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Abstract

Quantification of DNA sequence tags from engineered constructs such as plasmids, transposons, or other
transgenes underlies many functional genomics measurements. Typically, such measurements rely on PCR followed
by next-generation sequencing. However, PCR amplification can introduce significant quantitative error. We
describe REcount, a novel PCR-free direct counting method. Comparing measurements of defined plasmid pools to
droplet digital PCR data demonstrates that REcount is highly accurate and reproducible. We use REcount to provide
new insights into clustering biases due to molecule length across different Illumina sequencers and illustrate the
impacts on interpretation of next-generation sequencing data and the economics of data generation.
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Background
Engineered constructs underlie many experimental tech-
niques in genetics and genomics. For example, targeted
perturbation of gene function using RNA interference or
CRISPR/Cas9 allows for pooled genome-wide genetic
screens that can be read-out through next-generation se-
quencing (NGS) of the small hairpin RNA (shRNA) [1,
2] or synthetic guide RNA (sgRNA) [3–6] constructs, or
associated sequence tags/barcodes [7]. Transposable ele-
ments are also commonly used to mutate or otherwise
manipulate genetic loci, and similarly enable
genome-scale saturation mutagenesis screens in which
the transposon-genome junction is measured using NGS
[8]. Lineage tracing [9, 10] and connectomics [11, 12]
approaches also rely on NGS-based quantification of
molecular tags. In all of these approaches, polymerase
chain reaction (PCR) amplification is used to enrich for

the sequence tags and to add adapters and other func-
tionalities (e.g., sample-specific barcodes) required for
sequencing. However, PCR introduces bias into these
measurements. Sequence tags comprised of shRNAs,
sgRNAs, transposon-genome junctions, or synthetic bar-
codes can all differ in primary sequence and biophysical
properties, which, along with other variables such as
template concentration and PCR conditions, can influ-
ence amplification efficiency in unpredictable ways [13–
15]. Adding unique molecular identifiers (UMIs) can
mitigate some of this bias, but increases the complexity
of both library preparation and analysis [16, 17]. Other
approaches such as droplet digital PCR (ddPCR) and
NanoString analysis can be used to overcome the quan-
titative inaccuracies associated with measuring engi-
neered genetic constructs [18, 19]. The NanoString
nCounter instrument uses hybridization of fluorescently
barcoded probes to count copies of target molecules in a
sample. ddPCR achieves high accuracy by partitioning
individual molecules into emulsion droplets and count-
ing the number of droplets with and without amplifica-
tion, thereby digitizing PCR and removing amplification
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bias from the quantification process. However, ddPCR
and NanoString analysis, while highly accurate, lack the
throughput and resolution afforded by NGS.
We have developed a novel method, REcount (Restric-

tion Enzyme enabled counting) for quantifying sequence
tags associated with engineered constructs that is
straightforward to implement and allows for direct
NGS-based counting of a potentially enormous number
of sequence tags. In this approach, an Illumina
adapter-flanked DNA barcode is liberated by digesting
with MlyI (a type IIS restriction enzyme that produces
blunt-ended molecules) and sequenced to directly count
template molecule abundance (Fig. 1a). We demonstrate
that REcount measurements are amenable to multiplex-
ing through the use of five orthogonal restriction en-
zymes, an approach that likely is further generalizable to
other enzymes.
We used REcount to design a set of synthetic DNA

standards that can be used to assess clustering bias due
to molecule length on Illumina sequencers, and demon-
strate that there is substantial variation in size bias be-
tween different Illumina instruments. Specifically,
molecules in DNA sequencing libraries are systematic-
ally and often substantially over- or under-represented
on different Illumina sequencer models in a manner re-
lated to molecule length. Finally, we assess the impact of
size bias across several common applications of NGS, in-
cluding transcriptomic measurements (RNA-Seq [20]),
reduced-representation genotyping (RAD-Seq/GBS [21]),
and accessible chromatin profiling (ATAC-Seq [22]).

Results
Development and assessment of the REcount method
In order to characterize the REcount method, we con-
structed a pool of 20 synthetic plasmids containing RE-
count barcodes, mixed at an equimolar abundance (5% per
plasmid) based on fluorometric DNA concentration mea-
surements. This pool was digested with MlyI and se-
quenced on an Illumina MiSeq. All 20 barcodes were
detected at relative abundances ranging from 3.41 to 6.32%
(CV= 0.13), consistent with the targeted abundances of 5%
per construct (Additional file 1: Figure S1). To generate a
more accurately pooled reference standard for subsequent
experiments, we used this sequencing data as the basis for
re-pooling the 20 plasmids and digested the new pool with
MlyI and sequenced. The range of relative abundances of
the re-pooled plasmids was narrower, ranging from 4.52 to
5.58% (CV= 0.06), indicating that the initial sequencing
data was predictive in improving the accuracy of pooling as
assessed by REcount (Additional file 1: Figure S1). To as-
sess the reproducibility of these measurements, we digested
and sequenced two additional replicates of the even plas-
mid pool. The replicate REcount measurements were
highly reproducible with an average CV of 0.02 (Fig. 1b).

Next, we compared REcount measurements of the even
plasmid pool to PCR-based measurements, either of the
barcode construct (BC) or another construct-specific
sequence (V4). We tested amplification using 10, 20,
30, or 40 PCR cycles. While 40 cycles of PCR is more
than would typically be used for NGS library prepar-
ation, we chose these conditions to bracket the range
of low and high PCR cycle numbers. PCR-based
measurements exhibited substantial construct-specific
deviations from the expected 5% values, the extent of
which increased with greater numbers of PCR cycles
(Fig. 1c, d). Furthermore, the construct-specific devia-
tions from expected values were uncorrelated for the
BC and V4 amplicon measurements, suggesting that
the PCR biases were a function of template sequence
(Additional file 1: Figure S2).
ddPCR is a highly accurate method for measuring the

copy number of molecules in a sample [19]. In order to
independently measure the relative template concentra-
tions in the even plasmid pool, we designed a pair of
ddPCR assays targeting each barcode construct and vali-
dated the specificity of each assay using qPCR on each
of the 20 individual plasmid templates (Additional file 1:
Figure S3) [19]. The ddPCR-based measurements corre-
lated well with the REcount measurements, both for the
original and re-pooled even plasmid pools (Fig. 1e,
Additional file 1: Figure S3). In contrast, the PCR-based
measurements of both the BC and V4 amplicons were
not well-correlated with the ddPCR measurements
(Fig. 1e, Additional file 1: Figure S3). These results were
corroborated with similar measurements of a pool of the
same 20 plasmids mixed in a staggered manner, where
PCR-based measurements had reduced correlation
with ddPCR measurements and led to a systematic
overestimation of the lower abundance constructs
(Additional file 1: Figure S4). Taken together, these results
indicate that REcount accurately reports on template
abundance, while PCR-based measurements introduce
increasing error with increased cycle numbers.

