Breitwieser et al. Genome Biology (2018) 19:198
https://doi.org/10.1186/s13059-018-1568-0

Genome Biology

@ CrossMark

KrakenUnig: confident and fast
metagenomics classification using unique
k-mer counts

F. P. Breitwieser', D. N. Baker'” and S. L. Salzberg'**"

Abstract

False-positive identifications are a significant problem in metagenomics classification. We present KrakenUnig, a novel
metagenomics classifier that combines the fast k-mer-based classification of Kraken with an efficient algorithm for
assessing the coverage of unique k-mers found in each species in a dataset. On various test datasets, KrakenUniq gives
better recall and precision than other methods and effectively classifies and distinguishes pathogens with low

abundance from false positives in infectious disease samples. By using the probabilistic cardinality estimator
HyperLoglog, KrakenUniqg runs as fast as Kraken and requires little additional memory. KrakenUniq is freely

available at https://github.com/fbreitwieser/krakenunig.
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Background

Metagenomics classifiers attempt to assign a taxonomic
identity to each read in a dataset. Because metagenomics
data often contain tens of millions of reads, classification
is typically done using exact matching of short words of
length k (k-mers) rather than alignment, which would be
unacceptably slow. The results contain read classifica-
tions but not their aligned positions in the genomes (as
reviewed by [1]). However, read counts can be deceiving.
Sequence contamination of the samples—introduced
from laboratory kits or the environment during sample
extraction, handling, or sequencing—can yield high
numbers of spurious identifications [2, 3]. Having only
small amounts of input material can further compound
the problem of contamination. When using sequencing
for clinical diagnosis of infectious diseases, for example,
less than 0.1% of the DNA may derive from microbes of
interest [4, 5]. Additional spurious matches can result
from low-complexity regions of genomes and from con-
tamination in the database genomes themselves [6].
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Such false-positive reads typically match only small
portions of a genome, e.g., if a species’ genome con-
tains a low-complexity region, and the only reads
matching that species fall in this region, then the
species was probably not present in the sample.
Reads from microbes that are truly present should
distribute relatively uniformly across the genome ra-
ther than being concentrated in one or a few loca-
tions. Genome alignment can reveal this information.
However, alignment is resource intensive, requiring
the construction of indexes for every genome and a
relatively slow alignment step to compare all reads
against those indexes. Some metagenomics methods
do use coverage information to improve mapping or
quantification accuracy, but these methods require
results from much slower alignment methods as in-
put [7]. Assembly-based methods also help to avoid
false positives, but these are useful only for highly
abundant species [8].

Here, we present KrakenUniq, a novel method that
combines very fast k-mer-based classification with a fast
k-mer cardinality estimation. KrakenUniq is based on
the Kraken metagenomics classifier [9], to which it adds
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a method for counting the number of unique k-mers
identified for each taxon using the efficient cardinality
estimation algorithm HyperLogLog [10—12]. By counting
how many of each genome’s unique k-mers are covered
by reads, KrakenUniq can often discern false-positive
from true-positive matches. Furthermore, KrakenUniq
implements additional new features to improve metage-
nomics classification: (a) searches can be done against
multiple databases hierarchically; (b) the taxonomy
can be extended to include nodes for strains and plas-
mids, thus enabling their detection; and (c) the data-
base build script allows the addition of > 100,000
viruses from the NCBI Viral Genome Resource [13].
KrakenUniq provides a superset of the information
provided by Kraken while running equally fast or
slightly faster and while using very little additional
memory during classification.

Results

KrakenUniq was developed to provide efficient k-mer
count information for all taxa identified in a metage-
nomics experiment. The main workflow is as follows:
As reads are processed, each k-mer is assigned a taxon
from the database (Fig. 1a). KrakenUniq instantiates a
HyperLogLog data sketch for each taxon and adds the
k-mers to it (Fig. 1b and Additional file 1: Section 1 on
the HyperLogLog algorithm). After classification of a
read, KrakenUniq traverses up the taxonomic tree and
merges the estimators of each taxon with its parent. In
its classification report, KrakenUniq includes the number
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of unique k-mers and the depth of k-mer coverage for
each taxon that it observed in the input data (Fig. 1c).

