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Abstract

Spatial mapping of genomic data to tissue context in
a high-throughput and high-resolution manner has
been challenging due to technical limitations. Here,
we describe PHLI-seq, a novel approach that enables
high-throughput isolation and genome-wide
sequence analysis of single cells or small numbers of
cells to construct genomic maps within cancer tissue
in relation to the images or phenotypes of the cells.
By applying PHLI-seq, we reveal the heterogeneity of
breast cancer tissues at a high resolution and map the
genomic landscape of the cells to their corresponding
spatial locations and phenotypes in the 3D tumor
mass.
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Background

Recent advances in sequencing technology have revolution-
ized oncology and provided an opportunity to overcome
the limitations of pathological analysis [1]. However, the
mutagenesis and genetic evolution in the tumor mass [2],
resulting in intra-tumor heterogeneity, impede precise
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deciphering of a causation underlying carcinogenesis. To
analyze the subclonal population in such intra-heteroge-
neous tumor mass, deep sequencing and computational
analysis were proposed, each subclone of which is gener-
ated through subclonal expansion of progenitor tumor cells
that acquired advantageous fitness after undergoing an
oncogenic initial mutation [3-5]. Instead of sequencing the
genomic DNA of cells from different subclones in a tumor
mass separately, these approaches relied upon computa-
tional inference to separate subclones from the mixed
population. Therefore, the direct relationship between the
genomic data and tissue context was lost during the
process. Moreover, because the heterogeneous subclones
were sequenced in a pool, the detection sensitivity of vari-
ants with a low-level allele fraction was low. To overcome
these limitations, other researchers adopted multi-region
sequencing or laser capture microdissection instead of se-
quencing the whole tumor [6-8]. However, these proce-
dures are low throughput and are usually used to process a
large number of cells at once (> 1000). The ultraviolet (UV)
beam used in laser capture microdissection not only hin-
ders the throughput by burning the periphery, but also
causes damage to cells [9]. Even in a microdissection using
infrared (IR), which uses direct contact methods, cell debris
or non-selected cells may cross-contaminate the targeted
cells [10, 11]. These problems limit the use of microdissec-
tion to spatially map the heterogeneous cancer genome in a
high-throughput and high-resolution manner. More re-
cently, to provide a higher throughput and sensitivity, a
single-cell analysis was proposed as a solution to
thoroughly characterize the subclones and variants with a
low-level allele fraction in tumors [12—15]. For example, a
model of tumorigenesis and the evolutionary history of
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subclones in a tumor mass could be inferred by highly mul-
tiplexed single-cell genome analysis [16].

Despite the remarkable advances in sequencing technol-
ogy, the foundations of modern oncology lie in histopath-
ology, which remains the gold standard for comprehending
tumorigenesis, relapse, metastasis, cancer evolution, and
appropriate clinical applications [17]. Pathological assays,
such as histological staining, immunohistochemistry (IHC)
staining, and fluorescence in situ hybridization (FISH), dir-
ectly provide the molecular information for single cells and
their microenvironment. However, the conventional histo-
pathological analyses often fail to identify subclones of can-
cer or rare cell types, and the subjective interpretation of
the histopathological findings may lead to misunderstand-
ings of cancer. For precise understanding of cancer and im-
provement in diagnostic performance, it is important to
link the spatial and phenotypic histopathological informa-
tion to the objective and massively parallel measurement of
the genomic alteration status of cells in a high-throughput
manner [18]. However, the huge amounts of sequencing
data cannot be connected to the spatial and phenotypic
histopathological information because the tissue-compris-
ing cells must be pooled or dissociated in solution before
sequencing. This loss of information for linking the subclo-
nal genomic heterogeneity with the histopathological con-
text hinders deeper analyses of the tumor mass. Spatially
resolved genomics has, therefore, emerged to address this
issue. Considering recent progress in spatially resolved
transcriptomics [19-22], technical advances are required to
map the genomic data for cancer spatially.