Multiplexing REcount measurements through the use of
orthogonal restriction enzymes
One drawback of the REcount method is that the indices
that specify sample identity in multiplexed sequencing,
which are typically flexibly added by PCR, are
hard-coded into the constructs. To overcome this limita-
tion, we tested whether orthogonal restriction enzymes
could be used to multiplex REcount measurements. We
initially chose MlyI as the flanking enzyme because it
could precisely liberate the desired Illumina
adapter-flanked construct. We tested whether other re-
striction enzymes that do not cleanly liberate flush Illu-
mina adapter ends could also be used for REcount
measurements. Initially, we tested BsmI, BtsαI, and
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BsrDI, each of which leaves 2-nt 3′ overhangs. We con-
structed a pool of 12 plasmids comprised of sets of three
barcoded constructs flanked by either MlyI, BsmI, BtsαI,
or BsrDI (Fig. 2a). In addition, all 12 of these constructs
contained a pair of SbfI sites located such that digestion
with SbfI liberates all 12 Illumina adapter-flanked cas-
settes with additional overhangs of between 30 and 36
bp upstream of the p5 flowcell adapter and between 40
and 50 bp downstream of the p7 flowcell adapter. We

digested this plasmid pool with each of the five enzymes
individually and individually sequenced the digests and
mapped the reads to a reference file containing all 12 ex-
pected barcodes. For MlyI, BsmI, BtsαI, and BsrDI, the
expected barcodes were detected for each respective en-
zyme (Fig. 2b–e, g–j). All 12 barcodes were detected
when the pool was digested with SbfI, indicating that
clustering and sequencing can occur even in the presence
of large (30–50 bp) overhangs (Fig. 2f, k). We were not

Fig. 1 REcount enables accurate and precise measurements of plasmid pools. a Design of REcount constructs. A barcode-containing, Illumina
adapter-flanked construct is liberated with a restriction enzyme (MlyI) digest and directly sequenced. b Accuracy and reproducibility of REcount. c
Analogous measurements of the same plasmid pool shown in panel b using varying PCR cycle numbers. d Root mean squared deviation from
expected values (5% per construct) when the plasmid pool is measured using REcount, and varying cycles of PCR amplification of either the
barcode construct (BC) or another variable sequence in these plasmids (V4). e Pearson correlation heatmap comparing REcount measurements
with droplet digital PCR data and with conventional PCR amplification of either the BC or V4 amplicons

Gohl et al. Genome Biology           (2019) 20:85 Page 3 of 17



able to determine whether the length of the overhang af-
fects the efficiency of clustering as each of these samples
was sequenced in a portion of a MiSeq lane, together with
other libraries. We observed differing amounts of
off-target barcode detection in these orthogonal digests,
ranging from < 0.2% in the BsmI digest to approximately
6% in the BtsαI digest (Fig. 2b–e, g–j). This could likely be
improved by adding a size selection step.

Using REcount-based size standards to measure size bias
in Illumina sequencing
While it is known that molecule length affects clustering
and sequencing efficiency on Illumina sequencers [23],
the extent of this bias and the degree to which it differs
between different Illumina instruments has not been

characterized in detail. Thus, we used REcount to
characterize the size bias profiles of the Illumina iSeq,
MiSeq, HiSeq 2500, HiSeq 4000, NextSeq, and NovaSeq
sequencers. We synthesized 30 constructs, each of which
contained an MlyI-flanked normalization barcode of
consistent length (164 bp), and a barcode-containing
variable-length insert ranging from 22 to 1372 bp, result-
ing in adapter-flanked molecules between 150 and 1500
bp (Fig. 3a, Additional file 1: Figure S5). In order to
minimize sequence-specific artifacts, the variable-length
inserts were chosen to have between 42 and 58% GC
content and were comprised of 10 constructs each
(spanning the full 150–1500-bp size range) derived from
three different molecules; the Escherichia coli (E. coli)
16S rRNA gene (16S), the Drosophila melanogaster

Fig. 2 Multiplexing of REcount measurements using orthogonal restriction enzymes. a Plasmids containing REcount constructs flanked by
orthogonal restriction enzyme cut sites. b–f Total mapped reads identified for each construct type when the plasmid pool is digested with the
indicated enzyme. g–k Mapped reads identified for each construct when the plasmid pool is digested with the indicated enzyme

Gohl et al. Genome Biology           (2019) 20:85 Page 4 of 17



(D. melanogaster) alpha-Tubulin84B gene (Tubulin), and
the D. melanogaster glyceraldehyde-3-phosphate dehydro-
genase 1 (GAPDH) gene (Additional file 1: Figure S5).
These Illumina size standard constructs were pooled

at an equimolar ratio based on fluorometric DNA con-
centration measurements, digested with MlyI, and se-
quenced on different Illumina sequencers with no
intervening clean-up step, to ensure that no material
was lost. Representative data from a single MiSeq run is
shown in Fig. 3b. Since each normalization barcode is
present at an equimolar ratio to the corresponding size
standard (as they are on the same plasmid), this allows
any inaccuracies in plasmid pooling to be accounted for.
Within a sequencing platform, clustering size bias ex-
hibits run-to-run variation (Fig. 3c, Additional file 1:

Figure S6). All six of the sequencers we tested exhibited
preferential clustering of smaller fragments, consistent
with previous anecdotal observations (Fig. 3d,
Additional file 1: Figure S5). However, the magnitude of
this effect and the shapes of the size bias curves differ sub-
stantially between the iSeq, MiSeq, HiSeq 2500, HiSeq
4000, NextSeq, and NovaSeq (Fig. 3d, Additional file 1:
Figure S6). For the NextSeq and NovaSeq, the extent
of the size bias between platforms ranged between
three and five-fold for small or moderately sized
molecules (150–600 bp) to up to more than 100-fold
for molecules over 1 kb.
Differences were also seen between the HiSeq 2500 in

Rapid Run (onboard clustering) and High Output (cBot
clustering) modes (Fig. 3d, Additional file 1: Figure S5).

Fig. 3 Illumina size standards allow measurement of sequencer-specific size biases. a Design of REcount-based Illumina size standard constructs.
Each standard construct contains a normalization barcode, as well as a barcode associated with a variable size standard that can be liberated by
MlyI digestion and directly sequenced. b Raw abundance data for all 30 size standards and normalization barcodes from a MiSeq run. c Run-to-
run variability of multiple MiSeq runs (n = 6 flow cells). d Size bias profiles of the iSeq (n = 1 flow cell), MiSeq (n = 6 flow cells), NextSeq (n = 4 flow
cells), and NovaSeq (n = 4 flow cells, 4 lanes) sequencers. Note: Size bias data for other Illumina instruments is shown in Additional file 1: Figure
S5. e Size bias profiles of the same library either clustered on the MiSeq immediately after denaturation or clustered after freezing and thawing
the denatured library. Error bars are ± s.e.m
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In addition, we observed an effect of molecule length on
sequencing quality score [24], with a general trend to-
wards longer molecules having lower quality scores
(Additional file 1: Figure S5). The magnitude of the ef-
fect of molecule length on sequence quality varied
among the different instruments.
The denaturation process can also affect the size bias