Efficient k-mer cardinality estimation using the
HyperLogLog algorithm

Cardinality is the number of elements in a set without
duplicates, e.g., the number of distinct words in a text.
An exact count can be kept by storing the elements in a
sorted list or linear probing hash table, but that requires
memory proportional to the number of unique elements.
When an accurate estimate of the cardinality is sufficient,
however, the computation can be done efficiently with a
very small amount of fixed memory. The HyperLogLog al-
gorithm (HLL) [10], which is well suited for k-mer count-
ing [14], keeps a summary or sketch of the data that is
sufficient for precise estimation of the cardinality and re-
quires only a small amount of constant space to estimate
cardinalities up to billions. The method centers on the idea
that long runs of leading zeros, which can be efficiently
computed using machine instructions, are unlikely in ran-
dom bitstrings. For example, about every fourth bitstring
in a random series should start with 01, (one 0 bit before
the first 1 bit), and about every 32nd hash starts with
00001,. Conversely, if we know the maximum number of
leading zeros k of the members of a random set, we can
use 2°*1 as a crude estimate of its cardinality (more details
in Additional file 1: Section 1 on the HLL algorithm). HLL
keeps m =27 1 byte counts of the maximum numbers of
leading zeros on the data (its data sketch), with p, the preci-
sion parameter, typically between 10 and 18 (see Fig. 2).
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Fig. 2 Cardinality estimation using HyperLogLog for randomly sampled k-mers from microbial genomes. Left: standard deviations of the relative
errors of the estimate with precision p ranging from 10 to 18. No systematic biases are apparent, and, as expected, the errors decrease with
higher values of p. Up to cardinalities of about 2°/4, the relative error is near zero. At higher cardinalities, the error boundaries stay near constant.
Right: the size of the registers, space requirement, and expected relative error for HyperLoglLog cardinality estimates with different values of p.
For example, with a precision p = 14, the expected relative error is 0.81%, and the counter only requires 16 KB of space, which is three orders of
magnitude less than that of an exact counter (at a cardinality of one million). Up to cardinalities of 2°/4, KrakenUniqg uses a sparse representation
of the counter with a higher precision of 25 and an effective relative error rate of about 0.02%

For cardinalities up to about m/4, we use the sparse repre-
sentation of the registers suggested by Heule et al. [11] that
has the much higher effective precision p" of 25 by encod-
ing each index and count in a vector of 4-byte values (see
Fig. 2). To add a k-mer to its taxon’s sketch, the k-mer
(with k up to 31) is first mapped by a hash function to a
64-bit hash value. Note that k-mers that contain non-A, C,
G, or T characters (such as ambiguous IUPAC characters)
are ignored by KrakenUniq. The first p bits of the hash
value are used as index i, and the later 64-p = ¢ bits for
counting the number of leading zeros k. The value of the
register M[i] in the sketch is updated if k is larger than the
current value of M[i].

When the read classification is finished, the taxon
sketches are aggregated up the taxonomy tree by taking
the maximum of each register value. The resulting
sketches are the same as if the k-mers were counted at
their whole lineage from the beginning. KrakenUniq
then computes cardinality estimates using the formula
proposed by Ertl [12], which has theoretical and prac-
tical advantages and does not require empirical bias cor-
rection factors [10, 11]. In our tests, it performed better
than Flajolet’s and Heule’s methods (Additional file 1:
Figures S1 and S2).

The expected relative error of the final cardinality esti-
mate is approximately 1.04/sqrt(2”) [10]. With p =14,
the sketch uses 2'* 1-byte registers, i.e,, 16 KB of space,
and gives estimates with relative errors of less than 1%
(Fig. 2). Note that KrakenUniq also incorporates an
exact counting mode, which however uses significantly
more memory and runtime without appreciable im-
provements in classification accuracy (see the “Exact
counting versus estimated cardinality” section).

