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Abstract

Predicting the effects of genetic variants on splicing is highly relevant for human genetics. We describe the
framework MMSplice (modular modeling of splicing) with which we built the winning model of the CAGI5 exon
skipping prediction challenge. The MMSplice modules are neural networks scoring exon, intron, and splice sites,
trained on distinct large-scale genomics datasets. These modules are combined to predict effects of variants on exon
skipping, splice site choice, splicing efficiency, and pathogenicity, with matched or higher performance than
state-of-the-art. Our models, available in the repository Kipoi, apply to variants including indels directly from VCF files.
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Background
Genetic variants altering splicing constitute one of the
most important class of genetic determinants of rare [1]
and common [2] diseases. However, the accurate predic-
tion of variant effects on splicing remains challenging.
Splicing is the outcome of multiple processes. It is a

two-step catalytic process in which a donor site is first
attacked by an intronic adenosine to form a branchpoint.
In a second step, the acceptor site is cleaved and spliced
(i.e., joined) to the 3′ end of the donor site. The sequences
of the donor site, of the acceptor site, and of the intronic
region surrounding the branchpoint, which are recog-
nized during spliceosome assembly, contribute to splicing
regulation [3]. Moreover, many regulatory elements such
as exonic splicing enhancers (ESEs) and silencers (ESSs)
and intronic splicing enhancers (ISEs) and silencers (ISSs)
also play key regulatory roles (reviewed by [4]). In addition
to genetic variants at splice consensus sequence, distal
elements can also affect splicing and cause disease [5].
Hence, predictive models of splicing need to integrate
these various types of sequence elements.
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Previous human splice variant interpretation methods
can be grouped into two categories.
One category consists of algorithms that score sequence

for being bona fide splice regulatory elements including
splice sites [6, 7], and exonic and intronic enhancers and
silencers [8–13]. Variants can be scored with respect to
these regulatory elements by comparing predictions for
the reference sequence and for the alternative sequence
containing the genetic variant of interest. However,
although methods combining several of these scores have
been proposed, including Human Splicing Finder [14],
MutPred splice [15], and more recently SPiCE [16], the
resulting physical and quantitative effect of these vari-
ants on splicing remains difficult to assess with these
algorithms.
The second category of models aimed at predicting

relative amounts of alternative splicing isoforms quanti-
tatively from sequence [17–19]. In this context, a quan-
titative measure that has retained much attention in the
literature is the percent spliced-in (PSI, also denoted �),
which quantifies exon skipping. � is defined as the frac-
tion of transcripts that contains a given exon [20]. It can
be estimated as the fraction of exon-exon junction reads
from an RNA-seq sample supporting inclusion of an exon
of interest, over the sum of these reads plus those support-
ing the exclusion of this exon [20]. Two early models were
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fitted to predict direction of � changes between tissues
(exon inclusion, exon skipping, and no change) in mouse
[21, 22] from sequence. State-of-the-art models for pre-
dicting � from sequence are SPANR [17] and HAL [18]
for human, and the model from Jha et al. [23] for mouse.
The related quantity �5 quantifies for a given donor site
the fraction of spliced transcripts with a particular alter-
native 3′ splice site (A3SS). The quantity �3 has been
analogously defined to quantify alternative 5′ splice sites
(A5SS) [24]. It should be noted that �5 is often referred
as � for A3SS, and �3 as � for A5SS (e.g., [25, 26]).
However, throughout this manuscript, we are consistently
using the notations �5 and �3 as defined by Pervouch-
ine et al. [24]. The recently published algorithm COSSMO
[19] predicts �5 from sequence by modeling the compe-
tition between alternative acceptor sites for a given donor
site and analogously for �3. COSSMO has shown supe-
rior performance over MaxEntScan [7] on predicting the
most frequently used splice site among competing ones.
Furthermore, splicing efficiency has been proposed to
quantify the amount of precursor RNA that undergo splic-
ing (exon-skipped or misspliced transcripts are ignored)
at a given splice site by comparing the amount of RNA-
seq reads spanning an exon-intron boundary of interest to
the corresponding exon-exon junction reads [27]. The lat-
est model to predict variant effects on splicing efficiency is
the SMS score, which is based on scores for exonic 7-mers
estimated from a recently published saturation mutage-
nesis assay [28]. However, no model can be applied to
all the abovementioned splicing quantities, although they
are influenced by common regulatory elements. Further-
more, none of these software handle variant calling format
(VCF) files natively, making their integration into genetic
diagnostics pipelines cumbersome. Also, these software

often do not handle indels (insertions and deletions),
although indels are potentially the most deleterious
variants.
Here, we trained building block modules separately for

the exon, the acceptor site, and the donor site and for
intronic sequence close to the donor and close to the
acceptor sites. This modular approach allowed leverag-
ing rich datasets from two high-throughput perturbation
assays focusing on distinct aspects of splicing: (i) a mas-
sively parallel reporter assay (MPRA) with millions of
random short sequences in intron and exon sequence
[18], and (ii) a high-throughput assay that quantifies the
effect of naturally occurring exonic variants on the splic-
ing of their exon [29]. These building block modules could
then be combined into distinct models predicting effects
of variants on � , �5, �3, splicing efficiency, and one
model predicting splice variant pathogenicity trained on
the database ClinVar [30]. We outperform state-of-the-
art models for each task but �3, on which MMSplice and
HAL both are the best. In particular, our model of exon
skipping ranked first at the 5th challenge of the Criti-
cal Assessment of Genome Interpretation group (CAGI5,
https://genomeinterpretation.org/). All our models are
available open source in the model zoo Kipoi [31] and can
be applied for variant effect prediction directly from VCF
files.