observed on Illumina instruments. Denatured libraries
are sometimes saved for re-sequencing in the case of a
run failure (although Illumina’s best practices recom-
mend preparing freshly denatured libraries). To test
whether freshly denatured libraries perform differently
from frozen previously denatured libraries, we se-
quenced a freshly denatured library on a MiSeq, and the
same denatured library 1 day later, after a freeze-thaw
cycle, on a second MiSeq. The freeze-thaw cycle had a
substantial effect on the size bias profile of this library;
in particular, there was a dramatic reduction in the
fraction of 150-bp molecules observed, resulting in a
corresponding upward shift of the curve (Fig. 3e). It
is likely that this shift reflects differential re-annealing
of 150-bp fragments (which are in molar excess due
to the presence of the large number of similarly sized
normalization barcodes), or other small library mole-
cules in the sequencing pool. This observation sug-
gests that some of the difference in clustering size
bias observed between the different platforms may be
due to differences in denaturation conditions, the
amount of time between loading the library and clus-
tering, and whether the clustering process takes place
in a chilled compartment (such as on the MiSeq) or
not (such as the HiSeq 2500 and NextSeq). Consist-
ent with this idea, the variation between HiSeq 2500
and HiSeq 4000 flow cells is much larger than the
variation between the lanes on the same flow cell
(Additional file 1: Figure S6).
It is also likely that a portion of the variability between

flow cells is due to differences in the size distributions of
the libraries being sequenced together with the synthetic
size standards, as competition for clustering will occur
between all molecules in the sequencing lane. We ob-
served a shift in the curve corresponding to a decreased
representation of the larger size standards when they
were sequenced together with a library containing a sig-
nificant amount of material that was smaller than 300 bp
on the HiSeq 4000 (Additional file 1: Figure S6). Al-
though the size standards were sequenced together with
different libraries across the different instruments, this
context-dependent clustering is not sufficient to explain
the large differences we see between different instru-
ments. For example, libraries with similar average sizes
and distributions yielded dramatically different measure-
ments of size bias on the NextSeq versus the HiSeq
4000 (Additional file 1: Figure S6).

Surprisingly, we also detected an instance of
construct-specific size bias, specifically on the HiSeq
2500 platform in Rapid Run mode (Additional file 1: Fig-
ure S6). In contrast to the iSeq, MiSeq, HiSeq 2500 High
Output, HiSeq 4000, NextSeq, and NovaSeq where no
systematic construct-specific biases were observed, the
size bias curves for the 16S, GAPDH, and alpha-Tubulin
constructs separated as size increased, with 16S showing
much less of a drop-off with increased molecule size.
One possible explanation for this difference is that the
16S rRNA gene has a substantial secondary structure
[25], which may serve to shorten the effective length of
the molecule during the clustering process. This
phenomenon may be due to differences in the clustering
process or temperature on this platform, which may be
less effective at dissociating the secondary structure of
the 16S rRNA gene (https://support.illumina.com/bulle-
tins/2016/10/considerations-when-migrating-nonillumina-
libraries-between-sequencing-platforms.html). The HiSeq
and MiSeq also have different recommended NaOH
concentrations for denaturing libraries. It is possible that
long molecules, particularly those with highly stable
secondary structure, are incompletely denatured under
the HiSeq denaturing conditions.

Characterizing the effects of size bias on data generation
across different Illumina sequencers
In order to determine the effects of size bias on the inter-
pretation of NGS results, we sequenced a number of
different types of libraries across multiple Illumina se-
quencers. First, we examined an RNA-Seq library. Since
RNA-Seq library preparation involves random shearing of
cDNA molecules, we did not expect to see an effect of size
bias on the gene expression counts. In addition, the range
of fragment sizes in this library was relatively tight, result-
ing in only minor differences in the observed insert sizes
between the NextSeq and NovaSeq platforms (Fig. 4a).
Consistent with expectations, the gene expression mea-
surements for the RNA-Seq library were highly correlated
between the NextSeq and the NovaSeq (Fig. 4b).
Next, we examined the effects of cross-platform size

biases on two different types of libraries (RAD-Seq and
ATAC-Seq) that were made using techniques which do
not involve random shearing, and for which the size of
fragments represented in the sequencing library are re-
lated to the underlying biology being measured.
RAD-Seq (also commonly referred to as genotyping by
sequencing (GBS) or sequencing-based genotyping
(SBG)), is a reduced-representation genotyping method
in which adapters are ligated to restriction fragments
which are then sequenced to identify sequence polymor-
phisms in a reproducible subset of genomic loci. We
made RAD-Seq libraries from 11 strains of Drosophila
melanogaster and sequenced these libraries on both the
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HiSeq 2500 and the NextSeq. In contrast to the
RNA-Seq library, these RAD-Seq libraries had a much
wider size distribution (Additional file 1: Figure S7). As
observed with the REcount size standards, the size dis-
tribution of molecules sequenced on the HiSeq 2500
skewed larger than that on the NextSeq (Fig. 5a). This
resulted in a larger number of markers and loci detected
on the HiSeq compared to the NextSeq when using
identical read depths and filtering parameters (Fig. 5b,
c). When these data were processed together, the differ-
ences in the size distribution also resulted in an elevated
rate of missing genotype calls for the NextSeq samples
(Fig. 5d) and a sequencer-dependent shift in the PCA
plot (Fig. 5e). This shift was in general smaller than the
differences between different genetic backgrounds and
could be eliminated by filtering the VCF file to remove
variants that were genotyped in less than 95% of the
samples (Fig. 5f ). Thus, in the case of RAD-Seq, size bias
introduces a measurable, but correctable, bias.
The choice of platform for RAD-Seq can also affect

the economics of sequencing. Since the samples

sequenced on the HiSeq had a wider distribution of frag-
ment sizes (Fig. 5a), this resulted in more markers
(Fig. 5b), but a lower average coverage (Additional file 1:
Figure S8). Thus, the sharper attenuation of clustering
based on fragment size observed on the NextSeq can
lead to more uniform coverage of a set of markers, and
could potentially allow for higher levels of multiplexing.
However, it should be noted that size selection could
also achieve a similar effect with RAD-Seq libraries.
ATAC-Seq represents another commonly used library

preparation method where a wide range of DNA frag-
ment sizes are sequenced. In this technique, library in-
sert size is also intimately linked to the underlying
biology, as the fragment sizes represent the chromatin
state of the corresponding DNA. In cases such as this,
size selection cannot be used to harmonize fragment
sizes between different libraries, as size selecting could
introduce bias into the resulting data by skewing the
proportions of nucleosomal and non-nucleosomal reads.
We sequenced six ATAC-Seq libraries representing three
replicates each of mouse ES-derived mesodermal

