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Abstract

Current single-cell RNA-seq approaches are hindered by preamplification bias, loss of strand of origin information,
and the inability to observe small-RNA and mRNA dual transcriptomes. Here, we introduce a single-cell holo-
transcriptome sequencing (Holo-Seq) that overcomes all three hurdles. Holo-Seq has the same quantitative
accuracy and uniform coverage with a complete strand of origin information as bulk RNA-seq. Most importantly,
Holo-Seq can simultaneously observe small RNAs and mRNAs in a single cell. Furthermore, we acquire small RNA
and mRNA dual transcriptomes of 32 human hepatocellular carcinoma single cells, which display the genome-wide
super-enhancer activity and hepatic neoplasm kinetics of these cells.
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Background
No two cells are the same, which can be largely reflected
at the transcriptional level, and single-cell RNA-Seq is
an ideal approach to demonstrate the differences across
cells [1–3]. Although many methods have been estab-
lished to probe transcriptomes from single cells [4–12],
more efforts are needed to acquire the same quantitative
accuracy and a complete strand of origin information
provided by bulk RNA-Seq. Moreover, an approach to
observing both small RNA and mRNA transcriptomes
simultaneously in a single cell is still lacking. These limita-
tions are major hurdles for detecting the subtle differences
in transcriptomes, decoding non-coding information, un-
derstanding miRNA regulating networks and probing
genome-wide super-enhancer activity in single cells, which
are all crucial for the identification and characterization of
cell types, states, and rare cellular phenotypes [13–15].
Current bulk RNA-Seq approaches are well developed

and highly accurate for obtaining mRNA, small RNA,

and non-coding RNA information [13, 16–18]. We
reason that adapting the conventional bulk RNA-Seq
approach to the single-cell level will be an ideal and
applicable solution to overcome the hurdles that
currently limit single-cell RNA-Seq methods.
Here, we introduce a single-cell holo-transcriptome

sequencing (Holo-Seq) method that uses in vitro
transcribed RNAs as the carrier to protect against cellu-
lar RNA loss during conventional library construction
procedures. Then, restriction endonucleases are used to
remove carrier-generated cDNA fragments from sequen-
cing libraries. We successfully used Holo-Seq to adapt
bulk RNA-Seq approaches, such as poly-A selection
mRNA-Seq, directional total RNA-Seq, and small
RNA-Seq, to single-cell level. As expected, Holo-Seq
attained the same quantitative accuracy as bulk
mRNA-Seq. More importantly, Holo-Seq can retain a
complete strand of origin information and simultan-
eously probe small RNA and mRNA transcriptomes in a
single cell.
Furthermore, we applied Holo-Seq to probe small

RNA-mRNA dual transcriptomes from 32 single cells
isolated from a human hepatocellular carcinoma. We
found three expression-based subpopulations (Exp-sub-
populations) with six featured transcript groups and
three super-enhancer-based subpopulations (SE-subpo-
pulations). We also inferred a potential hepatic neoplasm
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kinetics model showing that (1) HCC malignant transition
couples with genome-wide super-enhancer remodeling
and (2) the downregulation of mitochondrial activity and
the upregulation of both tumor suppressor miRNA and
oncomiRs happen at the early stage of malignant transi-
tion before activating tumorigenesis signaling pathways.

Results
Holo-Seq has same accuracy and coverage as bulk
mRNA-Seq
We utilized the T7 promoter to transcribe carrier RNA
from an artificial DNA fragment (Additional file 1:
Figure S1). No reads (50 bp) generated from the carrier
DNA, which contains a Not I site every 20–30 bp
(Additional file 1: Figure S1), could be mapped to the
mouse or human genome using TopHat (2 mismatches
allowed). We added carrier RNA immediately after sin-
gle-cell lysis and constructed the mRNA sequencing li-
brary following the manufacturer’s protocol after poly-A
selection (NEB 7530; Additional file 1: Figure S2). To
remove the carrier-oriented cDNA fragments from the
sequencing library, we digested the library with Not I
before sequencing (Additional file 1: Figure S1). Two
thousand six hundred seventy-one human genes and
1779 mouse genes contain Not I site and most of them
(> 90%) contain no more than 2 sites (Additional file 2:
Table S1, S2). Because Holo-Seq fragments mRNAs to
generate short cDNAs (200–300 bp) before library con-
struction, Not I digestion only disrupts limited reads and
causes no significant bias (Additional file 2: Table S1, S2;
Additional file 1: Figure S3 a, b). We also provided an
alternative to removing the carrier cDNA fragments using
in vitro CRISPR/Cas9 digestion if the restriction enzyme
was not accepted (Additional file 1: Figure S1; S3 c, d).
The carrier removal efficiency (> 85%) is high (Additional
file 2: Table S3), and the mapping results of Holo-Seq
libraries are reasonable (Additional file 2: Table S3), which
indicate that the carrier does not significantly interfere
with the library construction and do not significantly
increase the cost (Additional file 2: Table S4).
To compare the accuracy of Holo-Seq and Smart-

Seq2, we generated Holo-Seq and Smart-Seq2 libraries
from 1 ng diluted total RNA (total RNA from approxi-
mately 100 mESCs). This strategy was based on a previ-
ous work showing that nanogram-diluted sampling of
total RNAs could satisfactorily approximate bulk total
RNA distribution and be stably profiled by Smart-Seq2
[5], and we used conventional bulk mRNA-Seq (800 ng
of total RNAs input) as the benchmark. By comparing
the reads per kilobase per million mapped reads (RPKM)
values of approximately 14,000 genes, the accuracy of
Holo-Seq (Pearson r 0.997–0.998) was significantly
better than that of Smart-Seq2 (Pearson r 0.725–0.779)
(Fig. 1a, b, c; Additional file 1: Figure S4, S5). Next, we

visualized the data from Holo-Seq and Smart-Seq2 in
two dimensions using t-distributed stochastic neighbor
embedding (t-SNE) and hierarchical cluster analysis
(HCA). As expected, the data of Holo-Seq (1 ng) and
Holo-Seq (SC) tightly surround the data of bulk
mRNA-Seq, whereas the data of Smart-Seq2 (1 ng) and
Smart-Seq2 (SC) are separated from them (Fig. 1d;
Additional file 1: Figure S6). The results show again that
the accuracy of Holo-Seq is significantly better than that
of Smart-Seq2. We also compared the Holo-Seq with
Smart-Seq2 coupled with Nextera XT library construc-
tion workflow and got similar results (Additional file 1:
Figure S7). This suggests that the library construction
step does not cause the low accuracy of Smart-Seq2. In
addition, the sensitivity of Holo-Seq and Smart-Seq2 for
probing poly-A RNAs are comparable. Holo-Seq consist-
ently detected 13,258 ± 128 genes from 1 ng mESC total
RNA and 9994 ± 899 genes from single mESC cells
(Fig. 1e).
The complexity of the library is measured by the

number of unique mapped reads which is decided by the
unique broken patterns of cDNA during the fragmenta-
tion step. The high complexity SMART-Seq is artificial
because SMART-Seq preamplifies the large cDNAs
before the fragmentation step that can lead to more
broken patterns of cDNAs. As expected, although the
saturated point of Smart-Seq2 (single cells) is higher
than Holo-Seq (single cells) (Additional file 1: Figure S8
a, b, c), Smart-Seq2 detected fewer genes than Holo-Seq
at the same exome-mapped depth (Additional file 1:
Figure S8 a, b, c).
Because the PCR efficiency of long DNA fragments is

markedly lower than that of short fragments, the pream-
plification step of Smart-Seq2 inevitably causes coverage
bias, especially for long cDNAs. Unsurprisingly, the
central regions of long cDNAs are less covered by
Smart-Seq2, and once the cDNA is longer than 10 kb,
the central region is barely covered (Fig. 1f, g). Owing to
the carrier RNA, Holo-Seq can directly construct the li-
brary following the conventional mRNA-Seq pipeline
without preamplification, which enables uniform cover-
age for cDNAs of all lengths (Fig. 1f, g).

