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Abstract

Background: Maintenance of physiological circadian rhythm plays a crucial role in human health. Numerous studies
have shown that disruption of circadian rhythm may increase risk for malignant, psychiatric, metabolic, and other
diseases.

Results: Extending our recent findings of oscillating cytosine modifications (osc-modCs) in mice, in this study, we show
that osc-modCs are also prevalent in human neutrophils. Osc-modCs may play a role in gene regulation, can
explain parts of intra- and inter-individual epigenetic variation, and are signatures of aging. Finally, we show
that osc-modCs are linked to three complex diseases and provide a new interpretation of cross-sectional
epigenome-wide association studies.

Conclusions: Our findings suggest that loss of balance between cytosine methylation and demethylation during the
circadian cycle can be a potential mechanism for complex disease. Additional experiments, however, are required to
investigate the possible involvement of confounding effects, such as hidden cellular heterogeneity. Circadian
rhythmicity, one of the key adaptations of life forms on Earth, may contribute to frailty later in life.

Keywords: Epigenetics, DNA modification, Methylation, Circadian, Differentiation, Aging, Disease,
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Background
Circadian rhythmicity, an evolutionary adaptation to day
and night cycles, influences a wide range of biological
phenomena in virtually all life forms on Earth [1]. The
circadian machinery helps organisms to coordinate
metabolic and physiological processes, as well as adapt
their behavioral activities, to the cyclically changing en-
vironment [2]. For mammals, environmental cues, like

light and food, act as primary Zeitgebers (“time givers”)
and play a key role in the synchronization of the organ-
ism’s internal biological rhythm with the day-night cycle
[1]. The suprachiasmatic nucleus in the brain is the cen-
tral pacemaker, but cell-autonomous circadian clocks in
peripheral tissues can be maintained independently [3].
On a cellular level, the circadian molecular machinery is
driven by a delayed negative feedback loop; the Clock
and Arntl heterodimer complex activates genes encoding
Per and Cry, which in turn suppress the heterodimer
complex [4].
There is increasing evidence that circadian rhythm dis-

turbances have adverse health effects. Impairment of os-
cillation mechanisms and sleeping patterns has been
linked to various human morbidities, including cancer,
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psychiatric, and metabolic diseases [5]. For instance, circa-
dian genes and their dysregulation were shown to be in-
volved in tumors [6, 7]. Disturbed sleep and circadian
dysregulation are an integral part of most mental disorders
and may even play an etiological role [8]. Genome-wide
association studies have also identified core circadian path-
ways as genetic risk factors in type II diabetes [9, 10]. Con-
sistently with human findings, knocking out circadian
genes in rodents resulted in a range of metabolic aberra-
tions [11–13]. Despite clinical, epidemiological, and some
molecular evidence that circadian dysfunction is related to
complex diseases, the molecular mechanisms of these as-
sociations remain poorly understood.
Our group recently discovered evidence of circadian

cytosine modification in mice [14]. We found that oscil-
lating modified cytosines (osc-modCs) are prevalent in
the mouse genome. Oscillating cytosines also exhibited
age-dependent modification changes, and their oscilla-
tion amplitudes strongly correlated with the magnitude
of the aging effect. In this study, we investigated
osc-modCs in purified neutrophils collected from a
healthy subject using the Illumina Infinium Human-
Methylation450K BeadChip (Fig. 1). Unlike group-based
circadian samples in animals, a single individual circa-
dian dataset is not confounded by differences in external
environment or DNA sequence variation, making it an
ideal dataset to explore the effects of circadian rhythmi-
city on the epigenome. We show that osc-modCs can
explain a part of both intra- and inter-individual epigen-
etic variation. Osc-modCs are overrepresented in the
distal gene regulatory regions and are associated with
epigenetic aging. Most importantly, osc-modCs are
overrepresented in epigenome-wide association study
(EWAS) hits for several complex diseases, suggesting the

presence of a ubiquitous set of epigenetic disease risk
factors that require extensive further investigation.

Results
Circadian oscillations of white blood cell fractions can
simulate epigenetic oscillations
Blood samples (i.e., white blood cells (WBC)) are com-
monly used in molecular studies of human subjects due
to their ease of access and relatively non-invasive collec-
tion procedure. Blood-based epigenomic analyses, how-
ever, can be confounded by WBC count differences
across individuals and may generate false epigenetic ef-
fects [15]. Previous studies have shown that WBC
counts oscillate in a circadian manner and the compos-
ition of cell types can change within an individual
throughout the day [16]. We investigated WBC fractions
collected every 3 h for at least 48 h from four male sub-
jects and found that the total WBC count, as well as the
number of different cell types in WBC, do indeed oscil-
late in a circadian manner (Fig. 2a; Additional file 1).
Moreover, while absolute cell counts of neutrophils and
lymphocytes oscillated in phase with the total blood
count (Fig. 2a), their relative proportions were not uni-
form. For instance, lymphocytes were relatively enriched
at around circadian time (CT) 6, while neutrophils
were enriched at CT18 (Fig. 2b). This shows that fail-
ure to account for circadian cell count effects may
simulate false epigenomic oscillations. Computational
approaches [17] can be used to account for changes
in cellular proportions but osc-modCs that correlate
with cell counts may also be eliminated and result in
a false negative outcome.
In order to avoid these confounders, we performed

