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Abstract

Background: Cytokines are critical to human disease and are attractive therapeutic targets given their widespread
influence on gene regulation and transcription. Defining the downstream regulatory mechanisms influenced by
cytokines is central to defining drug and disease mechanisms. One promising strategy is to use interactions between
expression quantitative trait loci (€QTLs) and cytokine levels to define target genes and mechanisms.

Results: In a clinical trial for anti-IL-6 in patients with systemic lupus erythematosus, we measure interferon (IFN) status,
anti-IL-6 drug exposure, and whole blood genome-wide gene expression at three time points. We show that repeat
transcriptomic measurements increases the number of cis eQTLs identified compared to using a single time point. We
observe a statistically significant enrichment of in vivo eQTL interactions with IFN status and anti-IL-6 drug exposure
and find many novel interactions that have not been previously described. Finally, we find transcription factor binding
motifs interrupted by eQTL interaction SNPs, which point to key regulatory mediators of these environmental stimuli
and therefore potential therapeutic targets for autoimmune diseases. In particular, genes with IFN interactions are
enriched for ISRE binding site motifs, while those with anti-IL-6 interactions are enriched for IRF4 motifs.

Conclusions: This study highlights the potential to exploit clinical trial data to discover in vivo eQTL interactions with

therapeutically relevant environmental variables.
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Background

Cytokines are critical signals used by the immune system
to coordinate inflammatory responses. These factors bind
to specific receptors to induce widespread transcriptional
effects. Cytokines and their receptors are not only genetic-
ally associated with susceptibility to a range of human dis-
eases; they have also emerged as effective therapeutic
targets [1]. Blockade of tumor necrosis factor (ITNF) was
the first cytokine-directed therapy to achieve widespread
use and is now used broadly to treat multiple inflamma-
tory diseases including rheumatoid arthritis (RA), psoria-
sis, and inflammatory bowel disease [2]. More recently,
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IL-6 has emerged as a compelling therapeutic target. IL-6
levels are elevated in autoimmune diseases such as sys-
temic lupus erythematosus (SLE) and RA. The IL-6 recep-
tor has been successfully targeted with tocilizumab in RA
[3] and giant cell arteritis [4], while IL-6 has been targeted
directly with siltuximab for successful treatment of Castle-
man’s disease [5]. In SLE, IL-6 is thought to play a role in
the observed B cell hyperactivity and autoantibody pro-
duction [6]. Targeting IL-6-R in SLE has shown promise
in phase I trials [7], and this has led to the development of
other biologics targeting IL-6 such as PF-04236921 [8].
Interferon (IFN)-a, produced primarily by plasmacytoid
dendritic cells, has pleiotropic effects on the immune sys-
tem. It has been implicated as a key mechanism in SLE
development and pathogenesis and is being investigated
as a therapeutic target [9]. Agents targeting other inflam-
matory cytokines, including interleukin-1 (IL-1), IL-12,
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IL-17A, and IL-23 are also in clinical use to treat auto-
immune conditions. Interestingly, IL-1 blockade with
canakinumab has also been recently reported to reduce
risk of heart attacks, stroke, and cardiovascular disease
[10]. Therefore, defining the regulatory consequences of
physiologic perturbations of cytokine levels will inform
our understanding of both disease and drug mechanisms.

A cis expression quantitative trait locus (eQTL) con-
tains a genetic variant that alters expression of a nearby
gene. Cis eQTLs are ubiquitous across the genome [11],
and while most are stable across tissues and conditions,
environmental variables can alter the effects of some of
them [12-18]. If an environmental change leads to dis-
ruption of regulators upstream of a gene, then it could
magnify or dampen an eQTL effect, resulting in a
genotype-by-environment interaction (Additional file 1:
Figure S1). Therefore, observing a set of eQTL interac-
tions due to a perturbagen, such as a cytokine, can iden-
tify shared upstream regulatory mechanisms, such as
transcription factors and key pathways. Alternatively, a
set of shared eQTL interactions may be the consequence
of a cellular subpopulation whose frequency is being al-
tered by the perturbagen. Even a single eQTL interaction
where we can define mechanism can lead to insights
about the action of the perturbagen.

However, cis eQTL interactions with physiologic environ-
mental factors in humans have been challenging to discover
in vivo [19-23] even with large cohorts [11, 17]. Success at
finding cis eQTL interactions has largely been found in
studies using model organisms [24, 25] or treating cells in
vitro with non-physiologic conditions [26]. Thus far, these
studies might be limited in power since they often map
eQTLs separately across conditions and fail to exploit the
power of repeat measurements [27]. In other instances,
they test for genetic variants associated with differential ex-
pression and miss information about the magnitude of the
eQTL effect in a specific condition [28].

We predicted that if the transcriptome is assayed at
multiple time points under different exposure states,
then the repeat measurements could lead to an increase
in power to detect eQTLs and their interactions with en-
vironmental perturbations. If the same individual is
assessed at multiple times, then the noise in transcrip-
tomic measurements is reduced. Furthermore, repeat
measurements from the same individuals when they are
both unexposed and exposed to an environmental per-
turbagen allow for more accurate modeling of the effect
of the perturbagen within those subjects.

Clinical trials, with their structured study design, may
be the ideal setting to detect eQTL interactions with
therapeutically important variables. In clinical trials, it is
becoming increasingly common to collect transcriptional
and genetic data alongside clinical and physiological data
[29]. This extensive phenotyping of therapeutically
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important variables and biomarkers within the same in-
dividual at multiple time points provides a unique op-
portunity to identify in vivo eQTL interactions.

Here, we examined the modulation of eQTL effects by
environmental factors that alter cytokine levels using
data from a phase II clinical trial to evaluate the safety
and efficacy of a neutralizing IL-6 monoclonal antibody
(PF-04236921) in 157 SLE patients [8] (“Study design”).
Many patients with SLE exhibit high levels of genes in-
duced by type I IEN; these genes, known as the IEN sig-
nature, are a marker of disease severity [30, 31] and a
pathogenic feature of SLE. This feature of the disease,
together with exposure to anti-IL-6 leads to cytokine
fluctuations in this cohort yielding opportunities to as-
sess the impact of cytokine levels on eQTL effects.
While this drug was not significantly different from pla-
cebo for the primary efficacy endpoint (proportion of pa-
tients achieving the SLE Responder Index (SRI-4) at
week 24), biologically it effectively reduced free IL-6 pro-
tein levels (Additional file 1: Figure S2). Given the key
role of IL-6 and IFN in a range of diseases, the down-
stream regulatory effects of these cytokines are of great
interest to study.

