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Abstract

RNA degradation affects RNA-seq quality when profiling transcriptional activities in cells. Here, we show that transcript
degradation is both gene- and sample-specific and is a common and significant factor that may bias the results in
RNA-seq analysis. Most existing global normalization approaches are ineffective to correct for degradation bias. We
propose a novel pipeline named DegNorm to adjust the read counts for transcript degradation heterogeneity on a
gene-by-gene basis while simultaneously controlling for the sequencing depth. The robust and effective performance
of this method is demonstrated in an extensive set of simulated and real RNA-seq data.
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Background
RNA-seq is currently the most prevailing method for
profiling transcriptional activities using high-throughput
sequencing technology [1]. The sequencing tag count
per unit of transcript length is used to measure the rela-
tive abundance of the transcript [2]. Various factors exist
that may affect the faithful representation of transcript
abundance by RNA-seq read counts. Normalization is a
crucial step in post-experiment data processing to en-
sure a fair comparison of gene expression in RNA-seq
analysis [3, 4]. The most commonly used approach is to
normalize the read counts globally by a sample-specific
scale factor to adjust the sequencing depth. Choices of
the scale factor include the total number of reads (or
mean), median, trimmed mean of M values [5], and
upper quartile [3]. The second type of normalization
aims to remove the read count bias due to physical or
chemical features of RNA sequences or uncontrollable
technical aspects. The GC content is known to affect the
read counts in a nonlinear way [6, 7], and this effect can
be sample specific under different culture or library
preparation protocols [8]. Systematic bias may also arise
due to technical effects such as library preparation and
sequencing batches. Such systematic biases can be

quantified and removed using factor analysis provided
that the unwanted variation is uncorrelated with the
covariates of interest [9, 10].
Another type of bias arises from cDNA fragmentation

and mRNA degradation. The RNA-seq assay requires
fragmenting the cDNA (reversely transcribed from
mRNA) or mRNA for high-throughput sequencing.
Ideally, for a complete, non-degraded transcript, if the
fragmentation is completely random, we expect to see
reads uniformly distributed along the transcript. Never-
theless, the fragmentation by random priming is not
truly random due to primer specificity [11–13]. Conse-
quently, read count per unit length of a transcript may
not strictly reflect the transcript abundance when com-
paring the expression of different genes. For the same
gene, assuming the same protocol is applied to different
samples, the bias attributable to fragmentation across
samples should be similar. Thus, fragmentation bias is
less problematic in a gene-by-gene differential expres-
sion (DE) analysis. In contrast, mRNA degradation can
vary substantially in both extent and pattern between
genes and between samples [14, 15]. The mRNA degrad-
ation has different pathways and can happen in any re-
gion of a transcript [16]. Perfect control of sample
degradation during the experiment is difficult, particu-
larly when the samples are collected from field studies
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or clinical samples. More importantly, different genes
may degrade at different rates [17], which makes it im-
possible to remove this bias by normalizing the read
counts of all genes in the same sample by the same
constant.
While the major impact of RNA degradation on gene

expression analysis has been well recognized [17, 18],
methods for correcting the degradation bias have not
been fully explored in the literature. A few methods have
been proposed to quantify the RNA integrity including
RNA integrity numbers (RIN) [19], mRIN [20], and tran-
script integrity number (TIN) [13]. The RIN gives a
sample-specific overall RNA quality measure, but not at
the gene level. In practice, a sample with RIN ≥ 7 (on a
scale of 0 to 10) is often regarded as having good quality.
The mRIN and TIN measures were both defined in the
gene level by comparing the sample read distribution
with reference to the hypothetical uniform distribu-
tion. In real data, due to GC content bias, primer
specificity, and other complexities, the read count
may substantially deviate from the uniform distribu-
tion along the transcript [7].
To reduce the degradation effect, Finotello et al. pro-

posed to quantify the exon-level expression by the max-
imum of its per-base counts instead of the raw read
counts [21]. If a given exon is in a more degraded re-
gion, the local maximum may still be an underestimate
of true abundance. On the other hand, the larger vari-
ance associated with the local maximum (e.g., spikes)
may result in instability in DE analysis. Based on the
TIN measure, Wang et al. proposed a degradation
normalization method based on loess regression of read
counts on the TIN measure for genes within the same
sample [13]. However, the uniform baseline assumption
and the failure to compare gene-specific degradation
across samples appear to be the two major limitations,
which may lead to extreme variability and bias in DE
analysis (to be shown below). Jaffe et al. proposed a
quality surrogate variable analysis (qSVA) to remove the
confounding effect of RNA quality in DE analysis [22].
They investigated the degradation of RNA-seq data from
dorsolateral prefrontal cortex (DLPFC) tissue under two
different RNA-seq protocols, namely, poly(A)+ (mRNA--
seq) vs. ribosomal depletion (Ribo-Zero-seq). Thousands
of features significantly associated with degradation were
identified under either protocol separately, while no
overlap was found between the two protocols. Further-
more, comparing the DLPFC samples and the peripheral
blood mononuclear cell (PBMC) samples [17] both se-
quenced under the same poly(A)+ protocol, they found
only four shared features. It is unclear how the sequence
features identified in this study can be generalized for
degradation bias correction in other RNA-seq data in
practice.

Alternative splicing is frequently observed in higher
organisms, and it further complicates the gene expres-
sion estimation in RNA-seq [23]. In the gene-level DE
analysis, we test the equivalence of relative abundance of
transcripts in copy numbers between samples or condi-
tions. If the two samples have differential exon usage,
read counts need to be adjusted accordingly to better
represent the transcript relative abundance in the re-
spective samples. Currently, most existing statistical
packages for RNA-seq analysis (e.g., DESeq [24] and
edgeR [25]) all take the raw read counts as input, while
such complexities are completely ignored in practice.
In this paper, we propose a novel data-driven method

to quantify the transcript degradation in a generalized
sense for each gene within each sample. Using the
estimated degradation index scores, we build a
normalization pipeline named DegNorm to correct for
degradation bias on a gene-by-gene basis while simul-
taneously controlling the sequencing depth. The per-
formance of the proposed pipeline is investigated using
simulated data, and an extensive set of real data that
came from both cell line and clinical samples sequenced
in poly(A)+ or Ribo-Zero protocol.