Results
Modular modeling strategy
We designed neural networks to score five potentially
overlapping splicing-relevant sequence regions: the donor
site, the acceptor site, the exon, as well as the 5′ end and
the 3′ end of the intron (Fig. 1a). The donor and the accep-
tor models were trained to predict annotated intron-exon

ba

Fig. 1 Individual modules of MMSplice and their combination to predict the effect of genetic variants on various splicing quantities. aMMSplice
consists of six modules scoring sequences from donor, acceptor, exon, and intron sites. Modules were trained with rich genomics dataset probing
the corresponding regulatory regions. bModules from a are combined with a linear model to score variant effects on exon skipping (��),
alternative donor (��3), or alternative acceptor site (��5), splicing efficiency, and they are combined with a logistic regression model to predict
variant pathogenicity. La and Ld stand for the length of intron sequence taken from the acceptor and donor side respectively

https://genomeinterpretation.org/
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and exon-intron boundaries from GENCODE 24 genome
annotation (see the “Methods” section, Fig. 1a, Additional
file 1: Figure S1). The exon and intronmodels were trained
from a MPRA that probed the effect of millions of ran-
dom sequences altering either the exonic 3′ end and the
intronic 5′ end for alternative 5′ splicing (A5SS, quanti-
fied by �3), or the exonic 5′ end and the intronic 3′ end
for alternative 3′ splicing (A3SS, quantified by �5) (see
the “Methods” section, Fig. 1a, Additional file 1: Figure
S2) [18]. For later use, the modules were defined as the
corresponding neural network models without the last
activation layer. We have two intron modules, the intron

5′ module that scores intron from the donor side and
the intron 3′ module that scores intron from the accep-
tor side. Likewise, we have two exon modules, the exon
5′ module that trained from A3SS and exon 3′ mod-
ule that trained from A5SS (see the “Methods” section,
Additional file 1: Figure S2). To score exonic sequence,
only one of the exonic module is applied depending on
the alternative splicing quantity. Training data and mod-
ule architecture are summarized in Table 1. Next, we
combined these modules to predict how genetic variants
lead to (i) differences in � , (ii) differences in �3, (iii)
differences in �5, (iv) differences in splicing efficiency,

Table 1 Summary of trained modules and models

MMSplice model Training data Architecture Loss function Target value Parameters

Donor module GENCODE 24, positive:
annotated donors, negative:
random sequence (“Methods”
section)

Four layer neural
network with dropout
and batch normalization,
Additional file 1: Figure
S1A

Binary cross entropy Positive vs. negative 18,049

Acceptor module GENCODE 24, positive:
annotated acceptors, negative:
random sequence (“Methods”
section)

Two layer conv. neural
network with dropout
and batch normalization,
Additional file 1: Figure
S1B

Binary cross entropy Positive vs. negative 4833

Exon 5′ module MPRA [18] exonic sequence One conv. layer shared
with the Exon 3′
module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �5 6145

Exon 3′ module MPRA [18] exonic sequence One conv. layer shared
with the Exon 5′
module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �3 6145

Intron 5′ module MPRA [18] intronic sequence One conv. layer shared
with the Intron 3′
module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �3 13,825

Intron 3′ module MPRA [18] intronic sequence One conv. layer shared
with the Intron 5′
module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �5 13,825

�logit(�) model Vex-seq [29] Linear regression Huber loss �logit(�), Eq. 2 9

Splicing efficiency
model (in vivo)

MaPSy (“Methods” section) Linear regression Huber loss Splicing efficiency,
Eq. 10

5

Splicing efficiency
model (in vitro)

MaPSy (“Methods” section) Linear regression Huber loss Splicing efficiency,
Eq. 10

5

Pathogenicity model
(w/o phyloP and
CADD)

ClinVar [30] [− 10, 10] around
donor, [− 40, 10] around
acceptor

Logistic regression Binary cross entropy Pathogenic vs.
benign

14

Pathogenicity model
(with phyloP and
CADD)

ClinVar [30] [− 10, 10] around
donor, [− 40, 10] around
acceptor

Logistic regression Binary cross entropy Pathogenic vs.
benign

18
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and (v) to disease or benign phenotypes according to the
ClinVar database (Fig. 1b). Specifically, we trained one lin-
ear model on top of the modules to predict �� . The
same linear model was applied to predict ��5 and ��3
by modeling the competition of two alternative exons.
Another linear model was trained to predict change of
splicing efficiency and a logistic regression model was
trained to predict variant pathogenicity from the modules
(Fig. 1b).

MMSplice improves the prediction of variant effect on
exon skipping
To assess the performance of MMSplice for predicting
effects of variants on exon skipping, we first considered
the Vex-seq dataset [29]. Vex-seq is a high-throughput
reporter assay that compared � for constructs contain-
ing a reference sequence to � for matching constructs
containing one of 2059 Exome Aggregation Consortium
(ExAC [32]) variants. The difference of � for the variant
allele to the reference allele is denoted �� . These vari-
ants consisted of both single nucleotide variants as well
as indels from exons and introns (20 nt upstream, 50
nt downstream). The data for the HepG2 cell line was
accessed through the Critical Assessment of Genome
Interpretation (CAGI) competition [33]. The 957 variants
from chromosome 1 to chromosome 8 were provided as
training data. The remaining 1054 variants from chromo-
some 9 to 22 and chromosome X were held out for testing
by the CAGI competition organizers and were not avail-
able throughout the development of the model. The test
data consisted of 572 exonic and 526 intronic variants and
included 44 indels.
The Vex-seq experiment is an exon skipping assay,

whereas our exon modules were trained for A5SS (�3)
and A3SS (�5). Because of high redundancy between
these two modules, we used the exon 5′ module as it
was better at predicting exon skipping exonic variants on
Vex-seq training data than the exon 3′ module (R = 0.52 v.s
R = 0.25,P = 0.001, bootstrap,Additional file 1: Figure S3).
We built an MMSplice predictor for �� by train-

ing a linear model to combine the modular predictions
and interaction terms between modules with overlap-
ping scored regions from the Vex-seq training data (see
the “Methods” section, Eq. 2). We compared MMSplice
with three state-of-the-art splicing variant scoring mod-
els: SPANR [17], HAL [18], and MaxEntScan [7] on
the held-out Vex-seq test data (“Methods” section). The
methods HAL [18] and SPANR [17] have been reported
to be the two best performed existing methods on a
recent large-scale perturbation assay probing 27,733 rare
variants [34], while MaxEntScan [7] was considered as
a baseline reference model. SPANR scores exonic and
intronic SNVs up to 300 nt around splice junctions. HAL
scores exonic and donor (6 nt to the intron) variants.