Fig. 4 Instrument-specific size biases have minimal effect on RNA-sequencing data. a Fragment size distributions for an RNA-Seq library
sequenced on the NovaSeq and the NextSeq. b Correlation of expression values (FPKM) for this library across the two instruments
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precursor cells (PDGFRα+FLK1− sorted cells) expressing
or not expressing the PAX3 transcription factor on both
the HiSeq 2500 and the NextSeq. As with the REcount
size standards, larger-sized fragments were more highly
represented on the HiSeq 2500 than on the NextSeq
(Fig. 6a, Additional file 1: Figure S9). This resulted in a
significant difference in the proportion of non-nucleosomal,
di-nucleosomal, and tri-nucleosomal reads between the two
sequencers, while the proportion of mono-nucleosomal
reads was unaffected (Fig. 6b). It should be noted that for
ATAC-Seq, reduced clustering efficiency for larger-sized
fragments as well as PCR amplification bias during library
preparation both likely serve to skew the representation of
nucleosome-associated reads.
We examined a known PAX3-responsive enhancer at

the Fgfr4 locus [26, 27] in order to assess the effects of
sequencing platform on detection of transcription factor
binding sites using ATAC-Seq. Sequencing reads were
mapped to the mouse genome, subsampled to a depth of
20 million reads per sample, and peaks that were enriched
in PAX3-expressing cells were called using MACS [28]

either for all reads or for the non-nucleosomal reads
(Fig. 6c, Additional file 1: Figure S10). In both cases,
at the Fgfr4 locus, PAX3-dependent enhancer peaks
were more prominent when the samples were sequenced
on the NextSeq. This difference was likely due to the
over-representation of smaller (non-nucleosomal) frag-
ments on the NextSeq relative to the HiSeq 2500, which
correspond to transcription factor binding sites. Using a
consistent read depth and parameters, this cross-platform
difference resulted in PAX3-responsive peaks being called
with MACS for the NextSeq samples and not the HiSeq
samples.
Thus, sequencer-specific size bias can influence bio-

logically relevant conclusions in some instances. It is
possible in this case that increased read depth on the
HiSeq 2500 or alterations of the MACS peak-calling
parameters could resolve this difference. Nonetheless, in
cases such as ATAC-Seq, where biologically meaningful
information is encoded in the size structure of the
sequencing library, care should be taken to account for
and minimize the effects of sequencer-specific size bias

Fig. 5 Instrument size biases affect genotyping marker observations in RAD-Seq data. a Average read counts for 11 RAD-Seq samples sequenced
on the HiSeq or NextSeq. b Number of markers observed in filtered VCF file for the 11 RAD-Seq libraries. c Number of loci observed in filtered
VCF file for the 11 RAD-Seq libraries. d Fraction of missing genotype calls for each sample in the unfiltered VCF file. e PCA plot generated using
the unfiltered VCF file. f PCA plot using the filtered VCF file. HiSeq data points overlap with NextSeq data points in this plot
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in data generation (for instance, by carrying out all experi-
ments on the same sequencing platform, and by choosing
an instrument with a desirable size bias profile).

Discussion
In summary, we describe REcount, a novel method for
obtaining highly accurate and precise PCR-free
NGS-based measurements of engineered constructs. In
future studies, similar constructs could be incorporated
into shRNA, CRISPR, and transposon libraries to im-
prove quantification of these molecules in pooled genetic
screens. Currently, such measurements are prone to bias
introduced by PCR, as we observed for both the BC and
V4 amplicons (Fig. 1, Additional file 1: Figure S4), as
well as other PCR artifacts such as PCR chimeras which
can cause barcode-construct mis-associations [29].
Sequence-specific amplification biases are often miti-
gated by including input controls, which are thought to
accurately model amplification biases. However, amplifi-
cation biases can be impacted by template concentration
and by the context of the other molecules in the
amplification reaction [14] and can limit the sensitivity
of these assays by compressing the dynamic range
(Additional file 1: Figure S4). One challenge of
employing REcount in these contexts is the large amount
of genomic DNA relative to the PCR-free barcode
construct. However, we have successfully quantified trans-
poson pools from isolated E. coli genomic DNA using this
approach (data not shown).
We further demonstrated that multiplexing of RE-

count measurements is possible using orthogonal re-
striction enzymes (Fig. 2). The fact that multiple
restriction enzymes can be used to liberate REcount
constructs, including SbfI which leaves 30–50-bp over-
hangs on the Illumina adapters, strongly suggests that
many other restriction enzymes could be employed for
making multiplexed REcount measurements. Thus,
REcount allows for potential multiplexing strategies
involving orthogonal digestion of distinct subpopulations
of molecules or of concatemerized barcode arrays. It is
also possible that substituting recombinases for restric-
tion enzymes could lead to more flexible barcoding
strategies.

Fig. 6 Effect of instrument size bias on ATAC-Seq data. a Average
insert size for 6 ATAC-Seq libraries sequenced on the HiSeq or
NextSeq. b Percentage of reads at a subsampled depth of 20 million
reads per sample classified as non-, mono-, di-, and tri-nucleosomal.
n = 6 libraries. ***denotes p < 0.01 using a t-test. n.s. denotes no
significant difference. c Distribution of mapped reads at the Fgfr4
locus. IGV plots of mapped reads for each sample, subsampled to a
depth of 20 million reads, and either directly mapped (“All reads”) or
split into the non-nucleosomal (“Non-nucl.”) subset and mapped.
MACS peak calls for PAX3-responsive sites for HiSeq (top) and
NextSeq (bottom) are below each set of mapped reads
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We used REcount to measure size bias on several differ-
ent Illumina sequencers. We found that size bias can vary
between runs and instruments and that the denaturation
procedure can affect size bias (Fig. 3). Due to the competi-
tive clustering of molecules of different sizes, it is likely
that a portion of the variability between runs and lanes is
due to differences in the size distributions of the libraries
being sequenced together with the synthetic size stan-
dards. Such context-specific effects may be more promin-
ent on patterned flow cell instruments, where library
molecules compete for a defined number of clustering
sites. Thus, the shape of the size bias curve is likely sensi-
tive to both the size distribution of the libraries being se-
quenced along with the size standards, as well as the
proportion of the lane devoted to the size standards.
As expected, we did not see effects of sequencer-specific

size biases on randomly sheared RNA-Seq libraries (Fig. 4).
In instances where library fragment sizes were generated
in a non-random manner (RAD-Seq and ATAC-Seq li-
braries), we did see differences in the data generated on
instruments with different size bias profiles. In the case of
the RAD-Seq libraries, the instrument-specific signal
could be removed by filtering out markers which did not
appear in both sets of samples (Fig. 5). However, the
choice of instrument influenced the evenness of marker
coverage and thus can affect the economics of sequencing.
In the case of ATAC-Seq, differences in size bias between
the HiSeq 2500 and the NextSeq led to differences in the
proportions of nucleosomal and non-nucleosomal reads and
differences in peak calling for a known PAX3-responsive
enhancer element (Fig. 6).
In sum, these results indicate that care should be taken

when interpreting quantitative measurements or com-
paring data across different platforms. This is particu-
larly true in cases where library size distributions are
non-random such as in several chromatin profiling
methods (e.g., ATAC-Seq [22], FAIRE-Seq/MAINE-Seq
[30]), approaches that use restriction digestion to frag-
ment DNA (e.g., RAD-Seq [21]), amplicons that vary in
length (e.g., fungal ITS sequencing [31]), or techniques
such as TAIL-Seq [32] that explicitly seek to measure
molecule length. In addition, because the fragmentation
pattern of cell-free DNA (cfDNA) is dependent on the
chromatin state of the tissue of origin [33], it is also
possible that sequencer size bias could influence the
measurement of mutant allele fractions in cfDNA
[34]. Constructs such as those described here could be
routinely spiked into Illumina sequencing runs to monitor
size bias, similar to the use of PhiX to report on sequen-
cing error rates and other base-calling metrics.