Results
Data sets
We consider six RNA-seq data sets that were generated
from cell lines or clinical samples under either the main-
stream poly(A) enrichment (mRNA-seq) or ribosomal
RNA depletion protocol (Ribo-Zero-seq). The first one was
from a brain glioblastoma (GBM) cell line study of a human
for the impact of RNA degradation on gene expression ana-
lysis [26]. Technical replicates of RNA samples were frag-
mented under different incubation time and temperature
using the NEBNext Magnesium RNA fragmentation mod-
ule. We chose to analyze nine mRNA-seq samples in three
groups of three, corresponding to three average RNA integ-
rity number (RIN) = 10, 6, and 4, respectively (to be re-
ferred to as R10, R6, and R4 for simplicity). We will
perform DE analysis for R10 vs. R4 and R6 vs. R4.
The second set contained 32 single-end mRNA-seq

samples from human peripheral blood mononuclear
cells (PBMC) of 4 different subjects: S00, S01, S02, and
S03 [17]. The extracted RNA sample from each subject
was kept in room temperature for 0, 12, 24, 36, 48, 60,
72, and 84 h, respectively, to approximate the natural
degradation process. We choose S01 as an illustrating
example and will perform DE analysis for 0 + 12 h vs. 24
+ 48 h (results for other subjects are similar).
The third set was from Sequencing Quality Control

(SEQC) Consortium [27, 28] and contained two subsets of
mRNA-seq data, namely SEQC-AA and SEQC-AB. The
SEQC-AA subset consisted of 16 technical replicates from
Stratagene’s universal human reference (UHR) RNA
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library with two runs for eight lanes each. We will run DE
analysis of the first run vs. the second run. The second
subset contained two biological conditions: condition A of
five samples from the same Stratagene’s UHR RNA, and
condition B of five samples from Ambion’s human brain
reference RNA. The first four replicates from both condi-
tions were prepared by the same technician while the fifth
was by Illumina. We excluded the fifth sample from both
conditions because they showed a dramatic difference in
coverage curves compared to the rest.
The fourth data set contained RNA-seq data from dorso-

lateral prefrontal cortex (DLPFC) tissue of five brains—
three controls and two schizophrenia cases [22]. Each tissue
was left in room temperature (off of ice) for 0, 15, 30, and
60min for degradation. The RNA sample was extracted
and prepared for both mRNA-seq and Ribo-Zero-seq. We
chose to analyze one schizophrenia case (Br1729, results
for other subjects are similar). We will perform DE analysis
T0+T15min vs. T30+T60min under the same protocol,
i.e., mRNA-seq or Ribo-Zero-seq, and then cross-platform
DE analysis between the two protocols.
The fifth data set originated from three pairs of

matched fresh-frozen (FF) and formalin-fixed paraffin-
embedded (FFPE) tissues of three breast tumor patients
(namely T1, T2, T3) with a moderate archival time of
about 4–5 years [29]. The FFPE samples are typically
partially degraded. We will analyze the mRNA-seq data
of FF (500 ng) and FFPE (100 ng) to investigate whether
the degradation normalization can help improve the DE
analysis in fragmented clinical RNA samples.
The last data set arose from a clinical study on how AMP

kinase (AMPK) promotes glioblastoma bioenergetics and
tumor growth [30]. It was shown that cancer cells can acti-
vate AMPK and highjack the stress-regulating pathway in
cells. Thus, inhibiting AMPK in cancer cells may lead to
treatment of GBM. RNA-seq data was collected from two
patient-derived GBM stem cell (GSC) lines (GBM9 and
GBM10) between control and AMPK knockout to identify
differentially expressed genes. We will perform DE analysis
between the three control and three knockout samples in
GBM10 cell line. Unlike the first five sets where the ground
truth of gene expression was known or mostly verified, the
AMPK knockout data represents a typical case in clinical
studies where only a handful genes of interest, most often
suspected as differentially expressed, were PCR verified. For
this reason, in the following analysis, we will compare the
different normalization methods by benchmarking our ana-
lyses using the first five sets and then present the AMPK
data as a case study in the last.

Non-uniformity and heterogeneity in read distribution
pattern
We define a total transcript as the concatenation of all
annotated exons from the same gene. The read coverage

score at a given location within the transcript is defined
as the total number of reads (single-end) or DNA
fragments (paired-end) that cover this position
(Additional file 1). If mRNA transcripts are complete
and the fragmentation is random, we expect to see a flat
coverage curve in the entire transcript except in the
head and tail region (Fig. 1a). Nevertheless, in real data,
the read coverage curves rarely display a uniform
pattern; instead, dramatic and gene-specific differences
are often observed across samples (Fig. 1b–e). The
non-uniformity itself is less concerning as long as the
coverage pattern is consistent across samples (Fig. 1b)
such that the read counts can still faithfully represent
the relative abundance of transcripts. In contrast, hetero-
geneous coverage patterns are often observed where
some samples show significantly decayed read counts in
some regions (Fig.1c–e). One major cause of this hetero-
geneity is mRNA degradation, which is clearly shown in
the case of ACTN4 gene of R4 samples from the GBM
data (Fig. 1d). Different sample preparation methods
may lead to distinct read distributions. For example,
FFPE samples may show a highly localized discrete read
distribution pattern in contrast to a continuous distribu-
tion typically observed in FF samples (Fig. 1c). Alterna-
tive splicing may also result in depleted read count in
the entire region of an exon, as exemplified in the ST7
gene of B samples (region 1900–2900 bp) from the
SEQC-AB data (Fig. 1e). For the gene-level DE analysis,
loss of read count due to such complexities needs to be
compensated to ensure unbiased quantification of gene
expression.

Generalized degradation and degradation normalization
algorithm
The degradation we target to normalize is defined in a
generalized sense. Any systematic decay of read count in
any region of a transcript in one or more samples com-
pared to the rest in the same study is regarded as deg-
radation. Clearly, mRNA degradation is one main cause,
but alternative splicing and other factors may be the
confounders that are difficult to deconvolute. To avoid
confusion, in the following context, we will reserve the
term “mRNA degradation” for the physical degradation
of mRNA sequences, and “degradation” or “transcript
degradation” for the generalized degradation without
specification.
We propose DegNorm, a degradation normalization

pipeline based on non-negative matrix factorization
over-approximation (NMF-OA, see the “Methods” sec-
tion and Additional file 1). We assume there is a
gene-specific ideal shape of coverage curve, called an
“envelope” function, identical across the samples in the
given study. Each envelope function is scaled by a sam-
ple- and gene-specific abundance parameter to represent
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the expected coverage curve for the given gene within
each sample if no degradation occurs. Degradation may
occur in any region of the transcript to cause negative
bias in the observed read counts. To illustrate this, we
generated four expected coverage curves of identical
shape but with different abundance levels (Fig. 2a),
among which samples S1 and S2 are subject to degrad-
ation in the 5′ end with different patterns. Based on the
expected curves, we further simulated a random
realization of four complete curves with sampling error
imposed (Fig. 2b, to be referred to as latent curves) and
two degraded for sample S1 and S2, respectively (Fig. 2c).
The NMF-OA algorithm takes the four observed cover-
age curves (i.e., two non-degraded (S3 and S4) and two
degraded (S1 and S2)) as input and estimates the latent
curves by minimizing the squared distance between the
observed and latent, subject to the constraint that the la-
tent curves must dominate their respective observed
curves at all positions (Figs. 2d, e; the “Methods” sec-
tion). We define the degradation index (DI) score for
each gene within each sample, as the fraction of area

covered by the estimated latent curve, but above the ob-
served curve (Fig. 2e). It measures the proportion of
missing read count due to degradation given the current
sequencing depth.
The DegNorm pipeline iteratively corrects for degrad-

ation bias while simultaneously normalizing sequencing
depth. First, the NMF-OA algorithm is applied to se-
quencing depth-normalized read counts for all genes
one by one to estimate the DI scores. Second, the result-
ing DI scores are then used to adjust the read counts by
extrapolation for each gene. The adjusted read counts
are used to normalize the raw data for sequencing depth.
These two steps are repeated until the algorithm con-
verges (the “Methods” section).

