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BRB-seq: ultra-affordable high-throughput
transcriptomics enabled by bulk RNA
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Abstract

Despite its widespread use, RNA-seq is still too laborious and expensive to replace RT-gPCR as the default gene
expression analysis method. We present a novel approach, BRB-seq, which uses early multiplexing to produce 3' cDNA
libraries for dozens of samples, requiring just 2 hours of hands-on time. BRB-seq has a comparable performance to the
standard TruSeq approach while showing greater tolerance for lower RNA quality and being up to 25 times cheaper. We
anticipate that BRB-seq will transform basic laboratory practice given its capacity to generate genome-wide transcriptomic

data at a similar cost as profiling four genes using RT-gPCR.
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Background

High-throughput sequencing has become the method of
choice for genome-wide transcriptomic analyses as its
price has substantially decreased over the last years.
Nevertheless, the high cost of standard RNA library
preparation and the complexity of the underlying data
analysis still prevent this approach from becoming as
routine as quantitative (q) PCR, especially when many
samples need to be analyzed. To alleviate this high cost,
the emerging single-cell transcriptomics field imple-
mented the sample barcoding/early multiplexing
principle. This reduces both the RNA-seq cost and prep-
aration time by allowing the generation of a single se-
quencing library that contains multiple distinct samples/
cells [1]. Such a strategy could also be of value to reduce
the cost and processing time of bulk RNA sequencing of
large sets of samples [2-5]. However, there have been
surprisingly few efforts to explicitly adapt and validate
the early-stage multiplexing protocols for reliable and
cheap profiling of bulk RNA samples.
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All RNA-seq library preparation methods are globally
relying on the same molecular steps, such as reverse tran-
scription (RT), fragmentation, indexing, and amplification.
However, when compared side by side, one can observe
variation in the order and refinement of these steps
(Additional file 1: Figure Sla). Currently, the de facto
standard workflow for bulk transcriptomics is the direc-
tional dUTP approach [6, 7] and its commercial adaptation
“Illumina TruSeq Stranded mRNA”. Both procedures
evoke late multiplexing, which necessitates the processing
of samples on a one-by-one basis. To overcome this limita-
tion, the RNAtag-seq protocol implemented the barcoding
of fragmented RNA samples, which allows for early multi-
plexing and generation of a sequencing library covering en-
tire transcripts [8]. However, this protocol involves
rRNA-depletion and bias-prone RNA adapter ligation [9],
which is relatively cumbersome and expensive. Although
providing a significantly faster and cheaper alternative,
other approaches such as QuantSeq (Lexogen) and
LM-seq still require the user to handle every sample indi-
vidually [10] (Additional file 1: Figure Sla).

In contrast, early multiplexing protocols designed for
single-cell RNA profiling (CEL-seq2, SCRB-seq, and
STRT-seq) provide a great capacity for transforming large
sets of samples into a unique sequencing library [11-13].
This is achieved by introducing a sample-specific barcode
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during the RT reaction using a 6—8 nt tag carried by either
the oligo-dT or the template switch oligo (TSO). After in-
dividual samples have been labeled, they are pooled
together, and the remaining steps are performed in bulk,
thus shortening the time and cost of library preparation.
Since the label is introduced to the terminal part of the
transcript prior to fragmentation, the reads solely cover the
3" or 5" end of the transcripts. Therefore, the principal limi-
tation of this group of methods is the incapacity to
address splicing, fusion genes, or RNA editing-related
research questions. However, most transcriptomics
studies do not require or exploit full transcript infor-
mation, implying that standard RNA-seq methods
tend to generate more information than is typically
required. This unnecessarily inflates the overall ex-
perimental cost, rationalizing why 3'-end profiling ap-
proaches such as the 3’ digital gene expression (3’
DGE) assay have already been proven effective to de-
termine genome-wide gene expression levels, although
with a slightly lower sensitivity than conventional
mRNA-seq [14].

In this study, we set out to generate a method for afford-
able, efficient, and accurate bulk RNA profiling of a large
number of samples that combines the high-throughput
capacity of single-cell transcriptomics and the high
performance of standard RNA-seq. As our experimental
foundation, we selected the SCRB-seq approach [13], a
single-cell transcriptomics protocol that we deemed to be
the most time- and cost-effective amongst all early multi-
plexing approaches (Additional file 1: Figure Sla,b). More-
over, its unaltered workflow had already been used in
several studies for bulk RNA profiling [14-20]. Our own
benchmarking efforts of bulk SCRB-seq revealed however
important quality issues, prompting us to test and im-
prove key steps of this workflow (Additional file 1: Figure
S1b), including the barcoded primer design, initial RNA
amount, number of amplification cycles, and tagmentation
strategies, culminating into the presented Bulk RNA
Barcoding and sequencing (BRB-seq) approach. We
further assessed the performance of BRB-seq relative to
[lumina TruSeq, the standard for analyzing bulk RNA
samples, and found that BRB-seq is highly reliable for all
assessed quality markers and displays high performance,
even on fragmented RNA samples.

Results

Adaptation of the early multiplexing RNA-seq library
preparation workflow

First, we set out to benchmark SCRB-seq against the
“gold standard” Illumina TruSeq workflow for bulk gene
expression profiling. To do so, we prepared libraries
following both protocols using RNA from GM12878
cells treated with either DMSO or IKK inhibitor (BAY
11-7082) to induce gene expression differences and thus
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to assess a potential difference between these two
methods in the power to detect differentially expressed
genes starting from the same RNA.