a circadian epigenomic analysis on a pure population

Fig. 1 Experimental workflow summary. Cell count measurements were taken from four individuals across 48 h. Oscillating cytosines were identified
in human neutrophil samples collected from a healthy male interrogated on the Infinium HumanMethylation450K BeadChip (Illumina). We utilized
publicly available datasets to uncover the circadian effects in cytosine modification differences between white blood cell fractions [21], epigenetic
variation and aging [31, 32], and disease-specific cytosine modification changes [32, 34–37]. Age-modC, age-correlated cytosine modifications;
osc-modC, oscillating modified cytosines; WBC, white blood cells
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of WBC. For our experiment, we opted to investigate
neutrophils, which are the largest WBC fraction and
exhibit substantial cytosine modification variability in
the general population [18]. Some degree of neutro-
phil heterogeneity may exist [19], but it is currently
unknown if the epigenomes of neutrophil subtypes
differ significantly. Given that neutrophil subtypes
have not been clearly defined, we used bulk neutro-
phils for our experiment.

Mapping of modified cytosines reveals circadian patterns
in human neutrophils
Blood samples were collected every 3 h over a 72-h
period from a healthy 52-year-old male, who did not use
any sleep-inducing medication, nor reported insomnia,
hypersomnia, or other sleep disorders. We used mag-
netic bead-based antibody selection for separation of
neutrophils and reached 98–99.5% (mean ± SD = 99.0 ±
0.56%) purity based on Houseman’s algorithm estimates

b

a

Fig. 2 Circadian oscillations of absolute and relative cell counts in human white blood cell types. a, b Dynamics of a absolute count
of four WBC types, and b proportion of each cell type relative to the total WBC count in four male subjects. Values are mean-
centered by cell type, and solid line type indicates oscillation significance (p < 0.05). For each of the four subjects, data points with
the same time of day were averaged. The lines represent harmonic regression fits, and whiskers represent the 95% confidence
intervals of the between-subject mean. Data points are shifted slightly along the x-axis from their integer values to avoid whisker
collisions. CT, circadian time
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of cell composition [17]. Cytosine modification profiles
were interrogated using the Illumina HumanMethyla-
tion450 BeadChip. To reduce batch effects, every DNA
sample was interrogated in technical duplicates. We se-
lected cytosines whose biological modification signal sig-
nificantly exceeded technical noise, which we refer to as
epigenetically variable cytosines (EVCs; Additional file 2;
see the “Methods” section for more detail).
Out of 485,512 interrogated cytosines, 466 (0.1%) were

identified as EVCs after correction for multiple testing
(false discovery rate (FDR) q < 0.05). A significant 24-h os-
cillation pattern (p < 0.05), estimated using the cosinor
model [20], was detected in 73.18% of the FDR-significant
EVCs (p = 8 × 10−4 after 10,000 permutations) (Fig. 3a).
We found no evidence for the presence of other oscilla-
tion periods (Fig. 3b), suggesting that the 24-h period os-
cillations represent a predominant source of cytosine
modification dynamics in neutrophils.
In order to capture more osc-modCs across the genome,

we relaxed the EVC filtering threshold to nominal signifi-
cance (ANOVA p < 0.05), which increased the subset to
38,410 (7.91%) cytosines. For every EVC, oscillation pa-
rameters, such as amplitude, acrophase (time of the oscil-
lation peak), and mesor (rhythm adjusted mean), were
estimated using a cosinor model [20] with a fixed 24-h
period. We found that 8.55% of the EVCs (3238 of 38,410;
permutation p = 0.045) showed significant oscillation
(Fig. 3c, d), with a mean amplitude of 1.72% (range 0.09–
8.32%). The majority of osc-modCs had acrophases be-
tween CT4 and CT6, with a smaller cluster positioned be-
tween CT15 and CT18 (Fig. 3e). These findings are in line
with the results of our mouse study where oscillation
acrophases had a bimodal distribution, roughly 12 h apart
[14]. The bimodality of acrophases in both mouse and hu-
man tissues indicates that, at any given time, circadian
modification effects are bi-directional; that is, some cyto-
sines become methylated, while others are demethylated.
Light (CT8–20) and dark (CT20–8) hour acrophases

also showed bimodality of the average modification
density. Osc-modCs peaking during dark hours predom-
inantly had low levels of modification (average mesor
20.3% [19.1–21.6%]), while osc-modCs with light acro-
phases were more heavily modified (average mesor
53.3% [50.9–55.7%]) (Fig. 3f ). Similar to the mouse find-
ings [14], the two patterns of human cell oscillations
demonstrated cyclical divergence and convergence of
cytosine modification densities, which we dubbed as epi-
genetic “apogee” (i.e., distance between the two sinus-
oidal curves reached their maximum) and “perigee” (i.e.,
distance between the two sinusoidal curves reached their
minimum).
We examined cytosine modification densities of seven

WBC types (myeloid lineage: neutrophil, monocytes, eo-
sinophils; lymphoid lineage: B cells, NK cells, CD4+ T

cells, and CD8+ T cells) from a public dataset composed
of 6 unrelated blood donors [21]. Although all WBC
types had similar overall cytosine modification profiles
(Fig. 4a), at the counterpart positions to neutrophil
osc-modCs, lymphoid cells had vastly higher modifica-
tion densities compared to myeloid cells (Fig. 4b).
Pairwise comparisons of the WBC types showed that dif-
ferentially modified positions were associated with neu-
trophil osc-modC sites (Fig. 4c). Although the strongest
overlaps were detected within myeloid lineage cells, neu-
trophil osc-modCs also overlapped with loci that were
differentially modified within lymphoid lineage cells
(e.g., B cells vs. CD4+ T cells). Assuming that our obser-
vations are not driven by an unknown neutrophil sub-
type heterogeneity, this finding suggests that osc-modCs
may not be limited to neutrophils and that epigenomic
oscillations may be involved in blood cell differentiation.