In this study, we leverage the power of repeat tran-
scriptional and environmental measurements from a
lupus clinical trial to identify in vivo eQTL interactions
with IFN status and anti-IL-6 exposure. In the process,
we define novel eQTL interactions for both IFN and
IL-6.

Results

We conducted whole blood high-depth RNA-seq profil-
ing at 0, 12, and 24 weeks in anti-IL-6 exposed and un-
exposed individuals with the Illumina TruSeq protocol.
We quantified 20,253 gene features and examined
1,595,793 genotyped and imputed common variants
genome-wide (“RNA sequencing”, “Genotyping”, “Im-
putation”). Along with each RNA-seq assay, we docu-
mented anti-IL-6 exposure and quantified IFN signature
status with real-time PCR.

Mapping eQTL in SLE patients

We first mapped cis eQTLs and then tested them for in-
teractions with IFN status and anti-IL-6 exposure. eQTL
interactions can be explored using our interactive
visualization ~ tool  (http://baohongz.github.io/Lupu-
s_eQTL [32], Additional file 1: Figure S3).

To identify cis eQTLs, we examined the association be-
tween gene expression and SNPs within 250 kb upstream
of the transcription start site and 250 kb downstream of
the transcription end site. In order to account for repeat
measurements, with up to three RNA-seq assays per pa-
tient (Fig. 1a, 379 samples from 157 patients, “eQTL and
interaction analysis”), we used a linear mixed model. We
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Fig. 1 Identifying eQTLs in SLE patients. a Clinical trial structure and sampling strategy for the individuals used for eQTL analysis. The
samples available are summarized in Table 1. b Number of eQTL genes identified using a linear model (left) and a linear mixed model
(right). For the linear model, we used the first available time point for each individual (week 0 sample for n=152, week 12 sample for

n=5). ¢ Volcano plot of eQTL effects for the most significantly associated SNP for each gene (red color indicates p <85 x 10" 7).
d Concordance of SLE eQTL effects (p < 8.5 % 107 with eQTLs observed in the BIOS cohort [11] of healthy individuals (FDR < 0.05).
Each point represents the most significant SNP-gene pair for the SLE eQTL

included 25 gene expression principal components to
maximize the number of eQTL detected and 5 genotyping
principal components to account for the heterogeneity in
ethnicity in our cohort (“eQTL and interaction analysis”).
We observed that the multi-ethnic nature of our study did
not confound our results, consistent with Stranger et al.
[33] (Additional file 1: Figure S4).

To ensure we only tested for interactions in a set of
highly confident eQTLs, we applied a stringent correc-
tion for the total number of hypotheses tested. We rec-
ognized that this approach might arguably be overly

stringent for eQTL discovery, but we wanted to be cer-
tain that we were only testing eQTLs for interactions
that had a convincing main effect. Since we tested a total
of 5,872,001 SNP-gene pairs genomewide, we set a sig-
nificance threshold of pequ < 8.5 x 10~° (0.05/5,872,001
tests). We identified 4818 cis eQTL genes (Fig. 1b, c,
Additional file 2: Table S1). The summary statistics for
all the gene SNP pairs tested are available through fig-
share [34].

To confirm the validity of our eQTLs, we compared
them to a larger dataset. In the BIOS cohort,
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consisting of 2166 healthy individuals [11], we ob-
served that 85.4% of our SLE eQTL SNP-gene pairs
are reported as eQTLs (FDR <0.05). Of these, 98.9%
showed consistent direction of effect (p<5x 10~ 16,
binomial test, Fig. 1d), suggesting that our results
were highly concordant with those in this substan-
tially larger study.

Repeat measurements increase power to detect eQTL
Under reasonable assumptions, we would expect repeat
samples to increase our power. Supporting that expect-
ation, we detected 64% more cis eQTLs compared to the
2934 genes from using a single sample (first available
time point) per individual (Fig. 1b). An alternative might
have been to identify eQTLs separately from each of the
three time points; however, this approach identified only
a total of 3050 eQTL genes (Additional file 1: Figure S5).
Modeling all three time points together results in 58%
more cis eQTLs than modeling each time point
separately.

We speculated that while repeat measures did increase
power over single measures, that given a fixed number
of samples, independent samples would lead to more
power. To this end, we conducted an analysis fixing the
number of samples at 157 and using 53 individuals with
repeat measures (with two missing samples). Unsurpris-
ingly, we found fewer eQTLs (2215 genes) with the re-
peat measures alone compared to an analysis with the
same number of independent samples (2934 genes).

IFN status eQTL interactions

For each of the 4818 cis eQTL genes, we tested the most
significantly associated SNP for environmental interac-
tions with our linear mixed model framework. We first
explored the influence of type I IFN on gene regulation
after determining the IFN status of every patient at each
time point. We classified each sample as either IEN high
or IFN low using real-time PCR of 11 IFN-inducible
genes [35] (“Interferon status”, Fig. 2a).

We first wanted to assess whether our results were in-
deed enriched for interactions. To do this, we identified
those eQTLs with nominally significant interaction ef-
fects at Pinteract < 0.01. We would expect ~48 out of
4818 from chance alone. Surprisingly, we observed 182
IFN-eQTL interactions (Additional file 2: Table S1) that
were nominally significant at piyerace < 0.01 suggesting
that there was evidence of enrichment for eQTL interac-
tions. We conducted permutations to ensure that these
results were not the consequence of potentially inflated
statistics, which might be the result for example of
low-frequency alleles, genes violating normality assump-
tions, or other technical artifacts. In each of 1000 strin-
gent permutations, we simply reassigned IFN status
across samples and retested for eQTL interactions. This
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permutation preserves the main eQTL effect, since it
maintains genotypes of the individuals with the associ-
ated expression data, but disrupts any real interactions
that might be present in the data. In 0 out of 1000 in-
stance did we observe 182 or more interactions at pj,er-
act <0.01 suggesting that the number of observed
interactions is enriched and highly unlikely to have hap-
pened by chance (Additional file 1: Figure S6, ppermute ~
0/1000 = < 0.001).

