tracted reads; and (3) call mutations using standard
methods, while accounting for increased ploidy and po-
tential reference-based artifacts. Reference-based arti-
facts arise when regions within a given camouflaged set
are not 100% identical, causing false positives when
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Fig. 8 Many camouflaged regions can be rescued, including CR1, even in standard short-read sequencing data. Many large-scale whole-genome
or whole-exome sequencing projects exist, covering tens of thousands of individuals. All of these datasets are affected by dark and camouflaged
regions that may harbor mutations that either drive or modify disease in patients. Ideally, all samples would be re-sequenced using the latest
technologies over time, but financial resources and biological samples are limited, making it essential to maximize the utility of existing data. We
developed a method to rescue mutations in most camouflaged regions, including for standard short-read sequencing data. When confronted
with a sequencing read that aligns to two or more regions equally well (with high confidence), most aligners (e.g., BWA [11-13]) will randomly
assign the read to one of the regions with a low mapping quality (e.g., MAPQ =0 for BWA). a Because the reads are already aligned to one of the
regions, we can use the following steps to rescue mutations in most camouflaged regions: (1) extract reads from camouflaged regions, (2) mask
all highly similar regions in the reference genome, except one, and re-align the extracted reads, (3) call mutations using standard methods
(adjusting for ploidy), and (4) determine precise location using targeted sequencing (e.g., long-range PCR combined with Sanger, or targeted
long-read sequencing [1]). Without competing camouflaged regions to confuse the aligner, the aligner will assign a high mapping quality,
allowing variant callers to behave normally. b Exons 10, 18, and 26 in CR1 are identical, according to the reference genome. Standard aligners will
randomly scatter reads matching that sequence across these exons and assign a low mapping quality (e.g, MAPQ = 0 for BWA; indicated as
hollow reads). Red lines indicate an individual’s mutation that exists in one of these exons, but reads containing this mutation also get scattered
and assigned a low mapping quality. ¢ By masking exons 18 and 26, we can align all of these reads to exon 10 with high mapping qualities to
determine whether a mutation exists. We cannot determine at this stage which of the three exons the mutation is actually located in, but
researchers can test association with a given disease to determine whether the mutation is worth further investigation. d As a proof of principle,
we rescued approximately 4214 exonic variants in the ADSP (TiTv = 2.26) using our method, including a frameshift mutation in CR7 (MAF = 0.00019)
that is found in five cases and zero controls (three representative samples shown). The frameshift results in a stop codon shortly downstream.

The ADSP is not large enough to formally assess association between the CR1 frameshift and Alzheimer's disease, but we believe the mutation merits
follow-up studies given its location (CRT binding domain) and CR1's strong association with disease

reads from both regions are aligned to a single re-
gion. Without competing camouflaged regions to con-
fuse the aligner, the aligner will assign a high
mapping quality, allowing variant callers to behave
normally. This will enable researchers to identify mu-
tations that exist in one of the camouflaged regions,
but cannot indicate which specific region the muta-
tion originated from (Fig. 8). After rescuing these mu-
tations, researchers can then perform association
studies to determine whether any of the mutations
may be implicated in disease, and follow up with tar-
geted sequencing methods to determine the exact
camouflage region a mutation lies in.

Re-alignment rescues approximately 4214 exonic variants,
including a rare ten-nucleotide frameshift deletion in CR1
As a proof of principle, we applied our method to the
Alzheimer’s Disease Sequencing Project (ADSP)
case-control data [50] to approximate the number of po-
tential mutations our approach could rescue. The ADSP
is a large sequencing project organized, in part, to iden-
tify functional mutations that influence Alzheimer’s dis-
ease development. Across 10,933 samples from the
ADSP, excluding all reference-based artifacts, and vari-
ants with a quality by depth (QD) <2, we were able to
rescue approximately 4214 exonic variants with a
transition-transversion ration (Ti/Tv) of 2.26 from 137
camouflaged region sets, that are spread across 748
camouflaged genes (Additional file 1: Figure S12; VCF
will be provided to the ADSP). Using a more stringent
QD (excluding variants with QD < 3), we rescued 3343
variants with a Ti/Tv ratio of 2.35. We only included
camouflaged regions from CDS exons for all genes, in-
cluding those that are < 5% dark CDS.