Here, we describe phenotype-based high-throughput
laser-aided isolation and sequencing (PHLI-seq), which
can efficiently detect tumor subclonality and variants with
low-level allele fractions with high sensitivity and accuracy
while preserving information of the 3D spatial organization
and histopathological phenotypes of cells. Fully utilizing
the spatial and phenotypic information [23, 24], we com-
putationally or pathologically grouped cancer cells in
tumor tissue sections into potential subclones. With the
group information for the cells as guidance, cell clusters
consisting of 20 to 30 neighboring cells were selected to
cover all the groups and effectively represent the spatial
organization of the tumor. Next, each cell cluster was
physically isolated into different tubes by discharging the
region of each cell cluster on an indium tin oxide (ITO)--
coated glass slide using an infrared laser pulse. Finally, the
extracted DNA from each tube was amplified and
sequenced. The procedure, including grouping, selecting,
and isolating cells, were automated with custom software
to achieve a high-throughput analysis. By establishing this
novel approach, we identified distinct subclones and their
somatic variants in breast cancer tissues. Overall, we were
able to map the heterogeneous genomic landscape of the
subclones directly to the spatial and phenotypic
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organization of the tumor mass. We constructed genomic
maps in the spatial context in two- or three-dimensional
space of cancer tissues and augmented the dimension of
the histopathology and genomics to understand the evolu-
tionary histories of cancer.

Results

Workflow of phenotype-based high-throughput laser-
aided isolation and sequencing

For PHLI-seq, tissue sections or cells were stained on a
transparent discharging layer-coated, or an ITO-coated,
glass slide (Fig. 1a, b). To group the cells in the sample,
we segmented the image of the tissue into cell clusters
using a conditional random field algorithm. Then, several
features, including locational information for the histo-
pathological section and the morphological information
for the cell cluster, were extracted from each of the seg-
mented cell clusters. Finally, we generated groups based
on the location and morphology of the cell clusters (Fig. 1a
and the “Methods” section), and the cell clusters to be
sequenced were chosen to represent all groups.

After determining the target cells, single shot of
near-infrared laser (1064 nm) was applied to each tar-
geted area of the tissue. As the near-infrared laser shot
vaporized the ITO, the prepared cells on the targeted
area were transferred downward by the pressure (Fig. 1b).
In contrast to laser microdissection using UV cutting
and catapulting [9, 25], our method, which uses an infra-
red laser and one-shot isolation step, causes no damage
to the nucleic acids and can be performed rapidly, enab-
ling to recover high-quality DNA from single cells or
small numbers of cells in high throughput. On the other
hand, standard laser microdissection using an infrared
laser to heat a thermoplastic film expands and captures
the cells of interest. Although this method is free of
UV-induced damage, the thermoplastic film-based
method requires physical contact between the film and
the sample, and tearing off the cells by removing the
cell-captured cap. This physical contact method causes
inherent problems, such as limited throughput and scal-
ability, debris or non-selected cell adhesion, and limited
applicability depending on the sample condition [10, 11].
Using PHLI-seq, we isolated regions of cells or even sin-
gle cells from various samples, regardless of how closely
positioned the cells were, while preserving information
regarding the spatial and histopathological phenotype
context in the tissue (Fig. 1d). Together with the operat-
ing software, we were able to use PHLI-seq to isolate
targets (1 s per target) in high throughput into the
retrieval tubes (see Additional file 1: Note S1 and Figure
S1, Additional file 2: Video S1, and Additional file 3:
Video S2). When the targets were retrieved, we used
multiple displacement amplification (MDA) to amplify the
whole genome to high concentrations adequate for
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of isolating cells can be down to single-cell level

different  sequencing  preparation  methods (e,
whole-genome sequencing (WGS), whole-exome sequen-
cing (WES), and targeted sequencing). After validating
that the whole genome is amplified thoroughly, the high
concentrations of amplicons enabled to analyze the same
genome under different sequencing depths according to
experimental purposes. The main purposes of the mas-
sively parallel sequencing methods were to analyze copy
number alterations (CNA) and single nucleotide variants
(SNV) with their spatial organization in the tissue context
(Fig. 1¢).

Technical validation of PHLI-seq

To calculate the collection efficiency and the probability
of obtaining high-quality sequencing data after cell isola-
tion, we isolated single cells or very small numbers of
cells from a cell line or an H&E-stained fresh-frozen
cancer tissue section. The collection efficiency was