DI score as sample quality diagnostics
The estimated DI scores provide an overview of the
within-sample, between-sample, and between-condition
variation of degradation extent and patterns. We plotted
the DI scores in three ways: a box plot of DI scores for
each sample (Fig. 3a–f ), a heatmap of the DI scores

a b

d

c

e

Fig. 1 RNA-seq read coverage score shows between-sample heterogeneity in the pattern along transcripts. a The read coverage score, defined as
the number of reads that cover each base pair, is expected to have a trapezoidal shape along the transcript if the read start position is uniformly
distributed. b An example from SEQC-AB data shows a non-uniform but consistent read coverage pattern, where the average magnitude of
coverage score for each sample may faithfully represent the transcript abundance given the sequencing depth is normalized. The diagram in red
under the coverage plot shows the total transcript with exon boundaries from genome annotations (same for c, d and e below). c The
TMEM229B gene from the breast tumor data shows differential coverage score patterns between FF and FFPE samples. Reads from FF samples are
continuously distributed across the entire transcript while those from FFPE samples are highly enriched in a few disjoint blocks or fragments. d The
ACTN4 gene from the GBM data with RIN number = 10 vs. RIN = 4 shows clear degraded coverage score towards the 5′ end of the transcripts in the
latter group. e An example from the SEQC-AB data shows that alternative splicing likely causes sharply decayed coverage score across the entire
alternatively spliced exon region
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sorted in ascending order of the average scores of the
first condition defined in the DE analysis (Fig. 3g–l), and
a pairwise correlation matrix of DI scores between sam-
ples (Additional file 2: Figure S1a-f ).
For SEQC-AA data with 16 technical replicates, the

median of DI scores is ~ 0.35, consistent across samples
(Fig. 3a). While the degradation pattern varies between
genes, no systematic between-condition difference is ob-
served (Fig. 3g, Additional file 2: Figure S1a). In contrast,
for the SEQC-AB data, the 4 samples from condition B
have relatively lower and more homogeneous degrad-
ation than that from A samples (Fig. 3b). Many genes
show a condition-specific clustered pattern in DI scores
(Fig. 3h), resulting in a high within-condition correlation
(Additional file 2: Figure S1b).
The PBMC and GBM data are known to have differen-

tial mRNA degradation. The DI scores of PBMC S01
data confirm a progressive deterioration of average deg-
radation when samples underwent degradation in room
temperature for 0, 12, 24, and 48 h, respectively (Fig. 3c,
i, Additional file 2: Figure S1c). The degradation from 24
to 48 h was particularly accelerated compared to the first
24 h. The nine GBM samples were previously classified
into three groups according to the RNA integrity

number (RIN), R = 10, 6, and 4, respectively. The DI
scores show a clear escalating pattern of degradation se-
verity across the three groups (Fig. 3d, j) with two strong
clusters, i.e., R10 vs. R6+R4 (Additional file 2: Figure
S1d). The scatter plots of DI scores further exemplify a
higher correlation between samples within the same RIN
group than across different RIN groups (Additional file 2:
Figure S1 g-i).
For the DLPFC Br1729 Ribo-Zero-seq data, DegNorm

recovered an increasing pattern of degradation from
time 0 to 60min as expected (Fig. 3e, k, Additional file 2:
Figure S1e). The three pairs of breast tumor samples
were prepared in two different ways—fresh frozen (FF)
and formalin-fixed paraffin-embedded (FFPE)—but
both sequenced under the mRNA-seq protocol. The
DI scores confirm that the mRNA transcripts in FFPE
samples tend to be highly degraded compared to the
paired FF samples (Fig. 3f, l), and degradation pat-
terns are strongly clustered within the same FF or
FFPE group (Additional file 2: Figure S1f ).
In summary, the DI scores from the DegNorm provide

meaningful quantification of gene-level degradation be-
tween samples for both cell line and clinical samples
under both mRNA-seq and Ribo-Zero-seq protocols.
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Fig. 2 A proof-of-concept example of the proposed method for normalizing degradation patterns. a Expected or theoretical read coverage curves of
one gene from four samples of identical shape (solid lines, without degradation), two of which (S1 and S2) are subject to degradation according to a
rate indicated by the dashed lines in the 5′ end. b A realization of the four coverage curves without degradation randomly simulated according to the
expected curves in a. These curves are regarded as the latent and unobserved data. c Observed coverage curves after imposing random degradation
to S1 and S2 (S3 and S4 stay intact). d Estimates of the non-degraded latent curves from the proposed algorithm solely based on the
observed coverage curves in c. e A sample-by-sample comparison between the observed and estimated latent coverage curves
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The degradation pattern is gene-specific, and the deg-
radation extent may vary substantially between samples
or conditions.

DegNorm improves accuracy in gene expression analysis
We set out to evaluate how the proposed DegNorm
pipeline may improve differential expression analysis by
comparing it with other seven normalization methods
including UQ [3], TIN [13], RUVr, RUVg [10], trimmed
mean of M values (TMM) [5], relative log expression
(RLE) [24], and total read count (TC) [4]. The RUV
methods were designed to remove unwanted variation,
but it is unclear whether it is effective for correcting
degradation bias. We dropped the RUVg method from
the main text for its performance can be very sensitive
to the choice of empirical control genes (Additional file 2:
Figure S2a-f ) or the choice of factor(s) from the factor
analysis in the estimation of unwanted variation
(Additional file 2: Figure S2 g, h). The TMM, RLE, TC,

and UQ methods yielded very similar results in all data
we analyzed in this paper (Additional file 2: Figure S3a-f
for some examples). For visualization purpose, only the
UQ results are presented in the main figures.
We first examine the five data sets that originated

from the samples that had no true biological difference
between conditions under test (i.e., SEQC-AA,
PBMC-S01, GBM, DLPFC, and breast tumor). RNA deg-
radation induces bias and thus may cause extra variance.
Severe degradation may even result in a difference of
transcript abundance for some genes when they are pre-
pared for RNA-seq. Thus, we investigate how different
methods may reduce variance by plotting the coefficient
of variation (CV) of normalized read count vs. mean
read count in log scale (the logged mean was linearly
transformed to 0–1 range, Fig. 4a–f ). Overall, the TIN
method gives a relatively larger CV than the other three
methods. When RNA degradation is a major concern
such as in GBM-R10vsR4, and breast tumor FF vs. FFPE
comparisons, DegNorm pronouncedly reduced the CV