After sequencing, we first observed approximately 30%
less SCRB-seq reads mapping to genes as compared to
TruSeq (Fig. 1a), which implies that SCRB-seq libraries
are more “contaminated” with undesired sequences
(such as oligos, adapters, or polyA). This leads to a loss
of approximately half of the initial sequenced reads,
which may unnecessarily increase the sequencing need
and thus overall cost. Interestingly, this effect was
reproduced when aligning four publicly available
bulk SCRB-seq datasets [14-16, 18] (Fig. la and
Additional file 2: Table S1). Subsequently, we down-
sampled the respective libraries after alignment to con-
sider an equal number of reads per replicate for both
libraries (1M aligned reads, see the “Methods” section)
and thus to allow a fair comparison between the
SCRB-seq and TruSeq methods, thereby correcting for
the discussed alignment issues. Upon investigating the
complexity of the libraries (i.e., the number of detected
genes), we found that at similar read depth (1M reads),
SCRB-seq detected significantly less expressed genes
than TruSeq (7% less genes across two conditions and
three replicates, ¢ test p value = 0.0038), thus revealing
lower library complexity (Fig. 1b). We then performed
an empirical power analysis between the two conditions
of our LCL experiment (DMSO- or BAY 11-7082-
treated LCL cells). We found that, with the same proc-
essed RNA, the SCRB-seq protocol uncovered ~ 20% less
total differential expressed (DE) genes than the 1M
downsampled TruSeq (Fig. 1c, 10 random downsam-
pling). More importantly, the downsampled TruSeq was
able to uncover ~ 35% more DE genes that were deemed
“true positives” because these were uncovered using the
full collection of 30M paired-end TruSeq reads. This
points to a lower sensitivity of SCRB-seq libraries (less
true positives/more false negatives). We concluded that
in its original form, SCRB-seq is not competitive with
TruSeq and that important workflow adaptations
would be required to use this approach for bulk RNA
sequencing.

Notably, we also noticed increased occurrences of “I”
bases in the UMI sequence in the proximity of the dT
stretch (Additional file 1: Figure Slc, left and center
panels). We reasoned that since the stretch of 30 dT was
not separated from the UMI sequence in the E3VONEXT
oligo-dT primer, oligonucleotides with longer dT had a
higher affinity to the poly-A RNA tail, thus potentially af-
fecting the diversity of the reads. This caused enhanced
incorporation of primers containing UMIs and barcodes
with higher dT, biasing the data. To overcome this issue,
we designed novel BU3 primers so that the UMI and
oligo-dT sequences were separated by five random non-T
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Fig. 1 Global assessment of SCRB-seq’s performance for bulk RNA-seq. a Comparison of read alignment performances between TruSeq and five SCRB-
seq datasets: one lymphoblastoid cell line (LCL; generated in-house), and four public datasets from [15, 18]. The no/multiple alignment values are
derived from the STAR [35] alignment, and no gene/ambiguous and mapped to genes correspond to the annotation of the reads to the genes by
Htseq [49]. b Total number of detected genes in the same LCL RNA samples by SCRB-seq and TruSeq at different detection thresholds (e.g., “Reads

> 0" means that a gene is considered detected if it is covered by at least one read). ¢ Evaluation of SCRB-seq's performance relative to TruSeq using
the data downsampled to 1M single-end reads and shown by the total number of identified DE genes and number of “true positive” DE genes. The
latter represents a subset of DE genes identified using the full TruSeq 30M paired-end set; the error bars correspond to the variation produced by
downsampled replicates (see the “Methods” section). d Assessment of the impact of the number of cycles during PCR pre-amplification of SCRB-seq
libraries (downsampled to 1M single-end reads) prepared with BU3 primers. Performances were evaluated through variable quality measures: uniquely
mapped reads, level of duplication, rate of MT-rRNA reads, and number of detected genes. e Assessment of the complexity of the
libraries (downsampled to 100k single-end reads) obtained with different combinations of RT enzymes and DS cDNA generation

procedures at various detection cutoffs (e.g., “Reads > 0" means that a gene is considered detected if it is covered by at least one read).

f Read coverage across the gene body for different combinations of RT enzymes and DS cDNA generation procedures. Legend: DS cDNA,
double-stranded cDNA; SE, single end; MMH, Maxima Fermentas Minus H Enzyme; SSII, Superscript Il enzyme; SSS, second-strand synthesis
using Nick translation; PCR, pre-amplification by polymerase chain reaction
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nucleotides (“V”), thus increasing the total UMI length to
15nt (10 “N”+5 “V”). This proved to be sufficient to
reduce the overrepresentation of “I”-containing UMIs
(Additional file 1: Figure Slc, right panel).

In addition, we anticipated that the efficiency of tag-
mentation might be increased by using Tn5 enzyme
loaded with only i5 compatible adapters. Nextera Tn5 is
a mix of transposases with two different adapter
sequences (Tn5-A/B) intended to append either i5 or i7
[lumina indexes to generate compatible sequencing li-
braries. However, since the SCRB-seq libraries are ampli-
fied using only the i7 adapter (and a custom P5-TSO,
bearing a P5 capture sequence), the cDNA fragments
produced by introduction of the i5 compatible adapter
sequence by Tn5 complex are not amplified by the
limited-cycle PCR due to suppression PCR and are thus
lost [21]. To reduce this loss, we used Tn5 enzymes that
were produced in-house following the protocol of [22].
Indeed, we observed an increased library yield when
in-house Tn5-B/B (loaded with only i7 compatible
adapters) was used, compared to either Tn5 bearing
both adapters, in-house made Tn5-A/B or the Nextera
(Additional file 1: Figure S1d). Therefore, the use of
in-house produced Tn5 helped to reduce the cost of
library preparations. However, the impact of the Tn5
enzyme (A/B or B/B) on the sequencing data quality ap-
peared to be relatively minor as confirmed by the down-
stream analysis (Additional file 1: Figure S2d), implying
that one could still use Nextera Tn5 enzyme without loss
of quality of the final data.

Second-strand synthesis without amplification improves
data quality and biological relevance

Next, we performed a systematic evaluation of the key
steps that might potentially affect the performance of
SCRB-seq (Additional file 1: Figure S1b). To do so, we
turned to a familiar model system that was also used in
the original SCRB-seq paper [13]: adipocyte formation
from human adipose stromal cells (hASCs), since a large
number of genes show differential expression along this
differentiation trajectory [23]. Specifically, we isolated total
RNA from hASCs at two adipogenesis time points: t0 and
t14 (non-differentiated ASCs and adipocytes, respectively)
with two technical replicates each (Additional file 1:
Figure S2a) after which we prepared cDNA libraries using
our own set of improved barcoded primers (BU3).

