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Abstract

Background: CRISPR-Cas9 genome editing is widely used to study gene function, from basic biology to biomedical
research. Structural rearrangements are a ubiquitous feature of cancer cells and their impact on the functional
consequences of CRISPR-Cas9 gene-editing has not yet been assessed.

Results: Utilizing CRISPR-Cas9 knockout screens for 250 cancer cell lines, we demonstrate that targeting structurally
rearranged regions, in particular tandem or interspersed amplifications, is highly detrimental to cellular fitness in a
gene-independent manner. In contrast, amplifications caused by whole chromosomal duplication have little to no
impact on fitness. This effect is cell line specific and dependent on the ploidy status. We devise a copy-number
ratio metric that substantially improves the detection of gene-independent cell fitness effects in CRISPR-Cas9
screens. Furthermore, we develop a computational tool, called Crispy, to account for these effects on a single

sample basis and provide corrected gene fitness effects.

Conclusion: Our analysis demonstrates the importance of structural rearrangements in mediating the effect of
CRISPR-Cas9-induced DNA damage, with implications for the use of CRISPR-Cas9 gene-editing in cancer cells.
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Background

Genetic loss-of-function screens are used to systematically
identify genes important for cellular fitness and genetic in-
teractions in model organisms [1, 2]. Traditionally, these
have been performed with RNA interference (RNAi) [3—
5], although its application to mammalian cells has been
hampered by incomplete protein depletion and off-target
effects [6, 7]. The advent of CRISPR-Cas technologies
facilitates gene editing of human cells by addressing many
of the limitations of RNAi and increases capacity to iden-
tify genes essential for cellular fitness [8—13]. In cancer
cell lines, CRISPR-Cas9 dropout screens have been inte-
grated with genomic data sets to propose novel thera-
peutic targets [3, 14—16]. Tumor cell genetic instability
can induce synthetic-lethal dependencies on genes that
otherwise have no impact on cellular fitness [17].
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Gene copy-number changes, despite being rare and
often detrimental in normal cells [18], are one of the
most frequent types of genomic alterations in cancers
[19]. They are of particular importance when analyzing
CRISPR-Cas9 experiments because targeting genomic
regions that are copy-number amplified induces DNA
damage responses that lead to cell cycle arrest and cell
death [20, 21]. The effect is gene-independent and
ubiquitous across cancer types. This increases the
false-positive rate of gene loss of fitness (LOF) detection
when interpreting results using CRISPR-Cas9 reagents
targeting amplified regions. We and others have devel-
oped computational methods to account for this system-
atic bias [22, 23]. Some of these approaches are guided
by knowledge of gene copy-number values, which on
average are proportional to the non-specific LOF effect
of CRISPR-Cas9 targeting. Nonetheless, the strength of
this association varies between cell lines and amplicons
with similar copy-number and is completely absent in
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some cases [23]. This indicates that other cellular fea-
tures besides copy-number influence non-specific
CRISPR-Cas9 LOF effects.

Cancer cells undergo extensive genomic alterations
[24-26] and the impact of these on response to
CRISPR-Cas9 targeting is poorly understood. Here, we
combined CRISPR-Cas9 screens with whole-genome se-
quencing (WGS) and DNA SNP6 copy-number arrays to
investigate the impact of structural variation (SV) on
CRISPR-Cas9 response. We find that LOF effects of
CRISPR-Cas9 screens mediated by copy-number amplifi-
cations are associated with structural rearrangements
such as tandem duplications, in stark contrast to ampli-
fications arising from chromosomal duplication. Consid-
ering this, we show that gene copy-number ratios,
normalized by chromosome copy-number, provide more
accurate identification of gene independent LOF effects.
Additionally, we provide a novel computational tool that
takes these effects into consideration on a per sample
basis to provide accurate measurements of CRISPR-Cas9
LOF effects.