Conclusions
We demonstrated that REcount-based measurements of
defined plasmid pools are more accurate than

PCR-based measurements, that replicate measurements
have high precision, and that the technique is amenable
to multiplexing through the use of orthogonal restriction
enzymes. We used REcount to measure size bias across
different Illumina sequencers and found that there are
considerable differences in the efficiency of clustering
due to molecule length among the different Illumina in-
struments. We identified sample denaturation as a factor
that can influence size bias. We showed that while a
randomly sheared RNA-Seq library does not exhibit
sequencer-specific quantitative bias in gene expression
counts, sequencer size bias can influence both the inter-
pretation of results and the economics of sequencing in
cases where library fragment distributions are non-random,
such as in RAD-Seq and ATAC-Seq. The quantitative
measurements of size bias that we present and the
synthetic standards we have developed provide tools for
monitoring and accounting for size bias in Illumina
sequencing.

Methods
Synthesis and cloning of REcount plasmids
Even and staggered pool plasmids
The plasmids comprising the even and staggered pools
were designed to include a portion of the 16S rRNA
gene from 1 of 20 different bacterial species, modeled on
the Human Microbiome Project mock microbial com-
munities (HM-276D and HM-277D, [35, 36]), with a
3-bp “TCT” sequence tag added at an analogous position
in each construct. These constructs also contained an
I-SceI site, allowing for linearization of the plasmids,
and a REcount construct, consisting of a unique 20-bp
DNA barcode, flanked by Illumina adapters and MlyI
restriction sites, spaced in a manner to precisely liberate
the Illumina adapter-containing barcode construct
(Supplemental File 1). These constructs were synthesized
as DNA tiles by SGI-DNA and assembled into
full-length constructs using the BioXP 3200 (SGI-DNA).
The assembled DNA fragments were A-tailed using the
A-tailing module from NEB, cloned into pCR2.1 using a
TOPO TA cloning kit (Thermo Scientific), and trans-
formed into OneShot TOP10 chemically competent E.
coli (Thermo Scientific). Multiple colonies were selected,
DNA was isolated using a Qiagen Miniprep Kit, and
sequence-verified clones were identified by Sanger
sequencing with the following primers: M13F: GTAA
AACGACGGCCAG and M13R: CAGGAAACAGCTAT
GAC. The 20 sequence-verified plasmids were quantified
using a Quant-iT PicoGreen dsDNA assay (Thermo
Fisher Scientific), normalized to 50 ng/μl, and pooled at
an equal volume to create the original even pool. The
re-pooled even pool and staggered pool were made by
adjusting the volume pooled based on the initial
PCR-free sequencing data of the original even pool.
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Orthogonal enzyme multiplexing plasmids
Four synthetic gene fragments were synthesized (Integrated
DNA Technologies) in the pIDTSmart-Amp plasmid
backbone, consisting of an Illumina adapter-containing
construct with internal PacI and PmeI sites, and flanked by
a pair of either MlyI, BsmI, BtsαI, or BsrDI sites. The
full constructs were also flanked by a pair of SbfI sites
(Supplemental File 2). In order to make a collection of
barcode-containing constructs, the plasmid templates
were amplified using the following template-specific
primers, and a Golden Gate cloning reaction was used to
re-generate the circular plasmid: UMGC_350_MlyI_bar-
code_p5: NNNNGGTCTCTACTTATCCWWNNNWW
NNNAGATCGGAAGAGCGTCGTGTAG; UMGC_350_
MlyI_barcode_p7: NNNNGGTCTCTAAGTGCAANNN
WWNNNWWAGATCGGAAGAGCACACGTCTGAA;
UMGC_350_BsmI_barcode_p5: NNNNGGTCTCTG
GTTATCCNNSSNNSSNNAGATCGGAAGAGCGTCG
TGTAG; UMGC_350_BsmI_barcode_p7: NNNNGGT
CTCTCCAAGCAANNSSNNSSNNAGATCGGAAGAG
CACACGTCTGAA; UMGC_350_BtsI_barcode_p5:
NNNNGGTCTCTGAACATCCNNNWWNNNWWAG
ATCGGAAGAGCGTCGTGTAG; UMGC_350_BtsI_-
barcode_p7: NNNNGGTCTCTGTTCGCAANNNWWN
NNWWAGATCGGAAGAGCACACGTCTGAA
UMGC_350_BsrDI_barcode_p5: NNNNGGTCTCTAT

GAATCCNNSSNNSSNNAGATCGGAAGAGCGTCGT
GTAG; and UMGC_350_BsrDI_barcode_p7: NNNNGG
TCTCTTCATGCAANNSSNNSSNNAGATCGGAAGAG
CACACGTCTGAA.
Briefly, PCR reactions were set up using the following

recipe: 1 μl plasmid DNA (20 ng/μl), 2.5 μl primer 1
(10 μM), 2.5 μl primer 2 (10 μM), 19 μl water, and 25 μl
2× Q5 master mix (NEB). PCR amplification was carried
out using the following cycling conditions: 98 °C for 30
s, followed by 30 cycles of 98 °C for 20 s, 60 °C for 15 s,
72 °C for 1.5 min, followed by 72 °C for 5 min. Golden
Gate reactions [37, 38] were set up using the following
recipe: 1 μl barcoding PCR product from above, 2 μl
NEB Cutsmart buffer, 2 μl 10 mM ATP (NEB), 12.5 μl
nuclease-free water, 0.5 μl BsaI-HF, 1 μl T4 DNA ligase
(NEB 400,000 U/ml), 1 μl PacI. Golden Gate reactions
were cycled with the following conditions: 10 cycles of
37 °C for 5 min, 21 °C for 5 min, then 1 cycle 37 °C for
10min, then 1 cycle 80 °C for 20min. Golden Gate reac-
tions were transformed into chemically competent E. coli
5-alpha cells (NEB). Colonies were picked and DNA was
isolated using a Qiagen Miniprep Kit. Uniquely barcoded
constructs were identified by Sanger sequencing with
the following primers: UMGC_350-pIDT-Smart-For:
CTGAGGCTCGTCCTGAATGATA and UMGC_350-
pIDT-Smart-Rev: ACCGATCATACGTATAATGCCGTAA.
The 12 sequence-verified plasmids were quantified

using a Quant-iT PicoGreen dsDNA assay (Thermo

Fisher Scientific), normalized to 50 ng/μl, and pooled at
equal volume to create the orthogonal enzyme multi-
plexing test pool. Subsequent NGS analysis indicated
that some of these clones were mixed isolates, as other
barcodes that had not been detected by Sanger sequen-
cing were present in the NGS data sets. Analysis is based
on the Sanger-verified barcodes only.