We then went on to identify those specific IFN-eQTL
interactions of greatest interest by calculating a false dis-
covery rate or g value for each interaction using the ¢
value package [36] (“eQTL and interaction analysis”).
We observed a total of 210 interactions with an FDR <
0.2 threshold (111 with FDR < 0.1 and 67 with FDR <
0.05, Additional file 2: Table S1). We note that 11 of
these genes have already been described as having an
interaction with a proxy gene for type I IEN signaling in
the much larger BIOS study [11]. For example, SLFN5
expression is influenced by the rs12602407 SNP (Pinteract
=1.3x 10", FDR < 9.9 x 10~ %, Fig 2b), and this effect is
magnified in IFN high samples. Of these 210 IFN-eQTL
interactions, 99 were not reported in the BIOS study
[11]. Indeed, applying a more stringent cut off of FDR <
0.01, 27/34 of our interactions are not previously re-
ported and therefore are almost certainly novel
IFN-eQTL interactions with high confidence (Add-
itional file 1: Figure S7).

We speculated that groups of eQTL interactions might
be driven by the same common regulatory factor. We di-
vided interactions into magnifiers, where the environ-
mental exposure increases the size of the eQTL effect,
and dampeners where the environmental exposure de-
creases the eQTL effect (Additional file 1: Figure S8).
We hypothesized that the transcription factors driving
the response to type I IFN may be different for the
eQTL interactions defined as magnifiers (n =127, FDR
<0.2) and dampeners (n = 83, FDR < 0.2).

We applied HOMER [37] to assess overlap between
transcription factor binding motifs and the eQTL inter-
action SNPs (and SNPs in high linkage disequilibrium
(LD, ¥*>0.8) in the cis window, “eQTL and interaction
analysis”). To determine enrichment, we compared the
transcription factor motifs found in a set of sequences
(containing the interaction SNPs) from one category of
interactions relative to the other. We conducted two
separate analyses: the proportion of magnifying eQTL
interaction sequences with a motif compared to the pro-
portion of dampening interaction sequences with a motif
and vice versa. We found enrichment of motifs for key
transcription factors involved in IEN signaling including
a statistically significant enrichment for the ISRE motif
(HOMER p =1 x 10" % Additional file 2: Table S2). The
ISRE motif disruption occurred for 11 genes with an
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(See figure on previous page.)Fig. 2 eQTL interactions with IFN status. a Designation of IFN status for each sample from the real-time
PCR expression of 11 genes (first principal component). b IFN status interaction with the SLFN5 eQTL plotted with respect to rs12602407
genotype (left) and IFN status of the sample (right). ¢ The ISRE motif enriched among eQTLs magnified in IFN high samples. Arrows
indicate positions of the motif interrupted by interaction SNPs (or SNPs in strong LD). Red indicates these SNPs correspond to magnified
eQTLs. d IFN status interaction with the GTF2A2 eQTL plotted with respect to rs2306355 genotype (left) and IFN status of the sample (right)

eQTL magnified in IFN high samples but for only one
gene with an eQTL dampened (permutation p <0.019,
“Magnifiers and dampeners”, Fig. 2c). An example is the
GTF2A2 152306355 eQTL (Pinteract = 8.7 x 1073, FDR
< 0.15, Fig. 2d); rs2306355 is in tight LD (+* = 0.83 in Eu-
ropeans) with rs6494127, which interrupts the TTCNNT
TT core of the ISRE motif (Fig. 2c). This SNP likely dis-
rupts IRF9 and STAT2 binding in the ISGF3 complex
[38], which binds to the ISRE motif. We observe greater
expression of GTF2A2 in individuals with the rs2306355
A allele compared to G; this difference is magnified in
IFN high individuals (Fig. 2d).

We included principal components as covariates in
our model to account for confounding sources of gene
expression variation that are not limited to those that
have been measured in the study. Additional file 2: Table
S3 summarizes the correlation between the principal
components and potential known confounders such as
age, sex, and site of recruitment. As no single principal
component strongly correlates with these known con-
founders, we re-ran the interaction analysis including
age and sex as fixed effects and site as a random effect.
The interaction betas are very highly correlated (r=
0.99) with the original effects suggesting the principal
components are capturing these known confounders
(Additional file 1: Figure S9).

We considered that the principal components in-
cluded as covariates in our model might be mitigating
power. For example, the 4th principal component of
gene expression is correlated with the IFN signature sta-
tus of the sample (s = — 0.7, Additional file 2: Table S3),
so we repeated the IFN interaction analysis without cor-
recting for principal component 4. For all the eQTLs
tested for an IFN interaction, we observed very similar
results with highly correlated z-scores (rs=0.94,
Additional file 1: Figure S10). To further explore this, we
also repeated the IFN interaction analysis without cor-
recting for any expression principal components. While
we find the betas for the interaction term are highly
correlated (r; = 0.88, Additional file 1: Figure S11a), only
23/210 of our IEN eQTL interactions remain significant
with an FDR < 0.2 without correcting for any expression
principal components. This reduction in significant in-
teractions is likely due to the larger standard errors of
the interaction estimate that are observed when princi-
pal components are not corrected for (Additional file 1:
Figure S11b). Furthermore, 107/210 of these interactions
no longer have a main eQTL effect (passing our

Bonferroni corrected p value threshold) without princi-
pal component correction, further reducing our power
to detect significant interactions.