a b g h i

c d

e f

j k l

Fig. 3 Degradation index (DI) scores show gene-/sample-/condition-specific degradation heterogeneity. a–f Box plots of DI scores presented in a
between-group comparison defined for the differential expression analysis as follows. a SEQC-AA data (16,670 genes): the 8 (1–8) technical replicates
from the first run vs. the 8 (9–16) from the second run. b SEQC-AB data (19,061 genes): 4 biological replicates from A condition vs. 4 from B condition.
c PBMC data for subject S01 (14,051 genes): 2 samples exposed at room temperature for 0 and 12 h (S01_T1 and S01_T2) vs. 2 for 24 and 48 h (S01_T3
and S01_T4), respectively. d GBM data (14,298 genes): 3 replicates each for RIN number = 10, 6, and 4, respectively. e DLPFC data for subject Br1729
from Ribo-Zero-seq (18,634 genes): 2 samples exposed to room temperature for 0 and 15min (T0, T15) vs. 2 for 30 and 60min (T30, T60). f Breast
tumor data of 3 matched pair (T1, T2, T3) prepared from FF and FFPE methods, respectively (10,996 genes). g–l For each data set presented in a–f, the
heatmap presents the DI scores of genes sorted in the ascending order of the average DI score of the first condition (in the GBM case,
the R10 samples), where each row corresponds to the same gene across samples
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compared to other methods except in the very lower or
upper end where the CV was inflated due to outliers
(Fig. 4d, f ). The RUVr approach applies UQ
normalization first and then further removes the add-
itional variation estimated from the factor analysis. It
always reduces CV over the UQ method.
We normalized the raw read count by dividing it by 1

- DI score for each gene within each sample. The ad-
justed read counts (rounded) were input into the edgeR
package [25] for DE analysis. When all genes are true
nulls, the empirical cumulative distribution function
(ECDF) of p value tends to be a diagonal line. Thus, an
ECDF curve closer to the diagonal line indicates better
performance of the normalization method in correcting
the degradation bias. For SEQC-AA data with 16
technical replicates, all 4 methods resulted in expected
ECDF curves close to the diagonal line (Fig. 4g). For

PBMC-S01 and GBM-R6vsR4 comparisons with known
modest between-condition difference in mRNA degrad-
ation, the ECDF curves from different methods were all
well above the diagonal line (except TIN for PBMC
data), suggesting that differential degradation probably
has caused a difference in gene abundance level when
the samples were sequenced (Fig. 4h, i). Both DegNorm
and TIN methods brought the ECDF curve down to-
wards the diagonal line compared to UQ and RUVr, in-
dicating that correction for degradation bias helps
reduce potential false positives. Nevertheless, the TIN
curve in PBMC-S01 data was well below the diagonal
line (Fig. 4h), which may indicate a loss of statistical
power due to the large variance of the normalized read
counts (Fig. 4b). In contrast, the RUVr ECDF curves in
both comparisons are significantly higher than that in
UQ (regardless that RUVr had lower CV than UQ),

a b g h

c d i j

e f k l

Fig. 4 Differential expression (DE) analysis in data sets that had no true differential expression. Results are shown for SEQC-AA, PBMC-S01, GBM
R10 + R6, GBM R10 + R4, DLPFC Br1729 Ribo-Zero, and breast tumor data. a–f Coefficient of variation (CV) vs. mean read counts (in log scale):
compared are results from proposed DegNorm pipeline and other methods including upper quartile (UQ), RUVr, and TIN. The mean counts for
each data were scaled to 0–1 range by a linear transformation (i.e., (Xi −minj(Xj))/maxj(Xj) where Xi is the log of the mean count for gene i). The
CV curve was generated using the R built-in function smooth.spline. The beanplot under the CV plot shows the density of log of mean read
counts from DegNorm (the densities of read counts from other normalization methods are similar and not shown). g–l Empirical cumulative
distribution function (ECDF) of the p value from DE analysis. The RUVr results were generated using the RUV-seq package. For TIN method, we
followed Wang et al. [13] with details described in the uploaded R Markdown file
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suggesting an ineffective correction of degradation bias
or even an adverse effect to cause extra false positives.
For the GBM-R10vsR4 comparison, ECDF curves are all
far above the diagonal line, likely indicating a substantial
change of transcript abundance level for many genes
due to drastic degradation in R4 samples (Fig. 4j).
The DLPFC and breast tumor FF-FFPE RNA-seq

data were both generated from clinical tissue samples.
For the DLPFC Br1729 T0+T15 vs. T30+T60 com-
parison, the DegNorm resulted in a slightly lower p
value than UQ in Ribo-Zero (Fig. 4k) but much lower
than UQ in mRNA-seq (Additional file 2: Figure S4a)
data. For the breast tumor data, FFPE samples were
shown substantially fragmented and degraded than FF
samples (Figs. 1c and 3f ). DegNorm resulted in a
lower p value curve than all other methods (Fig. 4l).
We also did cross-protocol DE analysis by comparing
the four Br1729 mRNA-seq with four Ribo-Zero sam-
ples. All p value curves were way above the diagonal
line (Additional file 2: Figure S4b), suggesting DE
analysis across different sequencing protocols should
not be recommended.

The p value ECDF curve provides a global picture of a
false-positive rate at different type-I error rate thresholds
when all null hypotheses are true. In practice, as the
ground truth is unknown, one typically claims the DE by
controlling the false discovery rate (FDR) to correct mul-
tiple comparison errors. Thus, we further compared the
false-positive rate of different methods by controlling
the nominal FDR under the criterion of q value ≤ 0.05
using q-value package [31–33]. For SEQC-AA data with
a little degradation difference between samples, all four
methods resulted in very few claimed positives
(Additional file 3: Table S1), consistent with the
close-to-diagonal-line nature of p value ECDF curves in
Fig. 4g. For the rest data with differential degradation, all
methods yielded a substantial number of false positives.
For comparison, we plotted the ratio of the false-positive
rate of UQ, RUVr, and TIN over DegNorm in log2 scale
(Fig. 5a). The UQ and RUVr methods consistently
yielded more false positives than DegNorm, by a factor
ranging from 1 to 3.7 and 1.4–36.8, respectively. The
TIN method reduced the false-positive rate over Deg-
Norm in the PBMC-S01 with a factor of 1.37.
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Fig. 5 Differential expression analysis results. a Log2 ratio of false-positive rate of UQ/RUVr/TIN relative to DegNorm at q value = 0.05 criterion for
data sets where genes have no differential expression. b–f DE results for SEQC-AB data. b Coefficient of variation (CV) vs. mean normalized read
counts (in log scale). c Empirical cumulative distribution function (ECDF) of the p value from DE analysis. d Receiving operating characteristic
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Nevertheless, we will show below that this relatively
lower false-positive rate from the TIN method is an indi-
cation of undermined power due to the excessively
inflated variance (Fig. 4a–f ).
The SEQC-AB data presents an atypical example con-