Results on 21 simulated and 10 biological test datasets

We assessed KrakenUniq’s performance on the 34 datasets
compiled by MclIntyre et al. [15] (see Additional file 2:
Table S3 for details on the datasets). We place greater em-
phasis on the 11 biological datasets, which contain more
realistic laboratory and environmental contamination. In
the first part of this section, we show that unique k-mer
counts provide higher classification accuracy than read
counts, and in the second part, we compare KrakenUniq
with the results of 11 metagenomics classifiers. We ran
KrakenUniq on three databases: “orig,” the database used
by Mclntyre et al; “std,” which contains all current
complete bacterial, archaeal, and viral genomes from
RefSeq plus viral neighbor sequences and the human
reference genome; and “nt,” which contains all microbial
sequences (including fungi and protists) in the non-redun-
dant nucleotide collection nr/nt provided by NCBI (see
Additional file 1: Section 2 for details). The “std” database
furthermore includes the UniVec and EmVec sequence
sets of synthetic constructs and vector sequences, and
low-complexity k-mers in microbial sequences were
masked using NCBI’s dustmasker with default settings.
We use two metrics to compare how well methods can
separate true positives and false positives: (a) F1 score, i.e.,
the harmonic mean of precision p and recall r, and (b) re-
call at a maximum false discovery rate (FDR) of 5%. For
each method, we compute and select the ideal thresholds
based on the read count, k-mer count or abundance calls.
Precision p is defined as the number of correctly called
species (or genera) divided by the number of all called
species (or genera) at a given threshold. Recall 7 is the pro-
portion of species (or genera) that are in the test dataset
and that are called at a given threshold. Higher F1 scores
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indicate a better separation between true positives and
false positives. Higher recall means that more true species
can be recovered while controlling the false positives.

Because the NCBI taxonomy has been updated since
the datasets were published, we manually updated the
“truth” sets in several datasets (see Additional file 1:
Section 2.3 for details on taxonomy fixes). Any cases
that might have been missed would result in a lower
apparent performance of KrakenUniq. Note that we ex-
clude the over 10-year-old simulated datasets simHC,
simMC, and simLC from Mavromatis et al. (2007), as
well as the biological dataset JGI SRR033547 which has
only 100 reads.

Classification performance using unique k-mer or read
count thresholds

We first looked at the performance of the unique k-mer
count thresholds versus read count thresholds (as would
be used with Kraken). The k-mer count thresholds
worked very well, particularly for the biological datasets
(Table 1 and Additional file 2: Table S3). On the genus
level, the average recall in the biological datasets in-
creases by 4-9%, and the average F1 score increases 2—
3%. On the species level, the average increase in recall in
the biological sets is between 3 and 12%, and the F1
score increases by 1-2%.

On the simulated datasets, the differences are less pro-
nounced and vary between databases, even though on
average the unique k-mer count is again better. However,
only in two cases (genus recall on databases “orig” and
“std”) the difference is higher than 1% in any direction.
We find that simulated datasets often lack false positives
with a decent number of reads but a lower number of
unique k-mer counts, which we see in real data. Instead,
in most simulated datasets, the number of unique k-mers
is linearly increasing with the number of unique reads in
both true and false positives (Additional file 1: Figure S3).
In biological datasets, sequence contamination and lower
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read counts for the true positives make the task of separat-
ing true and false positives harder.

Comparison of KrakenUniq with 11 other methods

Next, we compared KrakenUniq’s unique k-mer counts
with the results of 11 metagenomics classifiers from
Mclntyre et al. [15], which include the alignment-based
methods Blast + Megan [16, 17], Diamond + Megan
[17, 18], and MetaFlow [19]; the k-mer-based CLARK
[20], CLARK-S [21], Kraken [9], LMAT [22], and NBC
[23]; and the marker-based methods GOTTCHA [24],
MetaPhlAn2 [25], and PhyloSift [26]. KrakenUniq with
database “nt” has the highest average recall and F1
score across the biological datasets, as shown in Table 2.
As seen before, using unique k-mer instead of read
counts as thresholds increases the scores. While the
database selection proves to be very important (Krake-
nUniq with database “std” is performing 10% worse
than KrakenUniq with database “nt”), only Blast has
higher average scores than KrakenUniq with k-mer
count thresholds on the original database. On the simu-
lated datasets, KrakenUniq with the “nt” database still
ranks at the top, though, as seen previously, there is
more variation (Additional file 1: Table S4). Notably,
CLARK is as good as KrakenUniq, but Blast has much
worse scores on the simulated datasets.