Because CRI is a top-10 Alzheimer’s disease gene, we
then specifically interrogated it using our method (Fig. 8)
for any functional mutations that could be involved in
Alzheimer’s disease. Using 13,142 ADSP samples, we
identified a rare ten-nucleotide frameshift deletion that
is found in five cases but zero controls, all of which are
heterozygous (Fig. 8d). Three of the five carriers were of
European descent and two were Caribbean Hispanic. All
five samples were from the ADSP case-control series;
thus, we did not expect them to be related. We verified
the three European carriers were unrelated (KING-ro-
bust kinship < 0.0442) [51], but the two Caribbean His-
panic carriers appear to be first-degree relatives
(KING-robust kinship = 0.3356). For interest, only one of
the individuals carried a single APOEe4 allele (e3/e4).
The other four individuals were homozygous for
APOEe3 (e3/e3). We were able to determine that the
frameshift deletion is in one of exons 10, 18, or 26. We
estimate a cohort of approximately 70,000 cases and
controls would have approximately 80% statistical power
to formally assess this mutation’s involvement in Alzhei-
mer’s disease, assuming a relative risk (RR) of 3.3, at an
alpha of 0.0001.

Discussion

While researchers have known for years that dark regions
exist in standard short-read sequencing data, little work
has been done to characterize the breadth of the issue and
to develop possible solutions until more financially feas-
ible linked- or long-read sequencing options are available.
Short-read sequencing is unable to adequately address
camouflaged regions because the reads cannot fully span
camouflaged regions to properly align homologous nucle-
otides. Linked- and long-read sequencing technologies,
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such as those from 10x Genomics, Oxford Nanopore
Technologies (ONT), and Pacific Biosciences (PacBio),
have the potential to address many camouflaged regions
because these technologies have median read lengths mea-
sured in thousands of nucleotides, rather than only 100-
300 nucleotides from standard short-read sequencing
technologies (e.g., Illumina). Recent work has even dem-
onstrated that mappable ONT reads can exceed two mil-
lion nucleotides (e.g, 2,272,580) [52, 53], showing future
potential for addressing large camouflaged regions.

In this study, we systematically characterized dark and
camouflaged gene regions and proposed a method to ad-
dress most camouflaged regions in long- or short-read se-
quencing data. Our solution is specifically applicable to
camouflaged regions, not regions that are dark by depth,
simply because there are no reads available in those re-
gions. While our solution is conceptually simple, imple-
menting the solution systematically was challenging
because of many intricate details, including increased zy-
gosity, and would ideally be integrated into the original
alignment and variant-calling process. While the original
implementation was challenging, we provide the resulting
.bed files for both GRCh37 and GRCh38 that are neces-
sary to rescue mutations from camouflaged regions in any
human re-sequencing dataset (https://github.com/meb-
bert/Dark_and_Camouflaged_genes). We also provide all
of our data and source code. The .bed files and source
code should make implementing our method relatively
straightforward for other groups. As a proof of concept,
we were able to rescue approximately 4214 variants in the
ADSP dataset from 137 sets of camouflaged gene regions,
which are spread across 748 camouflaged genes. Included
in these rescued mutations is a ten-nucleotide frameshift
deletion in CRI found in five ADSP cases and zero
controls.

The number of genes affected by dark and camouflaged
regions was surprisingly high. We identified 36,794 total
dark regions across 6054 gene bodies, 3804 of which were
protein coding genes. We found that 27,982 of the dark
regions were intronic and 2855 were in protein-coding
exons (CDS). Others were in pseudogenes (1232) and
lincRNAs (753). While most of the dark regions were
non-coding (e.g., intronic), these regions may still harbor
important mutations that drive or modify human diseases.
For example, there are many examples of mutations in
non-coding regions driving disease, including repeat ex-
pansions [1, 54—61], splice-site mutations (these may be
intronic or exonic) [62-76], and regulatory mutations
(e.g., UTR regions) [77—-86]. There are also many lincR-
NAs associated with disease [87-96].