taining an unusually large number of differentially
expressed genes [27, 34]. DegNorm produced an overall
lower CV than UQ, RUVr, and TIN methods (Fig. 5b).
The DegNorm ECDF lies below those of UQ and RUVr
methods while above TIN (Fig. 5c). With the presence of
truly differentially expressed genes, the lower ECDF can
be interpreted as a tendency to result in fewer false posi-
tives (good) or more false negatives (bad, less power) or
a mix in the DE analysis. To investigate this, we utilized
2 sets of PCR-verified genes, 1 from the original MAQC
study of 843 genes [34] and the other from SEQC study
of 20,801 genes [27], as the ground truth to construct re-
ceiver operating characteristic curves (ROC) (Fig. 5d, e).
Similar to Rissio et al. [10], we defined a gene as a posi-
tive if the absolute value of log2 fold change ≥ 2, a nega-
tive if ≤ 0.1, and undefined otherwise. For both sets, the
ROC curves suggest that DegNorm achieved better
true-positive rate (sensitivity) than UQ, RUVr, and TIN
while controlling the false-positive rate (1-specificity).
For example, at FPR = 0.05 (specificity = 0.95), the larger
PCR set suggested a 78.1% true-positive rate for Deg-
Norm in comparison with 73.7%, 67.3%, and 48.3% for
UQ, RUVr, and TIN methods, respectively. When we
varied the of log2 fold change threshold value from 1
to 5 to define the positives, the area under the ROC
curve (AUC) from all methods (except TIN) increased
as expected, while the AUC from DegNorm remained
the largest and the gap between DegNorm and other
methods enlarge (Fig. 5f ). As the true-negative set
was fixed in this experiment, the true-positive rate
drove the change of AUC as the threshold value in-
creases. This suggests DegNorm improves the power
to identify highly differentially expressed genes over
other normalization methods while controlling the
false-positive rate. Therefore, we conclude that the
lower ECDF curve from DegNorm method (Fig. 5c)
manifests a good tendency to reduce false-positive
rate or increase specificity without sacrifice of statis-
tical power or sensitivity.
The RUVr and TIN methods both showed pronoun-

cedly lower power than DegNorm and UQ, but due to
different reasons (Fig. 5d–f ). The RUVr method is
guaranteed to reduce more variation based on the
UQ-normalized data. Nevertheless, the removed vari-
ation may contain true biological difference if it is con-
founded with unwanted variation, which will result in
more false negatives. On the other hand, the large vari-
ance incurred by TIN method appears to severely under-
mine the power in the DE analysis (Fig. 5b).

We present three examples that exemplify how
DegNorm may improve the accuracy in the DE analysis.
We used local false discovery rate (lfdr) from q-value
package [31–33] to quantify the significance of DE ana-
lysis. Compared to q value, which quantifies the average
FDR for all genes with smaller p value than the given
one, lfdr is more appropriate to quantify the false discov-
ery rate associated with any individual p value. The
MMP14 gene in the GBM-R10vsR4 comparison displayed
a clear degradation in the 5′ end in R4 samples (Fig. 6a)
and tested positive using UQ method (p value = 1.31e−8,
lfdr = 1.1e−8). DegNorm compensated for the degraded
portion of R4 samples and returned negative test result (p
value = 0.91, lfdr = 0.32, Fig. 6b). The second example is
the PIK3C2A gene from SEQC-AB comparison, a
PCR-verified negative with log2 fold change = 0.06. It
tested positive under UQ (p value = 0.005, lfdr = 0.02)
(Fig. 6c) while negative under DegNorm with degradation
correction in the 5′ end of A samples (p value = 0.77, lfdr
= 0.97, Fig. 6d). The third example is the NDUFV3 gene
from the SEQC-AB data, showing nearly depleted cover-
age in the entire third exon region from ~ 223 to 1327 nt
for B samples likely due to alternative splicing. It tested
positive under UQ (p value = 1.94e−37, lfdr = 3.39e−09,
Fig. 6e). DegNorm returned a negative result (p value =
0.808, lfdr = 0.942, Fig. 6f), consistent with negative PCR
verification (log2 fold change = − 0.114).

GBM AMPK knockout data
GBM AMPK data presents a typical case in a clinical
study where RNA-seq is used to survey a transcriptome
for differential expression between control and treat-
ment samples. DegNorm uncovered higher degradation
in the control than the AMPK knockout samples (Fig. 7a)
and heterogeneity in degradation pattern between the
two conditions (Fig. 7b). DegNorm also resulted in a
lower CV curve and a lower ECDF of p value than UQ
and RUVr methods (Fig. 7c, d). We claimed differential
expression under q value ≤ 0.05 and compared the
test-positive sets between DegNorm, UQ, and RUVr
(Fig. 7e). There were 2798 positive genes shared by all 3
methods, while UQ and RUVr produced 935 and
775 more positives than DegNorm, respectively. We sus-
pect degradation may cause an excess of false positives
(as suggested by similar plots in Fig. 6 for SEQC-AB
data); nevertheless, without a large set of PCR-verified
genes, it is impossible to rigorously assess the sensitivity
and specificity. Chhipa et al. [30] analyzed the RNA-seq
data and concluded that the bioenergetics of cellular me-
tabolism was the most significantly downregulated path-
way in AMPK-depleted samples. They applied RT-qPCR
and verified a small set of downregulated genes using in-
dependent GBM cell lines from 3 other patients. Among
the 12 genes verified as downregulated, including HIF1a,
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LDHA, SLC2A1, HK1, GPI, ALDOA, TPI1, PFKM,
ENO1, GABPA, TFAM, and COX20, DegNorm, UQ,
and RUVr all successfully identified 8 except HK1,
PFKM, GABPA, and COX20, whereas TIN method
missed 2 additional genes, GPI and ALDOA (Add-
itional file 4: Table S2). The discrepancy between the
RNA-seq set and PCR results could be due to cell
line-specific variation, lack of power due to small sample
size or sample quality (personal communication with Dr.
Dasgupta). Clearly, such a small-scale verification is in-
sufficient to conclude about the sensitivity, neither can
we evaluate the specificity without verification of the
negatives. The discrepancy between DegNorm and other

methods does provide alerts to users of possible false
positives caused by degradation when interpreting the
results of such studies.