We first tested different pre-amplification PCR cycle
numbers (5, 10, and 15) as well as different input RNA
amounts (1, 10, 100, 500, 1000, and 2000 ng), which may
affect the overall amplification efficiency (Fig. 1d and
Additional file 1: Figure S2b). To test the required com-
bination of conditions, we prepared 18 libraries involving
altogether 72 samples. This yielded two important
insights: first, we detected an inverse correlation between
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the complexity/diversity of our RNA-seq libraries and the
number of PCR cycles that were used to generate
full-length double-stranded cDNA (Fig. 1d). Second, this
effect was essentially independent of RNA input amount,
although the highest performance in terms of uniquely
mapped reads, percent duplication, mitochondrial read
contamination, and the number of detected genes was
generally observed between 10 and 100 ng of input RNA
(Additional file 1: Figure S2b). Thus, five amplification
cycles using 10-100 ng of input RNA appears preferred.
We further found that this conclusion is independent of
the RT enzyme used, since replacing Maxima Minus H
(MMH) with SuperScript II (SSII) did not alter the number
of detected genes using five amplification cycles and 100 ng
of input RNA (Fig. le). Finally, our data revealed that the
post-tagmentation library amplification step has a relatively
minor impact on the downstream quality of the results as
exemplified by solely 1-2% variation in read alignment rate
and number of identified genes across the libraries ampli-
fied 8 to 12 PCR cycles (Additional file 1: Figure S2c).

The lowering data quality upon increasing the number
of amplification cycles made us wonder whether PCR
amplification in general is decreasing the quality of the
output data. We therefore explored the value of using
the Gubler-Hoffman procedure [24] to generate
double-stranded ¢cDNA instead of PCR amplification.
While PCR amplification is easier to implement, the
Gubler-Hoffman method bypasses the need for including
a template switch oligo (TSO) in the first-strand synthe-
sis, since the second-strand generation is driven by RNA
primer-dependent nick translation by DNA polymerase
L. Moreover, since we work with bulk RNA, samples may
not require substantial amplification to enable subse-
quent tagmentation. In addition, for the remainder of
the experiments, we used 100 ng of input RNA given the
results discussed above and given that such an amount
appears compatible with the majority of bulk RNA
sequencing projects. As expected, we found that the
yield of full-length ¢cDNA generated with nick transla-
tion is lower compared to that obtained with PCR amp-
lification and is dependent on the RT enzyme used
(MMH or SSII) (Additional file 1: Figure S3a). Moreover,
libraries that were generated with nick translation were
more concentrated at the 3'-end of transcripts, an effect
that was most visible when using SSII (Fig. 1f). The lat-
ter enzyme also yielded a lower rate of MT-rRNA reads
compared to MMH (Additional file 1: Figure S3b). This
is in line with the previously reported higher enzymatic
activity of MMH compared to SSII [25], which may
explain its lower specificity. Moreover, libraries prepared
with nick translation involving the SSII enzyme had an
increased ratio of reads mapping to annotated genes,
namely ~76%, compared to ~65-70% produced with
PCR amplification or when using the MMH enzyme
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(Additional file 1: Figure S3c). This was caused by a lower
bias/noise resulting from the lower adapter and polyA
contamination when preparing libraries using nick trans-
lation compared to pre-amplification (Additional file 1:
Figure S3d). We concluded that second-strand synthesis
via nick translation with SSII is preferable over the other
combinations of second-strand synthesis/enzymes. These
observations rationalize the novel Bulk RNA Barcoding
and sequencing (BRB-seq) workflow, which features modi-
fied oligo-dT for cDNA barcoding and the second-strand
synthesis involving DNA Poll Nick translation instead of
PCR which accordingly enables the elimination of TSO
for the first-strand synthesis (Fig. 2). The sequencing
library is then prepared using cDNA tagmented by an
in-house B/B Tn5 transposase and further enriched by
limited-cycle PCR with [llumina compatible adapters.

BRB-seq outperforms SCRB-seq and its power is
comparable to that of TruSeq

Next, we aimed at benchmarking our newly developed
BRB-seq approach by comparing its output data to a ref-
erence “gold standard” dataset. To do so, we used again
the Illumina TruSeq Stranded mRNA protocol and
applied it on the same hASC RNA samples
(Additional file 1: Figure S2a). First, we observed a high
correlation between log2 transformed read count values
of technical BRB-seq replicates (Pearson’s r=0.98)
(Fig. 3a) and similarly with TruSeq (r=0.92) (Fig. 3b).

Page 5 of 15

The ratio of reads mapping to annotated genes was
slightly lower than that of TruSeq (~76% vs. ~ 84%,
Fig. 3c), but on average 22% higher than what was previ-
ously observed when using the original SCRB-seq proto-
col (Fig. 1a). The BRB-seq libraries showed high read
diversity, allowing the detection of a comparable number
of genes as TruSeq at the same sequencing depth
(Fig. 3d). Importantly, we confirmed the high accuracy
of DE gene detection of BRB-seq validated by the high
number of DE genes overlapping with TruSeq (Fig. 3e).
The latter detected only 7% more DE genes than
BRB-seq, compared to 35% more than SCRB-seq
(Fig. 1c). BRB-seq’s efficacy was further confirmed by in-
creased fold change (tO vs t4) correlation, as well as PR
AUC and ROC AUC values (Additional file 1: Figure S4a,
taking the full TruSeq ~30M paired-end run as “gold
standard”). Importantly, we found that the ability to detect
DE genes is inherently linked to the absolute gene expres-
sion levels and both TruSeq and BRB-seq exhibited very
similar detection thresholds (Fig. 3f). We, therefore, con-
cluded that a greater sequencing depth (>5M reads)
would in this case only be effective for BRB-seq or TruSeq
libraries when specifically looking for DE genes with low
to very low expression levels (i.e., CPM < < 1) (Fig. 3g).