There are many patients with diseases known to be
genetically inherited, yet remain genetically unexplained
because the patients do not have any of the known mu-
tations. Many of the genes we identified as being at least
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partially dark are known to be involved in numerous dis-
eases, including Alzheimer’s disease, ALS, SMA, autism
spectrum disorder, schizophrenia, and others; functional
mutations that modify disease likely lie in some of these
dark and camouflaged regions. For example, SMNI and
SMN?2 are mostly dark (camouflaged) and are known to
harbor mutations that cause disease [62, 64—66]. CRI is
another dark gene that is 26.5% dark CDS, being camou-
flaged to itself, and is strongly implicated in Alzheimer’s
disease. In fact, the CRI camouflaged region includes
the C3b and C4b protein binding sites, repeated several
times. Interestingly, the C4B gene (encodes the C4b pro-
tein) is also 72.8% dark CDS (camouflaged) and may be
involved in disease [97, 98]. We are confident that rescu-
ing mutations from camouflaged regions will have a
meaningful impact on disease research and may explain
some of the missing heritability of Alzheimer’s disease
[18, 99-101] and other diseases.

A large number of gene bodies (527) were 100% dark,
which means they are entirely overlooked in standard
whole-exome, whole-genome, and RNA sequencing
studies [10]. Additionally, more than 1600 gene bodies,
or nearly 25%, were at least 25% dark and more than
2100 (35.2%) were at least 5% dark; of these, 748
protein-coding genes were at least 5% dark within CDS
regions. Understanding what role these genes play in hu-
man health and disease will require being able to resolve
them in DNA and RNA sequencing experiments.

A critical decision for future large-scale sequencing
projects will be regarding which sequencing technology
is ideal to maximize the probability of identifying func-
tional mutations driving disease. Unfortunately, the an-
swer is not clear, as each technology has its pros and
cons. Based on our results, the ONT platform per-
formed best, overall, resolving 77% of dark gene-body re-
gions (Additional file 1: Figure S1b). Current costs may
be prohibitive for large studies, however. The 10x Gen-
omics platform resolved 64.3% of dark gene-body re-
gions, when compared to standard Illumina sequencing.
PacBio resolved 49.5% of dark gene-body regions. Even
increasing Illumina read lengths from 100 to 250 made a
sizeable difference, overall, resolving 12.2% of dark
gene-body regions. Both the PacBio and ONT data used
in this study had shorter median read lengths than ex-
pected, suggesting both technologies can likely perform
better than our estimates.

Focusing only on CDS regions, there were 2855 dark
CDS regions across 748 protein-coding genes, based on
[lumina 100-nucleotide read lengths. ONT outperformed
other long-read technologies, resolving 90.4% of dark CDS
regions. PacBio and 10x Genomics resolved 64.4% and
49.5%, respectively. We found that 10x Genomics and
ONT performed well in the SMNI and SMN2 genes
(Fig. 7), attaining consistently deep, high-quality coverage
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throughout. PacBio coverage declined in the interior re-
gions of the genes. In other cases, such as CRI and NEB,
10x Genomics was unable to improve on standard Illu-
mina sequencing, but ONT was able to largely resolve the
region. PacBio also performed relatively well, but both
ONT and PacBio required higher than normal sequencing
depth for those technologies. We believe that 10x Genom-
ics can correct the issues we observed in CRI and NEB, by
implementing a more sophisticated version of our method
that also incorporates evidence from their linked-read
technology.

Whether each technology is able to reliably resolve
dark and camouflaged regions is an important consider-
ation for choosing the best sequencing technology, but
we should also consider how reliably each technology is
able to resolve structural mutations. In a previous study,
we tested how well ONT and PacBio are able to traverse
challenging repeat expansions, and whether they are
amenable to genetic discovery [1]. We found that both
technologies are well-suited, but we have not assessed
performance of the 10x Genomics platform across long
repeat expansions.

The primary challenge with ONT and PacBio
long-read sequencing is, of course, the high error rate,
which can be overcome through deeper sequencing be-
cause errors in ONT and PacBio sequencing are mostly
random [102, 103]. Ultimately, we are confident that, as
long-read error rates improve, and costs continue to de-
cline, long-read technologies will be the preferred se-
quencing choice for large-scale sequencing projects,
especially when considering structural mutations.

We identified dark and camouflaged regions in this
study by averaging data across ten males with deep Illu-
mina whole-genome sequencing, using 100-nucleotide
read lengths. We assessed how well long-read sequen-
cing technologies (PacBio, ONT, and 10X genomics) re-
solve these regions, but our measurements should only
be considered estimates. While long-read sequencing
technologies are becoming more common, we were un-
able to obtain more than one male individual for each
long-read technology; we needed male samples to assess
all chromosomes, including the Y chromosome. Add-
itionally, the samples we used for each long-read tech-
nology were sequenced at a much higher depth than is
currently typical for a re-sequencing effort, which is
likely over estimating the number of dark regions they
resolve for the average use case. Our measurements
should be a reasonable estimate of reality, however, and
future analyses will be able to refine our estimates.