Discovery of eQTL interactions with anti-IL-6 drug
exposure

We then examined whether IL-6 blockade alters the rela-
tionship between genomic variation and gene expression
and induces drug-eQTL interactions. We wanted to first
test if there was evidence of such interactions in our data
set. Again, using a threshold of pjjieract < 0.01 for nominal
significance for interactions, we observed 121 drug-eQTL
interactions with anti-IL-6 out of 4818 eQTLs tested
(Additional file 2: Table S1); similar to IFN interactions,
this is far in excess of the ~ 48 we would expect by chance.
As above, to ensure that these results were not the conse-
quence of statistical artifact, we applied the same stringent
permutation strategy, reassigning which samples were ex-
posed or not to anti-IL-6. After 1000 permutations, we
never observed as many as 121 drug-eQTL interactions
with Pinceract < 0.01 (Additional file 1: Figure S12), suggest-
ing that our eQTLs were indeed highly enriched for those
interacting with anti-IL-6 (ppermute ~ 0/1000 < 0.001).

We analyzed drug and IFN-eQTL interactions inde-
pendently because anti-IL-6 exposure and IFN status are
not associated (Fisher’s exact test p = 0.6). However, to
further ensure that these variables are independent, we
repeated the interaction analysis with a full model in-
cluding the drug, drug interaction, IFN, and IFN inter-
action terms. We find that the interaction betas are
highly concordant (r;=0.99) with the original analysis
(Additional file 1: Figure S13) for both IFN and
drug-eQTL interactions providing further evidence that
IFN status and drug exposure are independent.

To identify specific eQTL events that interact with
anti-IL-6, we again calculated a false discovery rate. We
observed that 72 of these interactions have an FDR < 0.2
(7 with FDR < 0.1 and 1 with FDR < 0.05, Additional file 2:
Table S1). Only eight of these drug-eQTL interactions
overlap with the interactions observed for IFN status
(Additional file 2: Table S1). We note biologically relevant
drug-eQTL interactions for ILIO (Pinteract = 2.6 x 10~ 3,
FDR <0.19, Additional file 1: Figure S14), an
anti-inflammatory cytokine, CLEC4C (Pinteract = 2.9 x 10~ 3,
FDR < 0.19) which has previously been associated in trans
with an SLE risk allele [39] and CLECI8A (pinteract = 5.1 %
10" *, FDR <0.14, Fig. 3a) another member of the C-type
lectin domain family.
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Similar to the IFN-eQTL interactions, we divided the
drug-eQTL interactions into magnifiers (n =33, FDR <
0.2) and dampeners (n = 39, FDR < 0.2) (Additional file 1:
Figure S15) and used the approach as described above to
define transcription factors potentially driving the re-
sponse to IL-6 blockade (Additional file 2: Table S4). One
of the motifs enriched for eQTLs magnified after drug
treatment (compared to dampeners) was IRF4 (HOMER

p=1x10"?). The IRF4 motif disruption occurred for nine
genes, including CLECI8A, with an eQTL magnified after
drug treatment compared to four genes with an eQTL
dampened (Fig. 3b, “Magnifiers and dampeners”). We per-
muted the magnifying and dampening genes and found
this ratio for enrichment is interesting at the gene level
but not significant (p =0.058) and therefore additional
eQTL interactions will be necessary to confirm.
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Comparing differential expression to eQTL interactions

A more common strategy to determine the effect of an en-
vironmental variable is to use differential gene expression.
For IFN status, we identified 1850 differentially expressed
genes (FDR < 0.05 and fold change > 1.2, Additional file 1:
Figure S16, Additional file 2: Table S5). Only 42/210
IFN-eQTL interaction genes also show evidence of differ-
ential expression. For differential expression following
anti-IL-6 treatment, we identified 394 genes (FDR < 0.05
and fold change > 1.2, Additional file 1: Figure S16, Add-
itional file 2: Table S6). Only 2/72 drug-eQTL interaction
genes show evidence of differential gene expression. This
suggests that eQTL interactions offer independent infor-
mation from differential expression, which might contrib-
ute to defining mechanisms.

Concordance of drug-eQTL interactions with protein level
interactions

We hypothesized that interactions due to drug exposure
are likely driven by free IL-6 cytokine levels (our key
clinical biomarker of interest). If this is the case, for
eQTLs dampened by drug exposure, an increase in free
IL-6 should elicit an opposite interaction effect and re-
sult in eQTL magnification. We assessed whether eQTL
interactions with free IL-6 protein levels measured in
the patient serum samples were consistent with those
following IL-6 blockade. We observed enrichment in the
overlap between cytokine interactions and drug interac-
tions (53/72 interactions in expected opposite direction,
Fig. 3¢, p = 3.8 x 10>, binomial test).

Contribution of cell proportions to eQTL interactions
Given that we have conducted our study on whole
blood, the observed eQTL interactions could be the con-
sequence of a cellular subpopulation whose frequency is
being altered by the environmental perturbagen or vari-
ability in cell type proportions between individuals. To
explore this, we first determined B and T cell abundance
from FACS data (“Cell counts”). We find that IFN and
exposure to anti-IL-6 are not correlated with either B or
T cell abundance (Additional file 1: Figure S17) suggest-
ing that the proportions of these particular cell types are
not being altered by the shifts in cytokine levels.

We then went on to explore the effect of correcting
for cell proportions on our eQTL interaction effects. As
our FACS data do not cover all relevant cell types, we
also inferred the relative proportions of nine
hematopoietic populations from the RNA-seq data using
CIBERSORT [40]. For IFN, the interaction betas remain
highly correlated (rs=0.99, r,=0.998, Additional file 1:
Figure S18) after correcting for either B and T cell pro-
portions from the FACS data or the nine hematopoietic
proportions from CIBERSORT. Furthermore, the major-
ity of the interactions (162/210 and 189/210) remain
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significant (FDR < 0.2) after these respective corrections.
We observe a similar pattern for the drug-eQTL interac-
tions (Additional file 1: Figure S19) where the inter-
action betas are again highly correlated (rs=0.98 and r;
=0.993 for FACS and CIBERSORT proportion correc-
tion respectively). However only 15/72 and 54/72
drug-eQTL interactions remain significant after these
corrections. This reduction in significant interactions
suggests that some of these interactions may be related
to changes in cell proportions. However, given that the
interaction betas are so highly correlated and the rela-
tively small effect size of the drug interactions, this could
also be the result of reduced power to detect interactions
following the inclusion of additional covariates in the
model.