We further investigated whether DE genes that were
discovered with the two approaches were biologically
relevant. For this, we conducted a functional enrich-
ment analysis of the DE genes that were upregulated
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in the differentiated hASC cells using adipocyte-
related gene sets from KEGG [38], Gene Ontology
(GO) [37], and Gene Atlas databases. Overall, both
BRB-seq and TruSeq DE genes were strongly enriched
in adipocyte gene sets (Additional file 1: Figure S4b).
It is also worth noting that the “Adipocyte” gene set
(from Gene Atlas database) was slightly more
enriched with BRB-seq as compared to TruSeq at a
similar sequencing depth.

After having empirically validated the capacity of
BRB-seq on real data, we aimed at evaluating its ability
to uncover DE genes based on simulated data, where the
DE genes are a priori known. To this end, we performed
a power simulation using the powsimR package [26]. We
thereby included, for the sake of comprehensiveness, not
only our in-house generated data (SCRB-seq LCL,
BRB-seq hASC, and TruSeq hASC) but also the
published SCRB-seq datasets mentioned above [14-16,
18] since the DE genes are simulated. We performed the
simulation using 5, 20, and 50 replicates downsampled
at 1M reads (see the “Methods” section). The results of
this analysis proved concordant with our empirical
power analysis, showing again that BRB-seq was able to
uncover DE genes at a level comparable with TruSeq (¢
test p value n.s.), while significantly higher than that of
SCRB-seq (¢ test p <0.05 for all three studies), and the
effect is maintained for different numbers of replicates
(Fig. 3h).

Given the performance of BRB-seq, combined with the
fact that it is time- and cost-efficient, we envisioned that
it could potentially become an alternative to RT-qPCR
assays, especially when large sets of samples need to be
profiled. To confirm that BRB-seq libraries can produce
reliable gene expression results, we compared it to
RT-qPCR data. We evaluated nine genes that are
expressed at different levels in adipocytes. We performed
two RT-qPCR replicates, one with 50 ng of RNA and the
other with 500 ng using again the same RNA sample as
was used to prepare the first-strand reactions for
BRB-seq and TruSeq libraries (Additional file 1: Figure S2a).
After normalization to HPRT1 expression, we assessed the
correlation of expression values between each of the
methods (Fig. 3i). We observed that both BRB-seq and
TruSeq highly correlate with qPCR (Pearson’s r = 0.8—0.9)
with BRB-seq slightly outperforming TruSeq. This effect
was observed for both qPCR replicates.

Taken together, these results confirm the high overall
performance of the BRB-seq approach, which yields a
comparable efficiency/sensitivity as TruSeq, but at a
fraction of its cost (see the “Discussion” section).

Multiplexing capacity of BRB-seq
So far, our experiments involved just a couple of sam-
ples. To assess whether BRB-seq’s performance would be
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maintained in a multiplexing context, we prepared an
additional BRB-seq library containing 60 human lym-
phoblastoid cell line (LCL) samples, which have been
routinely used in large-scale projects including the 1000
Genome Project. We focused on these cell lines since
corresponding Illumina TruSeq data had been generated
at two separate occasions, thus enabling a direct, com-
prehensive comparison between the two approaches.
Specifically, we used two datasets: “TruSeq A” is from
[27] involving all 60 samples that were profiled with
BRB-seq and “TruSeq B” from [28] containing 53 of the
60 samples (Additional file 2: Table S2). Of note, the
libraries of both TruSeq datasets were prepared using
TruSeq RNA Sample Prep Kit v2, which does not
preserve strand-specific information, contrary to the
BRB-seq and TruSeq mRNA Stranded protocols that
were used before. However, given that only poly-A+
transcripts are profiled, we assume that differences in
DE power between these TruSeq protocols are rather
minor.

Our analyses showed that BRB-seq libraries identi-
fied over 14k protein-coding genes across the 60 sam-
ples (i.e., detected in at least one sample). The fraction
of genes detected within all three datasets (Fig. 4a, yel-
low sector) represented over 97% of BRB-seq genes
and 84-87% of the genes discovered by TruSeq.
Importantly, this overlapping population contained all
highly expressed genes (CPM >100), all but 54
medium-expressed genes (1 < CPM < 100, Fig. 4b, blue
population), and over 2600 lowly expressed genes
(CPM <« 1, Fig. 4b, yellow population). Thus, the genes
that remained undetected by BRB-seq (1687 genes,
Fig. 4a and Fig. 4b, blue population) contained pre-
dominantly lowly expressed genes (n=1637, CPM < 1)
and no highly expressed genes (CPM > 100). This likely
reflects the fact that BRB-seq was initially sequenced
to a lower level (6M single-end reads per sample on
average) compared to TruSeq (13.6M and 29.7M
paired-end reads for TruSeq A and B, respectively).
Even prior to downsampling to 1M reads, therefore,
some lowly expressed genes may not have been
sequenced enough to aggregate at least one read in
the BRB-seq dataset and thus may also not be detect-
able upon downsampling. Similarly, most genes that
were uniquely identified within each dataset, including
by BRB-seq, tend to be lowly expressed (CPM <1)
(Fig. 4b).

We further found an overall high correlation between
BRB-seq and TruSeq A and B log2 read count values
(Pearson’s r = 0.89 and 0.89, Fig. 4c), performed for each
replicate sample across protocols. Finally, across the
samples, the overall correlation was above 0.8 and only
slightly lower compared to what was found for the two
TruSeq datasets (Fig. 4d).
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Taken together, these results show that BRB-seq con-
stitutes a highly affordable (see the “Discussion” section),
robust  high-throughput 3’-end  transcriptomics
approach that produces data featuring a quality that is
comparable to that of the “gold standard” TruSeq
methods.