Holo-Seq accurately profiles total RNAs with a complete
strand of origin information
A strand of origin information plays an important role
in accurately quantifying gene expression for approxi-
mately 19% of genes in which overlapping genomic loci
are transcribed from opposite strands [19]. Additionally,
RNAs transcribed from the antisense strands (either
introns or coding regions) contain important informa-
tion defining the type and stage of cells [20]. Current
single-cell methods cannot retain a complete strand of
origin information. To overcome this challenge, we
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adapted the conventional directional total RNA-Seq
pipeline to the single-cell level (Additional file 1:
Figure S9). We probed total RNA with a complete
strand of origin information from 10 individual
mESCs. The carrier removal efficiency (> 85%) is high
(Additional file 2: Table S3), and the mapping results
of Holo-Seq libraries are reasonable (Additional file 2:

Table S3). Because we did not employ any rRNA
removing strategy, these libraries have a high percent-
age of rRNA mapped reads (50–60%). To evaluate the
accuracy, we first combined an equal number of
mapped reads from each of the ten cells and then
compared the RPKM values of expressed genes
between the combined data and a directional bulk

Fig. 1 Holo-Seq profiles mRNA with the same accuracy and coverage as bulk mRNA-Seq. a An RPKM scatterplot of expressed genes between
Smart-Seq2 and bulk mRNA-Seq. 1 ng of mESC total RNA was used. b An RPKM scatterplot of expressed genes between Holo-Seq (mRNA) and
bulk mRNA-Seq. 1 ng of mESC total RNA was used. c Pearson correlation coefficient heat map of the mRNA profiles generated from 1 ng of total
RNA by Holo-Seq (mRNA), Smart-Seq2, and bulk-mRNA-Seq. Three biological replicates were performed. d t-SNE analysis of mESCs (bulk-mRNA-
Seq), mESC single cells (Holo-Seq and Smart-Seq2), and 1 ng mESCs total RNA (Holo-Seq and Smart-Seq2). Principal components were used as
inputs. e Comparison of the number of genes detected by Holo-Seq and Smart-Seq2 from 1 ng mESC total RNA and mESC single cells at same
mapped depths (6.8 M and 3.2 M). f Comparison of the read coverage across transcripts of different lengths between Holo-Seq and Smart-Seq2
from mESCs single cells. The read coverage over the transcripts is displayed along with the percentage of the distance from their 3′ end. Shaded
regions indicate the standard deviation (SD). g The plot of the signals of Ahnak detected from mESCs (bulk mRNA-Seq), 1 ng mESC total RNA
(Holo-Seq and Smart-Seq2), and a mESCs single cell (Holo-Seq) on the University of California Santa Clara (UCSC) gene browser
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mRNA-Seq. Because the mRNAs from 10 randomly
selected mESCs approximate the bulk mESCs [21],
the high correlation values indicate that the quantita-
tive accuracy of Holo-Seq probing total RNAs with a
complete strand of origin information is comparable
to that of the bulk directional mRNA-Seq (Fig. 2a).
Next, we compared the coverage and the sensitivity

between Holo-Seq and two published approaches
(SUPeR-Seq and MATQ-Seq) that can also probe total

RNAs from single cells [22, 23]. Holo-Seq total RNA
pipeline can detect 11126 ± 1447 genes from HEK293T
single cells, which is comparable to that of SUPeR-Seq,
MATQ-Seq, and Smart-Seq2 [6] (Fig. 2b). With the same
exome-mapped reads, SUPeR-Seq detected fewer genes
than Holo-Seq, but MATQ-Seq detected more genes
than Holo-Seq (Additional file 1: Figure S8 d). Although
both SUPeR-Seq and MATQ-Seq preamplify the large
cDNAs before the fragmentation step, the special

Fig. 2 Holo-Seq accurately profiles total RNAs with a complete strand of origin information from single cells. a RPKM scatterplots of expressed
genes between the combined dataset (total RNA with a complete strand of origin information from 10 mESCs single cells) and a directional bulk
mRNA-Seq. b Comparison of the detected gene number in HEK293T single cells at the maximum exome-mapped depth of MATQ-Seq (UMI
labeled reads) and 1.2M unique exome-mapped depth of Holo-Seq, SUPeR-Seq, and Smart-Seq2. c Read coverage across transcripts of different
lengths of three methods in HEK293T single cells. The read coverage over the transcripts is displayed along with the percentage of the distance
from their 3′ end. Shaded regions indicate the standard deviation
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preamplification strategy of MATQ-Seq promotes its
performance [23]. Both Holo-Seq and MATQ-Seq show
uniform coverage across the transcripts over 2 kb with-
out significant bias, whereas SUPeR-Seq has apparent
5′- or 3′-end bias. Interestingly, both SUPeR-Seq and
MATQ-Seq show significant bias across the 0–2 kb tran-
scripts which can be uniformly covered by Holo-Seq
total RNA pipeline (Fig. 2c).
Antisense transcripts, many of which lacking annota-

tions, are important regulators of gene transcription,
translation, and RNA degradation and may contribute to
self-regulatory circuits that allow genes to regulate
themselves expression [24]. Using a complete strand of
origin information acquired by Holo-Seq total RNA
pipeline, we identified 301 (66 known, 235 unannotated)
antisense transcripts and analyzed their abundance in
ten individual mESCs (Additional file 3: Table S5;
Additional file 1: Figure S10). For example, the antisense
transcript from Zmynd8, at an Oct4-occupied enhancer,
has been shown to be an important regulator of mESCs
self-renewal [25] (Fig. 3a; Additional file 1: Figure S10 b).
A strand of origin information can also help accurately
count reads from genes with overlapping genomic loci
that are transcribed from opposite strands (Additional
file 1: Figure S11). Next, we found that antisense transcript
expression is more diverse than the mRNA expression
in ten individual mESCs (Fig. 3b, c; Additional file 1:
Figure S10, S12) and can efficiently identify mESCs
from mouse bone marrow-originated T cells (Fig. 3d).
Overall, the antisense transcript information acquired by
Holo-Seq total RNA pipeline is valuable for characterizing
the cell type or state at single-cell resolution.
Pre-mRNA abundance can be measured using reads

mapped to introns. A complete strand of origin informa-
tion excluding antisense strand reads enabled us to
accurately count the intron-mapped reads. In the ten
mESCs, we assessed the expression level, pre-mRNA
bursting Fano factor (represented by the ratio of vari-
ance to mean), and mRNA bursting Fano factor of each
expressed gene [23]. Although the expression levels and
mRNA bursting were similar, the pre-mRNA bursting of
some housekeeping genes was significantly higher than
that of some core transcriptional factors (Fig. 3e;
Additional file 1: Figure S13; Additional file 3: Table S6).
This indicates that the RNA metabolism kinetics of these
core genes is different from housekeeping genes, which
could be the result of different underlying transcription,
splicing, or degradation mechanisms [26–28].

Holo-Seq simultaneously profiles small RNA and mRNA
transcriptomes from single cells
A recent effort has established small RNAs, especially miR-
NAs, as the molecular identification and characterization
of cell types and states at the single-cell level [29]. Here, we

utilized Holo-Seq to adopt the conventional small RNA
transcriptome pipeline to the single-cell level (Additional
file 1: Figure S14). Since we did not find any Not I sites in
known human and mouse miRNAs, tsRNAs, and snoR-
NAs, we still use Not I to remove the small-RNA carriers.
We probed small RNAs from 13 mESC single cells,

and the small RNAs were identified computationally (see
the “Methods” section). On average, we captured 242
miRNAs, 252 tsRNAs, and 70 snoRNAs per cell
(Additional file 3: Tables S7-S9; Fig. 4a). The saturation
curve and sequencing depth of Holo-Seq (2–3 M mouse
mapped reads) for probing miRNA are comparable with
that of the previous study (~ 2 M human mapped reads)
(Additional file 1: Figure S15; Additional file 2: Table S3)
[29]. The length of detected miRNAs was approximately
22 nt (Fig. 4b), and the miRNA and tsRNA abundance
profiles have higher heterogeneity than the snoRNA
abundance profile (Fig. 4c), which is consistent with the
previous study that miRNA and tsRNA can be more
useful to display cell types and single-cell variations than
snoRNAs [29]. To validate the quantitative accuracy of
Holo-Seq small RNA pipeline, we probe small RNAs
from 1 ng and bulk total RNA of ZHBTc4 cells. By com-
paring the RPM (reads per million mapped reads) values
of approximately 389 small RNAs (snoRNA, tsRNA and
miRNA), the accuracy of Holo-Seq is high (Fig. 4d;
Additional file 1: Figure S16) (Pearson r 0.9904–0.9998).
Each miRNA likely downregulates multiple mRNAs,

and each mRNA can also be targeted by multiple
miRNAs to produce synergistic effects [30]. Thus,
focusing on miRNA-mRNA networks rather than
miRNAs can help decode miRNA functions at the
single-cell resolution. However, current methods
cannot observe small RNA-mRNA dual transcrip-
tomes from single cells.
To profile the small RNA-mRNA dual transcriptomes,

we performed a poly-A selection before implementation
of the small RNA library construction pipeline. We
successfully acquired dual transcriptome information
from seven individual mESCs. As proof of principle that
dual transcriptome information could facilitate under-
standing of the miRNA-mRNA regulatory networks, we
pairwise compared the abundance of miRNAs and their
potential targets (623 total pairs) identified in silico [31]
(Additional file 3: Table S10). Further analyses revealed
that 24 miRNA-mRNA pairs displayed significant nega-
tive correlations (R < 0; P < 0.05) of their abundance and
presented heterogeneity in seven individual mESCs
(Fig. 5a, b; Additional file 3: Table S10).
Super-enhancers are genomic regions comprising

multiple enhancers that are collectively occupied by
transcription factors to regulate the transcription of
genes important for controlling and defining cell identity
[32–34]. The abundance of super-enhancer-regulated
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genes can be used to measure super-enhancer activity.
Similar to mRNAs, miRNAs can be regulated by
super-enhancer as master miRNAs to orchestrate cell
identity [14]. Using single-cell small RNA-mRNA dual
transcriptomes, we can extract the abundance of
super-enhancer-regulated master miRNAs and mRNAs
(Additional file 3: Tables S11, S12) and better display
genome-wide super-enhancer activity at single-cell reso-
lution than using a solo transcriptome (miRNA or
mRNA) (Fig. 5c, d; Additional file 1: Figure S17).
Together, the small RNA-mRNA dual transcriptome

information not only helps validate the miRNA

targets in vivo but also provides a novel perspective
(super-enhancer) to explore cell heterogeneity.