MaxEntScan scores [− 3, + 6] nt around the donor and
[− 20, + 3] nt around the acceptor sites. The Vex-seq data
was processed the same way for these models (“Methods”
section). Unlike the other methods, SPANR does not take
custom input sequences and could therefore score single
nucleotide variants but not for indels. We evaluated the
performance of �� predictions of MMSplice, HAL, and
SPANR using root-mean-square errors (RMSE) on test
data. MaxEntScan scores sequences but does not predict
� . We therefore compared the correlation of differences
of MaxEntScan scores to �� and used Pearson correla-
tion on test data as a common metric to compare all these
methods.
On the Vex-seq data, MMSplice showed a large

improvement over HAL and SPANR. First, MMSplice
could score all 1098 variants of the test set whereas HAL
could only score 572 (52.1%) and SPANR 966 (88%) of
them. Second, the difference in � predicted by MMSplice
correlated better when restricted to the respective vari-
ants scored by the other methods (R = 0.68 for MMSplice
v.s. R = 0.44, 0.26 for HAL and SPANR respectively,
both comparison P = 0.001, bootstrap, Fig. 2b–d). A
higher performance than other models was also obtained
even when we bluntly summed the prediction scores from
the five modules without fitting any parameter to the
Vex-seq training data (R = 0.66 and R = 0.67 when
using the exon 3′ module in place of the exon 5′ module,
Additional file 1: Figure S4). This shows that the superior
performance of our model is primarily due to the mod-
ules not the combination linear model that was trained
from Vex-seq training data. Moreover, MMSplice showed
higher accuracy than HAL and SPANR on these data
when considering root-mean-square errors (RMSE = 0.1
for MMSplice versus 0.28 for HAL and 0.14 for SPANR,
Fig. 2b–d).
We further compared our prediction for donor and

acceptor site variants with the popular model Max-
EntScan [7]. MMSplice performed better both in donor
sequence (R = 0.87 for MMSplice versus 0.66 for Max-
EntSan5, P = 0.001, bootstrap, Additional file 1: Figure
S5) and acceptor sequence (R = 0.81 for MMSplice versus
0.69 for MaxEntSan3, P = 0.001, bootstrap, Additional
file 1: Figure S6), when restricted to the subset of variants
that MaxEntScan3 could score (42 donor variants and 149
acceptor variants). HAL performed better (R = 0.71) than
MaxEntScan5 (R = 0.66) but worse than MMSplice (R =
0.87) on donor variants (P = 0.001 for both comparisons,
bootstrap, Additional file 1: Figure S5).
Altogether, MMSplice outperformed SPANR, HAL, and

MaxEntScan on predicting effects of genetic variants on
exon skipping observed on this large-scale perturbation
data, by covering more variants and also by providing
more accurate predictions. Our model also ranked the
first in the 2018 CAGI Vex-seq competition. A joint
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Fig. 2MMSplice improves the prediction of variant effect on exon skipping. a Schema of the Vex-seq experiment [29]. The effect of 2059 ExAC
variants (red star) from or adjacent to 110 alternative exons were tested with reporter genes by measuring percent splice-in of the reference
sequence (�ref) and of the alternative (�alt) by RNAseq. b–dMeasured (y-axis) versus predicted (x-axis) � differences between alternative and
reference sequence for MMSplice (b), HAL [18] (c), and SPANR [17] (d) on Vex-seq test data. Color scale represents counts in hexagonal bins. The
black line marks the y = x diagonal. Each plot is shown with the subset of variants that the considered model can score. Pearson correlations (R) and
root-mean-square errors (RMSE) were also calculated based on the scored variants. The 95% confidence intervals for these two metrics were
calculated with bootstrap (“Methods” section). (e) Schema of MFASS experiment [34]. Exon skipping effects of 27,733 ExAC SNVs (red star) spanning
or adjacent to 2339 exons were tested by genome integration of designed construct. Splice-disrupting variant (SDV) is defined as a variant that
change an exon with original exon inclusion index� 0.5 by at least 0.5. f Precision-recall curve of MFASS SDV classification based on model
predicted �� . Precision-recall curve for all three models was calculated for the sets of variants they can score. MMSplice (black) scored all 27,733
variants, SPANR (yellow) scored 27,663 variants (1,048 SDVs), and HAL (blue) scored 14,353 variants (489 SDVs)

publication with the organizers and challengers is in the
planning.

MMSplice classifies rare splice disrupting variants with
higher precision and recall
To further compare models on predicting exon skipping
level with independent datasets that no model has been
trained on, we used the splicing functional assay from
Cheung et al. [34]. Cheung et al. found 1050 splice-
disrupting variants (SDVs); the majority are extremely
rare, after examining 27,733 ExAC single-nucleotide
variants (SNV) with Multiplexed Functional Assay of
Splicing using Sort-seq (MFASS) (Fig. 2e). The author
benchmarked several variant effect prediction methods
including conservation-based methods like CADD [35],
phastCons [36], and the state-of-the-art splicing variant
scoring tools HAL and SPANR. Among all, the two splic-
ing variant scoring methods performed much better than
the others, thus MMSplice was compared with those two.
MMSplice model with the final combination linear model
trained from Vex-seq training data was applied to classify
SDVs based on predicted �� solely from sequence. Our
model achieved overall higher Area under the precision-
recall curve (auPR, MMSplice: 0.41, HAL: 0.27, SPANR:
0.26, P = 0.001 for both MMSplice versus HAL and
MMSplice versus SPANR, bootstrap) when all models
considering only their scored variants (Fig. 2f ). In total,

MMSplice scored all variants, SPANR scored 99.7% of all
variants, while HAL scored only 51.8% of them. When
considering exonic variants only, MMSplice (auPR=0.29)
performed similar to HAL (auPR = 0.27) (P = 0.326,
bootstrap, Additional file 1: Figure S7). For intronic vari-
ants, MMSplice had an auPR of 0.55 in comparison to
0.43 for SPANR (P = 0.001, bootstrap, Additional file 1:
Figure S7).
Overall, MMSplice demonstrated a substantital

improvement over SPANR for both intronic and exonic
variants and showed a similar performance to HAL
for classifying exonic SDVs. This result also demon-
strates the power of our model to score the effect of
rare variants, for which association studies often lack of
power.