Generating a better test dataset and selecting an
appropriate k-mer threshold

In the previous section, we demonstrated that KrakenUniq
gives better recall and F1 scores than other classifiers on
the test datasets, given the correct thresholds. How can the
correct thresholds be determined on real data with varying
sequencing depths and complex communities? The test
datasets are not ideal for that the biological datasets lack
complexity with a maximum of 25 species in some of the
samples, while the simulated samples lack the features of
biological datasets.

Table 1 Performance of read count and unique k-mer thresholds at genus and species rank on 10 biological and 21 simulated

datasets against the three databases ‘orig’, ‘std" and 'nt’

Data Rank Statistic orig std nt
Type reads k-mers %diff reads k-mers %diff reads k-mers %diff
Bio Genus Recall 0.90 0.93 +4.0% 0.89 0.94 +6.2% 091 0.99 +8.9%
F1 0.95 0.96 +1.8% 0.95 0.97 +2.6% 0.96 0.99 +3.4%
Species Recall 0.85 0.87 +2.6% 0.70 0.78 +11.8% 0.95 0.98 +3.1%
F1 0.94 0.94 +0.7% 0.90 0.92 +2.5% 097 0.99 +1.6%
Sim Genus Recall 0.96 0.94 -2.1% 0.95 0.97 +2.5% 0.98 0.99 +0.8%
F1 0.98 0.98 -0.0% 0.98 0.98 +0.3% 0.99 0.99 +0.3%
Species Recall 0.92 0.93 +0.6% 0.88 0.88 +0.3% 0.90 0.90 -0.1%
F1 097 0.97 +0.3% 0.94 0.94 +0.5% 0.96 0.96 -0.1%

Bold values indicate better performance by at least 1% difference in the test statistic, show in the third column %diff. Unique k-mer count thresholds give up to

10% better recall and F1 scores, particularly for the biological datasets
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Table 2 Performance of KrakenUniq (with unique k-mer count
thresholds) compared to metagenomics classifiers [15] on the
biological datasets (n=10). F1 and recall show the average
values over the datasets. Note that “KrakenUniq reads” would be
equivalent to standard Kraken

Genus Species

F1 Recall F1 Recall Avg
KrakenUnig nt k-mers 0.99  0.99 099  0.98 0.99
KrakenUniq nt reads 0.96 0.91 0.97 0.95 0.95
BlastMeganFilteredLiberal 097 094 097 0.89 094
BlastMeganfFiltered 097 093 0.96 087 093
KrakenUniq orig k-mers 0.96 0.93 0.94 0.87 093
ClarkM4Spaced 0.95 0.90 0.94 0.88 0.92
KrakenUniq orig reads 0.95 0.90 094 0.85 091
Kraken 0.95 0.90 0.94 0.84 091
KrakenUniq std. k-mers 0.97 0.94 0.92 0.78 0.90
DiamondMegan_sensitive 0.98 093 0.92 0.74 0.89
KrakenFiltered 0.95 091 0.90 0.75 0.88
ClarkM1Default 0.94 0.85 091 0.77 087
KrakenUniq std. reads 0.95 0.89 0.90 0.70 0.86
LMAT 0.97 093 091 0.60 0.85
DiamondMegan 0.94 087 091 0.66 0.85
Gottcha 091 0.84 087 0.67 0.82
NBC 0.87 0.76 0.85 073 0.80
Metaphlan 0.94 0.89 083 0.55 0.80
MetaFlow 0.66 0.53 0.65 0.51 0.59
PhyloSift 0.68 0.29 0.78 0.54 0.57
PhyloSift90pct 0.68 0.30 0.77 052 0.57

Bold values indicate the highest value in each column

We thus generated a third type of test dataset by sam-
pling reads from real bacterial isolate sequencing runs,
of which there are tens of thousands in the Sequence
Read Archive (SRA). That way, we created a complex
test dataset for which we know the ground truth, with
all the features of real sequencing experiments, including
lab contaminants and sequencing errors. We selected
280 SRA datasets from 280 different bacterial species
that are linked to complete RefSeq genomes (see Add-
itional file 1: Suppl. Methods Section 2.4). We randomly
sampled between 1 hundred and 1 million reads (loga-
rithmically distributed) from each experiment, which
gave 34 million read pairs in total. Furthermore, we
sub-sampled 5 read sets with between 1 and 20 million
reads. All read sets were classified with KrakenUniq
using the “std” database.

