
Lun et al. Genome Biology           (2019) 20:63 
https://doi.org/10.1186/s13059-019-1662-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1662-y&domain=pdf
http://orcid.org/0000-0001-9092-0852
mailto: aaron.lun@cruk.cam.ac.uk
mailto: marioni@ebi.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Lun et al. Genome Biology           (2019) 20:63 Page 2 of 9

RNA, resulting in larger total UMI counts for the corre-
sponding barcodes. Zheng et al. [3] remove all barcodes
with total counts below 10% of the 99th percentile of
the Y largest total counts, whereY is defined as the
expected number of cells to be captured in the experi-
ment. Macosko et al. [1] set the threshold at the knee
point in the cumulative fraction of reads with respect to
increasing total count. While simple, the use of a one-
dimensional filter on the total UMI count is suboptimal
as it discards small cells with low RNA content. Droplets
containing small cells are not easily distinguishable from
empty droplets based on the total number of transcripts.
This is due to variable capture and amplification effi-
ciencies across droplets during library preparation, which
mixes the distributions of total counts between empty and
non-empty droplets. Applying a simple threshold on the
total count forces the researcher to choose between the
loss of small cells or an increase in the number of artifac-
tual •cellsŽ composed of ambient RNA. This is especially
problematic if small cells represent distinct cell types or
functional states.

Here, we propose a new method for detecting empty
droplets in droplet-based single-cell RNA sequencing
(scRNA-seq) data. We estimate the profile of the ambi-
ent RNA pool and test each barcode for deviations from
this profile using a Dirichlet-multinomial model of UMI
count sampling. Barcodes with significant deviations are
considered to be genuine cells, thus allowing recovery
of cells with low total RNA content and small total
counts. We combine our approach with a knee point fil-
ter to ensure that barcodes with large total counts are
always retained. Using a variety of simulations, we demon-
strate that our method outperforms methods based on
a simple threshold on the total UMI count. We also
apply our method to several real datasets where we are
able to recover more cells from both existing and new
cell types.

Description of the method
Testing for deviations from the ambient profile
To construct the profile for the ambient RNA pool, we
consider a thresholdT on the total UMI count. The set
G of all barcodes with total counts less than or equal to
T are considered to represent empty droplets. The exact
choice of T does not matter, as long as (i) it is small
enough so that droplets with genuine cells do not have
total counts belowT and (ii) there are sufficient counts
to obtain a precise estimate of the ambient profile. We set
T = 100 by default in our approach, motivated by exam-
ination of several real datasets (Additional file1: Section
S1, Figure S1). We stress thatT is not the same as the
threshold used in existing methods, as barcodes with total
counts greater thanT are not automatically considered to
be cell-containing droplets.

The ambient profile is constructed by summing counts
for each gene acrossG. Let ygb be the count for geneg in
barcodeb. We define the ambient count forg as

Ag =
∑

b∈G
ygb ,

yielding a count vectorA = (A1, . . . ,AN ) for all N genes.
(We assume that any gene with counts of zero for all
barcodes has already been filtered out, as this provides
no information for distiguishing between barcodes.) We
apply the Good-Turing algorithm toA to obtain the poste-
rior expectationp̃g of the proportion of counts assigned to
each geneg [8], using thegoodTuringProportions
function in the edgeR package [9]. This ensures that genes
with zero counts in the ambient pool have non-zero pro-
portions, avoiding undefined likelihoods in downstream
calculations. In general, we do not observe strong dif-
ferential expression betweenA and the average of the
cell-containing droplets (Additional file1: Figure S2). This
suggests that the ambient pool contains RNA from mul-
tiple cell types, possibly from widespread stress and lysis
during dissociation.