Results

Increased cell ploidy buffers non-specific CRISPR-Cas9
LOF effects

We considered publicly available genome-wide CRISPR-
Cas9 knockout screens (BROAD DepMap 18Q3 depma-
p.org/portal/) performed in 36 different tumor types
comprising 250 cancer cell lines [22, 27], which have been
previously genomically characterized for copy-number and
gene expression [28, 29] (Additional file 1: Figure Sla,
Additional file 2: Table S1). Gene-essentiality fold-change
profiles were estimated for a total of 17,328 genes, each tar-
geted on average by 3.8 single-guide RNAs (sgRNAs). For
the majority of the cell lines, two technical replicates were
performed and gene averaged log-fold change values had a
mean Pearson correlation (R) of 0.79. Genes previously
defined as essential for cellular viability [15] were robustly
recapitulated in all samples (mean area under recall curve
(AURC) = 0.86), and as previously described [21], non-
detrimental genes displayed a small enrichment for positive
fold changes (mean AURC =0.42) (Additional file 1: Figure
S1b and Slc).

Consistent with previous findings [10, 20, 21], sgRNAs
targeting copy-number amplified genes were among
those with the strongest LOF effects in the screen, even
when only considering genes which are not expressed
(Fig. 1a). Importantly, the enrichments for LOF for each
of the different copy-number levels varied considerably
across cell lines, as can be attested by the large inter-
quartile ranges of the distributions (Fig. 1b). This sug-
gests that other factors, besides copy-number, contribute
to non-specific LOF effects found in CRISPR-Cas9 data.
Chromosomal aneuploidy is common in cancer, thus we
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investigated if cell ploidy across the heterogeneous panel
of cell lines differentiates responses to CRISPR-Cas9. We
observed that cells with higher ploidy display lower fitness
reduction for sgRNAs targeting copy-number amplified
regions (Fig. 1c). Diploid cells had significantly stronger
LOF enrichments compared to tetraploid cells for all
copy-number groups (Welch’s ¢ test; p value < 0.05). Thus,
the variation observed in each copy-number group de-
fined in Fig. 1c can be in part accounted for by consider-
ing cell ploidy. Within the same cell line, different
chromosomes can have different number of copies, thus
we estimated the number of copies of each chromosome
in each cell line and assessed if this was also related with
non-specific CRISPR-Cas9 LOF effects. Consistent with
the ploidy status, chromosomes with more copies dis-
play remarkably weaker gene-independent LOF effects
(Fig. 1d). Overall, these results show that absolute
copy-number profiles need to be analyzed together with
cell ploidy, or chromosome copies, to model accurately
the non-specific fitness reduction in CRISPR-Cas9 gene
knockout experiments.