Consistent with the results of the previous section, we
found that unique k-mer counts provide better thresh-
olds than read counts both in terms of F1 score and
recall in all test datasets (e.g., Fig. 3 on 10 million
reads—species recall using k-mers is 0.85, recall using
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reads 0.76). With higher sequencing depth, the recall
increased slightly—from 0.80 to 0.85 on the species
level and from 0.87 to 0.89 on the genus level. The
ideal values of the unique k-mer count thresholds,
however, vary widely with different sequencing depths.
We found that the ideal thresholds increase by about
2000 unique k-mers per 1 million reads (see Fig. 4).
Mclntyre et al. [15] found that k-mer-based methods
show a positive relationship between sequencing depths
and misclassified reads. Our analysis also shows that with
deeper sequencing depths, higher thresholds are required
to control the false-positive rate.

In general, we find that for correctly identified species,
we obtain up to approximately L-k unique k-mers per
each read, where L is the read length because each read
samples a different location in the genome. (Note that
once the genome is completely covered, no more unique
k-mers can be detected.) Thus, the k~-mer threshold should
always be several times higher than the read count thresh-
old. For the discovery of pathogens in human patients,
discussed in the next section, a read count threshold of 10
and unique k-mer count threshold of 1000 eliminated
many background identifications while preserving all true
positives, which were discovered from as few as 15 reads.

Exact counting versus estimated cardinality

KrakenUniq’s unique k-mer count is an estimate, raising
the following question: does using an estimate—instead of
the exact count—affect the classification performance?

To answer this question, we implemented an exact
counting mode in KrakenUniq. As expected, exact
counting requires significantly more memory and run-
time. On the full test dataset (with 34.3 mio paired reads
sampled from 280 WGS experiments on bacterial iso-
lates), the more efficient of two version of exact count-
ing required 60% more memory and over 200% more
runtime. At the same time, we observed virtually no im-
provement in term of classification performance (Table 3).
A likely explanation for this finding is that over- or under-
estimation of the true cardinality by a small amount (e.g.,
1%) rarely changes the ranking of the identifications.
There will be cases, however, where a true species may fall
just under a threshold due to the estimation error, and
users may choose to use exact counting with KrakenUnigq,
although this will incur a large penalty in both runtime
and memory consumption.

Results on biological samples for infectious disease
diagnosis

Metagenomics is increasingly used to find species of low
abundance. A special case is the emerging use of metage-
nomics for the diagnosis of infectious diseases [27, 28]. In
this application, infected human tissues are sequenced dir-
ectly to find the likely disease organism. Usually, the vast
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Table 3 Using cardinality estimates does not decrease
classification performance on the test dataset. KrakenUniq in the
default mode—using HyperLoglog cardinality estimation with
precision 14—classifies reads as accurately as KrakenUniq using
exact counting, on both the species and genus level. (Only
genus level is shown in the table, which also shows Kraken’s
performance for comparison). Note that we tested two versions
of exact counting. In version 1, we implemented exact counting
using C++ standard library’s unordered_set. Most time is spent
on merging counters in the end for report generation. In version 2,
we implemented exact counting using khash from klib (https://
github.com/attractivechaos/klib/). KrakenUniq uses version 2. Both
unordered sets and the hash map require heap allocations for
updating, which can cause significant performance cost at runtime
because of global locks. Wall clock time for KrakenUniq includes
report generation (which takes an additional 2m33s for Kraken)

Kraken KrakenUniqg
Default Exact(1) Exact(2)

Computational performance

Wall clock time® 17m38s  14m18s  3h30m6s  45m30s

Speed [Mbp/m] 4784 595.4 959 3778

Memory [GB] 167.1 168.2 466.2 2724

Minor page faults x 10° 2035 192.2 2725 904.6
Classification performance

Recall 0.827 0.888 0.888 0.888

F1 score 0922 0.935 0.935 0.935

Bold values indicate the highest or lowest values in each row

likely diagnosis could be made with the help of metage-
nomics. To confirm the metagenomics classifications, the
authors in the original study re-aligned all pathogen reads
to individual genomes.