BRB-seq performs well on low-quality RNA samples

It is well established that the TruSeq Stranded mRNA
method performs poorly on degraded RNA samples
given the intrinsic requirement of this method to have
an RNA quality number (equal to RIN, RNA integrity
number) > 7-8. This may reflect the fact that full-length

transcripts are sequenced, thus requiring high-quality,
intact RNA for accurate detection and quantification.
Since 3" RNA fragment quantification is known to be a
robust way to estimate differential gene expression in
samples with low RNA quality numbers (RQNs) [29], we
decided to evaluate the performance of BRB-seq on frag-
mented RNA samples with low RQN values. For this, we
employed chemical RNA fragmentation by incubation at
65°C in the presence of Mg"" cations for 1 or 2 min,
which resulted in a significant reduction in overall RNA
size and RQN values (Additional file 1: Figure S5).

As expected, we observed a clear inverse correlation
between the quality of the samples and their RQN
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values, but of minor effect size. Indeed, the correlation
between fragmented and non-fragmented samples
remained above 97%, even for samples with very low
RQN (Fig. 5a). Detection of DE genes in the degraded
versus intact samples was more substantially affected by
prolonged fragmentation and observed by lowered fold
change correlation, PR AUC, and number of detected
DE genes (Fig. 5b). Nevertheless, we could still detect
more than 75% of true DE genes in the samples with
RQN values as low as 2.2, which is generally considered
as a mark of very highly degraded RNA (Fig. 5b). To-
gether, these data show that BRB-seq allows reliable
differential gene expression and functional enrichment
analyses, even on low-quality/degraded RNA samples.

BRB-seq data analysis pipeline and considerations
Upon the sequencing of the BRB-seq libraries, highly
multiplexed datasets are produced which may pose
analytical problems, specifically for users with limited
bioinformatic skills. To make the entire workflow of the
method accessible to the scientific community at large,
we aimed at streamlining the analysis of the sequenced
data. For this, we developed a complete tool suite
(http://github.com/DeplanckeLab/BRB-seqTools), sup-
porting all the required post-sequencing tasks up until
the generation of the read/UMI count matrix (Fig. 6a
and detailed in Additional file 3: Supp. Method).
Thereafter, the data can be processed with conven-
tional R scripts/packages to perform the required ana-
lyses or even Excel for direct visualization. Alternatively,
the count matrix file can be supplied to ASAP (https://
asap.epfl.ch/), a web-based platform devoted to compre-
hensive/automated transcriptome analyses developed in
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our lab [30]. Consequently, along with the protocol it-
self, we provide a seamless pre- and post-treatment pipe-
line for enabling any user to perform a state-of-the-art
analysis of their BRB-seq data.

Discussion
Building on experimental advances enabling single-cell
gene expression profiling, we developed and validated a
novel workflow to perform highly multiplexed Bulk
RNA Barcoding and sequencing (BRB-seq). This
required a series of optimizations from the original
SCRB-seq workflow, which individually may be per-
ceived as incremental, but which together culminated
into a robustly benchmarked, large-scale bulk tran-
scriptomics approach that produces data of superior
quality than that provided by SCRB-seq. These adapta-
tions include the elimination of template switch during
the first-strand synthesis, allowing to alleviate the associ-
ated bias towards fully reverse transcribed molecules
and potential artifacts related to strand invasion [31, 32].
Furthermore, we improved the design of barcoded
oligo-dT primers and substituted the PCR amplification
with the second-strand synthesis step. We demonstrate
that these modifications substantially increased the com-
plexity of the sequencing libraries, rendering the
BRB-seq approach highly suitable for large-scale DE
gene analysis, comparable to TruSeq’s DE gene detection
performance, and with limited impact on its overall cost
and hands-on time requirements.

We, therefore, think that BRB-seq promises to fill a so
far unmet need for affordable transcriptomics of a large
number of RNA samples. Indeed, our approach enables

Fig. 5 BRB-seq performance with fragmented RNA samples. a Pearson correlation between log2 read counts of intact (RNA quality number
(RON)=8.9 and 9.8 for TO and T14 respectively) versus fragmented samples (after 1 or 2 min of fragmentation). b Quality evaluation of BRB-seq
libraries prepared with fragmented RNA samples (1 or 2 min fragmentation) compared with the intact RNA counterparts. For the analysis, the
libraries were downsampled to 1M single-end reads (see the “Methods” section). “Max” threshold thus comes from the 1M downsampled intact
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genome-wide gene expression analyses of dozens of
samples simultaneously, in an effort- and cost-efficient
manner. In our experience, up to 192 BRB-seq samples
can be prepared by a single person within a day, given
that the projected hands-on time is around 2h. The
number of samples in one library is scalable and merely
depends on the number of available barcodes and de-
sired sequencing depth per sample. Along with being
fast and easily manageable, the protocol’s high advantage
is its low cost of per sample library preparation, i.e.,
down to $2/sample if 96 samples are processed together
(Fig. 6b and Additional file 2: Table S3). Adding the se-
quencing cost, we estimate the total expense to be
around $20/transcriptome. This estimation is entirely
guided by the type of desired analysis or organism and
by the relative expression of specific genes of interest,
which leaves sufficient space for optimization of sequen-
cing depth and hence even greater cost reduction.
Importantly, the lower per sample cost of BRB-seq has
several practical implications, such as the ability to (i)
augment the experimental resolution by including more
sampling points, (ii) validate gene expression dynamics
on a genome-wide rather than on a per gene (qPCR)
basis, and equally important, (iii) increase the number of
experimental replicates. Indeed, at a fixed experimental
cost, at least 10-20 times more samples can be consid-
ered when using BRB-seq compared to TruSeq. As
shown by our power simulation analysis, the use of 20

instead of five replicates dramatically increases the
power to detect DE genes (Fig. 3h). While biological or
technical factors related to cell type, nature of replicates,
RNA extraction procedure, sequencing, etc. may all in-
fluence the downstream results of such simulation ana-
lysis [33], the resulting data nevertheless revealed that
BRB-seq’s performance to detect DE genes is greater
than that of SCRB-seq and at par with that of TruSeq,
thus favoring BRB-seq on a cost per sample basis. Of
course, the actual number of experimental replicates will
also depend on other factors including sample availabil-
ity, but we anticipate that the cost for library preparation
and sequencing will no longer present an important
obstacle when designing a gene expression profiling
experiment.