MMSplice predicts variants associated with competing
splice site selection with high accuracy
The MMSplice modular framework allows modeling
alternative splicing events other than exon skipping. To
demonstrate this and assess the performance ofMMSplice
on other alternative splicing events, we built MMSplice
models to predict association of variants around alter-
native donors on alternative 5′ splicing (A5SS, �3) and
variants around alternative acceptors on alternative 3′
splicing (A3SS) (“Methods” section) in GTEx. �5 and �3
values for homozygous reference variants as well as with
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heterozygous and homozygous alternative variants were
calculated from RNA-seq data of the GTEx consortium
[37] (“Methods” section). Here too, our MMSplice mod-
els allowed handling indels. One example is the insertion
variant rs11382548 (chr11:61165731:C-CA). It is a splice
site variant that turns a CG acceptor to an AG acceptor. It
showed the largest ��5 among all assessed variants.
We benchmarked MMSplice against MaxEntScan,

HAL, and COSSMO. Overall, MMSplice (R = 0.66) sig-
nificantly outperformed COSSMO (R = 0.5, P = 0.016,
bootstrap) and MaxEntScan (R = 0.46, P = 0.001,
bootstrap) and tied with HAL (R = 0.67, P = 0.558,
bootstrap) on predicting ��3 (Fig. 3a–d). On predicting
��5, MMSplice (R = 0.57) again significantly outper-
formed both COSSMO (R = 0.37) and MaxEntScan (R =
0.44) (all P = 0.001, Fig. 3e–g). This conclusion also
holds when using RMSE as evaluationmetric (Fig. 3). Even
though HAL can predict A5SS donor variants well, the
model has been trained for predicting A5SS and may not
generalize well to other alternative splicing types. It only
showed moderate performance when predicting donor
variants from Vex-seq skipped exons (Additional file 1:
Figure S5). In contrast, MMSplice showed consistent high
performance across different types of alternative splicing
events.
MMSplice outperformed COSSMO for both donor and

acceptor variants even thoughCOSSMOwas trained from

estimated �5 and �3 values from GTEx data. One pos-
sible reason is that COSSMO was trained from reference
sequence to predict �5 and �3, ignoring the genetic vari-
ants of the GTEx dataset. In contrast, MMSplice was
trained to predict �� from genetic perturbation data
(Vex-Seq). Also, COSSMO was trained to predict splice
site usage for an arbitrary number of alternative splice
sites, while we focused here on the cases with only two
alternative splice sites.

Prediction of splicing efficiency
We next used our modular approach to derive a model
that predicts splicing efficiency, i.e., the proportion of
spliced RNAs among spliced and unspliced RNAs [27].
We have done so in the context of a second CAGI5
challenge (Fig. 4a), whose training dataset is based on
a massively parallel splicing assay (MaPSy [27]) and
which is described in the “Methods” section. This MaPSy
dataset consists of splicing efficiencies, 5761 pairs of
matched wild-type and mutated constructs, where each
mutated construct differed from its matched wild-type
by one exonic non-synonymous single-nucleotide variant
(“Methods” section). The assay has been done both with
an in vitro splicing assay and in vivo by transfection into
HEK293 cells (“Methods” section). A test set of 797 con-
struct pairs was held-out during the development of the
model.

a

e

b

f

c

g

d

Fig. 3 Evaluation of models predicting ��5 and ��3 on the GTEx dataset. Associated effects (y-axis) versus predictions (x-axis) for GTEx variants
around alternative spliced donors (3 nt in the exon and 6 nt in the intron) and acceptors (3 nt in the exon and 20 nt in the intron) were considered.
�5 (or �3) of homozygous (black) and heterozygous (blue) alternative variants as well as homozygous reference variants were calculated by taking
the mean �5 (or �3) across individuals with the same genotype (excluding individuals with multiple variants within 300 nt around splice sites) on
brain and skin (not sun exposed) samples. For donor variants, MMSplice (a) was benchmarked against COSSMO (b), HAL (c), and MaxEntScan (d). For
acceptor variants, MMSplice (e) was benchmarked against COSSMO (f) and MaxEntScan (g). The 95% confidence intervals for Pearson correlation (R)
and root-mean-square errors (RMSE) were calculated with bootstrap (“Methods” section). The dotted line marks the y = x diagonal
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a

b

ed

c

Fig. 4 Splicing efficiency prediction. aMaPSy experiment (“Methods” section). Effect of 5761 published disease-causing exonic mutations on splicing
efficiency is measured both in vivo and in vitro. Changes of splicing efficiency were quantified by allelic log-ratio. b–eMeasured (y-axis) versus
predicted (x-axis) allelic ratio for 797 variants in the test set for MMSplice (b, c) and the SMS score [28] (d, e). The dotted line marks the y = x diagonal.
The 95% confidence intervals for Pearson correlation (R) and root-mean-square errors (RMSE) were calculated with bootstrap (“Methods” section)

We trained a linear model on top of the modular pre-
dictions with MaPSy training data to predict differential
splicing efficiency reported by theMaPSy data (“Methods”
section). This linear model was trained the same way as
for Vex-seq except that the response was the allelic log-
ratio (Fig. 4a and “Methods” section) instead of�logit(�).
One model was trained for the in vivo data and another
model was trained for the in vitro data. Our MMSplice
model for differential splicing efficiencies predicted the
effect of those non-synonymous mutations on the held-
out test set reasonably well in vitro (R = 0.57, 4a) and well
in vivo (R = 0.37, 4c). Also, our MMSplice model for dif-
ferential splicing efficiencies outperformed the SMS score
algorithm [28] on in vitro data (P = 0.001, bootstrap,
4d) and reached similar performance on the in vivo data
(P = 0.524, bootstrap, 4e). MMSplice significantly out-
performed SMS scores in both conditions when evaluated

with RMSE (0.74 and 0.95 for MMSplice versus 1.01 and
1.12 for SMS scores, P = 0.001 for both comparison,
bootstrap). Several reasons may have led to the worse per-
formance in vivo. One possible reason is that the in vivo
assay may involve RNA degradation factors, which also
regulate level of spliced RNA species by regulating RNA
stability. Another possible reason is that the folding of
RNAs in vivo may be more complex than in vitro, which
in turn affects splicing [38], making the prediction in vitro
more difficult.

MMSplice can contribute to improved predictions of splice
site variant pathogenicity
Predicting variant pathogenicity is a central task of
genetic diagnosis. However, large amount of variants are
annotated as variant of uncertain significance (VUS).
A good splice variant effect prediction model can help
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interpreting VUSs. To evaluate the potential of MMSplice
to contribute in predicting variant pathogenicity, we con-
sidered the ClinVar variants (version 20180429, [30]) that
lie between 40 nt 5′ and 10 nt 3′ of an acceptor site or
10 nt either side of a donor site of a protein coding gene
(Ensembl GRCh37 v75 annotation, “Methods” section) as
potentially affecting splicing. Among these variants, we
aimed at discriminating between the 6310 variants clas-
sified as pathogenic and the 4405 variants classified as
benign. To this end, we built an MMSplice model that
implements a logistic regression on top of the MMSplice
modules (“Methods” section). Variants can potentially
be in the vicinity of multiple exons. MMSplice handles
this many-to-many relationship (Fig. 5a). Conveniently,
MMSplice can be applied to a variant file in the standard
format VCF [39] and a genome annotation file in the stan-
dard GTF format. Moreover, MMSplice is available as a
Variant Effect Predictor Plugin (VEP [40]).