Table 4 shows the results of our reanalysis of the con-
firmed pathogens in the four patients, including the
number of reads and unique k-mers from the pathogen,
as well as the number of bases covered by re-alignment
to the genomes. Even though the read numbers are very
low in two cases, the number of unique k-mers suggests

Table 4 Validated pathogen identifications in patients with
neurological infections have high numbers of unique k-mers per
read. The pathogens were identified with as few as 15 reads, but
the high number of unique k-mers indicates distinct locations of
the reads along their genomes. Re-alignment of mapped reads to
their reference genomes (column “Covered bases") corroborates the
finding of the unique k-mers (see also Additional file 1: Figure S4).
Interestingly, the k-mer count in PT5 indicates that there might be
multiple strains present in the sample since the k-mers cover more
than one genome. Read lengths were 150-250 bp

Reads k-mers Covered bases
9650 7129  5130/5130
20,724 53,256/4,433,522
1570 2227/4411,532
2084 2822/172,764

Sample Matched microorganism

PT5 Human polyomavirus 2
PT7 Elizabethkingia genomo sp. 3 403
PT8 Mycobacterium tuberculosis 15

PT10 Human gammaherpesvirus 4 20
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that each read matches a different location in the gen-
ome. For example, in PT8, 15 reads contain 1570 unique
k-mers, and re-alignment shows 2201 covered base pairs.
In contrast, Table 5 shows examples of identifications
from the same datasets that are not well-supported by
k-mer counts. We also examined the likely source of the
false-positive identifications by blasting the reads against
the full nt database, and found rRNA of environmental
bacteria, human RNA, and PhiX-174 mis-assignments
(see Additional file 1: Suppl. Methods for details). Not-
ably, the common laboratory and skin contaminants
PhiX-174, Escherichia coli, Cutibacterium acnes, and
Delftia were detected in most of the samples, too (see
Additional file 1: Table S6). However, those identifica-
tions are solid in terms of their k-mer counts—the bac-
teria and PhiX-174 are present in the sample, and the
reads cover their genomes rather randomly. To discount
them, comparisons against a negative control or between
multiple samples are required (e.g., with Pavian [29]).

Further extensions in KrakenUniq
KrakenUniq adds three further notable features to the
classification engine.

1. Enabling strain identification by extending the
taxonomy: The finest level of granularity for Kraken
classifications are nodes in the NCBI taxonomy.
This means that many strains cannot be resolved,
because up to hundreds of strains share the same
taxonomy ID. KrakenUniq allows extending the
taxonomy with virtual nodes for genomes,
chromosomes, and plasmids, and thus enabling
identifications at the most specific levels (see
Additional file 1: Suppl. Methods Section 3)

2. Integrating 100,000 viral strain sequences: RefSeq
includes only one reference genome for most viral
species, which means that a lot of the variation of
viral strain is not covered in a standard RefSeq
database. KrakenUniq sources viral strain sequences
from the NCBI Viral Genome Resource that are
validated as “neighbors” of RefSeq viruses, which
leads to up to 20% more read classifications (see
Additional file 1: Suppl. Methods Section 4).