To implement BRB-seq, we recommend the total RNA
content in the library pool to be in the range of 1-2 pg
to reduce any potential performance variation of the
second-strand synthesis step. This corresponds roughly
to 10-20 ng per sample for a library of 96 samples (or
50-100 ng for 20). Our data also suggest that an input
RNA amount as low as 1 ng might still produce a reli-
able library. However, we recommend in this case to
pool multiple samples to assure that the cDNA is of suf-
ficient quantity for tagmentation. As it is sometimes
complicated to assess how deep a sample should be
sequenced, we also provide an estimation of the number
of sequencing reads that are required to detect a
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particular gene (95% chance of having at least 1 read),
given its CPM expression (Fig. 3g).

The principal limitation of BRB-seq is the requirement
to accurately assess RNA sample amounts prior to RT as
any inter-sample variation will result in uneven distribu-
tion of sequencing reads. In our experience, this issue is
solved through re-quantification of intermediate RNA
dilutions that are prepared to normalize concentration
variations.

Finally, BRB-seq features the UMI concept, which still
needs to be further tested in the context of bulk experi-
ments but can in principle increase the sensitivity of the
results. This is in line with similar conclusions stating
that the removal of UMI identical reads improves the
FDR [20]. In particular, it can be used to overcome the
amplification bias when samples with low RNA quan-
tities (<1ng) need to be processed. Also, the UMI
provides a good way of unbiased estimation of the dupli-
cation ratio, which is otherwise inflated with increasing
sequencing depth (e.g., using Picard http://broadinsti-
tute.github.io/picard/). It is worth noting that the user
can modify the oligo and remove the UMI construct, or
keep it but not sequence it for lowering costs.

Conclusions

We anticipate that BRB-seq will become an attractive al-
ternative for routine gene expression analysis and ultim-
ately replace large RT-qPCR assays. Assuming that the
current cost of one qPCR reaction is in the range of
$1.5-2, the evaluation of the expression of three to four
target genes in triplicate (~ 20 qPCR reactions) will cost
approximately the same or even more than one full tran-
scriptome analysis produced by BRB-seq, which involves
library preparation and sequencing expenses. Import-
antly, low library preparation cost and time imply that
more replicates can be profiled, which will greatly in-
crease the statistical power underlying any DE analysis.
Importantly, we provide simple data processing and ana-
lysis workflows that revoke the requirement for essential
informatics skills. Once deployed, the setup can be used
by experimental biologists to handle their data in a
straightforward manner, therefore further streamlining
the BRB-seq transcriptomics to the extent of a mere
qPCR experiment.

Methods

Cell culture

The lymphoblastoid cell line GM12878 (Coriell Cat#
GM12878, RRID:CVCL_7526) was cultured using RPMI
1640 medium supplemented with 10% fetal bovine
serum and 1x penicillin/streptomycin. One million cells
were treated with DMSO (Applichem #A3672,0250) or
3 uM BAY11-7082 (SignalChem, # C51-900) during 24 h
prior to harvesting for RNA isolation.
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hASCs were obtained from a fresh lipoaspirate as
follows: 50 ml of lipoaspirate was washed twice with 40
ml of DPBS Ca+/Mg+ (Gibco, #14040091) in 100-ml sy-
ringes and incubated with 0.28 U/ml of liberase TM
(Roche, #05401119001(ROC)) for 45 min at 37 °C under
agitation. The digested tissue was mixed with 40 ml of
CRB (1% human albumin (CSL Behring) in 40 ml of
DPBS -/- (Gibco, #14190094)) and shaken vigorously to
liberate the stromal cells. The aqueous phase was recov-
ered and centrifuged at 400g for 5 min at RT. The cell pel-
let was resuspended in 15 ml of CRB and filtered through a
100-pm and then 40-um cell strainer to ensure a single-cell
preparation, centrifuged, and resuspended in Minimum Es-
sential Medium (MEM) alpha (Gibco, #32561037) supple-
mented with 5% human platelet lysate (Cook Regentec,
#@G34936) and 50 pg/mL Primocin (InvivoGen, #ant-pm-1).
hASCs were cultured in the same media composition until
70-80% confluency and detached using TrypLE Select (Life
Technology, #1256311) for passaging.

For adipogenic differentiation, cells at confluence were
treated with induction cocktail from Adipogenic Bullet-
Kit (Lonza, #PT-3004) for 7 days, followed by treatment
with maintenance cocktail for another 7 days.

The LCL and hASC cultures were authenticated by
microscopic morphology observation, and standard
mycoplasma testing was performed using Hoechst dye
fluorescent staining. The hASCs used for the experi-
ment were passaged twice (P2) after isolation from
the tissue sample.

RNA samples for library preparation

Total RNA was isolated using TRI Reagent (Molecular
Research Center, #TR118) followed by double precipi-
tation with ethanol. The RNA concentration was deter-
mined using the Qubit RNA HS Assay Kit (Invitrogen,
#Q32852), and integrity was assessed using a Fragment
Analyzer (Advanced Analytical). The RNA from each
differentiation time point was used in two technical
replicates, resulting in four samples pooled per library.
Libraries were prepared with the BRB-seq protocol
using total RNA amounts ranging from 1ng to 2 ug
per sample (Additional file 2: Table S4).

RNA fragmentation was done using the NEBNext
Magnesium RNA  Fragmentation Module (NEB,
#E6150S) with incubation time at 94 °C for 1 or 2 min.
This resulted in RNA with a variable extent of degrad-
ation and corresponding RQN values.

A set of RNA samples from LCLs of the 1000 Genome
Project was a generous gift from Manolis Dermitzakis
(University of Geneva).