We used whole-genome sequencing to assess dark and
camouflaged regions, but this problem is magnified in
whole-exome data, which many large-scale sequencing
studies are based on, either completely, or in part.
Whole-exome data are typically generated using even
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shorter read lengths. They are also generally based on cap-
ture, which means certain exons are not fully represented.
APOE is a prime example, where it is typically
well-covered in whole-genome data, but a portion is dark
in whole-exome data (Additional file 1: Figure S11). With
APOE harboring the largest genetic risk factors for Alzhei-
mer’s disease, it is important to properly characterize the
entire gene.

In this study, we characterized dark and camouflaged
gene bodies and demonstrated several disease-relevant
genes where a significant portion is dark in standard
short-read sequencing data, including SMN1 and SMN2,
CRI, and sometimes even APOE. We also identified a
rare ten-nucleotide frameshift deletion in CRI that is
found in five ADSP cases and zero controls, as a proof
of principle (Fig. 8d). Using our method (Fig. 8), we were
able to determine that the frameshift deletion is in one
of exons 10, 18, or 26. With CRI being a top Alzheimer’s
disease gene without any known functional mutations,
we believe it will be important to assess this mutation in
a large cohort, to determine whether it plays a role in
disease development and progression. We have also pro-
posed a solution to address most camouflaged genes in
sequencing data and believe that our approach has the
potential to identify functional mutations that are influ-
encing development across a range of diseases, but are
currently entirely overlooked by standard short-read se-
quencing approaches.

Conclusion

There remain thousands of potentially important genomic
regions that are overlooked with short-read sequencing,
but are largely resolved by linked- or long-read technolo-
gies. While these regions represent only a small portion of
the entire genome or exome, many of these regions are
known to be important in human health and disease.
Equally important, however, is that the impact of many
other genes is entirely unknown because they are 100%
dark. We presented a method that can resolve most
camouflaged regions that we believe will help researchers
identify mutations that are involved in disease. As a proof
of principle, we rescued approximately 4214 variants in
the ADSP dataset, including a ten-nucleotide frameshift
mutation in CRI. While we cannot formally assess the
CRI frameshift mutation in Alzheimer’s disease (insuffi-
cient sample-size), we believe it is worth investigating in a
larger cohort. In the long-term, we believe that linked-
and long-read sequencing technologies will be the best so-
lution for resolving dark and camouflaged regions.

Methods

Sample selection and preparation

To identify dark and camouflaged regions, and to assess
how well other technologies address them, we selected
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samples from each technology and read length. All sam-
ples were aligned to GRCh37, GRCh38, and GRCh38+alt.
To assess dark and camouflaged regions in standard Illu-
mina sequencing with 100-nucleotide read lengths, we se-
lected ten unrelated male control samples from the
Alzheimer’s Disease Sequencing Project (ADSP) where
deep whole-genome sequencing had been performed by
randomly selecting one male from ten random families.
All ten males were sequenced at the same facility and were
from either the “Health/Medical/Biomedical” (HMB-IRB)
or “Health/Medical/Biomedical” for non-profit organiza-
tions (HMB-IRB-NPU) consent groups, indicated as
groups C1 and C2 in the ADSP pedigree files (available
through dbGAP). We selected samples from the ADSP be-
cause we required samples that met the following criteria:
(1) had been sequenced using standard paired-end Illu-
mina sequencing with 100-nucleotide read lengths, (2)
had been sequenced with a median depth >30x, and (3)
were publicly available. Median genome-wide read depths
ranged from 33.0x to 45.0x coverage, with an overall me-
dian of 37.5x. Samples were prepared and sequenced as
part of the ADSP [50]. These samples were aligned using
BWA (v0.5.9). We could not find samples from the 1000
Genomes Project [24] that met these criteria; either se-
quencing depths were too shallow or read lengths were
too long or short. The ADSP sample IDs we used were as
follows:  A-CUHS-CU000406,  A-CUHS-CU002997,
A-CUHS-CU000779, A-CUHS-CU000208, A-CUHS-
CU001010, A-CUHS-CU002031, A-CUHS-CU002707,
A-CUHS-CU003023, A-CUHS-CU003090, and A-CUHS-
CU003128.