Illumina size standard plasmids
Illumina size standards were designed using three differ-
ent template molecules as backbones for the
variable-length fragment; the 16S rRNA gene (16S) from
E. coli, the alpha-Tubulin84B gene (Tubulin) from D.
melanogaster, and the glyceraldehyde-3-phosphate de-
hydrogenase 1 (GAPDH) gene from D. melanogaster
(Additional file 1: Figure S5). Any naturally occurring
MlyI sites in these fragments were modified to remove
this restriction site. The variable-length size standards
represent nested fragments of these three genes with
breakpoints chosen to generate specific molecule
lengths, with GC contents between 40 and 60% (Fig. 3,
Additional file 1: Figure S5). In order to minimize repeti-
tive sequences, different adapters were used for the
normalization and variable size standards (Nextera and
TruSeq, respectively), and the normalization and size
standards were synthesized in opposite orientations in
the construct. Both the Illumina adapter-flanked variable
and normalization barcode constructs were flanked by
MlyI restriction sites. The Illumina size standard con-
structs were synthesized by GenScript in the pUC57
cloning vector (Supplemental File 3). Approximately
4 μg of each lyophilized plasmid was resuspended in
40 μl of EB (Qiagen). Plasmids were quantified using a
Quant-iT PicoGreen dsDNA assay (Thermo Fisher Sci-
entific) and normalized to 10 nM to account for the vari-
able sizes of the plasmids, then pooled at an equimolar
ratio.

qPCR validation of ddPCR assays
A set of primers allowing amplification between the
construct-specific barcode and the Illumina flow cell
adapter, either in the forward orientation (assay 1, where
the construct-specific primer was paired with the p7 pri-
mer) or reverse orientation (assay 2, where the
construct-specific primer was paired with the p5 pri-
mer), were designed and synthesized (Integrated DNA
Technologies, Supplemental File 4). In order to validate
these assays, we performed qPCR amplification of each
individual plasmid, the even plasmid pool, and a nega-
tive control (water) with each of the 40 primer sets, as
well as a p5/p7 positive control (which is expected to
amplify all constructs). PCR reactions were set up as fol-
lows: 3 μl template DNA (0.05 ng/μl), 1.06 μl
nuclease-free water, 0.6 μl 10× Qiagen PCR buffer,
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0.24 μl MgCl2 (25 mM), 0.3 μl DMSO, 0.048 μl dNTPs
(25 mM), 0.12 μl ROX (25 μM), 0.003 μl SYBR (1000×),
0.03 μl Qiagen Taq (5 U/μl), 0.3 μl primer 1 (10 μM), and
0.3 μl primer 2 (10 μM). Reactions were amplified on an
ABI 7900 with the following cycling conditions: 95 °C
for 5 min, followed by 35 cycles of 94 °C for 30 s, 55 °C
for 30 s, and 72 °C for 30 s, followed by incubation at 72
°C for 1 min. For each primer set, Ct values were nor-
malized to the mean Ct for that primer set across all
plasmids and plotted as a heatmap (Additional file 1:
Figure S5).

ddPCR
The re-pooled even plasmid mix was quantified using a
Quant-iT PicoGreen dsDNA assay (Thermo Fisher Sci-
entific), diluted to 1 ng/μl, and further diluted 1:10,000
to bring the pool to the correct concentration for digital
quantification. The following ddPCR reactions were pre-
pared: 5 μl template DNA, 0.44 μl primer 1 (10 μM),
0.44 μl primer 2 (10 μM), 5.12 μl water, and 11 μl Eva-
Green reaction mix (Bio-Rad). In addition, 2 μl of I-SceI
was added to the ddPCR master mix to linearize the
plasmid DNA templates, resulting in between 0.02 and
0.075 μl of I-SceI per reaction. Emulsion droplets were
generated using a QX200 Droplet Generator (Bio-Rad)
following the manufacturer’s instructions, transferred to
a 96-well PCR plate, and cycled using the following con-
ditions: 95 °C for 10 min, followed by 40 cycles of 95 °C
for 30 s and 55 °C for 1 min, followed by a final exten-
sion step of 72 °C for 5 min, and a 12 °C hold. Droplets
were counted using a QX200 Droplet Reader (Bio-Rad).
The re-pooled even plasmid mix was run in triplicate for
both the forward and reverse assays. Single replicates of
both the original even pool and the staggered pool were
run for both assays. For the staggered pool, the extent of
dilution of the 1 ng/μl plasmid pool was varied such that
the template abundance of the plasmid targeted by the
primer set was expected to be at the correct concentra-
tion for digital quantification. Data was analyzed using
QuantaSoft Analysis Pro software (BIO-RAD). Replicate
measurements were averaged (when available) for both
ddPCR assays in order to arrive at a measurement of
average ddPCR counts for each construct. Data from the
assay was not included in cases where there was no clear
separation between positive and negative droplets.

Sequencing library preparation
Even and staggered pool REcount measurements
The followingMlyI digests were set up for PCR-free quan-
tification: 200–500 ng even or staggered pool DNA, 2 μl
Cutsmart buffer (NEB), 1 μl MlyI (NEB), and volume was
adjusted to 20 μl with nuclease-free water. Digests were
incubated at 37 °C for 1 h, followed by 20min at 65 °C.
Thirty microliters of water was added to each digest (to

bring the volume up to 50 μl). Thirty microliters (0.6×) of
AmpureXP beads (Beckman Coulter) was added, and after
a 5-min incubation, beads were collected on a magnet and
the supernatant was transferred to a new tube (discarded
beads). Eightymicroliters (1×) of AmpureXP beads was
added, the beads were washed two times for 30 s using
fresh 80% ethanol, and the beads were air dried for 10
min, followed by elution in 20 μl of EB (Qiagen). Libraries
were quantified using a Quant-iT PicoGreen dsDNA assay
(Thermo Fisher Scientific), fragment sizes were assessed
using an Agilent Bioanalyzer High Sensitivity assay, and li-
braries were normalized to 2 nM for sequencing.

Even and staggered pool PCR-based measurements
Barcode construct (BC) library preparation The fol-
lowing PCR reactions were set up to amplify the BC
constructs: 1 μl DNA (1 ng/μl), 5 μl 10× Qiagen PCR
buffer, 2 μl MgCl2 (25 mM), 2.5 μl DMSO, 0.4 μl dNTPs
(25 mM), 0.25 μl Qiagen Taq (5 U/μl), 2.5 μl primer 1
(10 μM), 2.5 μl primer 2 (10 μM), and 33.85 μl
nuclease-free water.
The following primers were used to amplify the BC

constructs: p5: AATGATACGGCGACCACCGA and p7:
CAAGCAGAAGACGGCATACGA.
Samples were amplified using the following cycling con-

ditions: 95 °C for 5min, followed by 10, 20, 30, or 40 cycles
of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, followed
by incubation at 72 °C for 10min. Libraries were quanti-
fied using a Quant-iT PicoGreen dsDNA assay (Thermo
Fisher Scientific), fragment sizes were assessed using an
Agilent Bioanalyzer High Sensitivity assay, and libraries
were normalized to 2 nM for sequencing.