The small RNA-mRNA dual transcriptome sequencing of
HCC single cells
Changes in miRNA transcriptome can have a profound
effect on the expression of several hundred mRNAs
which propels the cells towards transformation [35, 36].
Although single-cell mRNA sequencing has provided
many insights into the neoplastic progression and ther-
apy of cancers [2, 37], the heterogeneity of miRNAs and
its relationship with mRNA transcriptome in cancer still

Fig. 3 Strand of origin information of Holo-Seq presents intronic and antisense transcripts in single cells. a The plot of the signal from an
unannotated antisense transcript inside Zmynd8 locus. The enhancer region is indicated by both Oct4 and H3K4me3 ChIP-Seq signal clusters.
b, c Pearson correlation heat maps of coding genes (b) and antisense transcripts (c) abundance profiled by Holo-Seq from 10 mESC single cells.
d t-SNE analysis of mESCs (bulk directional RNA-Seq), mESCs single cells (Holo-Seq), mESCs single cells combined (Holo-Seq), and mouse bone
marrow T cells (bulk directional RNA-Seq) using their antisense transcripts. e 3D scatterplot of the gene expression level, intron RPKM Fano factor,
and mRNA RPKM Fano factor of a core gene group (red dots) and a housekeeping gene group (blue dots) in 10 mESC single cells (Additional
file 3: Table S6). With similar gene expression level (mRNA RPKM), the core gene group has significantly lower pre-mRNA bursting than that of the
housekeeping gene group
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cannot be characterized at single-cell resolution. Here,
we analyzed the small RNA-mRNA dual transcriptomes
from 32 single cells isolated from a moderately differen-
tiated human HCC sample (Additional file 1: Figure S18;
Additional file 3: Table S13). Because the previous report
has shown that miRNA and mRNA profiles possessed
the better capability to assign single-cell heterogeneity
[29], we used miRNAs and mRNAs to separate the 32
cells into three expression-based subpopulations
(Exp-subpopulations) with six featured transcript groups
(miRNAs and mRNAs) through an unsupervised hier-
archical clustering analysis (Fig. 6a; Additional file 3:
Table S14). Exp-subpopulation-I cells have a significantly
higher expression of group 5 genes, significantly lower

expression of group 2, 3, 4, and 6 genes and moderate
expression of group 1 genes (p < 0.01; Fig. 6a; Additional
file 1: Figure S19). Exp-subpopulation-II cells have a
significantly higher expression of group 1, 2, and 6 genes,
significantly lower expression of group 4 and 5 genes and
moderate expression of group 3 genes (p < 0.05; Fig. 6a;
Additional file 1: Figure S19). Exp-subpopulation-III cells
have a significantly higher expression of group 1, 4, and 3
genes, significantly lower expression of group 5 genes and
moderate expression of group 2 and 6 genes (p < 0.01;
Fig. 6a; Additional file 1: Figure S19). The group 1 genes
were not significantly enriched in Gene Ontology (GO)
terms but contain F10, F9, PROZ, etc., which function in
complement and coagulation cascades and have been

Fig. 4 The characterization of small RNAs transcriptome by Holo-Seq. a Number of miRNAs, tsRNAs and snoRNAs detected in mESC single cells.
b Size distribution of miRNAs profiled from mESC single cells. Error bars indicate the Standard Deviation (SD). c Heat map of the relative
expression levels of miRNAs, tsRNAs and snoRNAs profiled from 13 mESC single cells. d Pearson correlation heat maps of miRNAs, tsRNAs, and
snoRNAs abundance profiled from ZHBTc4 cells (bulk small-RNA-Seq) and 1 ng ZHBTc4 total RNAs (Holo-Seq)
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considered biomarkers of many tumors [38, 39] (Fig. 6a, b;
Additional file 3: Tables S14, S15). The group 3 genes were
significantly enriched in the pathways of response to IFN-γ
which are majorly contributed by HLA genes (Fig. 6a, b;
Additional file 3: Tables S14, S15). The group 4 genes were
significantly enriched in major signaling pathways promot-
ing tumorigenesis, i.e., cell surface receptor signaling path-
ways [40, 41] (Fig. 6a, b; Additional file 3: Tables S14, S15).
The group 5 genes were significantly enriched in GO terms
which antagonize the Warburg effect of tumor cells, i.e.,
mitochondrial respiratory [42, 43] (Fig. 6a, b; Additional
file 3: Tables S14, S15). Most interestingly, the groups 2
and 6 were miRNAs which contain 23 well-documented
tumor suppressor miRNAs, such as miR26b, miR125, and
miR139 [44–46] and two oncomiRs (miR221 and miR155)

[47, 48] (Fig. 6a, b; Additional file 3: Table S14). Thus,
Exp-subpopulation-I cells are likely less malignant (or
benign) with high mitochondrial activity and low HLA
gene expression [49] (Fig. 6a, b); the Exp-subpopulation-II
cells are likely moderately malignant with low mitochon-
drial activity, moderately HLA gene expression and high
tumor suppressor miRNA and oncomiR expression
(Fig. 6a, b); the subpopulation-III cells are likely the most
malignant with low mitochondrial activity, low tumor
suppressor miRNA expression, high HLA gene expres-
sion, and high oncogenic signaling pathway activity
(Fig. 6a, b). The significant downregulation of the group
2 and 6 miRNAs in Exp-subpopulation-III compared with
Exp-subpopulation-II suggests that group 2 and 6
miRNAs contain potential tumor suppressors (Fig. 6a, b;

Fig. 5 Holo-Seq profiles small RNA-mRNA dual transcriptomes from single cells. a miRNA-mRNA regulatory modules identified by small RNA-
mRNA dual transcriptome sequencing from mESC single cells. b Heat map of the relative expression of miRNAs and their potential targeting
mRNAs identified by small RNA-mRNA dual transcriptome sequencing from mESC single cells. c, d Pearson correlation heat maps of the
genome-wide super-enhancer activity of seven mESC single cells
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Additional file 3: Table S14). Next, we pairwise compared
the abundance of miRNAs with their potential targets in
HCC single cells [31] (Additional file 3: Table S16) and
revealed that 1765 miRNA-mRNA pairs displayed a
negative correlation of their abundance (Additional
file 3: Tables S17, S18). Among them, 265 potential
miRNA-mRNA regulatory modules show that tumor
suppressor miRNAs antagonize the expression of

major oncogenes upregulated in Exp-subpopulation-III
cells, such as PIK3CA, MYC, EGFR, and KRAS and
oncomiRs antagonize the expression of tumor sup-
pressors upregulated in Exp-subpopulation-I cells,
such as CDKN1C, HES7, CDKN2A, and NFKB1
(Figs. 7a and 6a; Additional file 3: Tables S17, S18).
Super-enhancers (SEs) enable cell-type-specific gene

regulation and the cell identity maintenance [26].

Fig. 6 miRNA-mRNA dual transcriptome analyses of hepatocellular carcinoma (HCC) single cells. a Unsupervised hierarchical clustering analysis of
32 HCC single cells based on the top variant mRNAs and miRNAs (details in the “Methods” section). Three expression-based cell subpopulations
(Exp-subpopulation) and six differential expressed gene groups were identified (dashed squares). Featured cancer-related genes are labeled on
the right. b Featured cancer-related Gene Ontology (GO) terms in gene groups 1, 3, 4, and 5
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Furthermore, we used the abundance of master miRNAs
and super-enhancer-regulated mRNAs to measure the
genome-wide super-enhancer activity of these HCC cells
[14] (Additional file 3: Tables S19, S20). The correlation
matrix of genome-wide super-enhancer activity
discriminated three super-enhancer-based subpopula-
tions (SE-subpopulation-A, SE-subpopulation-B and
SE-subpopulation-C) (Fig. 7b; Additional file 3: Table
S21). All SE-subpopulation-C cells are from two malig-
nant Exp-subpopulation-II and Exp-subpopulation-III
(Fig. 7b). SE-subpopulation-B contains four cells (23, 5,

18, and 12) from Exp-subpopulation-I and two cells (31
and 17) from Exp-subpopulation-II (Fig. 7b). All
SE-subpopulation-A cells are from less malignant (or
benign) Exp-subpopulation-I (Fig. 7b). Interestingly, the
super-enhancer activity of SE-subpopulation-B cells
moderately correlates with that of both SE-subpopulation-
A and SE-subpopulation-C cells, whereas the super-en-
hancer activity of SE-subpopulation-A and SE-subpopula-
tion-C cells only correlates with that of the cells in same
SE-subpopulations (Fig. 7b). These results suggest that
SE-subpopulation-B cells are in benign-to-malignant

Fig. 7 miRNA-mRNA regulatory modules and super-enhancer activity analysis of hepatocellular carcinoma (HCC) single cells. a Identified miRNA-
mRNA regulatory modules related to tumorgenesis. b Correlation heat map of the genome-wide super-enhancer activity of 32 HCC single cells
(Left panel). The cells are ranked in the same order as Fig. 6a. Three super-enhancer-based cell subpopulations (SE-subpopulation) are identified.
Right panels is the relative expression heat map of the gene sets related to mitochondrial activity, oncogenic signals pathways, tumor suppressor
miRNAs, and oncomiRs of 32 HCC single cells

Xiao et al. Genome Biology  (2018) 19:163 Page 10 of 22



transition and all malignant cells (moderately and most
malignant cells) have similar genome-wide super-enhan-
cer activity profile (Fig. 7b). Taken together, our small
RNA-mRNA dual transcriptome single-cell sequencing
suggests a potential hepatic neoplasm kinetics model
showing that (1) HCC malignant transition couples with
genome-wide super-enhancer remodeling and (2) the
downregulation of mitochondrial activity and the upregu-
lation of tumor suppressor miRNAs and oncomiRs
happen in the early stage of malignant transition before
activating tumorigenesis signaling pathways (Fig. 7b;
Additional file 3: Table S22).