This MMSplice model was benchmarked against
SPANR [17] and the ensemble of three other models:
MaxEntScan [7], HAL [18], and the branch point predic-
tor LaBranchoR [41]. We also compared our MMSplice
model and competing models with phyloP and CADD
scores as additional features (Additional file 1: Supple-
mentary Methods). Model performances were bench-
marked under 10-fold cross-validation (Fig. 5b). Globally
on all the 10,715 considered variants, MMSplice alone
(auROC = 0.940) outperformed SPANR (auROC = 0.821,
P = 0.001, bootstrap) and the ensemble model combin-
ingMaxEntScan, HAL, and LaBranchoR (auROC= 0.928)
(P = 0.001, bootstrap). AddingMMSplice to the ensemble
model further improved the auROC to 0.954 (P = 0.001,
bootstrap). Moreover, MMSplice with phyloP and CADD
features (auROC = 0.973) achieved a performance close
to the best ensemble model kipoiSplice5 that included
MMSplice (auROC = 0.979, P = 0.003, bootstrap, Fig. 5),

a

b

Fig. 5 Predictions on ClinVar variants. a Variants are first mapped to potentially affected exons. Variants in the exon or in the intron, within La nt of
the acceptor site or within Ld nt from the donor site are considered to affect splicing of the exon. Afterwards, reference and alternative sequences
are retrieved and subjected to MMSplice for prediction. MMSplice gives a prediction for each variant-exon pair. bModel comparison on classifying
pathogenicity of ClinVar splice variants. Models were trained and evaluated in 10-fold cross-validation. Error bars indicate one standard deviation
calculated across folds. The six leftmost models (blue) are incrementally added to the ensemble model: “+phyloP+CADD ” uses all five previous
models as well as phyloP and CADD scores. Performance of MMSplice and SPANR alone as well as their performance with phyloP and CADD scores
are on the right (orange)
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indicating that MMSplice alone captured most of the
sequence information captured by all other models.
We were then interested in delineating the added value

of MMSplice per gene region. To this end, we grouped
the variants based on their position yielding to (1) 832
exonic variants from the acceptor site region, (2) 1902
exonic variants from the donor site region, (3) 3575
intronic variants from the donor site region, and (4)
4393 intronic variants from the acceptor site region. On
exonic variants, we further benchmarked against Mut-
Pred Splice [15] which predicts pathogenicity of exonic
variants. Among the models that do not integrate phyloP
and CADD features, MMSplice was the best in the accep-
tor site region (auROC = 0.602 for the exonic variants
and auROC = 0.970 for the intronic variants, Additional
file 1: Figure S8A,D). On the donor site region, MMSplice
and the ensemble of MaxEntScan, HAL, and LaBran-
choR were both the best models (auROC = 0.651 for
the exonic variants and auROC = 0.977 for the intronic
variants, Additional file 1: Figure S8B,C). MMSplice
performed better than MutPred Splice on both exonic
regions (MMSplice: auROC = 0.602, 0.651, MutPred:
auROC = 0.594, 0.642, Additional file 1: Figure S8A,B),
even though MutPred integrates conservation features
[15]. Furthermore, the ensemble model that included
MMSplice with phyloP and CADD features had a simi-
lar performance than the best ensemble model in all four
regions (Additional file 1: Figure S9, auROC = 0.893,
0.917, 0.981, 0.982 versus auROC = 0.894, 0.919, 0.988,
0.985). Notably, phyloP and CADD had good perfor-
mance on exonic variants (auROC = 0.874, 0.869),
but close to random in the evaluated intronic variants
(auROC = 0.505, 0.483). In contrast, all other splicing
models without phyloP and CADD were performing bet-
ter at intronic variants but much worse at exonic variants,
likely because many pathogenic exonic variants do not
affect splicing but have a functional impact on the protein.
Recently, SPiCE [16] has been proposed as a method

to predict the probability of a splice site variant affect-
ing splicing. SPiCE is a logistic regression model trained
from 142 manually collected and experimentally tested
variants.We thus benchmarked against SPiCEwith 12,625
ClinVar variants (2312 indels) that SPiCE was able to score
(it failed to score variants from sex chromosomes, “Methods”
section). MMSplice (auROC = 0.911) outperformed
SPiCE (auROC = 0.756, P = 0.001, bootstrap). More-
over, this higher performance of theMMSplice model also
held when we fine-tuned the logistic regression model of
SPiCE on the ClinVar training dataset (auROC = 0.760,
P = 0.001, bootstrap, Additional file 1: Figure S10).
Altogether, these results show that MMSplice not only

improves the predictions of the effects of variants on bio-
physical splicing quantities, but also helped improving
variant pathogenicity predictions.

Discussion
We have introduced MMSplice, a modular framework to
predict the effects of genetic variants on splicing quan-
tities. We did so by training individual modules scoring
exon, intron, and splice sites. Models built by integrat-
ing these modules showed improved performance against
state-of-the-art models on predicting the effects of genetic
variants on � , �3, �5, splicing efficiency, and pathogenic-
ity. The MMSplice software is open source and can be
directly applied on VCF files and handles single nucleotide
variants and indels. Like other recent models [17–19],
MMSplice score variants beyond the narrow region close
to splice sites that is for now suggested by clinical
guidelines [42]. We also implemented a VEP [40] plu-
gin that wraps the python implementation. These features
should facilitate the integration of MMSplice into bioin-
formatics pipelines at use in genetic diagnostic centers
and may help in improving the discovery of pathogenic
variants.
MMSplice leverages the modularity of neural net-

works and deep learning frameworks. MMSplice is imple-
mented using the deep learning python library Keras [43].
All MMSplice modules and models are shared in the
model repository Kipoi [31], which should allow other
computational biologists to improve individual modules
or to flexibly include modules into their own models.
We hope this modular approach will help the commu-
nity to coordinate efforts and continuously and effec-
tively built better variant effect prediction models for
splicing.
Variations across the reference genome or across nat-