Our null hypothesis is that free-floating transcripts
in solution are randomly encapsulated into the empty
droplets. For a given droplet, the probability of sampling
a transcript molecule for geneg is equal to p̃g . If we
condition on the total count tb for a cell barcodeb, we
can model the counts for each barcode with a Dirichlet-
multinomial distribution. (A physical justification for this
model is provided in Additional file 1: Section S2.) We
define the likelihood of obtaining the counts for barcodeb
as

Lb = tb!�(α)

�(tb + α)

N∏

g=1

�(ygb + αg)

ygb!�(αg)
,

whereαg = αp̃g for a scaling factorα. This highlights the
usefulness of̃pg instead of a naive estimate of the propor-
tions from A, as the former is guaranteed to be non-zero
such that Lb is defined. We replaceα with its maxi-
mum likelihood estimate, obtained fromG by treating p̃g
as known. Low estimates ofα model overdispersion in
the counts, e.g., due to amplification biases or correlated
sampling of transcript molecules.

We use a Monte Carlo approach to compute the
p-value for b. At each iteration i, we generate a new
vector of counts by randomly sampling from a Dirichlet-
multinomial distribution with probabilities set to p̃g for all
g, the size set totb and the scaling factor set to (our esti-
mate of)α. We calculate the likelihoodL′

bi for this count
vector using the same expression as shown above forLb.
We repeat this process forR iterations and then use the
method of Phipson and Smyth [10] to define thep-value as
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Pb = Rb + 1
R + 1

,

whereRb is the number of iterations in whichL′
bi ≤ Lb.

This strategy avoidsp-values of zero, which is important
during multiple testing correction. See Additional file1:
Section S3 for a description of how thesep-values are
efficiently computed.

Detecting the knee point in the log-totals
Applying a threshold on thep-value will identify barcodes
that have count profiles that are significantly different
from the ambient pool of RNA. We assume that this will
be the case for most cell-containing droplets, as the ambi-
ent pool is formed from many (lysed) cells and is unlikely
to be representative of any single cell. However, it is possi-
ble for some cell-containing droplets to have ambient-like
expression profiles. This can occur if the cell population
is highly homogeneous or if one cell subpopulation con-
tributes disproportionately to the ambient pool, e.g., if it is
more prone to lysis. Sequencing errors in the cell barcodes
may also bias the estimates of the ambient proportions,
by misassigning counts from cell-containing droplets to
barcodes with low UMI totals. This may result in spuri-
ous similarities between cells and the estimated ambient
profile.

To avoid incorrectly calling ambient-like cells as empty
droplets, we combine our procedure with a conventional
threshold on the total UMI count. We rank all barcodes in
order of decreasingtb, and consider log(tb) as a function
f (.) of the log-transformed rank, i.e., log(tb) = f (logrb)
where rb is the rank ofb in the ordered sequence of bar-
codes. The first •kneeŽ point in this function corresponds
to a transition between a distinct subset of barcodes with
large totals and the majority of barcodes with smaller
totals. This is defined at the log-rank that minimizes the
signed curvature

f ′′

(1 + f ′2)1.5 ,

and represents the point at whichf (.) begins to drop
rapidly, marking the start of the transition between large
and small totals. In practice, we obtainf (.) by fitting a
smooth spline to log(tb) against the log-rank in the inter-
val containing the knee point. The derivatives off (.) are
then obtained by differentiation of the spline basis func-
tions. This avoids multiplication of errors during numer-
ical differentiation, which would lead to instability in the
curvature values and inaccurate estimates of the knee
point.

Our assumption is that any barcode with a large total
count must represent a cell-containing droplet, regardless
of whether its count profile resembles the ambient pool.
This is based on the expectation that the distribution of
the sizes of empty droplets should be unimodal, with a

monotonic decreasing probability density astb increases
past the mode. A distinct peak of large totals would not
be consistent with this expected distribution. We define
the upper thresholdU as the tb at the knee point and
retain all barcodes withtb ≥ U, irrespective of their
Pb. This guarantees recovery of any barcodes with large
total counts that potentially represent cell-containing
droplets. We use the knee point rather than the inflection
point as the tb of the former is larger, providing a more
conservative threshold that avoids retention of empty
droplets.

We stress that, despite the use of a threshold ontb,
our approach is different from existing methods due to
the testing procedure. Barcodes withtb below the knee
point can still be retained if the count profile is signifi-
cantly different from the ambient pool. This is not possible
with existing methods that would simply discard these
barcodes. Users can also setU manually if automatic
detection of the knee point fails for complexf (.). Alterna-
tively, this mechanism can be disabled completely in favor
of detecting cells solely based on theirp-values. This is
more statistically rigorous as it avoids the selection of an
ad hoc threshold, but may result in the failure to detect
large cells.