Osc-modCs contribute to both intra- and inter-individual
epigenetic variation
This neutrophil dataset from a single individual is not
confounded by the effects of external environment and
DNA variation, which allowed us to explore the contri-
bution of osc-modCs to intra-individual epigenetic vari-
ability. As expected in the presence of true oscillations,
we found that the proportion of intra-individual variance
explained by osc-modCs increased with more stringent
EVC selection threshold (Additional file 3). For instance,
at ANOVA p < 0.05, 8.5% of EVCs were identified as
osc-modCs and explained 8.5% of the variance (cosinor
p = 3.1 × 10−3) reflected in the third principal component
(PC). At FDR q < 0.05, however, 73.2% of the EVCs were
found to be osc-modCs and explained 53.1% of the vari-
ance (cosinor p = 9.4 × 10−4) in the first PC. Tradition-
ally, in the absence of a time dimension, EVCs would
have been deemed stochastic. However, our data shows
that the most dynamic parts of the epigenome over the
duration of a day, within an individual, can be substan-
tially attributed to osc-modCs.
Next, we examined the distribution of osc-modCs

across various genomic elements and made three obser-
vations. First, sequences surrounding osc-modCs were
enriched for canonical (CANNTG) and non-canonical
(CANNNTG) E-box response element motifs (e value
= 1.0 × 10−23–6.7 × 10−60) (Additional files 4 and 5),
which play a key role in the regulation of circadian
transcripts [22, 23]. We also identified enrichment of
transcription factor motifs related to cellular differenti-
ation and development (e.g., forkhead box (FOX),
Fos-related, Jun-related, and Krüppel-related factors)
[24–26], as well as immunity (e.g., interferon-regulatory
factors) [27]. Secondly, oscillating cytosines were highly
overrepresented in neutrophil-specific enhancer regions
[28] (OR = 11.7 [8.0–16.5]; p = 9.80 × 10−25) (Fig. 5a).
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Fig. 3 Oscillation profiles within epigenetically variable cytosines. a Heatmap of all FDR-significant EVCs with rows representing independent
cytosines and columns representing samples ordered by CT. Missing CTs (CT31 and CT52) were replaced with the mean values of their two
nearest neighbors. All cytosines were standardized using a z-score transformation. Hierarchical clustering with correlation distance grouped the
cytosines into three clusters. Cosinor model fit on the averaged sample values is depicted below each cluster along with the cosinor p value.
b Periodogram showing percentages of oscillating FDR EVCs using various oscillation periods. c Histogram of oscillation p values of nominally
significant EVCs. d Percentage of oscillating nominally significant EVCs in 10,000 permutations of CT labels. The red line shows the observed
percentage of oscillating cytosines in the unshuffled data. e Distribution of acrophases across significantly oscillating nominally significant EVCs.
The gray shaded area indicates dark hours. f Average mesor values for osc-modCs peaking during light hours (red) and dark hours (blue). Shaded
areas depict the 95% confidence interval for the mesor means. For illustration purposes, the mesor values were depicted using the average
oscillation pattern within each group. CT, circadian time; modCs, modified cytosines; EVCs, epigenetically variable cytosines
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Lastly, osc-modCs were underrepresented at CpG islands
and shores (0–2-kb region outside CpG island) but over-
represented in the shelves (2–4-kb region outside CpG is-
land) and seas (regions farther than 4 kb from CpG island)
(Fig. 5a). Contribution of osc-modCs to epigenetic vari-
ance was different across these regions. For instance, the
average amplitude of oscillations was lower in CpG islands
compared to the seas (average amplitude difference =
0.7%, t test p = 1.19 × 10−44) (Fig. 5b). Relatedly, oscillating

cytosines were depleted within and near transcription
starting sites but were enriched within gene bodies
(Fig. 5a). Therefore, our data consistently indicates
that osc-modCs may be important in regulating gene
transcription.
Low cytosine modification variability in CpG islands,

as well as increased variability in the more distal ele-
ments, has also been detected in cross-sectional studies
of human epigenomes [29, 30]. To investigate the links

a b

c

Fig. 4 Association between oscillating cytosines and modification differences in cell lineages. a, b Cytosine modification densities of seven purified
white blood cells within a all measured cytosines and b cytosines that were identified as oscillating in neutrophils. c Overlaps between neutrophil
osc-modCs and differentially modified cytosine positions in various pairs of blood cell fractions. The size of the circles depicts log2 odds ratio of the
overlap, and the shading represents the number of FDR-significant modification differences detected between pairwise comparisons of cell types.
modC, modified cytosine