92.5% (49/53) from single-cell isolations of the cell line
sample (Fig. 2a). For the experiments with H&E-stained
tissue sections, we thought that nucleic acids could be
damaged for amplification by MDA during preserva-
tion, tissue sectioning, and staining. Therefore, we eval-
uated the probability of obtaining high-quality
sequencing data from 5-cell and 1-cell isolations from
H&E-stained tissue sections. We found that 81.3% (13/
16) and 18.8% (3/16) of the 5-cell and 1-cell isolation
experiments produced high genomic coverage and cor-
rect copy number profiles (Fig. 2a). Based on the se-
quencing data, we also found that high genomic
coverage and a high correlation with the true copy
number value of the whole-genome-amplified samples
were related to low Cr values for real-time monitoring
of the amplification reactions (Fig. 2b—e). Therefore, we
monitored the MDA procedure using a real-time PCR
machine and validated the products by PCR using 16
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Fig. 2 Collection efficiency and the probability of obtaining high-quality sequencing data after cell isolation by PHLI-seq. a HL60 cells were prepared
on ITO-coated glass slide, and single cells were isolated into separate tubes (n = 53). MDA reaction was carried out and monitored using real-time PCR
machine. After the reaction, amplification start times (AST) were determined to quantify amplification qualities for each tube. We found that negative
controls or failed single-cell isolations have ASTs over 50, while successful experiments have AST under 40. Then, we performed similar experiments
with an H&E-stained breast cancer tissue section. From the 10-um tissue section, five cells or single-cell were isolated and amplified with 16 replicates,
respectively. A portion of the amplified products is sequenced by low-depth whole-genome sequencing. b To quantify amplification uniformity, we
used Pearson correlations between CNA profiles of the samples and the tumor bulk DNA (left). A sample with high correlation value shows similar
CNA profile with that of the tumor bulk DNA, while samples with low correlations present profiles with large deletions and variations. c-e To analyze
genomic coverage, area under Lorenz curve (AUC, the higher AUC is, the higher genomic coverage is) was calculated for each sample. We found that
the AUC value was inversely related to the AST. Similarly, Pearson correlation value tends to be high, when AST is low. Finally, we set a threshold value
(blue dashed line) to define high-quality amplification products, which guarantees high Pearson correlation with tumor bulk DNA (i.e, amplification
uniformity), and high AUC value (i.e,, high genome coverage). f, g To test whether irradiating IR laser pulse and vaporizing discharging layer generate
DNA fragmentation, HL60 single cells were isolated and sequenced by PHLI-seq method. Single cells were isolated by pipetting or by PHLI-seq
method with 1, 10, and 50 IR laser pulse in total. Isolated cells were amplified by MDA, and six samples from each group were sequenced. For
comparison, 20 cells from formalin-fixed HL60 sample and gDNA extract from a population of HL60 cells were sequenced. MDA reaction produces
uniform amplification profile and high genomic coverage when input DNA is long (not fragmented) and undamaged. For example, the result from
formalin-fixed sample showed low uniformity throughout the genome because the formalin fixation method is known to generate DNA
fragmentation. On the other hand, the other results showed more uniform profile than that of the formalin-fixed cells. Also, the cells which were
isolated by PHLI-seq technigue showed similar uniformity with those isolated by pipetting, suggesting that there is no sign of laser-induced damage
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primer panels to enrich the high-quality amplified
products before sequencing (see the “Methods”
section and Additional file 1: Table S1). To confirm
the sequencing performance, we isolated the HL60
cells using the PHLI-seq method, sequenced their
genomes, and tested the coverage breadth, allele
dropout (ADO), and false-positive rate (FPR) (see
Additional file 1: Note S2, Figure S2, and Figure S3).
Furthermore, we tested whether the irradiating IR
laser pulse and vaporizing discharging layer generate
DNA fragmentations. However, we could not detect
any signs of fragmentation in the sequencing data,
even from cells that had repeatedly been irradiated by
the IR laser pulse (Fig. 2f, g).

Performance comparison between PHLI-seq and
commercial laser microdissection technique
Commercially available laser microdissection (LMD) or
laser pressure catapulting (LPC) techniques were com-
pared to PHLI-seq. LMD technique uses UV laser to dis-
sect a region of a sample and the polymer membrane
which supports the region. LPC technique also uses UV
laser but catapults a region or a cell by the pressure gen-
erated by laser-produced plasma. In using LMD or LPC,
potential problems could be UV laser-induced damage,
electrostatic adhesion of a dissected sample, and slow
process. Therefore, we evaluated whole-genome sequen-
cing qualities of single HL60 cells throughput LMD,
LPC, and PHLI-seq technique (see the “Methods” sec-
tion, Additional file 4: Video S3, Additional file 5: Video
S4, and Additional file 6: Video S5).