3. Hierarchical classification with multiple databases:
Researchers may want to include additional
sequence sets, such as draft genomes, in some
searches. KrakenUniq allows to chain databases and
match each k-mer hierarchically, stopping when it
found a match. For example, to mitigate the
problem of host contamination in draft genomes,

a search may use the host genome as the first
database, then complete microbial genomes then
draft microbial genomes. More details are available
in Additional file 1: Suppl. Method Section 5.
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Table 5 False-positive identifications have few unique k-mers. Using an extended taxonomy, the identifications in PT4 and PT10
were matched to single accessions (instead of to the species level). The likely true source of the mapped sequences was determined
by subsequent BLAST searches and included 16S rRNA present in many uncultured bacteria, human small nucleolar RNAs (snRNAs),

and phiX174

Sample Matched microorganism Reads k-mers Source

PT3 Clostridioides difficile 122 126 16S rRNA

PT4 Hepatitis C virus 101 3 Human snRNA
JF343788.1 recombinant hepatitis
C virus

PT5 Akkermansia muciniphila 936 136 16S rRNA

PT10 Human betaherpesvirus 5 63 5 phix174

JN379815.1 human herpesvirus 5 strain
U04, partial genome

Timing and memory requirements

The additional features of KrakenUniq come without a
runtime penalty and very limited additional memory
requirements. In fact, due to code improvements,
KrakenUniq often runs faster than Kraken, particularly
when most of the reads come from one species. On the
test datasets, the mean classification speed in million
base pairs per minute increased slightly from 410 to
421 Mbp/m (see Additional file 2: Table S3). When fac-
toring in the time needed to summarize classification re-
sults by Kraken-report, which is required for Kraken
but part of the classification binary of KrakenUniq,
KrakenUniq is on average 50% faster. The memory
requirements increase on average by 0.5 GB from
39.5 to 40 GB.

On the pathogen ID patient data, where in most cases
over 99% of the reads were either assigned to human or
synthetic reads, KrakenUniq was significantly faster than
Kraken (Additional file 1: Table S5). The classification
speed increased from 467 to 733 Mbp/m. The average
wall time was about 44% lower, and the average add-
itional memory requirements were less than 1 GB, going
from 118.0 to 118.4 GB. All timing comparisons were
made after preloading the database and running with 10
parallel threads.

Discussion

In our comparison, KrakenUniq performed better in
classifying metagenomics data than many existing me-
thods, including the alignment-based methods Blast
[16], Diamond [30], and MetaFlow [19]. Blast and Dia-
mond results were post-processed by Megan [17, 31],
which assigns reads to the lowest common ancestor (LCA),
but ignores coverages when computing the resulting taxo-
nomic profile. Thus, the taxonomic profile (with read
counts as abundance measures) is sensitive to
over-representing false positives that have coverage spikes
in parts of the genome in the same way as non-alignment
based methods. Coverage spikes may appear due to
wrongly matched common sequences (e.g., 16S rRNA),

short amplified sequences floating in the laboratory, and
contamination in database sequences. MetaFlow, on the
other hand, implements coverage-sensitive mapping,
which should give better abundance calls, but it did not
perform very well in our tests. Going from alignments
to a good taxonomic profile is difficult because cover-
age information cannot be as easily computed for the
LCA taxon and summarized for higher levels in the
taxonomic tree. In comparison, reads and unique k-mer
counts can be assigned to the LCA taxa and summed
to higher levels. Notably, KrakenUniq’s k-mer counting
is affected by GC biases in the sequencing data the
same way as other read classifiers and aligners [32] and
may underreport GC-rich or GC-poor genomes.

Conclusions

KrakenUniq is a novel method that combines fast
k-mer-based classification with an efficient algorithm for
counting the number of unique k-mers found in each
species in a metagenomics dataset. When the reads
from a species yield many unique k-mers, one can be
more confident that the taxon is truly present, while a
low number of unique k-mers suggests a possible
false-positive identification. We demonstrated that
using unique k-mer counts provides improved accur-
acy for species identification and that k-mer counts
can help greatly in identifying false positives. In our
comparisons with multiple other metagenomics classi-
fiers on multiple metagenomics datasets, we found
that KrakenUniq consistently ranked at the top. The
strategy of counting unique k-mer matches allows
KrakenUniq to detect that reads are spread across a
genome, without the need to align the reads. By using
a probabilistic counting algorithm, KrakenUniq is able
to match the exceptionally fast classification time of
the original Kraken program with only a very small in-
crease in memory. The result is that KrakenUniq gains
many of the advantages of alignment at a far lower
computational cost.
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