a b

Fig. 5 Relationships between osc-modCs and genomic elements. a Odds ratios of overlap between osc-modCs and various genomic elements
estimated using a two-sided Fisher’s exact test. Full circles mark the log2 odds ratios, and extending bars represent 95% confidence intervals. b
Box plots showing the distribution of osc-modC amplitudes in relation to genomic regions. modC, modified cytosine
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between inter- and intra-individual variations, we used a
publicly available list of cytosines exhibiting high degree
of modification variability from a populational neutro-
phil dataset [18] and detected a strong overlap with
osc-modCs (OR = 15.3 [12.3–19.0]; p = 2.52 × 10−75).
Consistent with our osc-modC findings, the populational
neutrophil sample exhibited depletion of epigenetic vari-
ability in CpG islands and proximal sites, while enrich-
ment was observed in distal regions and enhancers [18].
Furthermore, motif enrichment analysis on sequences
flanking populational neutrophil hyper-variable CpGs
showed an enrichment for non-canonical E-box motifs
(e value = 1.5 × 10−22) and Krüppel-related factors (e
value = 1.2 × 10−58) (Additional files 6 and 7).
To further explore putative roles of osc-modCs in

inter-individual variability, we re-analyzed two large
whole blood datasets [31, 32], which were adjusted for
white blood cell count differences, as well as known
demographic, clinical, and technical covariates. The re-
sidual variation of modCs showed strong association
with osc-modCs (logistic regression p = 1.80 × 10−3 and
4.36 × 10−11, for Hannum et al. and Hannon et al. data-
sets, respectively). Taken together, these findings suggest
that, in addition to DNA sequence variation, non-shared
environment, and stochasticity [33], osc-modCs may also
contribute to the inter-individual variations of cytosine
modifications.

Osc-modCs are associated with aging
In our previous mouse experiments, we detected that
osc-modCs were associated with linear age-dependent
cytosine modification changes [14]. In this study, we
found that human neutrophil osc-modCs were also asso-
ciated with age-correlated cytosine modification (age--
modCs) in two whole blood datasets [31, 32] corrected

for cell composition differences and various biological
and technical covariates (OR = 1.53 [1.39–1.68]; p =
4.5 × 10−17 and OR = 1.39 [1.19–1.63]; p = 6.6 × 10−5, re-
spectively). Like in the mouse liver and lung tissues, cir-
cadian amplitudes of human neutrophils correlated with
the magnitude of epigenetic aging effects (Fig. 6a, b,
Spearman’s rho = 0.11, p = 1.2 × 10−2 and rho = 0.23, p =
2.9 × 10−3). Finally, we replicated the observation that
the time of osc-modC acrophase can predict the trend
of epigenetic aging (but in opposite direction from mice
that are nocturnal); cytosines with light hour acrophases
were prone to accumulation of modified cytosines with
age (OR = 1.88 [1.19–2.97]; p = 4.3 × 10−3 and OR = 2.47
[1.09–5.59]; p = 1.8 × 10−2)

Osc-modCs are associated with complex diseases
Osc-modC’s involvement in cellular differentiation, epi-
genetic variation, and age-dependent epigenetic changes
prompted us to investigate the roles of osc-modCs in
complex diseases. We selected three different groups of
diseases that represent major human pathological pro-
cesses: malignancy (leukemia), neurodevelopmental dys-
function (schizophrenia), and metabolic dysregulation
(obesity and type II diabetes).
We first investigated cytosine modification findings in

chronic lymphocytic leukemia (CLL) [34], which is clas-
sified into unmutated (uCLL) and mutated (mCLL)
based on the mutation status of the immunoglobulin
heavy chain variable gene segment. We found that neu-
trophil osc-modCs were significantly overrepresented
among differentially modified cytosines in B cells from
both uCLL (OR = 1.96; p = 2.4 × 10−31) and mCLL (OR =
2.73; p = 1.6 × 10−15). Next, we analyzed three large
blood-based EWAS, two of schizophrenia [32, 35] and
one of body mass index (BMI) [36], and again detected

a b

Fig. 6 Association between osc-modCs and aging. a, b Scatterplot showing the relationship between aging magnitude and oscillation amplitude
in two populational studies: a Hannum et al. (GSE40279) and b Hannon et al. (GSE80417). Black lines indicate fitted least squares regression lines
with shaded gray area depicting 95% confidence intervals. Results produced using the subset of cytosines that exhibited both oscillating and
aging effects. One outlier cytosine (Illumina probe ID “cg22454769”) was excluded from both figures for data visualization purposes. osc-modC,
oscillating modified cytosine
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significant overlaps between osc-modCs and EWAS hits
from these three studies (Fig. 7a).
In order to uncover the direction of association between

osc-modCs and disease, we utilized results from a pro-
spective type II diabetes EWAS [37]. In this study, only
seven cytosines were identified to predict type II diabetes
at EWAS significance. Hence, we investigated cytosines
with nominal p < 0.05 and found that osc-modCs were
overrepresented in this group (OR = 1.24 [1.08–1.43]; p =
2.2 × 10−3). Interestingly, the magnitude of cytosine modi-
fication changes contributing to type II diabetes risk cor-
related with the osc-modC amplitudes (Spearman’s rho =
0.24, p = 2.4 × 10−4) (Fig. 7b), suggesting that osc-modCs
can identify cytosine positions and magnitude of changes

that are involved in type II diabetes. These findings
are consistent with the causal interpretation; however,
caution is necessary since type II diabetes is comorbid
with obesity, and this association may reflect
obesity-induced osc-modCs, rather than osc-modCs
predisposing to diabetes.
It is important to note that all of the above compari-

sons were performed using data from mismatched cells
(e.g., neutrophil osc-modC vs. B cells in leukemia) or
non-primary targets of the disease (e.g., blood instead of
neurons for schizophrenia). It is possible that associa-
tions between oscillating epigenetic factors and disease
epimutations would be stronger if matching cell types
were analyzed together.