To assess dark and camouflaged regions in samples se-
quenced using Illumina 250-nucleotide read lengths, we
selected ten samples from the 1000 Genomes Project
that had been sequenced with 250-nucleotide read
lengths and had a median depth >30x. All ten samples
were aligned using BWA (v 0.7.5a-r428) [2, 11-13]. Me-
dian genome-wide read depths ranged 30.0x to 61.0x
coverage, with an overall median of 58.5x. Sample IDs
for the Illumina 250-nucleotide read lengths were as fol-
lows: NA20845, HGO01112, HGO01583, HGO01051,
HGO03742, HG00096, HG01565, HG01879, HGO01500,
and HGO03006 (see Availability of Data and Materials
section for public links).

We also selected samples generated using the 10x Gen-
omics synthetic long-read sequencing platform and ONT
and PacBio long-read sequencing platforms that were pub-
licly available from the respective company. Specifically, we
downloaded HG00512 raw FASTQ data from 10x Genom-
ics and aligned it according to 10x Genomics’ standard
practices. We used longranger (v2.2.2) and aligned to
GRCh38 (longranger wgs --id HG00512 --description="-
Han Chinese” --sex="male” --fastqs=chi/HNKHFCCXX/
,chi/HWHFTCCXX/ --reference=“10x-GRCh38-2.1.0/”
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--jobmode=sge --mempercore=125 —downsample=385).
We also aligned to GRCh37. We were unable to align the
10x data to GRCh38+alt because longranger has a limit to
the number of contigs it will align to. Median depth for
HGO00512 was 52x. For ONT, we downloaded the final Cli-
veome v3 from ONT’s official GitHub page (https://github.
com/nanoporetech/ONT-HGL1) and aligned it to GRCh37,
GRCh38, and GRCh38+alt using minimap2 [104]
(ALIGN_OPTS="x map-pb -a --eqx -L -O 5,56 -E 4,1 -B 5
--secondary=no -z 400,50 -r 2k -Y”; REF=glkv37/glkv37 fa;
minimap2 -d ${REF}.mmi ${ALIGN_OPTS} ${REF}; mini-
map2 ${ALIGN_OPTS} -a ${REF}.mmi <reads.fq> | sam-
tools view -T {REF} -F 2308 > output_file). Cliveome v3
was sequenced to a median depth of 52x. We used the
same alignment options recommended for PacBio because
we found the recommended “map-ont” option in mini-
map2 performed substantially worse. We used PacBio data
generated from HGOO05 [105], which was sequenced to a
median depth of 50x and aligned using minimap2 [104]
(pbsv fasta [movie].subreads.bam | minimap2 -t 8 -x
map-pb -a --eqx -L -O 5,56 -E 4,1 -B 5 --secondary=no -z
400,50 -r 2k -Y ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/
technical/reference/phase2_reference_assembly_sequence/
hs37d5.fa.gz - | samtools sort > HG005_PacBio_ GRCh38.-
bam). Neither the ONT nor the PacBio alignments in-
cluded secondary alignments.