Discussion and conclusions
Preamplification of long cDNA fragments, which have
various lengths and secondary structures, is a key limita-
tion to increasing the accuracy of current single-cell
RNA-Seq methods. Unique molecular identifiers (UMIs)
only work well for correcting moderate PCR bias. If a
cDNA fragment is dramatically biased, its UMI can also
be over- or under-represented at reasonable sequencing
depths. Moreover, because UMIs can only tag cDNA
fragment termini, the major reads inside a cDNA frag-
ment cannot be used for improving quantification accur-
acy. Another drawback of preamplification is the loss of
strand of origin information. Holo-Seq utilizes remov-
able in vitro transcribed RNA as a carrier to protect
against cellular RNA loss during single-cell lysis, reverse
transcription and conventional library construction.
Without the preamplification step, Holo-Seq successfully
maintains the high accuracy, uniform coverage, and
complete strand of origin information as conventional
bulk RNA-Seq.
Among the diverse sources of total RNA-Seq mapped

reads (rRNAs, intergenic regions, introns, and exons),
rRNAs normally constitute 50–60% of mapped reads.
Target sequencing could be an efficient add-on to focus
on specific transcripts, such as mRNAs. To establish
proof of principle, we successfully targeted the exon
reads of highly expressed genes (48-fold enrichment)
from a directional total RNA-Seq library of a single
MCF7 cell using an Illumina TruSeq Exome Capture kit
(FC-144-1004). If more library DNA is required for the
target sequencing, we can use PCR primers that contain
8-nt degenerate barcodes to perform the first ten-cycle
library amplifications followed by another fifteen-cycle
amplification using regular P5/P7 primers. Because the
length of library DNA fragments is short (200–500 bp),
additional amplification only induces minimal bias,
which can be effectively corrected in silico utilizing the
degenerate barcodes (Additional file 1: Figure S20).
A recent study developed an approach (RamDA-Seq)

to amplify cDNA during reverse transcription [50].
Although RamDA can probe total RNA from a single

cell with ideal coverage, it still cannot provide a
complete strand of origin information that is crucial for
non-coding RNA study [50]. Besides, Holo-Seq could be
an open platform to adopt the amplification strategy of
Smart-Seq, MATQ-Seq, SUePR-Seq, or RamDA-Seq
when necessary.
Previous studies have demonstrated that small RNAs

could effectively classify tumor tissues [51]. However,
integrating miRNAs into the mRNA transcriptional regu-
latory network is still not ideal because the experiments
are performed on bulk RNAs extracted from whole tissue;
therefore, there is no guarantee that the observed small
RNAs and mRNAs are in the same cellular space. Owing
to the carrier RNA, Holo-Seq can perform poly-A selec-
tion to capture mRNAs before implementation of the con-
ventional small RNA library pipeline, which enables
simultaneously probing small RNAs and mRNAs in a sin-
gle cell for the first time. Using Holo-Seq, we identified
three Exp-subpopulations and three SE-subpopulations of
HCC cells based on the miRNA-mRNA dual-
transcriptomes and deciphered the hepatic neoplasm
kinetics. Moreover, we filtered out a batch of tumor sup-
pressor miRNA candidates with their potential targets and
super-enhancers with significant activity change during
malignant transformation. They are all potential bio-
markers for the diagnosis or therapy of HCCs.
mRNA profile alone can also cluster the HCC cells

into three similar groups with minimal variance (four
cells from Exp-sub I and Exp-sub II rearranged) (Fig. 6a;
Additional file 1: Figure S21 a, b). However, without
miRNA information, the biological significance of the
mRNA Subgroup II is difficult to explain (Additional
file 1: Figure S21 a, b). miRNA profile alone can only
cluster HCC cells into two groups (Additional file 1:
Figure S21 c, d). The miRNA subgroup II cells are simi-
lar to the Exp-sub II cells based on combined expression
profiles with minimal variance (two cells are from
Exp-sub III) (Fig. 6a; Additional file 1: Figure S21 c,d).
The miRNA subgroup I cells are the mixture of Exp-sub
I and Exp-sub III based on combined expression profiles
(Fig. 6a; Additional file 1: Figure S21 c,d). Without
mRNA information, the biological significance of both
miRNA subgroups is also difficult to explain (Additional
file 1: Figure S21 c,d).

Methods
Cell culture
V6.5 (F1 hybrid of 129SvJae/C57BL/6) mESCs and
ZHBTc4 cells were maintained and expanded on
gelatin-coated (Millipore) plates in Dulbecco’s modified
Eagle’s medium (DMEM; GIBCO) containing 15% FBS
(GIBCO), 0.1 mM 2-mercaptoethanol (GIBCO), 2 mM
GlutaMAX™-I (GIBCO), 0.1 mM MEM nonessential
amino acids (NEAA; GIBCO), 1 mM sodium pyruvate
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(GIBCO), 1000 U/ml recombinant leukemia inhibitory
factor (Millipore), and 30 U/ml penicillin/streptomycin
(GIBCO). Approximately 200k cells were seeded in each
6-well plate (9.5 cm2/well; Corning). The media were
changed daily, and mESCs were dissociated and
expanded every 2 days.
MCF7 (human epithelial breast carcinoma) cells were

cultured in DMEM (GIBCO) supplemented with 10% FBS
(GIBCO) and 100 U/ml penicillin/streptomycin (GIBCO).
Cells were seeded in each 6-well plate (9.5 cm2/well; Corn-
ing) and sub-cultured upon reaching 80–90% confluence.
HEK293T cells were cultured in DMEM (GIBCO)

supplemented with 10% FBS (GIBCO) and 100 U/ml
penicillin/streptomycin (GIBCO). Cells were seeded in
the plate (Corning) and sub-cultured upon reaching
80–90% confluence.

Preparation of carrier RNAs
Several DNA fragments with the T7 promoter were
commercially synthesized to serve as the template. The
HiScribe T7 High Yield RNA Synthesis kit (NEB) was
used to perform in vitro transcription, and DNaseI was
used to digest the template DNA before purifying the
carrier RNA with a RNeasy Plus Mini kit (QIAGEN).
The carrier RNA was aliquoted and stored at − 80 °C.
The poly-A- and poly-A+ carrier RNAs were mixed
(1:20) to mimic the ratio of mRNAs in a cell. We com-
mercially synthesized a small carrier RNA (25 nt) and
utilized T4 PNK to phosphorylate the 5′ end. The phos-
phorylated small carrier RNA mimic was purified with a
miRNeasy Micro kit (QIAGEN) and stored at − 80 °C.

Single-cell isolation
Cells were digested with 0.05% trypsin into a single-cell sus-
pension, selected by mouth pipettes, and placed into 0.2-ml
tubes containing 2 μl of 0.1% BSA/PBS. The selected cells
were lysed immediately or stored at − 80 °C for later use.

Hepatocellular carcinoma sample collection and
single-cell isolation
Resected tumor sample was collected from a 46-year-old
male patient and transported in DMEM (GIBCO) on ice
immediately after surgical at The First Affiliated Hospital
of School of Medicine, Zhejiang University. A small frag-
ment was cut from the tumor and washed by PBS twice,
then minced into pieces and transferred into a 50-ml
tube (BD Falcon) containing 10 ml pre-warmed accumax
(Stem Cell Technologies). Tumor pieces were digested
for 30 min at 37 °C with continuous rotation to obtain
single-cell suspension; this suspension was then filtered
using a 70-μm strainer (Miltenyi Biotec) and supple-
mented with 30-ml PBS, centrifuge at 600g for 5 min at
4 °C. The supernatant was discarded, and the cell pellet
was re-suspended in 300-μl PBS before staining for

FACS. The single-cell suspension was stained with
CD45-FITC (eBioscience) and 7-AAD (eBioscience) to
deplete red blood cells, leucocytes, and non-viable cells.
Cells with CD45 and 7-AAD negative staining were
collected, and single cells were picked up with a mouth
pipette into 200-μl tubes with 3-μl lysis buffer containing
0.2% Triton X100 (Sigma-Aldrich) and 4U recombinant
RNase Inhibitor (TakaRa). The lysate was gently
vortexed, fast centrifuged to the bottom of the tube, and
incubated at room temperature for 5 min. Immediately
stored at − 80 °C for later use.