ural genetic variations in the population may be limited
by evolutionary confounding factors, limiting the model’s
ability to make predictions about rare genetic variants.
Experimental perturbation assays are useful because they
circumvent these confounding factors. Here, we have
leveraged a massively parallel reporter assay [18] to build
individual modules. Also, models predicting � and splic-
ing efficiencies were trained on large-scale perturbation
datasets (Vex-seq [29] andMaPSy). We note however that
MMSplice was not entirely fitted on perturbation assays:
The donor site and the acceptor site modules have been
trained on the GENCODE annotation, which is observa-
tional. Our models outperformed models based on the
reference genome and natural variations and was only
matched by models based on perturbation assays (HAL
for ��3 and the SMS score for in vivo splicing efficiency
changes). Nonetheless, one should remain cautious about
how predictive rules learned from specific perturbation
assays generalize to more general contexts. For instance,
the Rosenberg MPRA dataset probed only two 25-nt-
long sequences for a very specific construct. Hence, it
is important to validate models on further independent
perturbation data.
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Our models have some limitations. First, splicing is
known to be tissue-specific [44, 45], while our mod-
els are not. Nevertheless, our models can serve as a
good foundation to train tissue-specific models. Second,
RNA stability also plays a role in determining the ratio
of different isoforms [29]. Models predicting RNA sta-
bility from sequence, as we recently developed for the
Saccharomyces cerevisiae genome [46] could be integrated
as further modules. Third, our exon and intron modules
are developed from minigene studies, and the perfor-
mance evaluation on predicting �� and splicing effi-
ciency changes are also done with minigene experiment
data. However, chromatin states are known to have a
significant role in splicing regulation [47]. Hence, vari-
ant effect prediction for endogenous genes could possibly
benefit frommodels taking chromatin states into account.
Fourth, our exon and intron modules have only one con-
volutional layer, which is not enough to learn complex
interaction effects of splicing regulatory elements [48].
We have explored using multiple convolutional layers, but
the performance on the Vex-seq training data was sim-
ilar (data not shown). We therefore chose the simpler
architecture. The limitation may come from the train-
ing data, as the perturbation assay we are training from
has 2.5 million random sequences of 25 nucleotides. This
library is maybe not deep enough to probe motif inter-
actions, relative distances, and orientations. Non-random
libraries that probe the grammar of discovered motifs
could be designed in the future and help studying motif
interactions. Fifth, MMSplice can technically score vari-
ants arbitrarily deep into introns. However, as the training
data of MMSplice did not cover deep intronic variants,
we suggest to only consider up to 100 nt into introns,
as we did here. Further models, such as SPANR which
is able to score variants up to 300 nt into the intron,
would need to be developed to cover deep intronic vari-
ants.
Like former splicing predictors [17–19, 21–23], the goal

of MMSplice is to predict quantitatively physical mea-
sures of splicing and not variant pathogenicity. Whether
affecting splicing at given locus leads to disease heavily
depends on the function of the gene and of the splice
isoforms. Moreover, existing pathogenicity annotations,
such as from the ClinVar database, are probably biased
toward tools such as MaxEntScan that are popular and
have been in use for a long time. Nonetheless, our results
indicate that MMSplice predictions could be potent
predictive features for pathogenic variant scores such as
S-CAP [49] or CADD [35].

Methods
Donor and acceptor modules
The donor and the acceptor modules were trained
using the same approach. A classifier was trained to

classify positive donor sites (annotated) against neg-
ative ones (random, see below) and the same for
the acceptor sites. The classifiers predicted scores can
be interpreted as predicted strength of the splice
sites.

Donor and acceptormodule training data
For the positive set, we took all annotated splice junc-
tions based on the GENCODE annotation version 24
(GRCh38.p5). For the donor module, a sequence window
with 5 nt in the exon and 13 nt in the intron around the
donor sites was selected. For the acceptor module, the
region around the acceptor sites spanning from 50 nt in
the intron to 3 nt in the exon was selected in order to
cover most branch points. In total, there were 273,661
unique annotated donor sites and 271,405 unique anno-
tated acceptor sites. This set of splice sites was considered
as the positive set. In particular, not only sites with the
canonical splicing dinucleotides GT andAG for donor and
acceptor sites, respectively, were selected, but also sites
with non-canonical splicing dinucleotides were included
as positive splice sites.
The negative set consisted of genomic sequences

selected within the genes that contributed to positive
splice sites, in order to approximately match the sequence
context of the positive set. Negative splice sites were
selected randomly around but not overlapping the positive
splice sites. To increase the robustness of the classifiers,
around 50% of the negative splice sites were selected to
have the canonical splicing dinucleotides. In total, 410,111
negative donor sites and 406,841 negative acceptor sites
were selected. During model training, we split 80% of the
data for training and 20% of the data for validation. The
best performing model on the validation set was used for
variant effect prediction.

Donor and acceptormodule architecture
Neural network models were trained to score splice sites
from one-hot-encoded input sequence. The donor model
was a multilayer perceptron with two hidden layers with
Rectified Linear Unit (ReLU) activations and a sigmoid
output (Additional file 1: Figure S1A). The hidden lay-
ers were trained with a dropout rate [50] of 0.2 and
batch normalization [51]. We chose a multilayer percep-
tron over a convolutional neural network because of the
short input sequence of the donor model. The accep-
tor model was a convolutional neural network with two
consecutive convolution layers, with 32 15 × 1 convo-
lution followed by 32 1 × 1 convolution (Additional
file 1: Figure S1B). The second convolutional layer was
trained with a dropout rate of 0.2 and batch normaliza-
tion. For these models, we found the number of layers and
the number of neurons in each layer by hyperparameter
optimization.
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Exonmodule
Exonmodule training data
The exonic random sequences from the MPRA experi-
ment by Rosenberg et al. [18] were used to train the exon
scoring module. This MPRA experiment contains two
libraries, one for alternative 5′ splicing and one for alter-
native 3′ splicing. The alternative 5′ splicing library has
265,137 random constructs while the alternative 3′ splic-
ing library has 2,211,789. Each random construct has a
25-nt random sequence in the alternative exon and a 25-
nt random sequence in the adjacent intron. �5 and �3 of
different isoforms were quantified by RNA-Seq for each
random construct [18]. Here, 80% of the data was used for
model training and the remaining were used for valida-
tion. The best performing model on the validation set was
used for variant effect prediction.