Discussion

In this study we mapped eQTLs in a clinical trial of SLE
patients and discovered interactions with IFN and IL-6,
two clinically important cytokines. Our study had dra-
matic variation in IL-6 that was therapeutically induced,
and variation in IFN due to the disease status of the SLE
patients. This, together with the structured study design
with repeat measurements of gene expression across dif-
ferent conditions in the same individual, allowed us to
identify in vivo eQTL interactions.

eQTL interactions with drug interventions or other
therapeutically relevant physiologic variables are import-
ant to identify as they can point to regulatory mecha-
nisms, such as transcription factors or subclasses of
enhancers, acting downstream of the environmental
condition of interest and driving groups of eQTL inter-
actions. The IFN status eQTL interactions we identified
provide support for this approach. By making use of the
direction of effect for the eQTL interaction, we were
able to identify an enrichment of magnifying eQTL
interaction SNPs interrupting the binding sites of tran-
scription factors known to be important in the response
to IFN, such as ISGF3 (the STAT1, STAT2, and IRF9
complex), which binds ISRE. Once we are able to
recognize the downstream drivers of therapeutically rele-
vant clinical variables, then it may become possible to
define more mechanisms of action for drugs and more
precise drug targets.

As a powerful example, we note enrichment of magni-
fying anti-IL-6-eQTL interaction SNPs interrupting the
binding site of IRF4. It has been suggested that IRF4
works downstream of IL-6 by binding BATF and coordi-
nately regulating the production of IL10 and other genes
[41]. Consistent with this, we observed that the ILI0
eQTL does indeed interact with presence of anti-IL-6
(Additional file 1: Figure S14). Previous studies have
highlighted a role for IRF4 in the pathogenesis of auto-
immune diseases in mouse and humans. For example in
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a murine model of SLE, IRF4 knockout mice did not de-
velop lupus nephritis [42]. In humans, IRF4 is associated
with RA [43], a disease in which anti-IL-6 treatment has
been successful [3]. Our findings provide further support
that IRF4 could be a potential therapeutic target for
autoimmune diseases such as RA where anti-IL-6 is ef-
fective [44].

The ability to focus on interactions with specific patient
phenotypes might point to key targets for disease inter-
vention. For example, IEN is a key immunophenotype in
SLE patients, and elevated in SLE compared to healthy
controls [30, 31]. The IFN status immunophenotype is
already itself driving interest in therapeutic targets. A re-
cent phase II clinical trial has shown that an antagonist to
the type I IFN receptor, acting upstream of ISRE, reduced
severity of symptoms in SLE. Interestingly, the antagonist
was more effective in the patients with a high baseline
IFN status [45]. This example provides a compelling case
study for how understanding master regulators of key dis-
ease phenotypes might lead to promising new therapeutic
strategies. We speculate that this provides a mechanism
for stratified medicine for future studies, which may be
applicable to other diseases.

We recognized that computing eQTL interactions re-
quires a robust statistical model that accounts for genotype,
environmental factor, RNA expression levels, repeat mea-
surements, and technical covariates. We were sensitive to
the possibility that pre-processing and normalization of
these factors could potentially have an impact on our re-
sults. For this reason, we used stringent filtering and exam-
ined only variants that were common and where the minor
allele was present for each of the exposure groups. Next, to
confirm enrichment of eQTL interactions, we used a strin-
gent permutation-based strategy that preserved the distri-
bution of genotypes and corresponding expression values.
Finally, we also utilized a standard normal transformation
[46] (“eQTL and interaction analysis”) and observed that
this had little effect on the primary eQTL analysis (r5=0.99
for z scores, Additional file 1: Figure S20) and interaction
analyses (IFN r,=0.84, drug r,=0.76 for z scores,
Additional file 1: Figure S21), or the observed enrichment
over the null in our stringent permutation analysis
(Additional file 1: Figure S22).

We acknowledge that our approach for eQTL discovery
using a stringent Bonferroni corrected p value threshold is
conservative and could reduce our ability to detect eQTLs
with a modest effect in one group and therefore reduce the
number of interactions we observe. However, given the chal-
lenge of identifying interactions, we wanted to ensure that
we were confident in the eQTL effect before testing that ef-
fect for an interaction. Furthermore, as demonstrated by the
SLEN5 IFN-eQTL interaction, we still observe interaction
examples where an eQTL effect is very modest in one group,
in this case, samples designated as IFN low (Fig. 2b).
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While we find that the majority of the eQTL interac-
tions that we identify are independent of differentially
expressed genes, we have used the common strategy for
identifying differential expression, which does not take
into account the genotype of the individuals. The differ-
ential expression presented here therefore represents the
average change in expression across all genotypes, re-
gardless of any eQTL or interaction effect. Furthermore,
like most differential expression approaches, we have
employed a fold change cut-off. Using statistical evi-
dence alone, 121/210 IEN-eQTL interaction genes show
evidence of differential expression (FDR< 0.05) and 45/
72 drug-eQTL interaction genes. This approach high-
lights that many interactions are being driven by changes
in variance of gene expression across the environmental
variables rather than necessarily changes in mean ex-
pression and therefore eQTL interactions can offer add-
itional information to what is identified through
traditional differential expression analysis.

We note that as we have conducted our study on
whole blood, some of our observed interactions could be
driven by variability in cell type proportions between in-
dividuals or as a consequence of cellular subpopulation
frequencies being altered by the environmental perturba-
gen. A limitation of this study is that we lack the
complete blood counts to explore this thoroughly. How-
ever, we determined B and T cell abundance from FACS
data and used CIBERSORT [40] to deconvolute the rela-
tive proportions of nine hematopoietic populations from
the RNA-seq data to explore this (“Cell counts”). While
the number of significant eQTL interactions is reduced
after correcting for cell populations, particularly for
drug-eQTL interactions after correcting for the FACS
proportions, the interaction effects remain very highly
correlated suggesting that the majority of these effects
are not being altered by these cell compositions. How-
ever, further studies will be required to determine if
cytokine shifts are altering cellular populations that were
not detected by these actual or inferred cell counts, or
the principal components that we included in our ana-
lyses. For future studies, it will be informative to quan-
tify a broader range of relative cell types and data from
single-cell technologies may be particularly powerful for
determining cell type-specific eQTLs [47] and their
interactions.