Sequencing library construction from bulk cells
Total RNA was extracted from approximately one million
mESCs using an RNeasy Plus Mini kit (QIAGEN). The se-
quencing library was constructed following the manufac-
turer’s protocol using NEBNext kits (E7490, E7530,
E7420, and E7300) for the mRNA library, the directional
total RNA library, and the small RNA library, respectively.

Sequencing library construction of mRNAs from a
single cell
A single cell was lysed at 95 °C for 5 min in 0.1% BSA/
PBS with 100 ng of the carrier RNA mixture. The se-
quencing library was constructed following the manufac-
turer’s protocol using NEBNext kits (E7490 & E7530).
After adaptor ligation and USER digestion, cDNA frag-
ments from the RNA carrier were removed by Not I di-
gestion. After Not I digestion, the library DNA was
purified for PCR amplification (16 cycles) (more details
in “Step-by-step Holo-Seq protocols” (Additional file 4)).

Directional sequencing library construction of total RNA
from a single cell
A single cell was lysed at 95 °C for 5 min in 0.1% BSA/
PBS with 100 ng of the carrier RNA mixture. The se-
quencing library was constructed following the manufac-
turer’s protocol using a NEBNext kit (E7420). After
adaptor ligation, the cDNA fragments from the RNA
carrier were removed by Not I digestion. After Not I di-
gestion, the library DNA was purified for USER diges-
tion and PCR amplification (16 cycles) (more details in
“Step-by-step Holo-Seq protocols” (Additional file 4)).

Sequencing library construction of total RNA from
HEK293T single cells
A single cell was lysed at 95 °C for 5 min in 0.1% BSA/
PBS with 100 ng of the carrier RNA mixture. The se-
quencing library was constructed following the manufac-
turer’s protocol using a NEBNext kit (E7530). After
adaptor ligation and USER digestion, cDNA fragments
from the RNA carrier were removed by Not I digestion.
After Not I digestion, the library DNA was purified for
PCR amplification (16 cycles).
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Sequencing library construction of small RNAs from a
single cell and 1 ng mESCs total RNA
A single cell was lysed at 95 °C for 5 min in 0.1% BSA/
PBS with 100 ng 5′-phosphorylated small carrier RNA
mimic. Similarly, 100 ng 5′-phosphorylated small carrier
RNA mimic was added to the diluted 1 ng mESCs total
RNA. The small RNA sequencing library was con-
structed following the manufacturer’s protocol using a
NEBNext kit (NEB #E7300). After PCR amplification
(15 cycles), the cDNA fragment from the RNA carrier
was removed by Not I digestion. After Not I digestion,
the library DNA was purified for deep sequencing (more
details in “Step-by-step Holo-Seq protocols” (Additional
file 4)).

Dual-sequencing library construction of small RNAs and
poly(A) mRNAs from single cells
A single cell was lysed at 95 °C for 5 min in 0.1% BSA/
PBS with 200 ng of the carrier RNA mixture (containing
100 ng 5′-phosphorylated small carrier RNA mimic). The
poly-A RNAs were selected using a NEBNext Poly(A)
mRNA Magnetic Isolation Module (NEB #E7490), and
the small RNAs remained in the supernatant after poly-A
selection. The small RNA sequencing library was con-
structed following the manufacturer’s protocol using a
NEBNext kit (NEB #E7300). After PCR amplification
(15 cycles), the cDNA fragment from the RNA carrier was
removed by Not I digestion. After Not I digestion, the li-
brary DNA was purified for deep sequencing. The poly(A)
mRNA sequencing library was constructed following the
manufacturer’s protocol using a NEBNext kit (NEB
#E7530).

Smart-Seq2 library construction
cDNA from 1 ng of total mESC RNA or single cells was
produced following the manufacturer’s protocol using
the Smart-Seq2® v4 Ultra® Low Input RNA kit (Clontech)
for single cells. Then, 2 ng of cDNA was sheared into
150- to 350-bp fragments by sonication, and a NEBNext
DNA library preparation kit (E7645) was used to con-
struct the sequencing library.

Smart-Seq2 library construction coupled with Nextera XT
workflow
cDNA from 1 ng mESC total RNA or single cells was
produced following the manufacturer’s protocol using
the Smart-Seq2® v4 Ultra® Low Input RNA kit (Clontech)
for single cells. Then, 1 ng of cDNA was used to con-
struct the sequencing library using Illumina Nextera XT
DNA library preparation kit (FC-131-1024).

Not I and Cas9 digestion of bulk RNA-Seq libraries
Total RNA was extracted from approximately one
million mESCs or HEK293T using a miRNeasy Micro

kit (QIAGEN). The libraries were constructed following
the manufacturer’s protocol using NEBNext kits
(E7490&E7530), before PCR enrichment, the DNA was
digested by Not I at 37 °C for 2 h or Cas9 nuclease with
sgRNA mix at 37 °C for 2 h.

In vitro digestion of the DNA template of carrier RNA
using CRISPR/Cas9
The sgRNA sites on the DNA template were selected
using the Optimized CRISPR Design website. We used
the Lenti-CRISPRv2 vector to express the sgRNAs in
vitro. The in vitro transcribed sgRNAs were purified
with the MEGAclear™ (Ambion AM1908). Approxi-
mately 300 nM of cDNA was digested by Cas9 nuclease
(NEB M0641) with 30 nM sgRNA at 37 °C.

Single-cell directional RNA-Seq library for captured
sequencing
Construction of the single-cell directional RNA-Seq
library was followed by directional sequencing library
construction of total RNA from a single cell as described
above from a single MCF-7 cell, PCR amplification was
performed using primers containing 8-nt degenerate
barcodes to perform the first 10 cycles of library amplifi-
cation, followed by another 15 cycles of amplification by
regular P5/P7 primers.

First 10-cycle amplification primers
P5 primer with 8 nt degenerate barcodes:
5′-AATGATACGGCGACCACCGAGATCTACACNN

NNNNNNACACTCTTTCCCTACACGACGCTC
TTCCGATCT-3′
P7 primer with index:
5′-CAAGCAGAAGACGGCATACGAGATNNNNN

NGTGACTGGAGTTCAGACGTGTGCTCTTCC
GATCT-3′.

Another 15-cycle amplification primers
Regular P5 primer: 5′-AATGATACGGCGACCACCGA-3′
Regular P7 primer: 5′-CAAGCAGAAGACGGCATAC

GAGAT-3′

Mouse ES cells poly(A+) RNA-Seq (1 ng and bulk) data
processing and gene expression analysis
Raw reads of 3 1 ng Holo-Seq libraries, 3 1 ng
Smart-Seq2 libraries and 2 bulk mRNA-Seq libraries
from mouse ES cells were mapped on mm9 genome by
TopHat (v2.0.11) using the default settings.
Next, we sampled 6.8 million mapped reads from the

Holo-Seq libraries, the Smart-Seq2 libraries, and the
bulk mRNA-Seq libraries respectively. We counted the
uniquely mapped reads in the exon regions of genes and
calculated the RPKM values of the genes based on these
reads.
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At last, we selected genes with average RPKM larger
than 0.1 in the 2 bulk mRNA-Seq libraries as expressed
genes. We calculated Pearson correlation of their expres-
sion among Holo-Seq libraries, Smart-Seq2 libraries, and
bulk mRNA-Seq libraries.

mESC mRNA-Seq library hierarchical clustering analysis
1. Raw reads of 2 bulk mRNA-Seq libraries, 3

Holo-Seq(mRNA) libraries with 1 ng total RNA
used, 3 Smart-Seq2 libraries with 1 ng total RNA
used, 14 single-cell Holo-Seq(mRNA) libraries, and 7
single-cell Smart-Seq2 libraries are mapped to the
mouse genome in the same way described above.

2. We select genes detected in both bulk libraries and
calculate their RPKMs. Then, we use the maximum
RPKM of each gene to divide its every RPKM
among all these libraries to row-scale the expression
of each gene.

3. We conduct hierarchical clustering on the 29
mRNA-Seq libraries by the scaled gene expression
with heatmap.2 function of R: we measure similar-
ity between the single cells by the Euclidean metric
of scaled gene expression profiles of the bulk
detected genes; we build binary tree with the
averaged similarities among the libraries as linking
parameter and we set other parameters of heat-
map.2 with default.

Mouse ES cells directional total RNA-Seq data processing
and gene expression analysis

1. Raw reads of 10 single-cell Holo-Seq libraries and
two bulk directional mRNA-Seq libraries from
mouse ES cells were mapped to the mouse genome
(mm9) by TopHat (v2.0.11) using the default set-
tings. We sampled 0.64 million mapped reads from
each single-cell Holo-Seq library, merged them into
a combined library. We also sampled 6.4 million
mapped reads from each of the two bulk libraries.