Exonmodule architecture
Rosenberg et al. [18] showed that the effects of splicing-
related features in alternative exons are strongly correlated
with each other across the two MPRA libraries, reflect-
ing that similar exonic regulatory elements are involved
for both donor and acceptor splicing. We thus decided to
train exon scoring module from the two MPRA libraries
by sharing low-level convolution layers (128 15 × 1 fil-
ters, Additional file 1: Figure S2). The inputs of the
network were one-hot-encoded 25-nt random sequences.
The output labels were �5, respectively �3, for the alter-
native exon. After training, the exon modules for each
library were separated by transferring the correspond-
ing weights to two separated modules with convolution
layer with ReLU non-linearity followed by a global aver-
age pooling and a fully connected layer. We have used
a global pooling after the convolution layer allowing to
take exons of any length as input. This ended up with
two exon scoring modules, one for alternative 5′ end
(exon 5′ module) and one for alternative 3′ end (exon 3′
module).

Intron module
Intron modules were trained in the same way as the
exon modules (Additional file 1: Figure S2) by using
intronic random sequences from the MPRA experiment
as inputs, except that we used 256 15 × 1 convolu-
tion filters, because intronic splicing regulatory elements
from the donor side and the acceptor side are less sim-
ilar [18]. This ended up with a module to score intron
on the donor side (intron 5′ module) and a module
to score intron on the acceptor side (intron 3′ mod-
ule).

Training procedure for the modules
All neural network models for the six modules were
trained with binary cross-entropy loss (Eq. 1) and Adam

optimizer [52]. We implemented and trained these
models with the deep learning python library Keras
[43]. Bayesian optimization implemented in hyperopt
package [53] was used for hyper-parameter optimization
together with the kopt package (github.com/avsecz/kopt).
Every trial, a different hyper-parameter combination
is proposed by the Bayesian optimizer, with which a
model is trained on the training set, its performance
is monitored by the validation loss. The model
that had the smallest validation loss was selected.

Lossi = −(ψi log ψ̂i + (1 − ψi) log(1 − ψ̂i)) (1)

Variant effect prediction models
Variant processing
Variants are considered to affect the splicing of an exon if
it is exonic or if it is intronic and at a distance less than
La from an acceptor site or less than Ld from a donor site.
The distances La and Ld were set to 100 nt in this study
but can be flexibly set for MMSplice. MMSplice provides
code to generate reference and alternative sequences from
a variant-exon pair by substituting variants into the refer-
ence genome. Variant-exon pairs can be directly provided
to MMSplice. This is the case for the perturbation assay
data Vex-seq, MFASS, and MaPSy. MMSplice can also
generate variant-exon pairs from given VCF files (Fig. 5a).
For insertions, and for deletions that are not overlap-
ping a splice site, the alternative sequence is obtained by
inserting or deleting sequence correspondingly. For dele-
tions overlapping a splice site, the alternative sequence is
obtained by deleting the sequence and the new splice site
is defined as the boundaries of the deletion. In all cases,
the returned alternative sequence always have the same
structure as the reference sequence, with an exon of flexi-
ble length flanked by La and Ld intronic nucleotides. Each
variant is processed independently from the other vari-
ants, i.e., eachmutated sequence contains only one variant
(Fig. 5a). If a variant can affect multiple target (i.e., sites or
exons), the MMSplice models return predictions for every
possible target (Fig. 5a).

Variant effect prediction for�
Strand information of all Vex-seq assayed exons were
first determined by overlapping them with Ensembl
GRCh37 annotation release 75. Reference sequences were
extracted by taking the whole exon and 100 nt flanking
intronic sequence. Variant sequences were retrieved as
described in the “Variant processing” in the “Methods”
section, whereby variant-exon pairs were provided by the
experimental design.
We modeled the differential effect on � in the logistic

scale with the following linear model:

https://github.com/avsecz/kopt
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�logit(�) = logit(�alt) − logit(�ref)

= β0 + β1�S3′ intron
+ β2�Sacceptor + β3�Sexon
+ β4�Sdonor + β5�S5′ intron
+ β61(Exon overlap splice site modules)�Sexon
+ β71(5′ intron overlap donor module)�S5′ intron
+ β81(3′ intron overlap acceptor module)�S3′ intron
+ ε (2)

where

�S = Salt − Sref (3)

for all fivemodules,1(·) is the indicator function, ε is the
error term, the suffix alt denotes the alternate allele, and
the suffix ref denotes the reference allele. This model has
nine parameters: one intercept, one coefficient for each of
the five modules, and interaction terms for regions that
were scored by twomodules (Fig. 1). The latter interaction
terms were useful to not double count the effect of vari-
ants scored by multiple modules. These nine parameters
were the only parameters that were trained from the Vex-
seq data. The parameters of the modules stayed fixed. To
fit this linear model, we used Huber loss [54] instead of
ordinary least squares loss to make the fitting more robust
to outliers.
The model predicts �logit� for the variant. We trans-

form this to �� with a given reference � as follows:

�̂alt = σ(�logit� + logit(�ref))

��̂ = �̂alt − �ref
(4)

where

σ(x) = 1
1 + e−x (5)

logit(x) = log
x

1 − x
(6)

To prevent infinite values in cases �ref = 0 or �ref =
1,�ref values were clipped to the interval [ 10−5, 1−10−5].
HAL model is provided by the authors. A scaling fac-

tor required by HAL was trained on the Vex-seq train-
ing data using code provided by the authors [18]. The
SPANR precomputed scores (which are called SPIDEX),
were obtained from http://www.openbioinformatics.org/
annovar/spidex_download_form.php.

Performance on theMFASS dataset
MMSplice was applied the same way as for Vex-seq,
except that module combining weights were learned from
the Vex-seq training data, with MFASS data kept entirely
unseen. SDVs were classified based on the predicted ��

for a variant. Area under the precision-recall curve (auPR)
were calculated with trapz function from R package
pracma.