Structural rearrangements are determinants of CRISPR-
Cas9 LOF

Considering that SV is a common feature of cancer cells
which can lead to copy-number change, we set to
analyze their effect in CRISPR-Cas9 screens. WGS data
from 4 breast cancer cell lines with matched normal
were used to call somatic SVs, such as tandem duplica-
tions, translocations, deletions and inversions, using
BRASS (BReakpoint AnalySiS) [26, 30]. Tandem duplica-
tions were the most frequent type of rearrangements
across the 4 cell lines (Additional file 1: Figure S2a), re-
capitulating previous observations that this is a frequent
event in breast cancers [26, 31]. We then examined a pos-
sible link between SV and CRISPR-Cas9 LOF effects. SVs
were most informative of CRISPR-Cas9 response when ac-
companied by copy-number alterations, with LOF effects
frequently falling within tandem duplications (Fig. 2a, b).
Interestingly, complex patterns of SVs involving chromo-
somal translocations (Fig. 2c, Additional file 1: Figure S2b)
were also visible and these overlapped with some of the
strongest LOF responses observed. Not all copy-
number amplifications, however, were associated with
an increase in LOF (Additional file 1: Figure S2c),
reflecting that different copy-number amplification
mechanisms occur in cancer cells and these can lead to
distinct CRISPR-Cas9 LOF effects. To disentangle some
of the intrinsic SV complexity (e.g., nested rearrange-
ments), we focused on tandem duplications and dele-
tions that were supported by evidence of copy-number
variation, specifically we searched for copy-number seg-
ments with start and end sites in close genomic prox-
imity to the structural rearrangements. The number of
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Fig. 1 CRISPR-Cas9 screens and cell ploidy effect. a Enrichment of non-specific CRISPR-Cas9 LOF effects in non-expressed genes (RNA-seq RPKM
< 1) grouped by their copy-number profile, performed across 250 cell lines. For each copy-number group, the recall curve is drawn and the area
under the recall curve (AURQC) is reported. X-axis shows the ranked gene level CRISPR-Cas9 fold changes, from negative to positive. b Boxplots of
AURGCs as in a but performed in each cell line independently. Each dot represents the AURC of the given gene copy-number in a specific cell
line. ¢ Similar to b but cell lines are grouped according to their ploidy status. d AURC of non-expressed genes estimated per chromosome in
each cell line independently. Chromosomes were grouped according to their estimated number of copies. Boxplots represent 1.5 of the
interquartile range
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Fig. 2 Structural variation impacts CRISPR-Cas9 response. a-c Representative examples of the strongest associations between SVs and CRISPR-
Cas9 LOF. Structural rearrangements are mapped in the upper panel, in the middle panel copy-number levels are represented, and in the lower
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events identified was low (N=41 across all 4 cell
lines, with a matching tolerance range of 10 Kb), and
we found that tandem duplications have stronger, but
not significant, LOF effects than deletions (Welch’s ¢
test p value =5.9e-2; Additional file 1: Figure S2d).
Overall, these examples illustrate that SVs can deter-
mine gene-independent LOF effects in CRISPR-Cas9
experiments.

Copy-number ratio improves the identification of CRISPR-
Cas9 LOF effects

Next, we set to comprehensively investigate the impact
of structural rearrangements and ploidy in CRISPR-Cas9
experiments across different cancer types. To that end,
we propose to normalize gene copy number by the num-
ber of chromosome copies, termed hereafter as gene
copy-number ratio, on an individual cell line basis
(Fig. 3a). Because WGS data to identify SVs were un-
available for most cell lines, this was performed across
all 250 cell lines using copy-number profiles estimated
with SNP6 arrays. The ratio encompasses three scenar-
ios: a value (i) less than 1 represents a gene deletion, (ii)
equal to 1 represents either a normal diploid chromo-
some with 2 copies of the gene or deletions/amplifica-
tions that are consistent between the gene and the
chromosome, and (iii) greater than 1 represents genes
that have been amplified more than the chromosome to
which they map, likely representing tandem or inter-
spersed duplications.

Consistent with our hypothesis, we confirmed that the
stringent set of tandem duplications and deletions iden-
tified previously showed significantly higher copy-num-
ber ratios (median=1.24) compared to deletions
(median = 0.74) (Welch’s ¢ test p value=1.8e-3)
(Additional file 1: Figure S2e). Higher copy-number
ratios were significantly enriched for genes commonly
amplified in tumors such as oncogenes, e.g, CCND1 and
EGEFR, conversely copy-number ratios smaller than one
were enriched, but not significantly, for known tumor
suppressors, e.g, CDKN2A and TP53 (Additional file 1:
Figure S3a, Additional file 3: Table S2). We confirmed that
high copy-number ratios represent strong focal tandem
amplifications by performing fluorescence in situ
hybridization (FISH) in two MYC amplified cell lines with
distinct copy-number ratios (Fig. 3b, c). Moreover,
chromosome copy-number estimations from SNP arrays
were consistent with FISH karyotypes for the cell lines
tested (Additional file 1: Figure S4a and S4b). Thus, gene
copy-number ratio allows us to differentiate gene duplica-
tions that originate from whole chromosome/genome
duplication from those arising from defined amplification
events, such as tandem amplifications, which we
hypothesize induces stronger CRISPR-Cas9 LOF effects.
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Utilizing the copy-number ratio, we observed that
non-expressed genes with copy-number ratios greater
than 1 showed strikingly higher LOF effects (Fig. 3d).
Ratios greater than or equal to 4 displayed among the
strongest LOF effects captured in the screen, with
non-expressed genes showing mean effects of 73.3% of
those of known essential genes (Additional file 1: Figure
S3b). The distribution of the copy-number ratios across
all 250 cell lines was centered around 1, confirming that
the vast majority of copy-number alterations originate
from whole chromosome duplications (Additional file 1:
Figure S3c). Notably, we observed thousands of occur-
rences of copy-number amplified genes with a copy-num-
ber ratio close to 1 which displayed no CRISPR-Cas9 LOF
effects (Fig. 3e, Additional file 1: Figure S3c). As an
example, among the frequently amplified and not
expressed genes, neuronal differentiation 2 (NEU-
ROD2) gene copy-number ratio recapitulated more
clearly the LOF response than absolute copy number
(Fig. 3f). Cell lines from multiple tumor types with 3,
4, 5 and 6 copies of NEUROD2 have very limited
LOF effects, which could lead to incorrect correction
of LOF effects in these cell lines if using approaches
based on absolute copy number [22].