2. We counted uniquely mapped reads in the exon
regions of genes in the two sampled bulk libraries
and combined library. We calculated genes’ RPKM
in the two sampled bulk libraries and combined
library from these reads. Then, we got the average
RPKMs of genes in the two sampled bulk libraries.
We selected the genes with average RPKM larger
than 0.1 as expressed genes. At last, we calculated
the Pearson correlation of their average RPKMs in
two sampled bulk libraries and their RPKMs in the
combined library for the expressed genes.

3. We also counted uniquely mapped reads in the
sense strand of the exons for each gene in the two
sampled bulk libraries and combined library. We
calculated genes’ strand-specific RPKM in the two

sampled bulk libraries and combined library from
these reads. Then, we got the average strand-specific
RPKMs of genes in the two sampled bulk libraries.
We selected the genes with average strand-specific
RPKMs larger than 0.1 as expressed genes. At last,
we calculated the Pearson correlation of their average
strand-specific RPKMs in two sampled bulk libraries
and their strand-specific RPKMs in the combined
library for the expressed genes.

Small RNA-Seq data processing and small RNA expression
analysis for mouse ES single cells and human
hepatocellular carcinoma single cells
We conducted processing and expression analysis of 10
mouse ES single-cell small RNA Holo-Seq libraries and
the small RNA Holo-Seq libraries of 3 mouse ES
single-cell small RNA-mRNA dual transcriptomes
Holo-Seq sequencing with following steps:

1. We downloaded the reference sequences of mouse
snoRNA, pre-miRNA, and tRNA from the Gencode
M13, miRBase21, and GtRNAdb databases and built
their bowtie2 indices.

2. We mapped the 50-bp raw reads on the reference
sequences of snoRNA with bowtie2 (version 2.2.2).
We used the “end-to-end” aligner to run bowtie2
with default parameters, except the mismatch par-
ameter (-N) was set to 1. We counted reads mapped
on snoRNAs as snoRNA reads counting.

3. We mapped the 50-bp raw reads on the mouse gen-
ome (mm9) by TopHat (v2.0.11) using the default
settings and collected the unmapped reads.

4. We trimmed the unmapped reads to 30 bp (from 5′
to 3′) and mapped them on pre-miRNA using
bowtie2. We used the “local” aligner to run bowtie2
with default parameters, except the mismatch
parameter (-N) was set to 1 and the seed length
parameter (−L) was set to 16. We selected reads
with 17 to 25 continuous perfect matches (17 M to
25 M) in the mapped reads. We counted the
selected reads mapped on the mature miRNA
region of the pre-miRNA reference as miRNA reads
counting.

5. We trimmed the unmapped reads of the third step
to 40 bp (from 5′ to 3′) and mapped them on
tRNA using bowtie2. We used the “local” aligner to
run bowtie2 with default parameters, except the
mismatch parameter (-N) was set to 1 and the seed
length parameter (−L) was set to 30. We collected
the mapped and unmapped reads from the first
round of mapping. We then trimmed the
unmapped reads from the first round of mapping to
30 bp (from 5′ to 3′) and mapped them on tRNA
using bowtie2. We conducted the second round
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mapping in the same way as we did in the first
round mapping, except the seed length parameter
(-L) was set to 18. We counted the reads mapped
on the tRNA from the first and second rounds of
mapping as tsRNAs reads counting.

6. We calculated RPMs of snoRNA, miRNA, and
tsRNA in the 13 libraries based on their reads
counting.

For sequencing data of the 32 single-cell small RNA li-
braries of hepatocellular carcinoma dual transcriptome
libraries, we downloaded the reference sequences of
human snoRNA, pre-miRNA, and tsRNA from the
Gencode GRCh37, miRBase21, and GtRNAdb databases
respectively and built their bowtie2 indices. Then, we
repeated the above 2–6 steps to calculate RPMs of
snoRNA, miRNA, and tsRNA in the 32 human hepato-
cellular carcinoma single cells.

Captured directional total RNA-Seq data processing and
gene expression analysis

1. A single MCF7 cell directional Holo-Seq library of
total RNA was used for target capturing using the
Illumina TruSeq Exome Capture kit (FC-144-1004).
After sequencing, raw reads of the captured library
and the original Holo-Seq library were mapped to
the human genome (hg19) by TopHat (v2.0.11)
using the default settings.

2. We calculated barcoded RPKM of genes. The reads
uniquely mapped to the coding regions were
counted. We used the 8-nt degenerate barcode
strategy to correct the PCR amplification bias.
Identical mRNA molecules in single cells were
expected to be less than 100 for most genes [10],
and we found that unique positions (~ 99%)
represented less than 10 reads in bulk mRNA-Seq
(two million exome-mapped reads, ~ 12,000
expressed genes). Thus, after 10 amplification
cycles with 8-nt degenerate barcode (65,536
barcodes) primers, one unique position generated
no more than 10,240 different barcoded reads,
and the barcode repeat chance was less than
0.01 with two million exome-mapped reads. We
counted the reads with unique barcodes to
represent the read counts on every mapped
position and calculated the barcoded RPKM
using the reads counts.

3. We calculated RPKM of genes. We counted the
uniquely mapped reads in the captured library and
the original Holo-Seq library from step 1 of the
analysis and calculated RPKMs of genes in the two
libraries.

4. We compared the RPKMs of genes in the captured
library and the original Holo-Seq library. We
selected genes whose RPKM was larger than 0.1 in
either the captured library or the original Holo-Seq
library. We calculated the Pearson correlation of
their RPKMs for the selected genes. We compared
their barcoded RPKMs of genes in the two libraries
in the same way.

Gene coverage analysis of mouse ES cells poly(A+)
RNA-Seq data

1. Raw reads of 14 mouse ES single-cell Holo-Seq
libraries and 7 mouse ES single-cell Smart-Seq2
libraries were mapped onto mm9 genome using
TopHat (v2.0.11) with default parameters.

2. We merged all the exons of a gene together and
then counted the number of mapped reads on every
exon base pair. We summed all the exome-mapped
reads to obtain the exon total read count. We
divided the read counts of each base pair by the
exon total read count to obtain the normalized
coverage value of each base pair.

3. We divided the exons of each gene into 100
equal-sized bins. We summed the normalized
coverage values of each base pair in each bin and
then divided this number by the bin length to
obtain the length-normalized coverage value of
each bin. We excluded gene Cask, which had an
abnormal huge number of reads mapped on its
coding regions.

4. We grouped genes into 0–2 kb, 2–4 kb, 4–6 kb,
10–12 kb, 12 kp up, and 6 kb up groups according
to their total exon length. We summed the length-
normalized coverage values of each bin in a group
to obtain the gene group read coverage values. We
divided the length-normalized coverage values of
each bin by the gene group read coverage value to
obtain the value of group-normalized coverage
values of each bin.

5. We calculated the bin coverage indicators (BCIs) of
each bin in a group as follows: For the first BCI of
the group, we summed the group-normalized
coverage values of all the first bins of the genes in
the group. After all 100 BCIs were calculated, we
smoothed every BCI by:

smoothed − BCI(n) = average(BCIn − 2, BCIn − 1, BCIn,
BCIn + 1, BCIn + 2).

6. We used the smoothed-BCI values to compare read
coverage in different gene regions of different
methods.
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Gene coverage analysis of HEK293T total RNA-Seq data
We downloaded HEK293T single-cell total RNA-Seq
data of Smart-Seq2 (n = 5), MATQ-Seq (n = 5) and
SUPeR-Seq (n = 5) [6, 22, 23]. We generated 6 HEK293T
single-cell total RNA-Seq Holo-Seq data.
At first, we filtered out the reads mapped on

human rRNA reference sequences (5S, 5.8S, 28S, 18S,
and 45S pre-rRNA) by bowtie with default
parameters.
Then, we conducted the steps 2–6 in the section

“Gene coverage analysis of mouse ES cells poly(A+)
RNA-Seq data” to perform gene coverage analysis of
HEK293T single-cell total RNA-Seq data. However,
we removed six genes (RMRP, RPPH1 from Holo-Seq
data; CASC5, MATAL1, PDCD4 from Smart-Seq2
data; HIST1H4C from MATQ-Seq data) during the
gene coverage analysis because they had an abnormal
huge number of reads mapped on their coding re-
gions.

De novo identification of antisense transcription from
mouse ES cells directional total RNA-Seq data

1. We combined the raw reads of 10 mouse ES
single-cell directional total RNA Holo-Seq libraries
and removed the redundant reads.

2. We mapped the reads onto the mm9 genome using
TopHat (v2.0.11).

3. We distinguished the reads mapped on the + and −
strand of the genome according to the strand
information.

4. We called read islands using spatial clustering for
identification of ChIP-enriched regions (SICER)
(Version 1.1). We conducted the first round of
the read island calling with a big window
parameter (1000 bp) and a gap parameter
(3000 bp). Then, we conducted the 2nd round
of the read island calling with a small window
parameter (200 bp) and a gap parameter
(600 bp). All other SICER parameters were
set as the default.