Variant effect prediction for�3 and�5

The Genotype-Tissue Expression (GTEx) [37] RNAseq
data (V6) was used to extract variant effect on �3 and �5.
Variants [− 3, + 6] nt around alternative donors of alter-
native 5′ splicing events and variants [− 20,+ 3] nt around
alternative acceptors for alternative 5′ splicing events were
considered. The skin (not sun exposed) samples and the
brain samples with matched whole genome sequence data
available were processed. �5 and �3 were calculated with
MISO [20] for each sample. Altogether, 1057 brain sam-
ples and 211 skin samples could be successfully processed
with MISO. �3 and �5 for homozygous reference variant,
heterozygous variants, and homozygous alternative vari-
ants were calculated by taking the average across samples
with the same genotype, excluding samples from individ-
uals with more than one variants within 300 nt around the
competing splice sites.
We predicted differences in �5 as follows. We consid-

ered only donor sites with two alternative acceptor sites.
We extracted the relevant sequences for the correspond-
ing two alternative exons and apply the model of Eq. (2)
which was fitted on Vex-seq training data. This returned
a �logit(�) for each alternative exon, denoted �S1 and
�S2, from which we calculate the predicted alternative�5
as follows:

�5alt = σ
(
�logit(�5) + logit

(
�5ref

))
(7)

where we model the �logit(�5) considering the influence
of variant on both alternative exon as follows (derivations
provided in supplements):

�logit(�5) = �S1 − �S2 (8)

The above computation applies to individual alleles.
To handle heterozygous variants, we assumed expression
from both alleles are equal. This led to the following
predictions for homozygous and heterozygous variants:

��5homo = �5alt − �5ref
��5hetero = (

�5ref + �5alt
)
/2 − �5ref

(9)

Analagous calculations weremade to predict differences
in �3.
Pre-trained COSSMO model [19] was obtained from

the author website (http://cossmo.genes.toronto.edu/).
The predicted ��5 (or ��3) values of COSSMO were
calculated by taking the difference between the pre-
dicted �5 (or �3) from alternative sequence processed by
MMSplice and reference sequence.

Splicing efficiency dataset (MaPSy data)
The splicing efficiency assay was performed for 5,761 dis-
ease causing exonic nonsynonymous variants both in vivo
in HEK293 cells and in vitro in HeLa-S3 nuclear extract
as previously described [27]. Here, the exons were derived
from human exons and were reduced in size to be shorter

http://www.openbioinformatics.org/annovar/spidex_download_form.php
http://www.openbioinformatics.org/annovar/spidex_download_form.php
http://cossmo.genes.toronto.edu/
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than 100 nt long by small deletions applied to both the
reference and the alternative version of the sequence. This
way, the wild-type and the mutated alleles differed from
each other by a single point mutation and the wild-type
allele differed from a human exon by the small deletions.
The deletions were centered at the midpoint between the
variant and the furthest exon boundary. The sequences
of each substrate are listed in Additional file 2: Table S1
and also described further on the CAGI website (https://
genomeinterpretation.org/content/MaPSy).
Overall, 4964 of the variants were in the training set

and 797 were in the test set. The amount of spliced tran-
scripts and unspliced transcripts for each construct with
reference allele or alternative allele were determined by
RNA-Seq. The effect of mutation on splicing efficiency for
a specific reporter sequence was quantified by the allelic
log-ratio, which is defined as:

log2
(
mo/mi
wo/wi

)
(10)

where mo is the mutant spliced RNA read count, mi is
the mutant input (unspliced) RNA read count, wo is the
wild-type spliced RNA read count, and wi is the wild-type
input RNA read count. Transcripts with exon-skipped or
misspliced are ignored.

Variant effect prediction for splicing efficiency (MaPSy data)
We fitted a model to predict differential splicing efficiency
on the training set with a linear regression with a Huber
loss as defined by Eq. 2, except that the response variable
is the allelic log-ratio (Eq. 10) instead of �logit(�). We
used the exon 5′ module for the splicing efficiency model.
Performance onMaPSy data was reported on the held-out
test set.
SMS scores was applied to wild-type and mutant

sequence by summing up all 7-mer scores as described by
Ke et al. [28]. The predicted allelic log-ratio is the SMS
score difference between mutant and wild-type sequence.

Variant pathogenicity prediction
Processed ClinVar variants (version 20180429 for
GRCh37) around splice sites were obtained from Avsec
et al. [31]. Specifically, single-nucleotide variants [− 40,
10] nt around the splicing acceptor or [− 10, 10] nt
around the splice donor of a protein-coding genes
(Ensembl GRCh37 v75 annotation) were selected. Vari-
ants causing a premature stop codon were discarded.
After the filtering, the 6310 pathogenic variants con-
stituted the positive set and the 4405 benign variants
constituted the negative set. The CADD [35] scores
and the phyloP [55] scores were obtained through VEP
[40]. MMSplice �Score predictions of the five mod-
ules as well as indicator variables of the overlapping
region were assembled with a logistic regression model

to classify pathogenicity. Performance was assessed by
10-fold cross-validation (Additional file 1: Supplementary
Methods).
To compare MMSplice with SPiCE [16], we restricted to

the regions that SPiCE scores, i.e., [− 12, 2] nt around the
acceptor or [− 3, 8] nt around the donor of protein-coding
genes. Variants causing a premature stop codon were dis-
carded. SPiCE was trained to predict the probability of a
variant to affect splicing (manually defined by experimen-
tal observations). To apply it for pathogenicity prediction,
the logistic regression model of SPiCE was refitted with
ClinVar pathogenicity as response variable. MMSplice
model was applied as described above without conserva-
tion features. Models were compared under 10-fold cross-
validation.

Bootstrapping for P value and confidence interval estimation
Significance levels when comparing the performance of
two models were estimated with the basic bootstrap [56].
Denoting t1 the performance metric (Pearson correlation,
auPRC, or auROC) of MMSplice and t2 the performance
metric of a competing model, we considered the differ-
ence d = t1 − t2. We sampled with replacement the test
data B = 999 times and each time i computed the boot-
strapped metric difference d∗

i . The one-sided P value was
approximated as [56].

P = 1 + #{d∗
i ≤ 0; i = 1...B}
B + 1

(11)

We estimated confidence intervals of Pearson correla-
tions and root-mean-square values, using the percentile
bootstrap approach. Specifically, we generated 1000 boot-
strap datasets of the same size by sampling with replace-
ment. Noting the value of either of the statistics of
interest as θ∗, the reported 95% confidence interval is(
θ∗
0.025, θ∗

0.975
)
, where θ∗

0.025 and
(
θ∗
0.975

)
are the 2.5 and the

97.5 percentiles, respectively.

Additional files

Additional file 1: Supplementary methods and figures. (PDF 674 kb)
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