Taken together, our results indicate that non-specific
LOF effects induced by targeting of copy-number amp-
lified regions are enriched for tandem or interspersed
duplicated regions, while copy-number amplifications
originating from chromosome duplication have little to
no effect. We cannot exclude that other complex struc-
tural rearrangements might also be captured by the
gene copy-number ratio metric. Nonetheless, these ob-
servations have important implications for the analysis
of CRISPR-Cas9 datasets, suggesting that correcting
gene-independent LOF effects based on absolute copy
number could, in many instances, lead to incorrect
estimates.

Crispy is a single sample copy-number correction tool for
CRISPR-Cas9 screens

To robustly account and correct for gene-independent
copy-number LOF effects in CRISPR-Cas9 screens, we
developed a Python module named Crispy (Fig. 4a).
Crispy requires as input sgRNA CRISPR-Cas9 fold
changes together with segment level copy-number mea-
surements acquired, for example, from arrays (e.g.,
SNP6) or sequencing approaches (e.g., WGS). Gaussian
Process regressions are used to model the non-linear
associations between the copy-number ratio and the im-
pact on CRISPR-Cas9 fold changes. Fitting is performed
at the segment level, whereby segments identified by
copy-number segmentation algorithms are overlapped
with CRISPR-Cas9 sgRNAs, and averaged fold changes
for the segments are calculated. Segment copy-number
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ratios, estimated similarly to gene copy-number ratios,
are then used to model the segment mean fold changes
(Fig. 4b). Segments containing less than 10 sgRNAs are
not considered for the fitting to limit the impact of po-
tential outliers arising from a low number of measure-
ments. Contrary to methods that need to be trained
across panels of different cell lines, Crispy is trained on

a per sample basis to consider cell-specific effects such
as ploidy. Of note, Crispy takes into consideration that
high copy-number amplifications might have no impact if
arising from whole chromosome amplifications, avoiding
potential miscorrection of CRISPR-Cas9 fold changes. We
generated Crispy corrected fold changes across the 250
cell lines, these showed strong attenuation of the
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copy-number ratio bias compared to the original fold In summary, Crispy is an open-source Python tool that
changes (Fig. 4c), while preserving the recall capacity of can be used to correct in a supervised way CRISPR-Cas9
known essential genes (Fig. 4d). gene independent copy-number LOF effects on per sam-

Next, we benchmarked our approach against another  ple basis using segment level copy-number ratios.