5. We filtered out the read islands that were 1000 bp
in the first round of island calling and contained
one read island smaller than 401 bp in the second
round of island calling.

6. We downloaded the gene annotation profiles from
the UCSC, Ensemble, and RefSeq databases (mm9
version). We identified read islands as unannotated
antisense transcripts if they were covered by no
known genes on the same strand and 20% of their
length was overlapped by any annotated genes on
the opposite strand.

t-SNE analysis of mouse ES cells by their gene expression
profiles from poly(A+) RNA-Seq data
Raw reads of 2 bulk RNA-Seq libraries, 3 1 ng Holo-Seq
libraries, 14 single-cell Holo-Seq libraries, 3 1 ng
Smart-Seq2 libraries, and 7 single-cell Smart-Seq2 libraries
from mouse ES cells were mapped to the mm9 genome
by TopHat (v2.0.11) using the default settings. We
calculated RPKM of genes in the libraries.
We conducted t-SNE analysis on these 29 libraries

by their gene expression profiles. First, genes expressed in
both bulk RNA-Seq libraries (RPKM > 0.1) were
picked as expressed genes. Then, we conducted PCA
analysis on their RPKM profiles in 29 libraries for the
expressed genes with the prcomp function in R. At
last, the top principle components contributed to 85%
of the sum of eigenvalues were picked as input for
t-SNE analysis using the R software package Rtsne
(perplexity = 6).

t-SNE analysis of mouse ES cells and mouse T cells by
their antisense transcripts expression profiles from
directional total RNA-Seq data

1. Raw reads of 10 mouse ES single-cell directional
RNA Holo-Seq libraries, two mouse ES cell bulk
directional RNA Holo-Seq libraries, and two
mouse T cell bulk directional RNA libraries [18]
were mapped to the mouse genome (mm9) by
TopHat (v2.0.11) using the default settings.

2. We got the unannotated antisense transcripts from
the analysis of the section “De novo identification of
antisense transcription from mouse ES cells
directional total RNA-Seq data” and got known
antisense transcripts. We filtered out the antisense
transcripts (either unannotated antisense transcripts
or known antisense transcripts) if more than 80% of
their length is covered by the known genes on the
opposite strand.

3. We counted the uniquely mapped reads in the
sense strand of the antisense transcripts in the
libraries. We calculated RPKM based on these
reads as their strand-specific RPKM for the
antisense transcripts. We selected the antisense
transcripts who had at least 10 reads mapped in
at least one library and of whom strand-specific
RPKM is larger than 0.1 in at least one library.

4. We conducted t-SNE analysis on all 14 libraries
by the strand-specific RPKMs of antisense
transcripts in the libraries. We employed prcomp
function in R to conduct PCA analysis. Then, the
top principle components contributed to 85% of
the sum of eigenvalues were picked as input for
t-SNE analysis using the R software package
Rtsne (perplexity = 3).
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Hierarchical clustering analysis of mouse ES single cells
by their gene expression profiles and antisense transcript
expression profiles from directional total RNA-Seq data

1. Raw reads of 10 mouse ES single-cell directional
total RNA Holo-Seq libraries were mapped to the
mouse genome (mm9) by TopHat (v2.0.11) using
the default settings. We counted the uniquely
mapped reads in the sense strand of the exon
regions (RefSeq gene annotation profile, mm9
version) and calculated the RPKM of genes based
on the reads as their strand-specific RPKM.

2. We repeated the step 2 in the section “t-SNE
analysis of mouse ES cells and mouse T cells by
their antisense transcripts expression profiles from
directional total RNA-Seq data” to get antisense
transcripts. We counted the uniquely mapped reads
in the sense strand of the antisense transcripts and
calculated RPKM based on the reads as their
strand-specific RPKMs.

3. We selected the expressed gene or antisense
transcript if at least 10 reads were mapped on it in
at least one library and its strand-specific RPKM is
larger than 0.1 in at least one library. We conducted
hierarchical clustering on the 10 libraries by the
strand-specific RPKMs of expressed genes with
heatmap.2 function of R. We set the distance
parameter as “euclidean” and the agglomeration
method as “complete”. We also conducted
hierarchical clustering on the 10 libraries by the
strand-specific RPKM of expressed antisense
transcripts in the same way.

Hierarchical clustering analysis of mouse ES single cells
from small RNA-Seq data

1. We got RPMs of snoRNA, miRNA, and tsRNA
for 13 mouse ES single cells from the step 1 of
the section “Small RNA-Seq data processing and
small RNA expression analysis for mouse ES
single cells and human hepatocellular carcinoma
single cells”. We selected the snoRNA, miRNA,
and tsRNA with at least 10 mapped reads in at
least one single cell as expressed snoRNA,
miRNA, and tsRNA.

2. We conducted hierarchical clustering on the 13
single cells by the PRMs of expressed miRNAs with
heatmap.2 function of R. We set the distance
parameter as “euclidean” and the agglomeration
method as “complete”. We conducted hierarchical
clustering on the 13 single cells by the PRMs
profiles of expressed tsRNA or snoRNA in the
same way.

Hierarchical clustering analysis of hepatocellular
carcinoma single cells from small RNA-mRNA dual
transcriptomes Holo-Seq data

1. Raw reads of 32 hepatocellular carcinoma single-
cell small RNA and mRNA dual Holo-Seq libraries
were mapped on human genome hg19 by TopHat
(v2.0.11) using the default settings. We calculated
RPKMs of genes. We analyzed the section “Small
RNA-Seq data processing and small RNA expression
analysis for mouse ES single cells and human
hepatocellular carcinoma single cells” on the paired
32 small RNA Holo-Seq library to get RPMs of
miRNA.We added 1 in the RPKMs values of genes
and in the RPMs values of miRNAs.We then
log2-transformed the values.

2. We calculated the mean (u) and standard deviation
(s) of the transformed expression values across 32
cells for each mRNA and miRNA. Next, we
excluded the mRNAs and miRNAs with very low
average expression (u < 1) and used z-scoring
methods of a previous study [52] to measure the
variation (V) of each mRNA and miRNA which is
calculated as V = u/s2. At last, we ranked mRNA
according to their V value in increasing order and
selected top 500 mRNA. In the same way we
selected top 99 miRNA. We combined the top 500
mRNA, top 99 miRNA, and miR-26a-5p as featured
mRNAs and miRNAs.

3. We scaled the log2-transformed expression value of
featured mRNA and miRNA in 32 cells with
Z-score transform. We set the distance parameter
as “euclidean” and the agglomeration method as
“complete” and used the heatmap.2 function of R to
cluster the cells and featured miRNAs and mRNAs.

Calculate Fano factor of introns and exons of a gene in
mouse ES single cells from directional total RNA-Seq data

1. We mapped the raw reads of 10 mouse ES single-
cell directional total RNA Holo-Seq libraries on the
mouse genome (mm9) by TopHat (v2.0.11) using
the default settings.

2. We counted the uniquely mapped reads in the
sense strand of the exons of genes (RefSeq gene
annotation profile, mm9 version) and calculated the
RPKMs as genes’ mRNA RPKMs. We counted the
uniquely mapped reads in the sense strand of the
introns of genes and calculated the RPKM as their
intron RPKMs. We selected the expressed genes
meeting three requirements: (a) their mRNA
RPKMs and intron RPKMs are both larger than 0.1
in at least 5 cells; (b) the number of uniquely
mapped reads is larger than 5 in the sense strand of
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their exon regions in at least 5 cells and the number
of uniquely mapped reads is larger than 1 in the
sense strand of their intron regions in at least 5
cells; and (c) their intron length is larger than
1000 bp.

3. We calculated the mean and variance of the mRNA
RPKMs of each expressed gene across 10 single
cells. We also calculated the mean and variance of
the intron RPKMs of each expressed gene. We
calculated the exon RPKM Fano factor of an
expressed gene as the ratio of variance to mean of
its mRNA RPKMs. We calculated the intron RPKM
Fano factor of the expressed gene as the ratio of
variance to mean of its intron RPKMs.

Infer miRNA and target gene regulatory network in
mouse ES cells from small RNA-mRNA dual
transcriptomes Holo-Seq data

1. Seven mouse ES single-cell small RNA-mRNA dual
transcriptomes Holo-Seq libraries were sequenced.
We mapped the reads of mRNA Holo-Seq libraries
on mm9 by TopHat (v2.0.11) using the default
settings. We calculated RPKMs of genes. We
analyzed the section “Small RNA-Seq data processing
and small RNA expression analysis for mouse ES
single cells and human hepatocellular carcinoma
single cells” on the paired 7 small RNA Holo-Seq
libraries to get RPMs of miRNAs.

2. We downloaded 40,670 experimentally validated
mouse miRNA-target gene pairs from miRTarBase
(Release 7.0) and selected 1306 miRNA-target pairs
validated by different experimental approaches.
Then, we selected the detected miRNAs (with at
least 1 mapped reads in at least two single cells)
and got 623 miRNA-target pairs.