RT-qPCR
For RT-qPCR, 50 ng or 500 ng of total RNA was used
to generate the first strand using 1 uL of Superscript
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II (Invitrogen, #18064014) and 1 uL of anchored oli-
go-dT (ThermoFisher Scientific, #AB1247) in 20 uL
total reaction mix following the protocol. cDNA was
diluted five times using nuclease-free water, and 2 pL
was used for each qPCR reaction. Quantitative
real-time PCR was performed in three technical repli-
cates on the ABI-7900HT Real-Time PCR System
(Applied Biosystems) using the PowerUp SYBR Green
Master Mix (Applied Biosystems, #A25742) using
standard procedures. The qPCR primers for the target
genes (ADIPOQ, AXIN2, BCAT, CEBPB, FABP4,
HPRT, LEP, LPL, PNPLA2, and PPARG, see
Additional file 2: Table S5) were designed with Pri-
mer3 software (RRID:SCR_003139) [34].

BRB-seq protocol

First-strand synthesis

All the first-strand synthesis reactions were performed
in 10 puL total volume using various amounts of RNA
(50 pg—2 pug), 1 puL of 10 uM barcoded oligo-dT (BU3,
Microsynth, for the list of oligos wused see
Additional file 2: Table S6 and S7), and either 0.125 pL
of Maxima H Minus Reverse Transcriptase (MMH,
ThermoFisher Scientific, #EP0753) or 0.25 uL. Super-
script II (SSII, Invitrogen, #180640). The reactions
followed by the PCR pre-amplifications were comple-
mented with 1uL of 10puM template switch oligo
(TSO, IDT). RNA, BU3 primers, and 1puL dNTP
(0.2mM) were mixed together in a PCR plate, incu-
bated at 65 °C for 5 min and then put on ice. The TSO,
RT buffer (including 1 pL of DTT for the Superscript
II protocol), and RT enzymes were added to each well,
and the plates were incubated at 45 °C for 90 min for
the Maxima protocol or 42 °C for 50 min followed by
inactivation at 70 °C for 15 min for the Superscript II
protocol. After RT, all the wells were pooled together
and purified using the DNA Clean & Concentrator-5
kit (Zymo Research, #D4014) with 7x DNA binging
buffer and single column. After elution with 20 uL of
nuclease-free water, the samples were incubated with
1uL Exonuclease I (NEB, #M0293) and 2 puL of 10x
reaction buffer at 37 °C for 30 min, followed by enzyme
inactivation at 80 °C for 20 min.

Second-strand synthesis

Double-stranded cDNA was generated by either PCR
amplification (indicated as PCR in the text) or nick
translation (indicated as SSS in the text) [24]. The
PCR was performed in 50 puL total reaction volume
using 20 pL of pooled and Exol-treated first-strand re-
action, 1 puL of 10uM LA _oligo (Microsynth) primer,
1uL of ANTP (0.2mM), 1puL of with Advantage 2
Polymerase Mix (Clontech, #639206), 5uL of Advan-
tage 2 PCR buffer, and 22 puL of water following the
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program (95°C—1 min; 10 cycles: 95°C—15s, 65°C—
30s, 68°C—6 min; final elongation at 72 °C—10 min).
Alternatively, the second stand was synthesized fol-
lowing the nick translation method. For that, a mix
containing 2 pL. of RNAse H (NEB, #M0297S), 1 uL of
Escherichia coli DNA ligase (NEB, #M0205L), 5 pL of
E. coli DNA Polymerase (NEB, #MO0209L), 1uL of
dNTP (0.2mM), 10puL of 5x Second Stand Buffer
(100 mM Tris-HCI (pH 6.9) (AppliChem, #A3452); 25
mM MgCI2 (Sigma, #M2670); 450mM KCl (Appli-
Chem, #A2939); 0.8 mM B-NAD; 60 mM (NH4)2SO4
(Fisher Scientific Acros, #AC20587); and 11uL of
water was added to 20 uL of Exol-treated first-strand
reaction on ice. The reaction was incubated at 16 °C
for 25h or overnight. Full-length double-stranded
c¢DNA was purified with 30 uL (0.6x) of AMPure XP
magnetic beads (Beckman Coulter, #A63881) and
eluted in 20 pL of water.

Library preparation and sequencing

The sequencing libraries were prepared by tagmentation
of 1-50ng of full-length double-stranded cDNA. Tag-
mentation was done either with Illumina Nextera XT kit
(Mlumina, #FC-131-1024) following the manufacturer’s
recommendations or with in-house produced Tn5 pre-
loaded with dual (Tn5-A/B) or same adapters (Tn5-B/B)
under the following conditions: 1pL (11uM) Tnb5,
4uL of 5x TAPS buffer (50mM TAPS (Sigma,
#T5130), and 25mM MgCl2 (Sigma, #M2670)) in
20 uL. total volume. The reaction was incubated 10
min at 55°C followed by purification with DNA Clean
& Concentrator-5 kit (Zymo Research) and elution in
21 uL. of water. After that, tagmented library (20 pL)
was PCR  amplified using 25uL  NEBNext
High-Fidelity 2X PCR Master Mix (NEB, #M0541L),
2.5uL of P5_BRB primer (5uM, Microsynth), and
2.5 uL of oligo bearing Illumina index (Idx7N5 5 pM,
IDT) using the following program: incubation 72°C—
3 min, denaturation 98 °C—30s; 10 cycles: 98°C—10s,
63°C—30s, 72°C—30s; final elongation at 72°C—5
min. The fragments ranging 200-1000bp were
size-selected using AMPure beads (Beckman Coulter,
#A63881) (first round 0.5x beads, second 0.7x). The
libraries were profiled with High Sensitivity NGS
Fragment  Analysis Kit (Advanced Analytical,
#DNF-474) and measured with Qubit dsDNA HS
Assay Kit (Invitrogen, #Q32851) prior to pooling and
sequencing using the Illumina NextSeq 500 platform
using a custom ReadOne primer (IDT) and the High
Output v2 kit (75cycles) (Illumina, #FC-404-2005).
The library loading concentration was 2.2 pM. The
readl sequencing was performed for 6-21 cycles and
read2 for 5470 cycles depending on the experiment.
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RNA library preparation with TruSeq

TruSeq libraries were prepared with 1 ug of total RNA
using the TruSeq Stranded mRNA Library Prep Kit (Illu-
mina, #RS-122-2101) and following the manufacturer’s
instructions. Four libraries were paired-end sequenced
(75 nt each) with the NextSeq 500 using the Mid Output
v2 kit (150 cycles) (Illumina, #FC-404-2001).