Correcting for multiple testing across barcodes
We correct for multiple testing by controlling the false
discovery rate (FDR) using the Benjamini-Hochberg (BH)
method [11]. Putative cells are defined as those bar-
codes that have significantly poor fits to the ambient
model at a specified FDR threshold. In the following
text, we will use an FDR threshold of 0.1% unless other-
wise mentioned. This means that the expected propor-
tion of empty droplets in the set of retained barcodes is
no greater than 0.1%, which we consider to be accept-
ably low for downstream analyses. Users are also free to
choose their own thresholds, with more relaxed thresh-
olds favoring sensitivity in cell detection at the cost of
specificity.

Note that we only perform the BH correction on
the p-values for barcodes that havetb greater thanT.
This reduces the severity of the correction by discard-
ing barcodes that were previously assumed to be empty
droplets, thus improving detection power for barcodes
with larger totals that are more likely to contain cells.
In fact, p-values are not computed at all for barcodes
with tb ≤ T to avoid unnecessary computational work.
Conversely, all barcodes withtb ≥ U are considered
to be known true positives, regardless of how ambient-
like their expression profiles are. These barcodes have
their p-values set to zero during the BH correction.
This approach improves power by reducing the sever-
ity of the correction in the presence of a set of known
positives.
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Results
Evaluating performance with simulated droplet-based data
We named our method •EmptyDropsŽ and tested it on
simulated data involving cells with different RNA con-
tent (see •MethodsŽ, Additional file 1: Figure S3). Each
simulated dataset was generated from real droplet-based
scRNA-seq data (Additional file1: Table S2) and con-
tained one group of large cells with high RNA content
and largetb; one group of small cells with low RNA con-
tent and smalltb; and a set of empty droplets with counts
sampled from an ambient pool of RNA. We applied Emp-
tyDrops at an FDR of 0.1% to determine the recall for each
group of cells and the FDR among the detected barcodes.
We also tested methods that retain all cells with total
UMI counts above a threshold. The threshold was defined
as the totalU at the knee point, as described above, or
using the quantile-based approach [3] in the CellRanger
software from 10X Genomics.

In a simulation based on a real dataset containing
peripheral blood mononuclear cells (PBMCs), Empty-
Drops detected the most cells from both groups (Fig.1).
CellRanger and the knee point method detected large
cells but failed to recover small cells. We observed sim-
ilar results in simulations based on other real datasets
(Additional file 1: Figures S4…S8). The poor perfor-
mance of the total count-based methods for small cells is
expected. Barcodes corresponding to small cells with little
RNA have similar total counts as barcodes correspond-
ing to empty droplets with many ambient molecules. A
method based on the total count alone cannot distinguish
between these two possibilities, as any choice of thresh-
old will either reduce recall or increase false positives
(Additional file 1: Figure S9). In contrast, EmptyDrops
uses the expression profile for each droplet to distinguish
small cells from the ambient profile with greater power.

EmptyDrops correctly controlled the FDR close to or
below the nominal thresholds in all simulated datasets
(Fig. 1, Additional file 1: Figures S4-S8). This is a useful
property of the method as it provides users with a reli-
able upper bound on the expected proportion of empty
droplets. Such information can be used to interpret down-
stream analysis results„for example, we would be sat-
isfied that a clustering result was not driven by empty
droplets if the proportion of cells in a cluster of interest
was much higher than the FDR threshold used in Empty-
Drops. By comparison, the effect of a total count threshold
on the cell calling error rate is less obvious. CellRanger
also requires the expected number of cells, which may not
be available or accurate.