a

b

d

c

Fig. 7 Association between disease and oscillating cytosine modifications. a Odds ratios of overlap between osc-modCs and differentially modified
loci in various disease datasets estimated using Fisher’s exact test. Full circles mark log2 odds ratios, and whiskers represent 95% confidence intervals. b
Scatterplot showing the association between the osc-modC amplitude and log-transformed odds ratio for type II diabetes risk. The black line indicates
fitted least squares regression line with shaded gray area depicting 95% confidence interval. c Box plots of cytosine modification differences in
simulated and a representative EWAS hit, cg10311104, from schizophrenia EWAS ([32]; Supplementary Fig. S5). Black dots represent outlier samples
beyond the interquartile range. d Ten representative samples from osc-modC simulation in the “control” and the “patient” groups. Gray boxes
represent the regular “office hours” (9 AM–5 PM) when samples are usually collected in a realistic clinical setting. Black curves represent the oscillation
profiles for each sample, with red dots indicating a randomly selected sample collection time. CLL, chronic lymphocytic leukemia; C.I., confidence
interval; modC, modified cytosine; CT, circadian time; CTRL, control; SCZ, schizophrenia; OBS, observation
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Disease EWAS hits may be cross-sectional “snapshots” of
aberrant osc-modCs
Disease EWAS findings typically exhibit two properties.
First, cytosine modification differences between affected
individuals and controls, despite statistical significance,
are very small. For example, the two large schizophrenia
EWAS found mean absolute cytosine modification dif-
ferences between cases and controls to be only 0.7% [35]
and 1.3% [32]. Similarly, type II diabetes EWAS [37]
found mean absolute differences in cytosine modifica-
tion densities ranging from 0.5 to 1.1%. Second, patients
quite often exhibit higher variability of cytosine modifi-
cation compared to the controls [30, 38, 39]. In some
studies (e.g., type I diabetes EWAS), enrichment of dif-
ferentially variable cytosines in affected individuals com-
pared to controls was the only statistically significant
finding related to disease [29].
To investigate if these two groups of findings can be

explained by the circadian epigenetic dysfunction in dis-
ease, we generated a simulated dataset with the follow-
ing criteria: (1) Sample size was matched with previous
schizophrenia EWAS [32]: 353 “patients” and 322 “con-
trols”. (2) Amplitudes were randomly selected from a
range of 3–10%. (3) We assumed that “controls” had
conserved osc-modCs, while “patients” had disturbed
circadian regulation. As such, oscillation period for “con-
trols” was set to 24 h, while “patients” had 90% of sam-
ples with a 24 h period, 8% of samples with randomly
selected periods ranging from 24 to 120 h, and 2% of
non-oscillating samples. (4) Relatedly, acrophases for
“controls” were randomly shifted within a 3-h interval
(i.e., conserved), while “patient” acrophases were distrib-
uted across a wider interval of 9 h. (5) It was assumed
that sample collection was performed within an 8-h time
window, corresponding to regular working hours at a
clinical setting (Fig. 7c, d).
The simulated dataset reproduced both of the common

EWAS properties: a small but significant effect size (abso-
lute mean difference = 0.85%; t test p = 1.92 × 10−13) and
higher variance in “patients” compared to “controls” (vari-
ance ratio = 2.80; F test p = 4.8 × 10−20) (Fig. 7c). This sug-
gests that single time recordings in the cross-sectional
sampling traditionally used in EWAS may represent
“snapshots” of aberrant circadian cytosine modifications
and highlights the necessity of sample collection and ana-
lysis to be performed in a circadian-sensitive manner.

Discussion
This neutrophil-based study identified several lines of
converging evidence showing the importance of circa-
dian oscillations of cytosine modification in humans.
The discovery that cytosine modification is a part of the
cellular circadian machinery is at odds with the trad-
itional perception of static cytosine modifications in

somatic differentiated cells, albeit with some gradual and
unpredictable life-long “epigenetic drift” [40]. Our find-
ings indicate that unexplained inter- and intra-individual
variations of cytosine modification are not as random as
once thought. Differential distribution of osc-modCs
across genomic elements can be one of the reasons why
regions outside of CpG islands exhibit higher variance in
cytosine modification [41, 42]. Since epigenetic elements
of higher variation are involved in tissue differentiation
and malignant transformation (ibid.), osc-modCs may
play a role in both processes. The observation of epigen-
etic “apogee” and “perigee” provide new mechanistic in-
sights into carcinogenesis; if circadian epigenomic
convergence is not fully compensated by divergence, the
cytosine modification profile could acquire cancer-like
features over a number of cycles, resulting in an extreme
case of epigenetic “perigee.”
An overlap between osc-modCs from a single individ-

ual and positions of variable cytosine modification in the
general population suggests that inter-individual epigen-
etic variability may be influenced by, at least to some ex-
tent, the circadian rhythm. Potential sites of population
epigenetic variance may result from circadian differences
among individuals, differences in the circadian time of
sample collection, and (or) biological variation associ-
ated with osc-modCs (e.g., epigenetic aging). Our find-
ings imply that differential epigenetic variation identified
in several disease studies [29, 43–45] may also be associ-
ated with circadian epigenomic oscillations. If proven
true, a direct link between circadian epigenomes and
inter-individual epigenomic variation would provide a
mechanistic basis for parts of ~ 80% of populational vari-
ation that is assumed to be of unexplained environmen-
tal origin [33].
While we purified neutrophils to eliminate between