Identifying dark and camouflaged gene body regions

To identify dark and camouflaged gene body regions in
standard Illumina 100-nucleotide read length data, we first
scanned all ten ADSP whole-genome sequence samples for
genomic positions that met either of the following criteria:
(1) had <5 reads and (2) had >90% of reads with a map-
ping quality (MAPQ) <10. We then averaged the depth
and count of low MAPQ reads across all samples for each
position. We used strict cutoffs to identify regions that are
clearly dark, but there are many additional regions that fall
just beyond our thresholds. This analysis was performed
using the Dark Region Finder (DRF; https://github.com/
mebbert/DarkRegionFinder; mapq=9; dark_mass=90;
camo_mass=50; dark_depth=5; java -jar -Xmx20g DarkRe-
gionFinderjar -i <sample>bam --human-ref genome.fa
--min-region-size 1 --camo-mapq-threshold  $mapq
--min-dark-mapq-mass $dark_mass --min-camo-mapq--
mass $camo_mass --dark-depth $dark_depth --camo-be-
d-output <sample>-camo-dark_depth_${dark_depth}-dark_
mass_${dark_mass}-camo_mass_${camo_mass}-mapq_${-
mapq}.b38.bed --dark-bed-output <sample>-dark-dark_
depth_${dark_depth}-dark_mass_${dark_mass}.b38.bed
--incomplete-bed-output <sample>-incomplete.b38.bed).
Any position that met either criterion was considered dark
and categorized as either dark by depth or dark by map-
ping quality. For gene-body analyses, we then limited the
dark regions to gene bodies by intersecting dark regions
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identified by Dark Region Finder with Ensembl’s GRCh37
build 87 or GRCh38 build 93 gene annotations. We con-
verted the transcript-level annotations to gene-level anno-
tations using bedtools [106] and custom scripts that are
available. Any dark region that spanned a gene body elem-
ent region (e.g., intron-exon boundary) was split into two
separate dark regions so we could estimate the number of
dark bases in each type of gene body region (e.g., introns,
exons, UTRs). For all analyses, we only included dark re-
gions with > 20 contiguous bases. To identify camouflaged
regions, specifically, we used BLAT [26] to identify all gen-
omic regions that were highly similar to any given gene
body region that was dark by mapping quality. Any region
that was > 98% identical (-minldentity = 98), and that was
considered dark (=90% of reads with MAPQ < 10), was
considered a match. We generated .bed files for all three
genome builds using this method.

Statistics

We quantified the percentage of each gene body that was
dark by summing the total number of dark bases in the
gene (i.e., between the 5'UTR to the 3'UTR start and end,
respectively) and dividing by the total number of bases in
the gene. We similarly calculated the percentage of in-
tronic, exonic (including CDS and UTR), and only CDS
exons by dividing the total number of dark bases in each
category within the gene by the total number of bases
within that category. We performed these calculations for
data based on Illumina 100-nucleotide reads for all dark
regions combined (Additional file 2: Table S1; Additional
file 3: Table S2), dark by depth only (Additional file 15:
Table S14; Additional file 16: Table S15), dark by mapping
quality (Additional file 17: Table S16; Additional file 18:
Table S17), and only camouflaged regions (Additional file
13: Table S12; Additional file 14: Table S13). We per-
formed identical calculations for the samples from Illu-
mina 250-nucleotide read length data, 10x Genomics,
ONT, and PacBio (Additional file 4: Table S3; Additional
file 5: Table S4; Additional file 6: Table S5; Additional file
7: Table S6; Additional file 8: Table S7; Additional file 9:
Table S8; Additional file 10: Table S9; Additional file 11:
Table S10 and Additional file 19: Table S18; Additional file
20: Table S19; Additional file 21: Table S20; Additional file
22: Table S21; Additional file 23: Table S22; Additional file
24: Table S23; Additional file 25: Table S24; Additional file
26: Table S25; Additional file 27: Table S26; Additional file
28: Table S27; Additional file 29: Table S28; Additional file
30: Table S29; Additional file 31: Table S30; Additional file
32: Table S31; Additional file 33: Table S32; Additional file
34: Table S33; Additional file 35: Table S34; Additional file
36: Table S35; Additional file 37: Table S36; Additional file
38: Table S37; Additional file 39: Table S38; Additional file
40: Table S39; Additional file 41: Table S40; Additional file
42: Table S41). We identified diseases that were known to
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be associated with genes that are at least 5% dark CDS by
searching for mutations in the Human Gene Mutation
Database (HGMD) [30]. For the area under the curve
(AUC) comparison, we calculated the AUC for the Illu-
mina 100-nucleotide data and normalized that to 1.0. The
AUC is the sum of the percentage of dark nucleotides for
each gene. The AUC for each other technology is repre-
sented as a proportion of the Illumina 100-nucleotide
data.

Coverage plots from gnomAD data were obtained
from gnomAD-old.broadinstitute.org [36]. We used the
old version because the current version of gnomAD
(accessed December 2018) does not allow the user to
view median read depths, nor the percentage of samples
with greater than a given coverage depth. Sequence
pileups in representative samples were generated using
the Integrative Genomics Viewer (IGV) [107], where
reads with a MAPQ < 10 were filtered, and insertions,
deletions, and mismatches were not shown. Karyotype
plots showing genomic locations for dark and camou-
flaged regions were generated using KaryotypeR (v1.6.2)
[108] in R (v3.5.1). Bar plots were made using ggplot2
(v3.0.0). Pathway analyses and resulting plots were gen-
erated using Metascape (accessed December 2018) [109].
Word clouds were generated at wordclouds.com. Gene
schematics were generated using the Gene Structure
Display Server (GSDS; v2) [110].