We speculate that drug-eQTL interactions might offer
an alternative pharmacogenetic strategy to assess drug
response. For many biologic medications, predictive
pharmacogenetics through typical association studies
has been challenging; for example, studies trying to de-
fine genetic or transcriptomic biomarkers of anti-TNF
response have not been successful [48, 49]. An eQTL
interaction approach can be wused to define a
genotype-aware score reflecting the biological activity
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that a medication is having upon an individual, given
their allelic combination of multiple genetic markers.
For example, we can define a simple anti-IL-6 exposure
score based on 7 anti-IL-6 eQTL interactions with a
more stringent FDR (FDR <0.1). The rationale for this
drug exposure score is that the expression of a
drug-eQTL interaction gene will reflect the effectiveness
of the drug in the individual but will be dependent on
the genotype of the eQTL interaction SNP. The score is
therefore based on assessing whether the expression of
the eQTL target gene was more consistent with the drug
exposed or the unexposed state for the corresponding
interaction SNP genotype. Unsurprisingly, we found a
difference in drug exposure score between the unex-
posed and exposed samples (Additional file 1: Figure
$23) (rs=0.40, p=2.1x 10" '®); these differences reflect
the fact that the eQTLs were themselves identified by
examining samples with and without drug exposure.
However, while we did not utilize the administered drug
dose to identify drug-eQTL interactions, we observed a
significant correlation between drug dose (10, 50, or
200 mg) and drug exposure score (rs=0.16, p =0.02) in
the drug-exposed samples (Additional file 1: Figure S24).
A simple eQTL interaction score may therefore have the
potential to stratify individuals when assessing response
to a medication, for example, those with a higher drug
exposure score may have a better response to treatment.
Similarly, this score could be correlated with adverse ef-
fects to capture informative gene expression signatures.

We do not find an association between anti-IL-6 ex-
posure and IFN status and only eight of the cytokine
eQTL interactions overlap. Arguably an anti-cytokine
therapeutic that is truly effective in SLE might be ex-
pected to reduce IEN levels, given how central IFN is to
SLE pathogenesis [50]. However, we note a limitation of
this study is that the drug itself did not achieve its pri-
mary efficacy endpoint of improving SLE outcomes.
Hence, while the drug exposure score for this study
tracked with the biological effect of the drug (reducing
free IL-6 protein levels), it might not be useful for SLE
specifically. However, such a scoring system could be
implemented easily in most phase III trials for a broad
range of therapeutics, where the numbers of samples are
far in excess of this phase II trial, ensuring better pow-
ered and more accurate eQTL-interaction mapping.

Conclusions

We devised a framework for identifying in vivo eQTL in-
teractions with therapeutically relevant variables, exploit-
ing repeat measurements from a clinical trial. We have
applied this approach to demonstrate how downstream
regulatory effects of cytokine biology can be elucidated.
This same approach can be applied to a wide range of
other clinically important cytokines, their antagonists, or
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indeed other targeted biologic therapies. We speculate
that this approach might even be applied to the presence
or absence of disease, or disease activity. However, given
the multifaceted nature of disease effects, interpreting an
eQTL interaction in that context might be more challen-
ging. Modern clinical cohorts and clinical trial data sets
with RNA-seq data that has been collected will make
this approach easily applicable on a wide scale.

Methods

Study design

The objectives of this study were to map eQTLs in a co-
hort of lupus patients and identify eQTL interactions
with environmental perturbations such as drug treat-
ment to shed light on drug and disease mechanisms.
SLE patients were recruited to a phase II clinical trial to
test the efficacy and safety of an IL-6 monoclonal anti-
body (PF-04236921). The patient population recruited to
this trial have been detailed extensively by Wallace et al.
[8]. One hundred eighty-three patients (forming a
multi-ethnic cohort) were randomized to receive three
doses of drug (10, 50, or 200 mg) or placebo at three
time points during the trial (weeks 0, 8, and 16). Table 1
summarizes the number of patients and samples
available.

RNA sequencing

We collected peripheral venous blood samples in PAX-
gene Blood RNA tubes (PreAnalytiX GmbH, BD Biosci-
ences) for high-depth RNA-seq profiling at 0, 12, and
24 weeks. We extracted total RNA from blood samples
using the PAXgene Blood RNA kit (Qiagen) at a con-
tract lab using a customized automation method. We
assessed the yield and quality of the isolated RNA using
Quant-iT™ RiboGreen® RNA Assay Kit (Thermo Fisher
Scientific) and Agilent 2100 Bioanalyzer (Agilent Tech-
nologies), respectively. Following quality assessment, we
processed an aliquot of 500—-1000 ng of each RNA with
a GlobinClear-Human kit (Thermo Fisher Scientific) to
remove globin mRNA. We then converted RNA samples
to cDNA libraries using TruSeq RNA Sample Prep Kit

Table 1 Summary of patients and samples available for each
data type. Where relevant, the number of patients/samples
remaining after quality control (QQC) is displayed in brackets

Data Patients (post-QC) Samples (post-QC)
Study design 183 549

RNA sequencing 180 (180) 468 (464)
Genotyping 160 (159)

eQTL analysis 157 379

IFN status 157 376

Free IL-6 protein levels 145 311

T and B cell counts 152 320
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v2 (Illumina) and sequenced using Illumina HiSeq 2000
sequencers. We generated an average of 40 M 100 bp
pair-end reads per sample for downstream analysis.

We successfully obtained 468 RNA-seq profiles from
180 patients. We aligned reads to the reference genome
(GENCODE [51] release 19) and quantified gene expres-
sion using Subread [52] and featureCounts [53] respect-
ively. We included genes with at least 10 reads (CPM >
0.38) in at least 32 samples (minimum number of pa-
tients with both unexposed and exposed RNA-seq assays
in a drug group) prior to normalization. Following QC,
we removed four samples as outliers. We then normal-
ized 20,253 transcripts using the trimmed mean of
M-values method and the edgeR R package [54]. Expres-
sion levels are presented as log,(cpm + 1) and available
through figshare [34].