We used a cell line rather than a tissue section, because
cells in a tissue section could have partial genome by tis-
sue sectioning, which is not suitable for a well-controlled
experiment. After isolating the single cells through LMD,
LPC, and PHLI-seq technique, each cell was lysed and its
whole genome was amplified by MDA. Because the MDA
mechanism hinders damaged or fragmented genome to be
amplified thoroughly, we monitored the MDA procedure
with a real-time PCR machine so that we can measure
amplification start time as done with the cell line valid-
ation experiments. When we measured amplification start
time by real-time monitoring of the MDA reactions to
measure the quality of the nucleic acid in the isolated cells
(Fig. 3a), we found that the cells isolated by PHLI-seq
showed significantly earlier amplification start time with
smaller deviation compared to LPC and LMD (Wilcoxon
rank sum test, p < 107%). In other words, the cells which
were isolated by PHLI-seq have higher quality of nucleic
acid than the cells isolated by LPC and LMD.

In addition, we measured the time from targeting the
cells at the computer interface to when the cells were
completely isolated. This allowed us to compare the time
it takes to isolate the cells when using each technique
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(Fig. 3b). The result shows that LMD is much slower
than other two techniques (Wilcoxon rank sum test, p <
107%). This is because LMD must dissect the contour of
the region of interest, while other techniques isolate the
cells by single pulses. There was also the problem that
samples could not be easily detached from the slide even
after complete dissection (Additional file 4: Video S3).

The amplified DNA samples were analyzed by
low-depth WGS. To get an insight on overall sequencing
quality, each sample was analyzed with two metrics. The
first metric was “alignment ratio,” the portion of reads
aligned to the human genome. The second was “correl-
ation,” chromosomal copy number correlation between
the sequenced sample and a population of HL60 cells
(Fig. 3c). From the plot, several samples that were iso-
lated by LPC and LMD had low alignment ratio (< 0.2).
Potentially, this means that a dissected or catapulted cell
was not collected into a PCR tube, or isolated nucleic
acid was severely damaged to be amplified. Furthermore,
the single cells, which were isolated by PHLI-seq,
showed higher correlations to the true HL60 genome
compared to those isolated by LPC and LMD.

As aforementioned, the amplification quality can be
judged by the uniformity of the amplification. In other
words, the uniform amplification of a sample can indi-
cate that the cell has been detached without damage or
fragmentation (see “Formalin” in Fig. 2f, g), and the Lo-
renz curve could provide an insight on the DNA quality
after isolating cells by PHLI-seq, LPC, and LMD (Fig. 3d,
e). This result shows that the DNA quality was highest
when cells were isolated by PHLI-seq. Then, we selected
two highest quality samples from each isolation method
and presented their genome-wide copy numbers (Fig. 3f).
The CNA plots from PHLI-seq technique showed
uniformly amplified genome with correct copy number
except for single-cell variability. In contrast, the CNA
plots from LPC and LMD presented large deletion or
severe amplification bias.

Applying PHLI-seq to hormone receptor-positive/human

epidermal growth factor receptor 2-positive breast cancer
Next, we applied PHLI-seq to a hormone receptor
(HR)-positive/human epidermal growth factor receptor 2
(HER2)-positive invasive ductal carcinoma (IDC) to dem-
onstrate that the genomes of the cell clusters from a
stained tissue section can be effectively analyzed. Based on
an image analysis and inspection by pathologists, 53 cell
clusters were selected in the tissue section for analysis by
PHLI-seq (see Additional file 1: Note S3 and Figure
S4a-d). With an average of 20—-30 cells in each cell cluster,
whole-genome amplification and quality filtering were
performed (see the “Methods” section). The filter-passed
samples were analyzed by low-depth whole genome (n =
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Fig. 3 Performance comparison between PHLI-seq and commercially available laser microdissection techniques. LMD technique uses UV laser to
dissect a region of a sample and the polymer membrane which supports the region. LPC technique also uses UV laser but catapults a region or a
cell by pressure generated by laser-produced plasma. a We measured amplification start time by real-time monitoring of the MDA reactions to
measure the quality of the nucleic acid in the isolated cells. b Also, we measured the time from targeting the cells at the computer interface to
when the cells were completely isolated. These results showed that PHLI-seq outperforms commercial laser microdissection in terms of quality of
DNA in isolated cells and process speed. ¢ Using whole-genome sequencing data, each sample was evaluated by genome alignment ratio and
copy number correlation to HL60 genome. d, e Lorenz curve provided an insight on the DNA quality after isolating cells by PHLI-seq, LPC, and
LMD. This result showed that DNA quality was better when cells were isolated by PHLI-seq than LMD or LPC. f CNA plots of isolated single cells

amplification bias were observed in LPC or LMD

demonstrated that PHLI-seq could provide uniformly amplified genome with correct copy number, whereas large deletions or severe

53), whole exome (1 =12), and targeted sequencing (n =
53) (see the “Methods” section).