V4 fragment library preparation The following PCR
reactions were set up in triplicate to amplify the V4 con-
structs: 2 μl DNA (0.1 ng/μl), 0.5 μl primer 1 (10 μM),
0.5 μl primer 2 (10 μM), 2 μl nuclease-free water, and
5 μl 2× Q5 master mix. The following primers were
used: V4_515F_Nextera: TCGTCGGCAGCGTCAGATG
TGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA
and V4_806R_Nextera: GTCTCGTGGGCTCGGAGATG
TGTATAAGAGACAGGGACTACHVGGGTWTCTAAT.
Reactions were amplified using the following cycling

conditions: 98 °C for 30 s, followed by 10, 20, 30, or 40
cycles of 98 °C for 20 s, 55 °C for 15 s, 72 °C for 1 min,
followed by 72 °C for 5 min.
After initial amplification, PCR reactions were diluted

1:60 in nuclease-free water and used as templates in the
following indexing reactions: 3 μl PCR 1 (1:60 dilution),
1 μl indexing primer 1 (5 μM), 1 μl indexing primer 2
(5 μM), and 5 μl 2× Q5 master mix. The following index-
ing primers were used (X indicates the positions of the
8-bp indices): forward indexing primer: AATGATACG
GCGACCACCGAGATCTACACXXXXXXXXTCGTCGG
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CAGCGTC and reverse indexing primer: CAAGCAGAA
GACGGCATACGAGATXXXXXXXXGTCTCGTGGGC
TCGG.
Reactions were amplified using the following cycling

conditions: 98 °C for 30 s, followed by 10 cycles of 98 °C
for 20 s, 55 °C for 15 s, 72 °C for 1min, followed by 72 °C
for 5min. The full indexing PCR reactions were then puri-
fied and normalized using a SequalPrep normalization
plate (Thermo Fisher Scientific), followed by elution in
20 μl of elution buffer. An even volume of the normalized
libraries was pooled and concentrated using 1× AmpureXP
beads (Beckman Coulter). Pooled libraries were quantified
using a Qubit dsDNA broad-range assay (Thermo Fisher
Scientific), fragment sizes were assessed using an Agilent
Bioanalyzer High Sensitivity assay, and libraries were
normalized to 2 nM for sequencing.

Orthogonal enzyme multiplexing tests
The 12-plasmid orthogonal enzyme pool was cut with 1 of
5 different enzymes (in separate reactions) using the fol-
lowing recipe and enzyme-specific incubation conditions:
20 μl DNA (1 μg), 4 μl NEB buffer (CutSmart or NEB 2.1,
depending on enzyme), 2 μl enzyme (either MlyI [37 °C
for 1 h, followed by 65 °C for 20min], BsmI [65 °C for 1 h,
followed by 80 °C for 20min], BtsαI [55 °C for 1 h], or
BsrDI [65 °C for 1 h, followed by 80 °C for 20min], or SbfI
[37 °C for 1 h, followed by 80 °C for 20min]), and 14 μl
water. Ten microliters (0.5×) of AmpureXP beads (Beck-
man Coulter) was added to 20 μl of digested DNA, and
after a 5-min incubation, the beads were collected on a
magnet and the supernatant was transferred to new tube
(discarded beads). Ten microliters of AmpureXP beads
was added, and the beads were washed two times for 30 s
using fresh 80% ethanol, then air dried for 10min, before
eluting in 20 μl of EB (Qiagen). Libraries were quantified
using a Quant-iT PicoGreen dsDNA assay (Thermo Fisher
Scientific), fragment sizes were assessed using an Agilent
Bioanalyzer High Sensitivity assay, and libraries were nor-
malized to 2 nM for sequencing.

Illumina size standards
The following digest of the Illumina size standard pool
was set up: 175 μl DNA (10 nM), 20 μl CutSmart buffer
(NEB), 5 μl MlyI (NEB). The reaction was incubated
at 37 °C for 1 h, followed by 65 °C for 20min. The library
was quantified using a Quant-iT PicoGreen dsDNA assay
(Thermo Fisher Scientific), fragment sizes were assessed
using an Agilent Bioanalyzer High Sensitivity assay, and
libraries were normalized to 2 nM for sequencing.

RNA-Seq library preparation
Universal Human Reference RNA (Agilent, Catalog num-
ber: 740000–41) was processed using a Truseq Stranded
mRNA Sample Preparation Kit (Illumina). Briefly, 1 μg of

total RNA was oligo-dT purified using oligo-dT-coated
magnetic beads, fragmented, and then reverse transcribed
into cDNA. The cDNA was adenylated and then ligated to
dual-indexed (barcoded) adaptors using TruSeq RNA CD
Indices (Illumina) and amplified using 15 cycles of PCR
according to the Truseq Stranded mRNA Sample Prepar-
ation Kit protocol. The library was quantified using a
Quant-iT PicoGreen dsDNA assay (Thermo Fisher
Scientific), fragment sizes were assessed using an Agilent
Bioanalyzer High Sensitivity assay, and libraries were
normalized to 2 nM for sequencing.

RAD-Seq library preparation
DNA was extracted from Drosophila melanogaster
strains using the Insect Supplementary Protocol for the
DNeasy Blood and Tissue Kit (Qiagen). The following
strains were tested:
Stock name Source Notes

Berlin-K Bloomington Drosophila Stock
Center

RRID:BDSC_8522

Canton-S Bloomington Drosophila Stock
Center

RRID:BDSC_64349

DGRP-21 Bloomington Drosophila Stock
Center

RRID:BDSC_28122

DGRP-26 Bloomington Drosophila Stock
Center

RRID:BDSC_28123

DGRP-48 Bloomington Drosophila Stock
Center

RRID:BDSC_55016

DGRP-100 Bloomington Drosophila Stock
Center

RRID:BDSC_55017

Genome Strain Bloomington Drosophila Stock
Center

RRID:BDSC_2057

IsoD1 Clandinin Lab, Stanford
University

[39]

Ore-R-C Bloomington Drosophila Stock
Center

RRID:BDSC_5

Ore-R-
modENCODE

Bloomington Drosophila Stock
Center

RRID:BDSC_25211

One hundred nanograms of genomic DNA was
digested at 37 °C for 2 h with PstI-HF (10 U, NEB; New
England Biolabs) in Cutsmart buffer. Digested DNA was
ligated to TGCA-overhang adaptors at a final concentra-
tion of 0.1 μM for each adaptor (Integrated DNA
Technologies). Nextera-style adapters containing 0–6
frameshifting bases downstream of the sequencing pri-
mer binding site were incubated at 22 °C for 1 h followed
by heat inactivation of T4 ligase (400 U, NEB) at 65 °C
for 20 min. After a SPRI cleanup, half the volume of the
adapter-ligated DNA fragments was amplified using
NEBNext High-Fidelity 2× PCR Master Mix Taq (NEB)
with Forward and Reverse indexing primers (see above)
at a final concentration of .5 μM for each primer using
the following cycling conditions: initial denaturation at
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98 °C for 30 s followed by 18 cycles of 98 °C for 10 s, 55 °
C for 30 s, and 72 °C for 30 s with a final extension step
at 72 °C for 5 min. Purified libraries were quantified with
the Quant-IT PicoGreen dsDNA assay (Thermo Fisher
Scientific) and pooled by mass, and adaptor dimers were
removed using a 1× SPRI bead purification. The final li-
brary fragment size distribution was assessed using an
Agilent Bioanalyzer High Sensitivity assay, and libraries
were normalized to 2 nM for sequencing.