Genotyping

We genotyped 160 individuals across 964,193 variants
genome-wide with the [llumina HumanOmniExpressExome-
8v1.2 beadchip. We removed SNPs if they deviated from
Hardy-Weinberg Equilibrium (HWE) (p<1x10™7), had a
minor allele frequency < 5%, missingness > 2%, or a heterozy-
gosity rate greater than 3 standard deviations from the mean
(PLINK [55, 56]). For mapping eQTLs, we removed SNPs
on the Y chromosome. Following QC, we used 608,017 vari-
ants for further analysis. We removed one sample with high
missingness and outlying heterozygosity rate from further
analysis.

Imputation

We pre-phased the genotypes with SHAPEIT v2 [57].
We imputed missing genotypes and untyped SNPs using
Impute2 [58] in 5 Mb chunks against the 1000 Genomes
Phase 3 [59] reference panel. To ensure only high-qual-
ity genotypes, and to avoid artifacts that can be induced
by imputation uncertainty, we removed SNPs with an
info score <1, MAF <0.05, or HWE p <1 x 107 leaving
1,595,793 SNPs for further analysis.

Interferon status

We classified the interferon (IFN) status of each sample
at each time point from the expression of 11 IFN re-
sponse genes (HERCS, IFI27, IRF7, ISG1S, LY6E, MXI,
OAS2, OAS3, RSAD2, USP18, GBP5) using TagMan Low
Density Arrays. These 11 genes were selected by identi-
fying transcripts for which there was both a measureable
response to IFN treatment in vitro, as well as differential
expression (reduction in expression level) between base-
line and visits with clinical improvement in the BOLD
study [35]. There is no consensus set of genes to deter-
mine the IFN status of SLE patients but these 11 genes
do overlap with other published gene sets. For example,
4/11 genes are also used in the 7-gene set defined by
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McBride et al. [60] and 9/11 genes overlap with the
21-gene set defined by Yao et al. [61].

The first principal component of the expression of the
11-gene set captured 91.7% of the variation (Add-
itional file 1: Figure S25). The distribution of this first
principal component is nearly bimodal with good separ-
ation (Fig. 2a) and we classified samples as high or low
IFN based on this first principal component score. In
our dataset, we see excellent correlations (r; = 0.86—0.98)
between the real-time PCR expression and the RNA-seq
expression for these 11 genes (Additional file 1: Figure
S26). The first PC of the IFN signature of RNA-seq data
is also strongly correlated with the first PC of the IFN
signature of real-time PCR (r, = 0.96, Additional file 1:
Figure S27). IFN status was available for 376 samples
from 157 subjects.

Drug exposure

Samples were assigned as unexposed (placebo or week 0
samples) or drug exposed (week 12 and week 24 samples
in the drug groups).

Free IL-6 protein levels

We determined free IL-6 protein levels from serum
using a commercial sandwich ELISA selected for binding
only free IL-6. The assay was validated according to
FDA biomarker and fit-for purpose guidelines. Free IL-6
protein levels were available for 311 samples from 145
subjects. Since the distribution of IL-6 levels was highly
skewed, we ranked samples in order of IL-6 protein
levels and included in the model to identify drug-eQTL
interactions.

Statistical analysis

eQTL and interaction analysis

In total, 157 patients (with 379 RNA-seq samples) had good
quality gene expression and genotyping data for eQTL ana-
lysis. All statistical analyses were carried out in R [62].

We defined a cis eQTL as the SNP within 250 kb up-
stream of the GENCODE ([51] transcription start site of
the gene or 250 kb downstream of the transcription end
site. We first applied a linear model for the first available
time point (week 0 sample for n =152, week 12 sample
for n =5) to identify each eQTL using the first 25 princi-
pal components of gene expression and the first 5 prin-
cipal components of genotyping as covariates.

To select the number of gene expression principal
components to include, we counted the number of
eQTL genes identified after incrementally increasing the
number of principal components accounted for in the
model from 0 to 50 by increments of five (Add-
itional file 1: Figure S28). We selected 25 principal com-
ponents of gene expression to maximize the number of
eQTL genes detected while minimizing the number of
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principal components we corrected for. We included 5
principal components of genotyping to account for the
heterogeneity in ethnicity in our cohort (Additional file 1:
Figure S29).

SNPs were encoded as 0, 1, and 2 with respect to the
number of copies of the minor allele. To adjust for mul-
tiple testing during eQTL discovery, we used a stringent
Bonferroni corrected p value threshold of 8.5x 10 °
(0.05/5,872,001 tests). The Bonferroni adjustment assumes
independence among the tests, and we therefore note that
it is a conservative multiple comparisons adjustment.

To map eQTLs using multiple samples for each indi-
vidual, we applied a random intercept linear mixed
model using the first 25 principal components of gene
expression and the first 5 principal components of geno-
typing as covariates and patient as a random effect:

25
Eiv/ =0+ /))geno'gj + (Kllj) + Z d)l'pci,l
=1

5
D Y PCim
m=1

where E;; is gene expression for the ith sample from
the jth subject, 6 is the intercept, Bgeno is the effect
(eQTL) of the genotype for individual j (g), (ki) is the
random effect for the ith sample from the jth subject, ¢,
is the effect of principal component / of gene expression
for sample i (pc;;), and y,, is the effect of principal com-
ponent m of genotyping for subject j (pc;,,,).

We fitted the linear mixed models using the lme4 R
package [63]. We assumed covariance between samples
from the same individual, but did not assume any struc-
ture in this covariance.

We used the most significant SNP (with p < 8.5 x 10~
%) from the 4818 identified eQTL genes to explore eQTL
interactions. For each environmental interaction ana-
lysis, we further filtered these eQTLs to include only
those with at least two individuals homozygous for the
minor allele of the SNP being tested in each of the envir-
onmental factor groups. For example, we required two
of these individuals in each of the drug exposed and
drug unexposed groups. To identify eQTL interactions,
we added an additional covariate to the model for ex-
ample drug exposure, and an interaction term between
this covariate and the genotype of the SNP:

25
Eia/ =0+ /))geno'gj + (Kllj) + Z ¢l'pci,l
=1

5
+ Z Ym'pcjﬁm + /))drug'di + /))xdlg/

m=1

where E;; is gene expression for the ith sample from
the jth subject, 6 is the intercept, Bgeno is the effect

Page 12 of 15

(eQTL) of the genotype for individual j (g)), (k;|j) is the
random effect for the ith sample from the jth subject, ¢,
is the effect of principal component / of gene expression
for sample i (pc;y), ¥, is the effect of principal compo-
nent m of genotyping for subject j (pc; ), Barug is the ef-
fect (differential gene expression) of drug for sample i
(d;), and B, is the effect of the drug genotype interaction
(d; + g).