First, genome-wide CNA analysis by low-depth
whole-genome sequencing revealed three major subclonal
populations in the tumor sample (Fig. 4a, b, approximate
unbiased p value >0.99, multiscale bootstrap resampling
with 10,000 iterations, see the “Methods” section). The
three subclonal populations had both shared and unique
alteration profiles. The shared alterations include 1q gain,
8q gain, 8p loss, and HER2 amplifications, all of which
had been previously reported as frequent CNAs in human
breast cancer and other types of cancer [26, 27]. One in-
teresting observation is that the CNA status was clearly
divided into three distinct populations with no intermedi-
ate subclones. Since intermediate subclones might be ex-
cluded from the sampling process, we isolated additional

cell clusters (7 = 27) at the boundaries between subclones.
The isolated samples were analyzed by low-depth
whole-genome sequencing. Then, clustering analysis was
performed based on the inferred copy number data for
both previously isolated (n =53) and additionally isolated
samples (n = 27). The results showed that the 80 cell clus-
ters from the HER2-positive tissue sections were classified
into one of the three previously defined cancer subclones
(see Additional file 1: Figure S5). This result reinforces the
evidence for the punctuated copy number change
followed by a period of stasis, as demonstrated in previous
studies [16, 18, 28].

To investigate somatic SNV, we performed targeted
sequencing of 121 genes associated with breast cancer
(see the “Methods” section and Additional file 1: Table
S2). The results revealed unique mutational profiles in
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each subclone, consistent with those determined by
whole-genome sequencing (Fig. 4c). In our targeted se-
quencing analysis of 53 cell cluster samples, we found
that mutations in PIK3CA, EPHA3, KIT, ERBB4, and
KMT2C occurred in subclone 1; mutations in KMT2C,
ATR, and KDMS5B in subclone 2; and mutations in

TOP2A, NF1, ESRI, JAKI1, and MSTIR in subclone 3.
For further analysis, we performed whole-exome sequen-
cing of four samples selected from each subclone
(Fig. 4d). We found that 75 mutations were shared in
the three subclones and that 99, 75, and 382 mutations
in VHL, KDSR, PIK3CA, EPHA3, FCRL4, KDM5A, MET,
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POTI1, KMT2A, GPHN, COLIA1, SRSF3, ATR, NCORI,
MSH2, RPNI, and XPOIl occurred exclusively in
subclones 1, 2, and 3, respectively. In contrast to the
whole-exome mutation profiles in the three subclones
by PHLI-seq, we could not find such representative
mutation profiles in the sequencing data from the tumor
bulk. This result implies that PHLI-seq can provide rich
information about subclonality and variants with a
low-level allele fraction in heterogeneous tumors, even
those with subclones that are too minor to be detected
by conventional methods.

Based on the CNA and SNV analysis, we inferred
the evolutionary history of the subclones in the tumor
(see Additional file 1: Note S3 and Figure S6). Also,
we mapped the detailed information for the CNAs,
driver mutations, and passenger mutations to the
topological information and spatial positions of the
tumor tissue (Fig. 4e). The three subclones were
found to be spatially segregated in the tumor mass.
As shown in Fig. 4e, whereas the heterogeneity of the
tumor tissue is clear from the detection of the three
different subclones, the micro area occupied by each
subclone exhibits no mingling with cells from other
subclones. This finding implies that the three
subclones are independent with well-established
tumorigenic advantages and strongly suggests that a
combination of diverse drugs for inhibiting different
subclones in each patient should be a future thera-
peutic strategy for personalized cancer medicine.