Pre-processing of the data—demultiplexing and
alignment

The sequencing reads from our own experiments and
public datasets were aligned to the Ensembl r87 gene an-
notation of the hg38 genome using STAR (RRID:SCR_
015899) (version 2.5.3a) [35], and count matrices were
generated with HTSeq (RRID:SCR_005514) (version
0.9.1) [36].

The raw reads from BRB-seq experiments carry two
barcodes, corresponding to the late and early step multi-
plexing. The late step multiplexing using Illumina
indexes is common to standard protocols and used to
separate the libraries. The early barcode is specific to the
BRB-seq protocol and is used to separate the multi-
plexed samples from the bulk data. The first demulti-
plexing step was performed by the sequencing facility
using bcl2fastq software. Then, the data consists of two
FASTQ files (R1 and R2). The R2 FASTQ file was
aligned to the Ensembl r87 gene annotation of the hg38
genome using STAR with default parameters prior to
the second demultiplexing step. Then, using the
BRB-seqTools suite (available at http://github.com/
DeplanckeLab/BRB-seqTools), we performed simultan-
eously the second demultiplexing and the count of
reads/transcripts (UMI) per gene from the R1 FASTQ
and the aligned R2 BAM files. This generated two count
matrices (reads and UMI) that were used for further
analyses. In parallel, we also used the BRB-seqTools
suite for demultiplexing the R1/R2 FASTQ files and
producing one FASTQ file per sample. This was re-
quired for being able to generate the downsampling of
every sample. In this case, FASTQ files were aligned
using STAR and HTSeq was used for producing the
count matrices.

mRNA-seq computational analysis and detection of DE
genes

All downstream analyses were performed using R (version
3.3.1, https://cran.r-project.org/). Library normalization
and expression differences between samples were quanti-
fied using the DESeq2 package [36], with cutoff of |FC| >
2 and FDR <0.05. Further functional enrichments were
performed using Fisher’s exact test on Gene Ontology
(RRID:SCR_002811) [37], KEGG (RRID:SCR_012773)
[38], and Gene Atlas (RRID:SCR_008089) (http://www.
genatlas.org/) databases.
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Downsampling of TruSeq and BRB-seq samples

For an unbiased comparison, all samples were randomly
downsampled to 1M reads (or as indicated for individual
cases). To avoid transferring alignment-related issues to
the downstream analyses, we did not downsample at the
level of the FASTQ files. Indeed, to be able to keep some
information about the reads before their mapping to
genes (such as duplicates or UMI), we chose to perform
the downsampling at the level of the BAM files, just be-
fore performing the htseq-count step. For reproducibility
and robustness of the results, we chose to generate 10
downsampled BAM for each replicate.

TruSeq and BRB-seq comparison

Coverage over the gene body was computed using the
RSeQC suite v.2.6.1 (RRID:SCR_005275) [39] with the
geneBody_coverage.py script. We used the full list of
genes from the hg38 assembly provided on the soft-
ware web page. ROC and PR AUC plots were pro-
duced using the set of 4566 DE genes identified using
full paired-end TruSeq samples with the DESeq2
package. This set represents a self-assigned “gold
standard,” ie., the positive set, while the negative set
constitutes of all genes expressed as detected by Tru-
Seq but not identified as DE. Then, for every com-
parison, we applied DESeq2 and used the full list of
ranked p values to compare to the “gold standard.”
False positive rate, true positive rate, and precision
(for PR and ROC AUC) were computed for every p
value cutoff of the ranked p value list, thus generating
the curves. AUC values were computed using the
rollmean function of the zoo package in R. Mitochon-
drial RNA content (called MT-rRNA content in the
figures) was assessed using only two MT-rRNA genes
that are known to be the main representatives of any
mitochondrial contamination: ~ MT-RNRI and
MT-RNR2.

Power simulation analysis

The power simulation was conducted using the pow-
simR R package [26]. We used control hASC samples
(2 TO) from TruSeq and BRB-seq, control (3 DMSO)
SCRB-seq samples from the LCL dataset, and 6
SCRB-seq control samples from Hafner et al. [16, 40]
(SRR3384233, SRR3384235, SRR3384197, SRR3384205,
SRR3384238, SRR3384227), Cacchiarelli et al. [15, 41]
(SRR2044011, SRR2044039, SRR2044038, SRR2044023,
SRR2044034, SRR2044037), Kilens et al. [18, 42]
(A3BHO4LEP09_L8A1, A4COSLEP20_L8A1l, A4CO6LE-
P09_L8A1, A4CO7LEP15_L8A1l, A6FO5LEP15_L8Al,
A3GO1LEP11_L8A1l), and Xiong et al [14, 43]
(CTRL_Rep_1, CTRL_Rep_2, CTRL_Rep_3, CTRL_
Rep_4, CTRL_Rep_5, CTRL_Rep_6). Then, we ran-
domly downsampled all replicates to 1M reads, twice
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for the LCL dataset, thrice for the hASC dataset, and
once for the four published datasets, thus resulting
into six 1M reads replicates for every study. Then, we cre-
ated the simulation model by estimating empirically the
mean dispersion and dropout relationships using the pow-
simR package with the “bulk RNA-seq,” “NB” (inferred
negative binomial distribution), and “MR” (DESeq2)
normalization parameters. Using this model, we then sim-
ulated expression data of 10,000 genes for n replicates (n
in [5, 19, 44]). Amongst the 10,000 genes, we simulated
10% differentially expressed genes with log fold change
drawn from a narrow gamma distribution. For every
study, we simulated 100 random datasets that were then
tested for differential expression using DESeq2 at FDR 5%
threshold, from which the average true positive rate (TPR)
was calculated. For reproducibility purpose, the R script
used for this step is available as Additional file 4.
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