Simulation study
To further systematically investigate the performance
of DegNorm, we conducted a simulation study in a
two-condition comparison: 4 control (A) vs. 4 treat-
ment (B) samples in 4 different degradation settings.
Each sample of 20,000 genes was simulated with a ran-
dom sequencing depth of 40–60 million reads, 5% of
which were chosen to be upregulated and another 5%
for downregulated in expression. In the first setting, all

a b

c d

e f

0

200

400

600

0 500 1000 1500 2000

C
ov

er
ag

e

SEQC-AB-NDUFV3

Exons:

0

200

400

600

0 500 1000 1500 2000

C
ov

er
ag

e

SEQC-AB-NDUFV3

Exons:

C
ov

er
ag

e

SEQC-AB-PIK3C2A
A01
A02
A03
A04

B01
B02
B03
B04

C
ov

er
ag

e

200

100

0
0 2000 4000

SEQC-AB-PIK3C2A

300

C
ov

er
ag

e

600

900

0

0 1000 2000 3000

R10
R10
R10

R4
R4
R4

GBM-R10vsR4-MMP14

300

C
ov

er
ag

e

600

900

0

0 1000 2000 3000

GBM-R10vsR4-MMP14

6000 8000

300

200

100

0

300

0 2000 4000 6000 8000

A01
A02
A03
A04

B01
B02
B03
B04

A01
A02
A03
A04

B01
B02
B03
B04

A01
A02
A03
A04

B01
B02
B03
B04

R10
R10
R10

R4
R4
R4

Fig. 6 Examples illustrating that DegNorm improves accuracy in RNA-seq DE analysis. a, b Coverage curves under UQ and DegNorm normalization
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genes had no degradation whereas in the rest 3 settings,
80% of the genes were randomly selected for degrad-
ation. In the second setting, for a gene selected for deg-
radation, either 3, 4, or 5 samples out of the 8 were
randomly chosen for degradation, whereas in the third,
either all 4 control samples or 4 treatment samples
were randomly chosen for degradation. In both second
and third settings, the degradation extent for each de-
graded gene was random but following the same distribu-
tion. In the fourth setting, for each gene selected to
degrade, 2 control samples were randomly selected for
degradation with the same expected severity, while all
treatment samples had a sample-specific systematic differ-
ence in expected severity. The simulation details are de-
scribed in the “Methods” section and Additional file 1.
Simulation I presents a scenario where samples have

no degradation bias or any other bias but only
between-sample variation in sequencing depth. In the
following, we shall refer the latent count as the true read
count for a gene before degradation is imposed. Deg-
Norm is data driven and always returns non-negative DI
scores by design. The estimated DI scores have a median
~ 0.11 in all samples (Fig. 8a), demonstrating the absence
of between-condition heterogeneity (Fig. 8b). To investi-
gate how the positive bias in DI scores may impact DE
analysis, we first plotted the normalized vs. latent read
count from different methods (Fig. 8c–f ) (the latent read
count in simulation I is just the raw read count).

Unsurprisingly, the UQ method perfectly normalizes the
sequencing depth (Fig. 8c), while all other three methods
caused bias or extra variance to different extents
(Fig. 8d–f ). The positive bias from DegNorm is more
pronounced when read counts are low such that read
coverage curve cannot be well estimated (Fig. 8e). As for
any gene, all samples are subject to this over-estimation
bias; this bias may partially cancel off in DE analysis. As
a result, the p value ECDF and ROC curves of DegNorm
almost perfectly overlap with the latent and UQ curves
(Figs. 8g, h). At FPR = 0.05, DegNorm, RUVr, and TIN
had sensitivity decay of 0.6%, 1.1%, and 8.6%, respect-
ively, compared to using the latent counts or UQ
method (Additional file 5: Table S3).
When degradation is an issue as in simulations II–IV,

the estimated DI scores provide an informative
characterization of the overall degradation severity of
each sample (Additional file 2: Figure S5a-f ) as well as
the similarity of gene-specific degradation pattern be-
tween samples (Additional file 2: Figure S5 g-l).
DegNorm demonstrates consistently better correction of
degradation bias than the UQ, TIN, and RUVr methods,
as evidenced by higher regression coefficient of
determination (R2), and a nearly symmetric distribution
of data points around the diagonal line in the scatter
plot of normalized vs. latent read counts (Fig. 9a–d,
Additional file 2: Figure S6a-h). The UQ method does
not correct for any degradation bias but instead only

a b

d e

c

Fig. 7 DE analysis in GBM AMPK knockout data. a Box plot of estimated DI scores where condition W and T stand for control and knockout samples,
respectively. b Correlation plot of DI scores shows within condition replicates had a higher correlation of degradation pattern than between condition
samples. c Coefficient of variation (CV) vs. mean normalized read counts (in log scale). The bean pot under the CV plot shows the density of log of
mean read counts from DegNorm. d Empirical cumulative distribution function (ECDF) of the p value from DE analysis. e Venn-diagram shows the
number of claimed differentially expressed genes and pairwise overlap by DegNorm, UQ, and RUVr methods at q value threshold = 0.05
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normalizing sequencing depth (Fig. 9a, Additional file 2:
Figure S6a, e). Similar extreme variance issue is also ob-
served in the TIN method in simulations II–IV (Fig. 9b,
Additional file 2: Figure S6b, f ).
To gain more insights into the CV plots, we singled

out the 18,000 truly non-differentially expressed genes
from simulations II–IV and plotted the CV against the
mean of normalized count (Fig. 9e–g). Without the con-
founding effect of biological difference, the CV of these
genes tends to be inflated due to degradation-caused loss
of read count. Thus, the CV is an informative measure
to assess the effectiveness of degradation normalization.
Indeed, the UQ and RUVr curves are both well above
the latent curve in all simulations, suggesting degrad-
ation bias was not or inadequately corrected. Similar to
what we observed in the real data, the TIN CV curve
dominates other methods in each setting, echoing the
excess of variance observed in the scatter plot (Fig. 9b,
Additional file 2: Figure S6b, f ). In contrast, the
DegNorm curves were the closest to the respective la-
tent curves but with a slight underestimation of CV in
the lower half.
DegNorm improves the accuracy in DE analyses. In

both ECDF (Fig. 9h–j) and ROC plots (Fig. 8k–m), the
DegNorm curve was the closest to the latent one, demon-
strating improvement over other normalization methods

to different extents. We tabulated the sensitivity of each
method at FPR = 0.05 (Additional file 5: Table S3) and
plotted it in Fig. 10. In settings II and III, where degrad-
ation was randomly chosen among samples (II) or condi-
tions (III), the UQ and RUVr methods were both
ineffective to correct this non-systematic but gene-specific
bias (Figs. 9k, l and 10). In particular, in simulation III as
degradation was applied to one condition of random
choice for a given gene, the degradation bias was com-
pletely confounded with the covariate of interest and can-
not be removed by UQ or RUVr method. Consequently,
many false positives were called due to degradation bias
(Fig. 9l). At FPR = 0.05 threshold, DegNorm improved the
sensitivity by a factor of 1.28, 1.30, and 2.01 compared to
UQ, RUVr, and TIN methods, respectively (Fig. 10,
Additional file 5: Table S3). In contrast, the treatment
samples in setting IV had a systematic difference in aver-
age degradation (Additional file 2: Figure S5c), both UQ
and RUVr performed reasonably well (Figs. 9m and 10).
In all four degradation settings, the TIN method showed
inferior power to detect true DE genes.