Characterizing behavior of EmptyDrops on real datasets
To determine how EmptyDrops behaved on real data,
we applied it to detect cells in a placenta dataset [12]
at an FDR of 0.1% (Fig.2). EmptyDrops identified a

visually appropriateU using the knee point from the
smoothed spline (Fig.2a), and detected significant bar-
codes as those with low likelihoods under the null
Dirichlet-multinomial model (Fig. 2b). Most of the bar-
codes detected as cells by EmptyDrops had large total
counts and were also detected using CellRanger (Fig.2c).
Barcodes that were only detected by EmptyDrops had low
total counts (Fig.2d), consistent with the expected dif-
ferences between methods. We observed similar results
in the other tested datasets (Additional file1: Table S2,
Figures S10…S15) where EmptyDrops often detected the
most barcodes. Increased retention of small cells was
particularly pronounced in the neuronal datasets where
EmptyDrops uniquely detected over a thousand cells. A
smaller number of barcodes were uniquely detected by
CellRanger in a few datasets, the causes of which are
discussed in Additional file1: Section S4.

To explore the differences between methods in more
detail, we generatedt-stochastic neighbor embedding (t-
SNE) plots [13] of all barcodes that were detected by either
CellRanger or EmptyDrops in several datasets. In the pla-
centa dataset, many of the EmptyDrops-only barcodes
formed unique clusters (Fig.3a), one of which likely con-
tains monocytes (Fig.3b). Examination of another unique
cluster indicated that it contained putative CD8+ T cells
of maternal origin (Additional file 1: Figure S16a, b). This
suggests that the use of EmptyDrops enables the recovery
of distinct cell types, which is not surprising as the total
RNA content of a cell is often associated with its biology.
We also identified a cluster that may represent damaged
cells stripped of cytoplasmic content (Additional file1:
Figure S16c, d). This highlights the potential for detect-
ing droplets that are technically non-empty yet are also
biologically uninteresting.

We repeated our analysis on other 10X datasets to
demonstrate the general applicability of our method. In a
data set containing approximately 900 brain cells, Emp-
tyDrops uniquely retained a large number of barcodes,
including a putative cluster of interneurons (Fig.3c, d)
that would have been lost with CellRanger. This may
reflect the difficulty of dissociating brain tissue without
loss of cytoplasmic RNA [14] that yields low total counts
in the resulting libraries. In the PBMC dataset described
previously, the EmptyDrops-only barcodes again formed
a separate cluster corresponding to platelet-like cells
(Additional file 1: Figure S17). This is consistent with the
fact that platelets have much less RNA than other cell
types [15].

Discussion
Droplet-based technologies are becoming increasingly
popular for high-throughput single-cell transcriptomics.
However, little work has been performed to develop
robust computational methods for distinguishing genuine
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a

b

Fig. 1 Cell-calling results from different algorithms in simulations based on the PBMC dataset. Simulation scenarios are labelled as G1/G2 where G1
and G2 are the number of barcodes in the group of large and small cells, respectively. a The recall for each method, defined as the proportion of
detected cells from each group. EmptyDrops was used with an FDR threshold of 0.1%. b The observed FDR in the set of libraries detected by
EmptyDrops at a range of nominal FDR thresholds (dotted lines), defined as the proportion of detected droplets that are empty. In both plots, each
point represents the result of one simulation iteration, the bar represents the mean value across 10 iterations, and the error bars represent the
standard error of the mean

cells from empty droplets. Here, we describe Empty-
Drops, a method to detect cell-containing barcodes based
on significant deviation of the expression profiles from
the pool of ambient RNA. We use simulated data to
demonstrate that EmptyDrops outperforms the strategy
currently implemented in the CellRanger software suite.
In addition, EmptyDrops can can recover biology in real
10X data that is lost using CellRanger. Our results indicate
that EmptyDrops is effective for cell detection in droplet-
based scRNA-seq data. This is supported by other work
where EmptyDrops improves cell type recovery [16] and
reduces technical artifacts [17].

A key assumption of our approach is that barcodes with
very low UMI totals represent empty droplets. This allows
us to use these barcodes to estimate the ambient profile.
However, this assumption may not be appropriate if the

dataset contains a subset of cells with very low RNA con-
tent. In such cases, the estimate of the ambient expression
profile will be biased, though this bias is likely to be small
as few transcripts will be contributed from cells with low
RNA content. Another potential source of bias may arise
from sequencing errors in the cell barcode, such that tran-
scripts from a cell-containing droplet are misassigned to
an empty droplet. This effect is mitigated by the use of
designed cell barcodes in the GemCode protocol, which
allows for error correction based on a •whitelistŽ of known
barcode sequences [3]. However, it may be a problem in
protocols where error correction of the barcodes is not
possible [1].