We determined the significance of the interaction term
with a likelihood ratio test.

To rigorously confirm the relative enrichment of
eQTL interactions, we shuffled the interaction covariate
(for example drug exposure) 1000 times and calculated
the number of significant interactions observed in each
permutation. Our primary goal for the permutation ana-
lysis was to retain the main eQTL effect while examining
only the effect of the environmental factor on the inter-
action. In this study, the main purpose of the covariates
included in the model is to ensure the main eQTL effect
is found. For IFN high/low status, we shuffled across all
samples. For drug interaction permutation analysis, we
maintained the number of individuals in the drug group
and the number of samples with exposure to drug. We
calculated a g value for each interaction using the g
value package [36]. Additional file 1: Figure S30 shows
the observed versus the expected p values for the inter-
action analyses.

The expression of the majority of genes followed a
normal distribution (Additional file 1: Figure S31) but to
assess whether non-normality could be causing an infla-
tion of our test statistic, we repeated the identification of
eQTLs and eQTL interactions following the standard
normal transformation. We transformed the expression
values of each gene to their respective quantiles of a nor-
mal distribution using the qqnorm function in R, break-
ing any ties (for example expression levels of zero in
some individuals) randomly.

Concordance with an eQTL study in healthy individuals

In the SLE cohort, we classified 4818 cis eQTL genes (p
<85x107°). The z-score for the most associated SNP
for each of these genes was compared to the z-score
from a previously published eQTL dataset from whole
blood from 2166 healthy individuals [11]. 4113/4818
SNP-gene pairs (85.4%) were also reported in the BIOS
dataset (FDR < 0.05). After removing 301 SNPs, which
could not be mapped to a strand, 3770/3812 (98.9%) had
a z-score (eQTL effect) in a consistent direction.

Magnifiers and dampeners

An eQTL interaction can either magnify or dampen the
original eQTL effect. We multiplied the interaction
z-score by the sign of the original eQTL effect (genotype
beta) and defined magnifiers as interactions with an
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adjusted z-score >0 and dampeners as interactions with
an adjusted z-score < 0.

Differential gene expression analysis

To identify differentially expressed genes following drug ex-
posure (unexposed or exposed), we applied a random inter-
cept linear mixed model with patient as a random effect.
We calculated a g value using the g value package [36].

Drug exposure score

We assigned a drug exposure score to each sample. We
calculated a score for each gene (see equation below)
and then averaged across the seven drug-eQTL genes
(FDR <0.1) to give the final drug exposure score.

Drug exposure score for gene
1 (/G-Gunewp\" 1 [G-Grgp\”
_2< SE > _2< SE >
where G is gene expression for a given sample, Gunexp
is predicted mean gene expression for unexposed sam-
ples of the relevant SNP genotype, Ggy, is predicted
mean gene expression for exposed samples of the rele-
vant SNP genotype, and SE is standard error for the
intercept term of the model (unexposed expression for

genotype 0).

HOMER analysis for transcription factor binding motif
enrichment

We used the HOMER software suite [37] to look for en-
richment of transcription factor binding motifs in the
210 IFN-eQTL interactions (FDR <0.2) and the 72
drug-eQTL interactions (FDR <0.2). Each eQTL inter-
action was identified using the most highly associated
SNP for that eQTL. However, as this SNP is not neces-
sarily the functional SNP, we additionally considered all
those with an * >0.8 in the 1000 Genomes European
population [59] within the cis eQTL window. We de-
fined our motif search window as 20 bp on either side of
each SNP (i.e.,, 41 bp wide).

For each environmental factor, we divided the eQTL in-
teractions into magnifiers or dampeners and conducted
two separate HOMER analyses: the proportion of magni-
fying eQTL interaction sequences with a motif compared
to the proportion of dampening interaction sequences
with a motif and vice versa. HOMER reported the tran-
scription factor motifs that were significantly enriched in
one category of interactions relative to the other. Motifs
were plotted using the SeqLogo R library [64].

We determined permutation p values for enrichment
of the ISRE and IRF4 transcription factor binding sites
as follows. For ISRE, the motif is interrupted by inter-
action SNPs (or SNPs in LD) corresponding to 11 mag-
nifying genes and 1 dampening gene. We permuted
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which genes were labeled as magnifiers or dampeners
100,000 times and counted the number of genes in each
category with an ISRE motif interrupted. We found 1855
occurrences from 100,000 trials with at least 11 magnify-
ing genes (p <0.019). For IRF4, the motif is interrupted
by SNPs corresponding to 9 magnifying genes and 4
dampening genes. Using the same permutation ap-
proach, we found 5801 occurrences from 100,000 trials
with at least 9 magnifying genes (p < 0.058).

Cell counts

We collected 4 ml whole blood in sodium heparin vacu-
tainers for cytometry analysis at weeks 0, 12, and 24.
Samples were subjected to flow cytometry for T cell and
B cell immunophenotyping (Additional file 1: Figure
$32). We counted T (CD3+) and B (CD19+) cells as a
percentage of lymphocytes (CD45+, SSC-small) because
of the abnormal distribution of lymphocytes observed in
SLE [65]. These counts are therefore inversely correlated
(r¢=—0.65, Additional file 1: Figure S33). FACS data
were available for 320 samples from 152 subjects.

We used CIBERSORT [40] to deconvolute proportions
of cell types from the RNA-seq data. We used the LM22
database from CIBERSORT which contains cell signatures
for 22 cell types and grouped these into nine representa-
tive cell types (eosinophils, neutrophils, B cells, T cells,
natural killer cells, macrophages, dendritic cells, mast
cells, and monocytes).
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