copy-number correction tool, CERES [22], which con-

trary to Crispy performs a sgRNA level correction Discussion

across multiple samples. We observed that Crispy pro- In this study, we demonstrate that copy-number amplifi-
vides a small but consistent improvement, reducing the cations lead to non-specific CRISPR-Cas9 LOF effects if
median AURCs across the different copy-number ratios  originating from structural rearrangements, in particular
(Fig. 4e, Additional file 1: Figure S5a and S5b). Unlike  tandem or interspersed duplications. In contrast, little or
CERES, Crispy does not boost the recall of known es- no impact is observed from gene amplifications associ-
sential genes compared to the original fold changes ated with increased cell ploidy. Therefore, gene inde-
(Additional file 1: Figure S5c). These improvements are  pendent LOF effects seem to be cell line specific. We
more prevalent in cell lines that display weaker correl-  devised a gene copy-number ratio metric, normalized by
ation between replicates (Additional file 1: Figure S5d), = chromosome copy-number, that improves the ability to
likely due to CERES modeling sgRNAs LOF as a shared  classify which copy-number amplifications will result in
effect across multiple cell lines, and therefore borrow- a LOF bias in CRISPR-Cas9 experiments. Notably, our
ing information from other samples. Consistent with findings were recapitulated when considering only
this, Crispy corrected fold changes were more similar  non-expressed genes, emphasizing that the LOF bias is
to the original fold changes (Fig. 4f), indicating that it not due to a potential biological function of the genes.
effectively preserves the underlying LOF effect while Combining the copy-number ratios, WGS, and FISH
correcting for bias due to unbalanced structural experiments, we found that tandem duplications are
alterations. amongst the most frequent SVs associated with
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CRISPR-Cas9 non-specific deleterious effects. Based on
these observations, we developed a computational
method, Crispy, to perform on a single sample basis the
correction of CRISPR-Cas9 LOF effects due to targeting
copy-number amplified regions. Crispy corrected fold
changes retained high correlation with the original fold
changes, preserved the ability to recall known essential
genes, and improved on methods designed to correct
these effects across different samples.

While this work furthers our understanding of the
implication of SV in interpreting CRISPR-Cas9 screens
several limitations remain. Due to the complexity of
structural rearrangements we cannot exclude that other
events might also play a role. For example, extrachromo-
somal DNAs (ecDNA) have been found to be wide-
spread in cancer [32, 33] and are tandem duplicated rich
DNA sequences, although we have no evidence of
ecDNAs in the cell lines analyzed with FISH. Further-
more, we also observed that complex structural rear-
rangements involving multiple unbalanced chromosomal
translocations overlap with some of the strongest LOF
effects in the screens. This illustrates the complexity and
the limitations of interpreting accurately the efficacy of
CRISPR-Cas9 reagents that target a locus that is struc-
turally rearranged.

Structural rearrangements are amongst the most com-
mon alterations in cancer [25] indicating that our find-
ings are of general importance when designing and
interpreting CRISPR-Cas9 experiments in cancer cells.
Specifically, targeting genes that reside within tandem
duplicated or highly rearranged and unbalanced regions,
whether knocking out individual genes, performing gen-
etic screens using a library of sgRNAs, or performing
specific gene edits, will lead to strong non-specific LOF
effects. While Crispy can correct for this effect in
CRISPR-Cas9 sgRNA library screens, for many studies
sufficient data to robustly train models to correct these
effects is unlikely to be available, for example the com-
mon scenario of a single gene knockout in an individual
cell line. In these instances, information about gene
copy-number, cell line ploidy and ideally SV information
should be incorporated to guide interpretation of LOF
effects. Furthermore, the use of an orthogonal technol-
ogy such as RNAi or CRISPR interference to corroborate
results is advisable. For CRISPR-Cas9 sgRNA library
screens where reliable copy number data are unavailable,
an unsupervised LOF correction method such as
CRISPRcleanR [23] can be used. We expect that the bias
in CRISPR-Cas9 data described here is a general
phenomenon and consequently will be observed in other
cancer cell models such as patient-derived xenografts
and organoids, and are potentially also present in other
types of CRISPR-Cas-based systems that introduce DNA
double-strand breaks [34, 35].
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Conclusions

CRISPR-Cas9 targeting of structurally rearranged regions,
in particular tandem or interspersed amplifications, is det-
rimental to cellular fitness in a gene independent manner.
Targeting amplifications caused by whole chromosomal
duplications has little to no impact on fitness. Crispy is a
computational tool that accounts for this effect in
screening data by correcting copy-number bias on a per
sample basis. Our findings have implications for the de-
sign, analysis, and interpretation of CRISPR-Cas9-based
methods for commonly used approaches such as gene
knockouts, sgRNA library screens and targeted
gene-editing.