A notable side-effect of retaining barcodes with low
UMI totals is that a higher number of low-quality cells
are also recovered. EmptyDrops is technically correct
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a b

b d

Fig. 2 Application of EmptyDrops and other cell detection methods to one sample of the placenta dataset. a A barcode rank plot showing the fitted
spline used for knee point detection in EmptyDrops. The detected knee and inflection points are also shown. b The negative log-likelihood for each
barcode in the multinomial model of EmptyDrops, plotted against the total count. Barcodes detected as putative cell-containing droplets at an FDR
of 0.1% are labelled in red. Only barcodes with tb > T are shown. cAn UpSet plot [20] of the barcodes detected by each combination of methods
(vertical bars). Horizontal bars represent the number of barcodes detected by each method. d Histogram outlines of the log-total count for
barcodes detected by each method

in retaining the associated barcodes as damaged cells
are distinct from empty droplets. However, these cells
are usually not of interest in downstream analyses. We
have removed them by thresholding on the mitochon-
drial content (see •MethodsŽ), though other metrics
could be used such as the proportion of ribosomal pro-
tein mRNA (e.g., if damage has stripped the cytoplasm
entirely). If this is not sufficient, manual inspection of
the clustering results may be necessary to identify these
cells and exclude them from further consideration. The
other option is to apply a more stringent threshold on
the total count, though this will also discard genuine
cells with low RNA content and offset the benefits of
using EmptyDrops. Even so, EmptyDrops still provides
an advantage over existing methods by providing a sta-
tistically rigorous framework for cell detection, without

requiring any a priori knowledge of the expected number
of cells.

We have focused exclusively on droplet-based scRNA-
seq data generated using the GemCode technology from
10X Genomics. This is motivated by the widespread use
of this platform as well as the availability of the unfil-
tered datasets (see •MethodsŽ). In principle, the method
can also be applied to data from other droplet-based
protocols such as inDrop and Drop-seq. Cell lysis or leak-
age will occur in any protocol involving dissociation and
microfluidics, and the formation of empty droplets con-
taining RNA from the ambient pool is unlikely to be a
phenomenon that is unique to 10X datasets.

An interesting direction for future work is whether the
contribution of the ambient profile can be •subtractedŽ
from each barcode•s expression profile, thus yielding a
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a b

c d

Fig. 3 t-SNE plots for the placenta dataset (a, b) or the 900 neuron dataset (c, d), constructed from barcodes that were detected with EmptyDrops
and/or CellRanger. Each point represents a barcode and is colored based on a, cwhether it was detected as a cell with each method; b the
expression of monocyte marker genes KCNA5, CFP, STX11, and S100A12; or d the expression of interneuron marker genes Gad1, Gad2, and Sla6c1.
Expression of the relevant marker set in each barcode was quantified as the sum of the normalized log-expression values across all marker genes.
Arrows mark the putative monocyte and interneuron populations in each dataset

more accurate representation of a cell•s transcriptome
[18]. This requires estimation of the relative amounts of
the ambient pool and cellular RNA in each droplet, which
is not straightforward as the ambient pool is itself derived
from cells. Accurate quantification of the ambient contri-
bution to each droplet requires ambient-specific •mark-
ersŽ that may not be available for an arbitrary dataset.
Direct subtraction of the contribution from the counts
is also unsatisfactory as it does not preserve the mean-
variance relationship or the uncertainty of the ambient
estimates. It seems that an identity-link factor model for
count data may be required, which is not trivial to imple-
ment.

Our EmptyDrops method is implemented in theDrople-
tUtils package, available from the Bioconductor project
[19]. We anticipate that it will be useful to researchers who
want to extract as much information as possible from their
droplet-based datasets.