ATAC-Seq library preparation
ATAC-Seq was performed following the protocol
described by Buenrostro and colleagues [40]. Propagation
and embryoid body (EB)-based differentiation of the
doxycycline-inducible Pax3 ES cell line was performed as
previously described [41]. Pax3 induction was achieved by
adding doxycycline (final concentration of 1 μg/ml) in
3-day EB cultures. Fifty thousand freshly sorted PDGFRa
+FLK1− cells from cultures differentiated for 4 days (non--
induced and 1-day Pax3-induced cells) were washed with
200 μl of cold PBS then resuspended in 100 μl of cold lysis
buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3 mM
MgCl2, 0.1% IGEPAL CA-630), spun at 500 g for 10min
at 4 °C, and resuspended in 50 μl of the transposition reac-
tion mix. Transposition occurred at 37 °C for 30min, after
which transposed DNA was purified using a Qiagen
MinElute Kit and eluted in 12 μl Elution Buffer. Trans-
posed DNA was quantified using qPCR, followed by the
final PCR amplification using Illumina-compatible
adapter-barcodes (using the forward indexing primers and
reverse indexing primers described above). Three inde-
pendent libraries were generated for both non-induced
and Pax3-induced cells. Libraries were quantified using a
Qubit dsDNA broad-range assay (Thermo Fisher Scien-
tific), fragment sizes were assessed using an Agilent
Bioanalyzer High Sensitivity assay, and libraries were nor-
malized to 2 nM for sequencing.

Sequencing
DNA libraries were denatured with NaOH and prepared
for sequencing according to the protocols described in
the Illumina iSeq, MiSeq, NextSeq, HiSeq 2500, HiSeq
4000, and NovaSeq Denature and Dilute Libraries
Guides. Libraries were generally sequenced along with
other samples in a fraction of a sequencing lane.

Data analysis
REcount data analysis
Demultiplexed fastq files were generated using Illumina’s
bcl2fastq software. REcount data was analyzed using
custom R and Python scripts and BioPython [42]. The
first 20 bp of the sequencing reads was mapped against a
barcode reference file (Supplemental Files 5–8), with a
maximum of two mismatches allowed, using a custom

script which is available on GitHub (https://github.com/
darylgohl/REcount). Additionally, test data and expected
output files are also available at https://github.com/
darylgohl/REcount/tree/master/REcount_test_data.
Analysis of the V4 amplicon data was performed using
the reference-based mapping pipeline described here:
https://bitbucket.org/jgarbe/gopher-pipelines/wiki/meta-
genomics-pipeline.rst, using the reference file in Supple-
mental File 9 to build the bowtie2 index [43]. For the
analysis of quality scores (Additional file 1: Figure S5),
the data for all runs on a given platform was
concatenated into a single fastq file, then split into indi-
vidual fastq files for each individual construct, based on
the 20-bp sequence barcodes in each construct. Next,
the reads were trimmed to 50 bp using cutadapt [44], so
that all constructs and sequencing runs could be com-
pared in a standardized manner. Mean quality scores
were calculated for each construct that was represented
by at least 100 reads in the data set. This analysis was
carried out using a custom Python script (Supplemental
File: REcount_split_fastq_Q-score_plots.py), which is
available at: https://github.com/darylgohl/REcount/tree/
master/Q-score_Analysis.

RNA-Seq data analysis
Data quality was assessed using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Low-quality
bases and adapter sequences were removed using Trimmo-
matic [45]. Reads were aligned to the human genome
assembly GRCh38 using Hisat2 [46]. FPKM expression
values were generated using Cuffquant and Cufnorm from
the Cufflinks package [47], and Raw read counts were gener-
ated using featureCounts from the Subread R package [48].

RAD-Seq data analysis
Demultiplexed fastq files were generated using Illumina’s
bcl2fastq software. Fastq files with more than 500,000
reads were subsampled down to 500,000 reads. The first
eight bases were removed from the beginning of each
read in order to remove adapter sequences, and
Trimmomatic [45] was used to remove adapter
sequences at the 3′ ends of reads. The paired-end fastq
files were aligned to the Drosophila melanogaster r6.08
reference genome using bwa [49]. Freebayes [50] was
used to jointly call variants across all samples simultan-
eously. The raw VCF file generated by Freebayes was
filtered using VCFtools [51] to remove variants with
minor allele frequency < 1%, variants with genotype rates
< 95%, and samples with genotype rates < 50%.

ATAC-Seq data analysis
Demultiplexed fastq files were generated using Illumina
bcl2fastq software. Paired-end reads were mapped to the
mouse genome (mm10) using bowtie2 [43]. The
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resulting SAM files were filtered to remove mitochon-
drial reads, and SAMtools [52] was used to remove du-
plicate reads. Custom Python scripts were used to
subsample the SAM files to a depth of 20 million reads
(Supplemental File: ATAC_Seq_Sam_Subsampler.py)
and to split the subsampled SAM files into
non-nucleosomal and nucleosomal bins (Supplemental
File: ATAC_Seq_Split_Nucleosomes.py), using the fol-
lowing size ranges specified by Buenrostro et al. [22]:
non-nucleosomal: < 100 bp; mono-nucleosomal: 180–247
bp; di-nucleosomal: 315–473 bp; and tri-nucleosomal: 558–
615 bp. MACS [28] was used to call peaks that were in-
duced by PAX3 expression, and IGV [53] was used to
visualize read pileups and MACS peaks. Peaks detected in
two out of three samples were identified using BEDTools
[54].

Additional file

Additional file 1: Figure S1. Initial and re-pooled even plasmid pool
data. Figure S2. Lack of correlation between BC and V4 PCR. Figure S3.
Droplet digital PCR assay validation and data. Figure S4. Assessment of
REcount measurements of a staggered plasmid pool. Figure S5. Illumina
size standard pool composition and data. Figure S6 Context-specific ef-
fects on clustering of size standards. Figure S7. Size distribution of pooled
RAD-Seq library. Figure S8. Insert size distribution, missing genotype calls,
and mean read depth for RAD-Seq samples. Figure S9. Insert size distribu-
tions of individual ATAC-Seq libraries. Figure S10 Distribution of mapped
reads at the Fgfr4 locus at different subsampling depths. (PDF 1657 kb)
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Normalization barcode mapping file for Illumina size standards.
8. Supplemental_File_8.fasta
Variable barcode mapping file for Illumina size standards.
9. Supplemental_File_9.fasta
Reference sequences for V4 PCR mapping.
10. REcount_split_fastq_Q-score_plots.py
Script for analyzing Q-scores of synthetic size standards.
11. ATAC_Seq_Sam_Subsampler.py
Python script for used for subsampling SAM flies for ATAC-Seq analysis.
12. ATAC_Seq_Split_Nucleosomes.py
Python script for used for splitting SAM flies into non-nucleosomal and nu-
cleosomal bins for ATAC-Seq analysis.
This repository is also available at Zenodo: DOI: https://doi.org/10.5281/
zenodo.2633058. All source code is available under an MIT License.
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