blood cell type heterogeneity, the study can still be con-
founded by circadian replenishing of the neutrophil sub-
types [46]. Although neutrophils exhibit variation in
density of surface antigens during maturation (e.g.,
CD62L) [46], current evidence suggests that cytosine
modification profiles across different stages of develop-
ment show no discernable differences [47]. In addition,
the neutrophil study used for our intra- vs. inter-individual
comparison [18] tested for the expression of several sur-
face antigens, a proxy marker for cell type heterogeneity,
and excluded neutrophil subpopulations as the main de-
terminant of inter-individual cytosine modification vari-
ability. Nevertheless, neutrophil subtypes have not been
clearly characterized, and interpretation of our findings
cannot be completely transparent. The fact that WBC dif-
ferentiating cytosines were significantly enriched for
osc-modCs may imply hidden cellular heterogeneity. On
the other hand, this may also indicate that osc-modCs are
linked to cell differentiation and development. We believe
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that even if some cytosines were to be involved in daily
dynamics of neutrophil subtypes, and therefore simulate
oscillations, it is unlikely that they can fully account for
the findings described in this study. Given the large num-
ber of EWAS that showed an association with our
osc-modCs, where all studies were performed independ-
ently from each other, all datasets would have to be
consistently confounded by inefficiently corrected hetero-
geneity. However, we acknowledge that our findings may
be confounded by hidden heterogeneities and that our
biological interpretation may change as new WBC sub-
types are discovered. Moreover, even if our findings are
the result of some yet unknown hidden neutrophil sub-
type heterogeneity, our biological interpretation may be
incorrect but it does not diminish its property as an epi-
genetic marker of disease. Relatedly, since our subjects
were exposed to normal lighting and eating habits during
the experiments (i.e., external entrainment cues), it is also
difficult to parse out the relationship between osc-modCs
and intrinsic circadian rhythm. In short, there are many
hurdles that impede our ability to fully interpret our find-
ings, but future environment-controlled experiments in-
volving large-scale molecular characterizations of
neutrophils at a single-cell resolution may help resolve
these question.
Independent from interpretation uncertainties, a shift

from a “static and stochastic” cross-sectional studies to
“cyclic and deterministic” circadian strategies can change
our understanding of the molecular and cellular basis of
common disease. Circadian strategies are based on mul-
tiple samples (WBC, adipocytes, fibroblasts, cultivated
cells) collected over a 24-h period (or longer) to identify
individual-specific profiles. Although the cause-and-effect
relationship between disturbed circadian cycles and com-
plex disease still needs to be established, the circadian in-
terpretation of disease origin is simple and intuitive; daily
circadian reprogramming is likely to be prone to errors
and imperfectly maintained circadian aberrations in epi-
genomes (and transcriptomes, metabolomes, or cell sub-
types) gradually convert into disease risk factors.
Circadian molecular and cellular studies may identify

individual-specific disease features that could open new
opportunities for precision medicine, and offer a cus-
tomized approach for predicting disease risks and prog-
nosis to facilitate early and efficient interventions [48].
Such approaches would integrate circadian biomarkers
with clinical data to develop a more accurate molecular
disease taxonomy to improve diagnostic specificity and
treatment efficacy [49]. Furthermore, since circadian pa-
rameters can be modified by diet, lifestyle, and medica-
tions [50], we predict that preventative interventions
aimed at rectifying circadian aberrations may be a viable
approach to reduce the risk of a disease or delay its age
of onset.

Conclusions
Circadian oscillations of cytosine modification are impli-
cated in the epigenomic trajectories of aging and common
diseases, suggesting that evolutionary adaptive processes
can mediate an organism’s frailty in later parts of its life.
Future studies should focus on improving the biological
interpretability by resolving confounders that we were un-
able to address in this study, such as potential neutrophil
subtype heterogeneity and external entrainment cues on
the intrinsic circadian rhythm (e.g., diet and light). How-
ever, in addition to the existing recommendations for
population epigenomic studies [15], subjects and sample
collection timing should be, at a minimum, matched for
their circadian phase, as a systematic shift in collection
times could result in mean modification differences that
are conflated with disease-related dysregulation. Prospect-
ive studies are warranted for uncovering the direction of
the association between the circadian epigenome and
disease.

Methods
Sample collection and preparation
In order to measure white blood cell oscillations, cell
count measurements were gathered using a point-of-care
machine, the HemoCue WBC DIFF System (HemoCue,
Sweden), from four male subjects for a minimum of 48 h
(every 3 h starting at CT9 with the exclusion of the 3
AM collection). Each measurement was repeated three
consecutive times by the subject in their homes follow-
ing the manufacturer’s recommendations (manufac-
turer’s protocols were used for all other kits, unless
stated otherwise). This machine measures relative and
absolute levels of six different WBC fractions (neutro-
phils, lymphocytes, monocytes, eosinophils, basophils,
and total WBC count) using 10 μL of blood in
pre-stained microcuvettes.
For neutrophil isolation, a total of 20 venous periph-

eral blood samples were collected every 3 h for 72 h,
starting at circadian time 13 (CT13), with one missing
time point at CT52 (where CT13 corresponds to 1 PM
in local time). Eight milliliters of blood was collected in
EDTA Vacutainer tubes at each collection time from a
52-year-old Caucasian male. The subject typically sleeps
from 12 AM to 8 AM and did not report significant
changes to his sleeping pattern during the experiment.
Neutrophils were isolated immediately from the whole

blood by immunomagnetic negative selection with an
EasySep™ Direct Human Neutrophil Isolation Kit
(STEMCELL Technologies, BC, Canada). This negative
selection for neutrophils was repeated three times, and
the cells were washed with phosphate-buffered saline,
pelleted, and snap-frozen in liquid nitrogen. The neutro-
phils were stored at − 80 °C before DNA extraction.
DNA extraction was performed with NucleoSpin® Blood
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XL (Macherey-Nagel) kit just prior to downstream
experiments.