Materials and methods

Processing of CRISPR-Cas9, SNP6, and RNA-seq samples
Publicly available CRISPR-Cas9, BROAD DepMap 18Q3,
drop-out screens across 250 cell lines was utilized to as-
sess the loss of fitness (LOF) impact of knocking-out
17,328 genes [22, 27]. Raw sequence counts of each
sgRNA were downloaded and corrected by library size in
each sample. Non-targeting plasmid control sample was
used and sgRNAs with lower than 30 counts were dis-
carded. Log2 sgRNA fold changes were estimated
between samples and the plasmid control. Gene level
estimates of the fold changes were calculated by aver-
aging all mapping sgRNA fold changes. Single nucleotide
polymorphism (SNP) array hybridization using the
Affymetrix SNP6.0 platform was performed according to
Affymetrix protocols. Segment copy-number variants
were obtained using PICNIC [36] as previously de-
scribed [29]. RNA-seq experiments for CRISPR-Cas9
profiled cell lines were assembled from multiple
data-sets [37]. To minimize technical bias, all samples
were processed with the same pipeline, iRAP [38], to
obtain raw counts. Genes with Reads Per Kilobase per
Million (RPKM) with zero counts were termed as
non-expressed in the particular sample. Non-expressed
genes were defined as those with a RPKM lower than 1.

Chromosome harvest and fluorescence in situ
hybridization (FISH)

Metaphase chromosomes were harvested from the cancer
cell lines after incubation with 0.05g/ml of colcemide
(Thermo-Fisher) for 2-3h. Subsequently, cells were
treated with a buffered hypotonic solution (0.4% KCI in
10 mM HEPES, pH7.4) for 8-12 min at 37 °C and fixed
with 4:1(v/v) methanol: glacial fixative. The human fosmid
clone WI2-1694H13 was labeled with green-dUTP as
described in [32]. Human 24 color FISH (M-FISH) probe
preparation and slides treatments followed [39] with slight
modifications. Freshly-prepared metaphase slides were
immersed in acetone for 10 min and then baked at 62 C
for 1 h. Slides were denatured in an alkaline denaturation
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solution (0.5M NaOH, 1.5M NaCl, Sigma-Aldrich) for
9-10min. Metaphases were examined with a Zeiss
Axiolamger D1 fluorescence microscope. FISH images
were captured using the SmartCapture software (Digital
Scientific UK) and karyotyped using the SmartType
Karyotyper software (Digital Scientific UK). Ten meta-
phases for each sample were analyzed by M-FISH.

Whole-genome sequencing
DNA of 4 cancer cell lines and 4 EBV derived matched
normal cell lines were obtained and sequenced with
massively parallel Illumina sequencing technology
(EGAD00001004124) and aligned to the human reference
genome GRCh37 using Burrows-Wheeler Aligner (v0.5.9)
[40]. Average sequence coverage was 43-fold for cancer
cell lines and 42-fold for matched normal. Somatic struc-
tural rearrangements were identified by providing aligned
bam files to BRASS (BReakpoint AnalySiS) (https://
github.com/cancerit/BRASS/). BRASS calls structural var-
iations via assembly of discordant paired-end reads.
Identification of structural rearrangements overlapping
with copy-number segments was limited to tandem
duplications and deletions identified with BRASS. To
increase confidence in the SVs found, a BRASS assembly
score was required for the tandem duplication or dele-
tion to be considered. Then for each cell line, the tan-
dem duplications and deletions were searched against all
copy-number segments (identified with PICNIC) to find
those SVs and segments for which start and end sites
overlapped. A mismatch tolerance range of 10 Kbp was
used for both start and end sites.