Discussion and conclusions
In this paper, we showed that RNA degradation pattern
and severity are not only sample specific, but also
gene-specific, and thus commonly used global

Fig. 8 Results for simulation I. a Box plot of estimated DI scores where conditions A and B stand for control and treatment samples, respectively.
b Heatmap of DI scores of genes sorted in the ascending order of the average DI score of condition A (control), showing no between-condition
clustered pattern. c–f Scatter plot of normalized read count vs. latent read count in log2 scale with diagonal line imposed for simulation I. Compared
are results from proposed DegNorm pipeline and other methods including upper quartile (UQ), RUVr, and TIN. g, h ECDF plots of p value and ROC
curves for simulation I under different normalization methods. All curves except TIN were well overlapping with each other, suggesting
close performance in DE analysis
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Fig. 9 Comparison of different normalization methods in simulations II, III, and IV. a–d Scatter plot of normalized read count vs. latent read count
in log2 scale with diagonal line imposed from DegNorm, UQ, RUVg, RUVr, and TIN methods for simulation II. e–g Coefficient of variation (CV) vs.
normalized mean read count (in log scale) for 18,000 true-negative genes (out of a total of 20,000 genes). The bean pot under the CV plot shows
the density of log of mean read counts from DegNorm. h–j Empirical CDF of p value from edgeR DE analysis. The latent curve corresponds to
the results using the true read counts before the degradation was imposed. k–m Receiver operating characteristic curves of DE analysis
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normalization methods that impose a sample-specific
constant adjustment to all genes within the same sample
are ineffective to correct for this bias. The RUVr ap-
proach is guaranteed to reduce variation, while they
failed to show pronounced improvement over the UQ
method in the DE analysis in all data sets considered in
this study (even got worse in all data under consider-
ation). One complexity is that the true biological differ-
ence is often confounded with degradation (e.g.,
SEQC-AB data) and other unwanted variation. The fac-
tor analysis cannot well separate the unwanted from
the wanted variation, and it may even remove the true
biological difference of interest. This confounding issue
was illustrated in the SEQC-AB data by the high
within-condition and low between-condition correl-
ation of DI scores (Additional file 2: Figure S1b). In
particular, the RUVg method was sensitive to the selec-
tion of empirical control genes or the factor(s) used to
estimate the unwanted variation (Additional file 2:
Figure S2a-j). More objective criteria in this regard
need to be developed for the RUVg method.
Although motivated by mRNA degradation, we de-

fined the degradation in this paper in a generalized and
relative sense. The quantified DI scores may reflect con-
founding effects from mRNA degradation, alternative
splicing, and other factors. Risso et al. [10] showed that
in the SEQC-AB data, samples were clustered due to the
difference of sample preparation, experiment protocol,
sequencing run batches and flow cell, etc. Such factors
could impact the RNA samples by changing the read
coverage curves. Thus, normalizing heterogeneity in
coverage curves may help reduce bias due to such

factors. Indeed, in all five benchmark data sets consid-
ered in this paper, DegNorm performed consistently bet-
ter compared to other methods regardless of whether
mRNA degradation was a known concerning issue. Un-
like mRIN and TIN measures where degradation was de-
fined as the deviation from hypothesized uniform
coverage curve, the DI score from DegNorm is defined
with reference to an adaptively estimated latent coverage
curve that minimizes the distance to the observed cover-
age curves. If a gene has 50% degradation but having
consistent coverage curves across samples, the estimated
DI scores will all be nearly 0. In this case, the read count
in each sample can still accurately reflect the relative
abundance between samples, and degradation correction
is unnecessary. From this perspective, the DI score is de-
fined in a relative sense. Normalizing the read counts for
degradation bias using DI scores is hoped to minimize
the extrapolation needed, thus avoids an excess of vari-
ance. The advantage of this strategy was exemplified in
all real and simulated data sets in contrast to the TIN
method.
There are a few limitations of the DegNorm method.

First, like any other normalization method, DegNorm is
a post hoc approach that is designed to alleviate the is-
sues due to degradation heterogeneity between samples/
genes and thus improve the accuracy of DE analysis. It
cannot completely remove the bias for every single gene.
In particular, cautions must be taken when testing DE
for samples that have a dramatic difference in degrad-
ation (e.g., GBM R10 vs. R4), as it may change the true
abundance level of transcripts of interest and lead to the
excess of false positive or false negatives. High-quality

Fig. 10 Bar chart of sensitivity (TPR) of different methods in simulations II, III, and IV. True-positive rate (sensitivity) is compared at false-positive
rate threshold = 0.05 for each method in each simulation
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RNA samples are always desirable in RNA-seq. Further-
more, cross-platform DE analysis is not recommendable.
Second, the core component of DegNorm is a matrix
factorization over-approximation algorithm aiming to
correct for the degradation bias that commonly exists in
RNA samples, even for the high-quality SEQC data.
DegNorm tends to result in a pronounced
over-estimation bias in DI scores for genes with low read
counts regardless of whether degradation is present
(simulations II–IV) or absent (simulation I). We showed
in simulation I that this bias is not a big concern in DE
analysis as it tends to be homogeneous across all sam-
ples for all non-degraded genes. Third, DegNorm has
only been tested in this paper on the bulk RNA-seq data
generated from a cell line or clinical samples (FF or
FFPE) under mRNA-seq or Ribo-Zero-seq protocol. The
effectiveness of DegNorm for RNA-seq data from 3′ end
sequencing (3seq) or other variants needs to be further
investigated in the future. Lastly, DegNorm is computing
intensive due to parsing read alignment results, calcula-
tion of read coverage curves, and repeated non-negative
matrix factorization of large matrices. We have imple-
mented DegNorm in a Python package available at
https://nustatbioinfo.github.io/DegNorm/. Currently, it
took about 9 h to run the entire pipeline on the FF vs.
FFPE comparison (6 samples) on a 22-core node on the
Linux cluster. We have implemented an MPI release
through parallel computing that can reduce the time by
a factor of n where n is the number of nodes used.
In summary, we conclude DegNorm provides a pipe-

line for informative quantification of gene-/sample-spe-
cific transcript degradation pattern and for effective
correction of degradation bias in RNA-seq. We intend
for DegNorm to serve as a general normalization
method to improve the accuracy in the gene expression
differentiation analysis.

Methods
DegNorm algorithm
Suppose we have p samples and n genes, Xij is the read
count for gene i in sample j. For simplicity of notation, we
first illustrate the proposed method by focusing on one
gene. Let fij(x), x = 1,… , Li; i = 1,… , n; j = 1,… , p be the
read coverage score for transcript i of length Li from sam-
ple j. When different isoforms are present, the Li positions
represent the assembly of all expressed exons in the se-
quential order. We assume there is an envelope function
ei(x) that defines the ideal shape of read coverage curve
for gene i if no degradation exists. The actual ideal cover-
age curve for the given gene in the jth sample is kijei(x),
where kij denotes the confounded effect of sequencing
depth and relative abundance of gene i in sample j.
Degradation causes fij(x) to deviate downward from

kijei(x) in degraded region(s). Clearly, sampling error can

cause random fluctuation of fij(x) from the ideal curve
kijei(x) (Fig. 2a, b). We assume the random error is negli-
gible compared to the major bias arising from degrad-
ation. Thus we require kijei(x) ≥ fij(x) for all j and x. The
difference between kijei(x) and fij(x) provides an estimate
of degraded portion of read count. We propose a
method that allows to estimate kij and ei(x) to quantify
the degradation extent of each gene within each sample
while simultaneously controlling the sequencing depth.