Oscillating WBC fractions
Basophils were removed from the analysis due to their
low count. For each time point, the mean of triplicate
measurements for an individual, as well as the mean of
all four individuals was calculated. These values were
then fit using the cosinor regression model as described
below.

Bisulfite conversion and microarray experiment
A total of 750 ng of genomic DNA was bisulfite-con-
verted using an EZ DNA Methylation™ Kit (Zymo) ac-
cording to the manufacturer’s protocol for the
HumanMethylation450 BeadChip (Illumina, CA, USA),
with the following modifications suggested by the manu-
facturer for a more stringent conversion: 7.5 μL of
M-dilution buffer was used for the reaction, which was
incubated at 42 °C for 30 min prior to addition of the
CT-Conversion Reagent. A total of 185 μL of the
M-dilution buffer was used in the preparation of the
CT-Conversion Reagent, and only 97.5 μL of the reagent
was added per reaction.
HumanMethylation450 BeadChip assays were per-

formed in duplicates using 500 ng of the bisulfite-con-
verted genomic DNA at The Centre for Applied
Genomics (Toronto).

Pre-processing of the purified human neutrophil data
Raw data were processed using the “minfi” package [51].
Quality control using the control probes showed no not-
able aberrations. Normalization was performed using
“noob” background correction [52] followed by Functional
normalization [53], and signals from the methylated
(modified) and unmethylated (unmodified) channels were
combined to obtain the beta values. Cell count estimates
were measured using Houseman’s algorithm implemented
in the Bioconductor package “minfi” [51]. In order to re-
duce the influence of position effects, signal intensities
were mean-centered by subtracting the Sentrix-specific
mean beta values from each sample.
To identify outliers, all samples were internally corre-

lated and samples with an average inter-sample correl-
ation value more than two standard deviations below the
mean were removed as outliers. This procedure identi-
fied a single sample at CT31 as an outlier, and both of
its technical replicates were excluded from further
analysis.

Detection of epigenetically variable cytosines (EVCs)
Technically consistent and epigenetically variable cyto-
sines (EVCs) were identified by comparing their tech-
nical and biological variation using a one-way ANOVA

between the biological samples. In all subsequent ana-
lyses, only the subset of significant EVCs (p < 0.05) were
considered for possible oscillation effects. In some cases,
where specified, a more stringent threshold of
FDR-significant EVCs (FDR q < 0.05) was used instead.
Following this step, each biological replicate was aver-
aged using the median of its technical replicates.

Detection of oscillating modified cytosines (osc-modCs)
A cosinor model [20] was used to identify circadian os-
cillations. The period was fixed to 24 h, and the phase,
mesor, and amplitude were modeled as a linear combin-
ation of sine and cosine terms as follows:

y ¼ b0 þ b1 � sinð2π � CT=24Þ þ b2 � cosð2π � CT=24Þ þ ε

where y is the observed modification level, bi are re-
gression coefficients, CT is the time of observation,
and ε is the error term. p values were obtained by
comparing this model to the null intercept-only
model using an F test. EVCs with cosinor p < 0.05
were identified as osc-modCs.
To determine whether the observed proportion of os-

cillating cytosines was higher than expected by chance,
10,000 permutations were performed by shuffling CT la-
bels, and the proportion of oscillating cytosines was cal-
culated for each permutation. The permutation p value
was derived as a fraction of permutations that had
higher number of oscillating cytosines compared to the
observed proportion in the unshuffled data.
Principal component analysis was used to quantify the

amount of variability explained by oscillations within
EVCs. Principal components were calculated via singular
value decomposition of the mean-centered data matrix.
The resulting scores of four main principal components
were inspected for oscillations by fitting the cosinor
model as described above.

Osc-modC position profiles in white blood cell fraction
Public human white blood cell dataset [21] (data avail-
able in the BioConductor’s “FlowSorted.Blood.450 k”
package [54]) was used to detect modification differ-
ences between distinct cell types. The dataset was nor-
malized using subset quantile within-array normalization
(SWAN [55]), and modification differences between all
pairwise combination of seven WBC types (myeloid
lineage: neutrophils, monocytes, eosinophils; lymphoid
lineage: B cells, NK cells, CD4+ T cells, and CD8+ T
cells) were estimated using a paired t test. For each pair-
wise comparison, only cytosines with FDR q < 0.05 were
identified as differentially modified.
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Motif analysis
Sequence motifs were examined at the oscillating cyto-
sine position ± 100 bp. Overlapping 200-bp regions (i.e.,
redundant sequences) were merged into one sequence.
MEME suite 4.10.2 [56] was used to identify overrepre-
sented sequences using the following parameters: -dna,
-mod anr, -maxsites 1000, -nmotifs 10, -evt 1e-10,
-revcomp, -maxsize 10000000. TOMTOM [57] from the
MEME suite was used to identify enriched transcription
factor motifs using the JASPAR 2018 CORE position fre-
quency matrix (non-redundant) database for vertebrates
[58] as a reference and using default parameters.