Methods
Evaluating performance with simulated data
For a given real dataset, we computed the total sum of
UMI counts tb for each barcode. We identified the inflec-
tion point in the curve of log(tb) against the log-rank
using thebarcodeRanks function from the DropletU-
tils package. The set of all barcodes with log(tb) below the
inflection point was defined as the set of empty droplets
G0. Counts for allb ∈ G0 were summed together to cre-
ate an ambient pool of RNA molecules. (The inflection
point is used here instead of the knee point in order to
reduce the number of real cell-containing droplets that
are included in the simulated ambient pool.) To simulate
known empty droplets, we constructed expression pro-
files for a new set of barcodes by sampling molecules from
the ambient pool without replacement. This was done
such that the distribution of tb in our set was the same as
that in G0. In this manner, we recapitulated the observed
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number of empty droplets and their total counts in our
simulations.

To obtain G1 large cells, we sampled from the set of
barcodes with log(tb) above the inflection point. We used
sampling with replacement to avoid problems in cases
whereG1 is greater than the number of estimated cells in
the dataset. To generateG2 small cells, we sampled from
the same set of barcodes and downsampled the count vec-
tor for each barcode to 10% of its original total, using
the downsampleMatrix function from the DropletU-
tils package. This mimics the presence of small cells with
low RNA content. In both cases, we scrambled a small
proportion (10%) of randomly selected genes to eliminate
any similarities to the ambient pool in the sampled set
of profiles. This ensures that the assumed true cells in
our simulation are indistinguisable from empty droplets.
We tested different simulation scenarios by settingG1 or
G2 to 500 and 2000 cells. The various components of the
simulation are visualized in Additional file1: Figure S3.

We applied our EmptyDrops method to the simulated
data at an FDR of 0.1%. The recall was defined as the
proportion of known cells from each group that were suc-
cessfully detected. The observed false discovery rate was
defined as the proportion of detected barcodes that were
known empty droplets. We repeated this evaluation using
the knee point approach, where all barcodes with total
counts above the knee point were retained, and with the
CellRanger approach, implemented as described [3] with
the expected number of cells set toG1 + G2 (i.e., the true
number of simulated cells).

We generated simulated data based on each real dataset
in Additional file 1: Table S2. For each scenario and
dataset, we repeated the simulation for 10 iterations. We
used each method in each iteration and collected perfor-
mance metrics across all iterations.

Detecting cells in real data with different methods
For each real dataset, we applied EmptyDrops to detect
cells at an FDR of 0.1%. We also used the CellRanger
approach where the expected number of cells was set to
the reported value in Additional file1: Table S2, and the
knee point method, where the threshold on the total count
was defined as the detected knee point in the barcode
rank plot. UpSet plots were created with using theUpSetR
package [20].

Characterizing detected cells in real datasets
We analyzed the placenta dataset by adapting an existing
workflow for scRNA-seq data analysis [21]. We performed
the analysis on the union of all cells detected by either
CellRanger or EmptyDrops to simplify downstream com-
parisons between the two methods. First, we removed
low-quality cells with high proportions of mitochondrial
transcripts by detecting outliers based on the median

absolute deviation (MAD) [22]. Cells were discarded if
the percentage of UMIs assigned to mitochondrial genes
was greater than three MADs above the median for
all detected cells. We calculated cell-specific size fac-
tors using the deconvolution method with pre-clustering
[23]. We used the size factors to obtain normalized log-
expression values for further analysis.

We calculated the biological contribution of the vari-
ance for each gene, assuming Poisson technical noise
when modelling the mean-variance trend. We performed
principal components analysis on the log-expression
matrix using theirlba package. We used the first few com-
ponents as a low-rank approximation of the matrix to
speed up downstream steps. The exact number of compo-
nents was determined using thedenoisePCA function in
scran, which matches the sum of biological contributions
across all genes to the variance explained by the chosen
number of components.

We clustered cells by creating a shared nearest neigh-
bors graph [24] and detecting communities with the Walk-
trap algorithm from the igraph package. Clusters enriched
for EmptyDrops-only cells were characterized by detect-
ing differentially expressed genes against every other clus-
ter, using pairwiset-tests in thefindMarkers function
from scran. A t-SNE plot [13] was generated using from
theRtsne andscater packages [22]. We used a perplexity of
30, though similar plots were obtained with other values.

We performed similar analyses on the PBMC and 900
brain cell datasets.
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