3. Next, we used the Spearman coefficient to measure
the correlation between miRNAs and target genes
of the filtered miRNA-target pairs among the 7
single cells. Interactions whose miRNA and target
gene expression is of significantly negative
correlation (p < 0.05 and Spearman coefficient < 0)
were selected to miRNA and target gene regulatory
network.

Infer miRNA and target gene regulatory network in
hepatocellular carcinoma single cells from small
RNA-mRNA dual transcriptomes Holo-Seq data

1. We calculated the RPKMs of genes and the RPMs
of miRNAs in 32 hepatocellular carcinoma single
cells with the step 1 of the section “Hierarchical
clustering analysis of hepatocellular carcinoma

single cells from small RNA-mRNA dual
transcriptomes Holo-Seq data”.

2. We downloaded 380,633 experimentally validated
human miRNA-mRNA pairs from miRTarBase
(Release 7.0).

3. We inferred miRNA and target gene regulatory
network for oncomiR miR-155-5p and miR-221-5p
in hepatocellular carcinoma. At first, we selected
the miRNA-target interactions of miR-155-5p and
miR-221-5p. Then, we filtered out the interactions
in which either the miRNA or the target gene was
detected in less than 1/3 cells of all 32 single cells,
which means the RPM of the miRNA or the RPKM
of the gene is zero in at least 22 cells. Next, we used
the Spearman coefficient to measure the correlation
between miRNAs and target genes of the filtered
interactions in 32 single cells. Interactions whose
miRNA and target genes’ expression is of significantly
negative correlation (p < 0.05 and Spearman
coefficient < 0) were selected. At last, we conducted
differential gene expression analysis on the miRNAs
and target genes of the selected interactions. We
compared expression of the miRNAs and target
genes between Exp-subpopulation I and Exp-
subpopulation II & III by t test with unequal variance
and single-tailed distribution. The interactions whose
miRNA and target gene are both significantly
differentially expressed (p < 0.05) were kept. We got
345 interactions between miR-155-5p and miR-221-
5p and 342 target genes to build miRNA and target
gene regulatory network of miR-155-5p and miR-
221-5p. The target genes are characterized with
tumor suppressive identity referring to the KEGG
and GeneCards database were annotated in miRNA
and target gene regulatory network for oncomiR
miR-155-5p and miR-221-5p (Additional file 3:
Table S17).

4. We inferred miRNA and target gene regulatory
network for potential tumor suppressor miRNAs in
Exp-subpopulation II and Exp-subpopulation III of
hepatocellular carcinoma. At first, we got miRNA-
target interactions from step 2 of the analysis and
filtered out the interactions of known oncomiRs
(here they are miR-155-5p and miR-221-5p). Then,
we excluded interaction whose miRNA or target
gene was detected in less than 1/3 cells of the 14
cells from Exp-subpopulation II and III, which
means the RPMs of the miRNA or the RPKMs of
the gene is zero in at least 10 cells. Next, per each
filtered interaction, we used the Spearman
coefficient to measure the expression correlation of
its miRNA and target gene in the 14 cells. We
selected 1420 interactions whose miRNA and
target genes’ expression is in significant negative

Xiao et al. Genome Biology  (2018) 19:163 Page 18 of 22



correlation (p < 0.05 and Spearman coefficient < 0)
to build miRNA and target gene regulatory network
for potential tumor suppressor miRNAs. The target
genes are characterized with oncogenic identity
referring to the KEGG and GeneCards databases
were annotated in miRNA and target gene
regulatory network for potential tumor suppressor
miRNAs (Additional file 3: Table S18).

Identify super-enhancer (SE)-related master miRNAs and
mRNAs in mouse ES cells from small RNA-mRNA dual
transcriptomes Holo-Seq data

1. We got RPKMs of genes and RPMs of miRNAs
from step 1 of the section “Infer miRNA and target
gene regulatory network in mouse ES cells from
small RNA-mRNA dual transcriptomes Holo-Seq
data”. We kept the expressed miRNAs which had at
least 10 mapped reads in at least one single cell and
their RPM > 0.1 in at least one single cell. We kept
the expressed genes which had at least 10 mapped
reads in at least one single cell and their RPKM >
0.1 in at least one single cell.

2. We downloaded 233 established super-enhancers
(SEs) in mouse ES cell from a previous study [32].
We associated the 233 SEs with their regulating
miRNAs and genes. We found the closest gene and
miRNA (or miRNA cluster) in ± 100 kb of each SE
(RefSeq gene annotation profile, mm9) as SE
associated miRNA and gene. We corrected our
association pairs using previous studies [14, 32].

3. We got 169 SE-expressed gene pairs and 15
SE-expressed miRNA pairs.

Infer cell subpopulations of hepatocellular carcinoma
single cells by expression of super-enhancer (SE)-related
genes and miRNAs from small RNA-mRNA dual
transcriptomes Holo-Seq data

1. We calculated the RPKMs of mRNAs and the
RPMs of miRNAs in 32 hepatocellular carcinoma
single cells with the step 1 of the section
“Hierarchical clustering analysis of hepatocellular
carcinoma single cells from small RNA-mRNA dual
transcriptomes Holo-Seq data.”

2. We downloaded 497 established super-enhancers
(SEs) in human HepG2 cell line identified by a
previous study [33]. Then, we followed the steps 2
of the section “Identify super-enhancer (SE)-related
master miRNAs and mRNAs in mouse ES cells
from small RNA-mRNA dual transcriptomes
Holo-Seq data” to get 213 SE-expressed gene pairs
and 14 SE-expressed miRNA pairs.

3. We ranked the 32 single cells following their order
in Exp-subpopulations I, II, and III. We calculated
the Spearman coefficient of SE-related genes and
miRNAs between the 32 single cells.

4. We selected the oncogenic signal gene group,
mitochondrial function gene group, tumor
suppressive miRNA group, and oncomiR group
(Additional file 3: Table S22). We calculated the
expression value (Group _ Exp) of the four gene
groups in the 32 cell with the step 1 of the section
“Differential expression analysis of the gene groups
1–6 between cell subpopulation I, II, and III
(Exp-subpopulations I, II, and III) of hepatocellular
carcinoma”. For a gene group in the single cell i, we
calculated the gene group’s activity (Group _Acti)
with following formula:

Group Acti ¼ Group Expi−Group Expmin

Group Expmax−Group Expmin
;

where Group _ Expi is the expression value of the gene
group in the single cell i; Group _ Expmin is the mini-
mum value of the gene group expression across 32 single
cells; Group _ Expmax is the maximum value of the gene
group expression in 32 single cells. We calculated their
activities of the four gene groups in the 32 cells.

GO term analysis of gene groups identified from
“Hierarchical clustering analysis of hepatocellular
carcinoma single cells from small RNA-mRNA dual
transcriptomes Holo-Seq data”
We conducted GO term analysis on the gene (mRNA
and miRNA) groups with DAVID functional annotation
tools (version 8.0). The background gene set was set as
all the genes in the human genome. We annotated the
gene groups on the terms of the biological process of
GO with annotation level 5 (GO_BP_5 in David). We se-
lected the terms with Benjamini corrected P value < 0.05
as significant GO terms.

Hierarchical clustering analysis of top variant mRNAs
and miRNAs

1. We select top 1000 variant mRNAs as featured
mRNAs following the step 1 and step 2 from the
method of the section “Hierarchical clustering
analysis of hepatocellular carcinoma single cells
from small RNA-mRNA dual transcriptomes
Holo-Seq data.”

2. We scale the log2-transformed expression value of
featured mRNAs with Z-score transform. We set
the distance parameter as “euclidean” and the
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agglomeration method as “complete” and used the
heatmap.2 function of R to cluster the 32 HCC
single cells and featured mRNAs.

3. We select top 500 variant mRNAs, top 190 variant
miRNAs, and top 99 variant miRNAs & mir-26a-
5p, then respectively cluster the 32 HCC single cells
and featured mRNAs/miRNAs as we do with the
top 1000 variant mRNAs.

Differential expression analysis of the gene groups
1–6 between cell subpopulation I, II, and III
(Exp-subpopulations I, II, and III) of hepatocellular
carcinoma from small RNA-mRNA dual transcriptomes
Holo-Seq data

1. We got the log-transformed expression values of
genes and miRNAs in 32 hepatocellular carcinoma
single cells with the step 1 of the section “Hierarchical
clustering analysis of hepatocellular carcinoma single
cells from small RNA-mRNA dual transcriptomes
Holo-Seq data.” We extracted their expression values
in 32 cells for the genes (mRNA and miRNA) in the
gene groups 1–6. Next, per each gene group, we
scaled the expression value of its genes across the 32
cells with Z-score transform and then calculated the
median value of the scaled values in each cell as the
expression value of the gene group (Group _ Exp) in
the cell. We calculated their Group _ Exp for gene
groups 1–6 in 32 cells.

2. We compared the Group _ Exp of gene groups 1–6
between different cell subpopulations (Exp-
subpopulations I, II, and III). We used t test with
equal variance and two-tailed distribution to
conduct the differential expression analysis.
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