Crispy, single sample method to correct copy-number
gene-independent effects in CRISPR-Cas9 screens

Crispy is a Python tool to model the copy-number impact
on LOF effects in CRISPR-Cas9 on a per sample basis. For
each sample the required inputs are (i) the sgRNA
raw-counts together with their targeting genomic informa-
tion and (i) the copy-number segmentation output,
typically a BED file containing the segment mapping
chromosome, start and end genomic positions and absolute
copy-number. Segments and sgRNAs are intersected using
BEDtools (v2.27.1) [41] and pybedtools (v0.7.10) [42]. For
each segment defined by the copy-number segmentation
algorithm two metrics are computed: (i) a copy-number
ratio, i.e, segment copy-number divided by the estimated
chromosome copy-number; and (ii) a mean CRISPR-Cas9
fold change of all the sgRNAs that overlap with the
segment. Gaussian Processes regression implemented on
scikit-learn Python module (v0.19.1) [43] is used to model
the non-linear effects between the segment copy-number
ratio and the CRISPR-Cas9 fold changes. Specifically, a
squared-exponential kernel (RBF) with a length scale (o)
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hyperparameter varying between le-5 and 10 is used. A
constant (o) and noise () kernels are also added:

K(x,x') =0 exp(— (x—x')z/(262)> +y (1)

where 6 determines the length of the waves and o de-
fines the average distance from the mean. Default con-
figurations of scikit-learn Gaussian regression are used
except n_restarts_optimizer that is set to 3, to initialize
the optimization procedure multiple times. The kernel
defined in [1] is fitted independently for each sample.
This guarantees that CRISPR-Cas9 global effects that are
sample specific are captured automatically by the de-
fined kernel. After training, the CRISPR-Cas9 corrected
fold changes are obtained by subtracting from the ori-
ginal fold changes the predicted bias from the inputted
segment copy-number ratios.

Gene copy-number ratios

Gene copy-number ratios, ie., number of absolute gene
copies divided by the number of copies of the respective
chromosome, are calculated for all genes covered by the
CRISPR screens and SNP6 arrays. Gene and chromosome
absolute copy-number values are estimated by taking the
copy-number weighted mean of all the mapping segments
weighted by their size.

To verify that high copy-number ratios represent focal
chromosome amplifications, we applied FISH and probed
the location of the frequently and highly amplified onco-
gene MYC. We chose 2 cell lines (HCC1954 and
NCI-H2087) with high MYC absolute copy-number
(9 and 7, respectively) but discordant copy-number ratios
(1.58 and 4.05, respectively) due to different ploidy. A con-
trol triploid cell line (LS1034) with diploid MYC and
copy-number ratio of 1 was analyzed and corroborated
our prediction that chromosome 8 is mostly diploid and
contains 2 copies of MYC (Additional file 1: Figure S4a).

Code availability

Crispy is a Python module (https://github.com/Emanuel-
Goncalves/crispy), and its code and the source code for
the analysis in this manuscript are distributed under the
open-source 3-Clause BSD License. To facilitate usability
and adaptation, Crispy can be easily installed through
the commonly used PyPI repository (https://pypi.org/
project/cy/) and instructions are provided.

Additional files

Additional file 1: Figure S1. CRISPR data overview and quality assessment.
Figure S2. Structural rearrangements association with CRISPR-Cas9 response.
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Figure S3. Gene copy-number ratios. Figure S4. FISH and M-FISH
experiments. Figure S5. Crispy benchmark against CERES. (PDF 909 kb)

Additional file 2: Table S1. List of cancer cell lines included in the
study. (XLSX 30 kb)

Additional file 3: Table S2. Mean gene copy-number ratios of cancer
associated genes across the cancer cell line panel. (XLSX 14 kb)
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