We performed an enrichment analysis to assess
whether genes that are >5% dark CDS are enriched for
specific diseases. Because we identified 76 genes that
have a known mutation associated with disease, and that
are > 5% dark CDS, we randomly selected 76 genes from
the known HGMD mutations and measured the number
of genes with known mutation associated with each dis-
ease. We repeated this process 10,000 times and used
the following metric as our enrichment score: -
10*logl0(empirical_pvalue), rounded to the nearest
whole number.

Screening ADSP for functional CRT mutations in
camouflaged region

After discovering that 26% of the CRI gene’s CDS is
camouflaged, we screened all ADSP samples for rare
functional mutations that could play a role in Alzhei-
mer’s disease development and progression by applying
our proposed method (Fig. 8). To apply our method, we
extracted all reads with a mapping quality (MAPQ) < 10
from each camouflaged region within CRI, and from
each of the respective camouflage mate regions, using
samtools and the GRCh38 .bed file we generated that
identifies all camouflaged regions. An example of
camouflaged mate regions in CRI includes exons 10, 18,
and 26, which are identical in the reference genome
(Fig. 8). As previously mentioned, CRI is a special case


http://gnomad-old.broadinstitute.org
http://wordclouds.com

Ebbert et al. Genome Biology (2019) 20:97

that is camouflaged by regions duplicated within itself,
rather than being camouflaged by a different gene; thus,
we knew that any mutations we discovered would be
from CRI. Our approach works the same regardless of
whether a gene is camouflaged by itself or another gene,
but we mention that CRI is camouflaged by itself, for
interest. After extracting reads from each camouflaged
region, using the .bed file we provide, we then masked
all camouflaged regions within CR1I in the reference gen-
ome, except for one from each set of camouflaged mates.
For example, between exons 10, 18, and 26, we masked
exons 18 and 26 in the reference genome, allowing reads
from all three exons to align only to exon 10; without
competing camouflaged regions to confuse the aligner,
all reads from exons 10, 18, and 26 mapped to exon 10
with high quality. Masking regions of the reference gen-
ome simply means to change nucleotides to an unmap-
pable character (usually “N”), to prevent any reads from
aligning to that region.

After aligning all reads to a single region within each set
of camouflaged regions, we were able to perform standard
variant calling using the GATK HaplotypeCaller [25], with
two exceptions: (1) instead of treating each camouflaged
region as diploid, we increased the ploidy setting in Hap-
lotypeCaller according to the number of copies within a
given set of camouflaged regions, and (2) we filtered all
reference-based artifacts. Reference-based artifacts arise
from aligning reads from two non-identical regions to a
single region, causing false-positive mutations. Referring
again to our CRI example, because there are three regions
(exons 10, 18, and 26), we set the HaplotypeCaller ploidy
to hexaploid. Increasing the ploidy is essential for in-
creased sensitivity, since the number of reads harboring a
given variant—which only originate from one of the
camouflaged regions—will be overwhelmed by reads from
the others, thus preventing the variant caller from identi-
fying the mutation under the assumption that the data are
from a diploid region. In other words, if a mutation exists
in exon 26, we would expect only approximately 1/6th of
reads from exons 10, 18, and 26 to harbor that mutation,
rather than approximately 1/2. Because the ADSP is
mostly exome data, we limited HaplotypeCaller to
CDS exons only. According to the current ADSP
phenotype data, one of the samples harboring the
CRI frameshift mutation is a control. The individual
has since been officially diagnosed with Alzheimer’s
disease, however. We used KING-robust to determine
kinship between individuals [51].

To identify reference-based artifacts, all camouflaged
CDS regions repeated <5 times were blatted against the
whole genome. DNA sequence from hits with at least
98% sequence identity was locally aligned back to the
query sequence. Bio.pairwise2 module in Biopython was
used for local alignments using following parameters:
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match =1, mismatch =-3, gapOpen = -5, gapExtend
= - 2. Mismatches or gaps in the resulting aligned se-
quence were converted into variant positions based
on the start position of the query sequence in the
genome and the position of the variant within the
aligned  sequence. Three hundred ninety-one
reference-based artifact positions were found using
this method. While running our pipeline to rescue
variants, any variant called by GATK at one of these
positions was filtered out.
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