Genomic element analysis
Positions of CpG islands, shores, shelves, transcription
starting sites, first exons, and gene bodies were defined
according to Illumina HumanMethylation450 array
Manifest file v1.2 (GEO accession: GPL13534). Genomic
positions of neutrophil-specific enhancers were taken
from FANTOM5 human enhancer database [28]. Asso-
ciations between osc-modCs and various genomic ele-
ments were estimated using a two-sided Fisher’s exact
test.

Identifying inter-individual epigenetic variation
Cytosines with hyper-variable modification in neutro-
phils were obtained from [18]. Association between
hyper-variable cytosines and osc-modCs was estimated
using a two-sided Fisher’s exact test.
We also utilized two whole blood public datasets (GEO

accession: GSE40279 [31] and GSE80417 [32]). Beta values
were quantile normalized, sex chromosome probes were
removed, and principal components were calculated using
10,000 most variable cytosines. Samples deviating by more
than two standard deviations from the mean on any of the
first three principal component scores were identified as
outliers and removed from further analysis. Final sample
sizes used for analysis were n = 580 and n = 304 (healthy
controls only, age < 100), respectively.
Stochastic variation of cytosine modification was esti-

mated by measuring standard deviation on residuals
after regressing out cell count estimates (CD8+ T cell,
CD4+ T cell, CD8pCD28nCD45RAn memory and ef-
fector T cell, NK cell, B cell, monocyte, granulocyte, and
plasmablast), technical variates (Sentrix ID and Sentrix
row), and clinical information (age, sex, and smoking
score) from the data. Cytosines positioned close to
known SNPs (defined by Illumina HumanMethyla-
tion450 array Manifest file v1.2 (GEO accession:
GPL13534)) and overlapping known methylation quanti-
tative trait loci (list for middle age mQTLs obtained
from [59]) were discarded. White blood cell count esti-
mates were obtained using a DNA methylation age cal-
culator [60]. Association of osc-modC and variability

was modeled using a logistic regression with oscillation
status as response variable and estimated stochastic vari-
ation as an independent variable.

Identifying age-dependent modification changes
Age-dependent cytosine modifications were identified in
the abovementioned datasets by performing an F test be-
tween a null linear model and a model with additional
age covariate. The list of null model covariates included
cell count estimates (CD8+ T cell, CD4+ T cell,
CD8pCD28nCD45RAn memory and effector T cell, NK
cell, B cell, monocyte, granulocyte, and plasmablast),
Sentrix ID, Sentrix row, sex, and smoking score. Cyto-
sines whose modification showed a significant (FDR q <
0.05) association with age were called age-correlated cy-
tosines (age-modC), and the sign of age-related beta co-
efficient of the fitted linear model was used to determine
the direction of change. White blood cell count esti-
mates were obtained using a DNA methylation age cal-
culator [60]. Associations between osc-modCs and aging
were estimated using two-sided Fisher’s exact test.

Identifying overlap between osc-modCs and EWAS
significant cytosines
Probe IDs for chronic lymphocytic leukemia were obtained
from Supplementary tables 6 (type U) and 7 (type M) [34].
The schizophrenia significant probes were obtained from
Supplementary table 8 [32] and Supplementary table 3
[35]. The BMI-associated cytosine modification changes
were obtained from Supplementary table 23 [36]. p values
of cytosine association with type II diabetes were obtained
from the authors of the publication [37]. Associations be-
tween osc-modCs and disease-related cytosines were esti-
mated using a two-sided Fisher’s exact test.

Programming language
All computational analyses were performed using R v3
[61] unless specified otherwise.

Additional files

Additional file 1: Oscillation parameters of white blood cell fractions.
Counts, fractions, and oscillation p values of 5 WBC cell types averaged
across 4 individuals. (XLSX 9 kb)

Additional file 2: Oscillation parameters for all interrogated CpG
positions. EVC p value, cosinor p value, mesor, acrophase, amplitude, and
genomic information for all interrogated cytosine positions. (CSV 40045 kb)

Additional file 3: Proportion of variance explained by oscillations at
various EVCs thresholds. Number of total EVCs, percent of oscillating
EVCs, and summary of oscillating principal component scores at different
EVC selection thresholds. (XLSX 9 kb)

Additional file 4: MEME output for oscillating cytosines in neutrophil.
Motif enrichment logos and characteristics for the sequences within
100 bp of osc-modCs. Generated using the MEME software tool.
(HTML 2357 kb)
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Additional file 5: TOMTOM output for oscillating cytosines in neutrophil.
Motifs detected from sequences flanking osc-modCs queried against a data-
base of known vertebrate transcription factor sequence motifs. Significant
matches are indicated beside each query. Generated using the TOMTOM
software tool. (HTML 285 kb)

Additional file 6: MEME output for hyper-variable cytosines from
populational neutrophil data. Motif enrichment logos and characteristics for
the sequences within 100 bp of hyper-variable cytosines from populational
neutrophil data. Generated using the MEME software tool. (HTML 949 kb)

Additional file 7: TOMTOM output for hyper-variable cytosines from
populational neutrophil data. Motifs detected from sequences flanking
hyper-variable cytosines in populational neutrophil data queried against
a database of known vertebrate transcription factor sequence motifs.
Significant matches are indicated beside each query. Generated using the
TOMTOM software tool. (HTML 110 kb)
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