Estimating degradation via non-negative matrix over-
approximation
Let fij = (fij(1), … , fij(Li))

T, j = 1,… , p and Fi = (fi1, … ,
fip)

T. Let Ki = (ki1, … , kip)
T, Ei = (ei(1), … , ei(Li))

T. We
propose to estimate Ki and Ei by minimizing the follow-
ing quadratic loss function subject to some constraint:

Q Ki;Eið Þ ¼
XLi
x¼1

Xp
j¼1

kijei xð Þ− f ij xð Þ
h i2

s:t:kijei xð Þ

− f ij xð Þ≥0; kij; ei xð Þ > 0; ∀ j;∀x:

We can configure this problem into a non-negative
matrix factorization problem [35, 36] as follows:

min
Ki;Ei

‖KiEi
T−Fi ‖

2 s:t:Fi≤KiEi
T ;Ki≥0;Ei≥0;

where ‖∙‖2 stands for the element-wise quadratic norm
(i.e., sum of squared elements), and ≤ and ≥ for element-
wise logical comparison. We call this a rank-one
non-negative matrix factorization over-approximation
(NMF-OA) problem as Ki and Ei both have rank 1 and
KiEi

T ≥ Fi. The proposed iterative algorithm is described
in details in the Additional file 1.

Refinement of NMF-OA algorithm
The NMF-OA optimization algorithm provides an ap-
proximate solution to this problem. However, in the
RNA-seq data, the performance of the solution can be
affected by two confounding factors, the degradation ex-
tent and the sequencing depth. In our quadratic object-
ive function Q(Ki, Ei), an fij of larger magnitude tends to
have more influence on the estimation of envelope func-
tion. A dominant scale in fij may force the algorithm to
fit an envelope function that resembles fij to minimize
the loss. Thus, a good scale normalizing factor for se-
quencing depth is important to yield a good estimate of
the envelope function ei(x). With gene-specific and
sample-specific degradation, the total number of reads
may not provide a reliable measure of sequencing depth.
Second, given Fi that is appropriately normalized for

sequencing depth, the scale factor Ki should reflect the
relative abundance of the gene in the non-degraded re-
gion of each sample (to be referred to as the baseline re-
gion below) (Fig. 2a). The non-degraded region must
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preserve a similar shape in gene’s coverage curves from
different samples. If one can first estimate Ki from the
identified baseline region, then NMF-OA algorithm will
lead to a better estimate of the envelope function Ei, par-
ticularly in the situation when the degradation extent is
severe as the GBM data. We account for these two con-
siderations by proposing an iterative degradation
normalization pipeline (DegNorm) as follows:

1. Sequencing depth adjustment: given the current
estimate of (Ki,Ei) for i = 1,… , n, define the
degradation index (DI) score as:

ρij ¼ 1−

PLi
x¼1 f ij xð ÞPLi
x¼1kijei xð Þ :

Graphically, ρij stands for the fraction of the total area
under the curve kijei(x) but above fij(x) (Fig. 2e). The DI
score is used to calculate an adjusted read count by
extrapolation:

~Xij ¼ Xij

1−ρij
:

Next, we calculate the sequencing depth scaling factor
using the degradation-corrected total number of read
count:

s j ¼
Pn

i¼1
~Xij

Median j
Pn

i¼1
~Xij

� � :
In this paper, the results presented were all based on this

scale normalization. Alternatively, we can use other
normalization methods like TMM or UQ to calculate the
normalizing constant sj based on the degradation-adjusted
read count ~Xij if the presence of extreme outliers is a
concern.

2. Degradation estimation: given the estimated
sequencing depth sj from step 1, adjust the
coverage curves as follows:

f ij←
f ij
s j
:

� Let Fi = (fi1, … , fip)
T. Run NMF-OA for each gene

on updated coverage curves Fi and obtain the
estimate of (Ki,Ei).

� Divide each gene into 20 bins. Define the residual
matrix as Ri =KiEi

T − Fi . We identify a subset of
bins on which Fi preserves the most similar shape
as the envelope function Ei across all samples by
progressively dropping bins that have the largest
sum of squares of normalized residuals (Ri/Fi) and
repeatedly applying NMF-OA to the remaining bins.
This step stops if the maximum DI score obtained

from the remaining bins is ≤ 0.1 or if 80% bins have
been dropped (see details in Additional file 1). The
remaining transcript regions on selected bins are
regarded as the baseline. Denote the read coverage
curve on baseline region as F�

i .
� Run NMF-OA on F�

i . The resulting K�
i is a refined

estimate of Ki, given which the envelope function
can be obtained as:

eiðxÞ ¼ max j
f i jðxÞ
k�i j

( )
; x ¼ 1;…; Li:

3. Steps 1 and 2 are repeated until the algorithm
converges.

The DE analysis using edgeR was carried out based on
the degradation normalized read count ~Xij (rounded) at
convergence with upper quartile (UQ) normalization for
sequencing depth.

Simulations
We first simulated the latent read count for each gene
within each sample. For a given gene without DE, the la-
tent counts (without degradation) in both control and
treatment samples were randomly simulated from the
negative binomial distribution with the same mean and
same dispersion parameters that were randomly chosen
from the fitted values of SEQC-AB data. For a gene with
DE, the latent counts for the control samples were first
simulated as above, and those for the treatment samples
were simulated from the negative binomial with mean
parameter increased/decreased by a factor of (1.5 + γ) for
up- or downregulated genes, respectively, where γ was
simulated randomly from an exponential distribution
with mean = 1. In the second step, we simulated the
degradation given the latent read count (simulations II–
IV). For a given gene, we first chose a Gaussian mixture
distribution that covers the entire range of total tran-
script to model the read start position distribution. For
simplicity, we only consider 5′ end degradation. Each
read from a gene that was pre-selected for degradation
degraded (or was disregarded) with the probability that
depended on the start position of the read, defined by a
cumulative distribution function (CDF) of a lognormal
distribution. The degradation pattern and extent can be
tuned by varying the parameters in the lognormal distri-
bution (see more details in Additional file 1).
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Additional file 3: Table S1. This table summarizes the number of false
positives claimed in differential expression analysis by edgeR from
different normalization methods at q value threshold = 0.05 for data sets
including SEQC-AA, GBM RIN10 vs. RIN4, GBM RIN6 vs. RIN4, PBMC-S01,
DLPFC Br1729 Ribo-zero, DLPFC Br1729 poly(A)+, and breast tumor FF vs.
(XLSX 9 kb)

Additional file 4: Table S2. This table compares the p values and q values
of differential expression analysis by edgeR from different normalization
methods for 12 genes which were PCR-verified positives in the AMPK data.
(XLSX 12 kb)

Additional file 5: Table S3. This table compares the sensitivity
(true-positive rate) achieved by different normalization methods in
the differential expression analysis at FPR (false-positive rate) threshold =
0.05 for simulations I–IV. (XLSX 8 kb)
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