Constructing and visualizing a cancer genomic map in a
three-dimensional spatial context

We further analyzed consecutive sections of a
triple-negative  (estrogen/progesterone receptor and
HER2-negative) breast cancer sample to discover how
heterogeneous tumor subclones exist in the
three-dimensional space of the tissue and to demon-
strate how PHLI-seq can be an empowering tool to
bridge genomics to histopathology (Fig. 5a). The size of
the tumor was about 7x6 x5 mm, and seven tissue
slices with an interval of 700 um between each of them
were used to prepare H&E sections for PHLI-seq. A
total of 177 cell clusters from the seven H&E sections
were isolated and sequenced by PHLI-seq as described.
Before the isolation, cancer cells with various phenotypes
were identified by histopathological evaluation from
H&E and IHC (AR, CK5/6, Ki-67, and p53; see Add-
itional file 1: Figure S7) sections. Based on the pheno-
typic information, the 177 cell clusters were selected to
discover genetic heterogeneity in tumor cells with vari-
ous phenotypes. After isolating the targeted cell clusters,
we performed low-depth whole-genome sequencing to
obtain an image of the heterogeneity of CNAs (Fig. 5b).
We discovered three genetic subclones, and they were
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denoted in situ clone 1, in situ clone 2, and invasive
clone. In situ clone 1 and in situ clone 2 had the same
copy number profiles, except for the deletion of a q arm
of chromosome 16 and a p arm of chromosome 17 in in
situ clone 2, suggesting that the in situ clone 2 may have
derived from ancestral cells of the in situ clone 1 by
additional chromosomal deletions. The invasive clone
showed additional chromosomal amplification in chro-
mosomes 1 (q arm), 6, 7, 8, 10, and X. To investigate
more genomic differences at the single nucleotide level,
we performed whole-exome sequencing (WES) for 11
clusters in the three clones (Fig. 5c). The result shows
that the tumor cells in the invasive clone had mutations
which do not exist in in situ clones. Surprisingly, even in
situ clones had mutations which were not observed in
the invasive clone. This may suggest that IDC is derived
from an early ancestry of ductal carcinoma in situ
(DCIS), atypical ductal hyperplasia (ADH), or other be-
nign cells, not directly from DCIS in a linear manner.
Moreover, in situ clone 2 showed mutations exclusive to
in situ clone 1, which supports the previous explanation
that in situ clone 2 may be derived from the ancestral
cells of in situ clone 1, based on CNA profiles.

Within the two in situ clones determined by
whole-genome sequencing, cells with different histo-
pathologic features were observed. DCIS and benign
usual ductal hyperplasia were included in in situ clone 1,
whereas DCIS and ADH were included in in situ clone
2. Histopathologic evaluation of the invasive clone
showed that every cell cluster in the invasive clone was
IDC (Fig. 5d). A three-dimensional reconstruction of the
sections allowed identification of in situ clone 2 clusters
observed in a vicinity in consecutive sections S4, S5, S7,
and S7, suggesting that combined analysis of histopath-
ology and spatially resolved genomics enabled by
PHLI-seq has potential to contribute to clinical
diagnostics.

Discussion

In this study, we developed a new technology that effect-
ively discovers the genetic heterogeneity of tumors with
accurate mapping of genomic alterations to the spatial
information of the tissues. We showed that PHLI-seq
technique outperformed conventional UV laser
microdissection technique in terms of DNA quality and
sequencing result of isolated cells and process speed
(Fig. 3 and Additional file 1: Figure S12). This could
result from wavelength (355 nm) and applied energy (~
10 pJ) of the laser used in LPC and LMD. We used
1064 nm of IR laser for PHLI-seq, and photons in this
wavelength have three times lower energy compared to
the UV laser in LPC and LMD. Moreover, we used ~
3 yJ of single laser pulse for PHLI-seq, whereas LPC and
LMD used about three times higher energy per a laser
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Fig. 5 The three-dimensional tumor mass was investigated using PHLI-seq. a A total of 177 cell clusters were isolated and analyzed from 7
consecutive tissue sections from a triple-negative breast tumor. Before the isolation, cancer cells with various phenotypes were identified by
histopathological evaluation from H&E and IHC (AR, CK5/6, Ki-67, and p53; see Additional file 1: Figure S7) sections. Based on the phenotypic
information, the 177 cell clusters were selected to discover genetic heterogeneity in tumor cells with various phenotypes. Seven consecutive
tissue sections had a 700-um interval between each section. b Whole-genome sequencing of the 177 cell clusters in the tumor discovered three
subclones. The in situ clones 1 and 2 shared CNAs in chromosomes 1 and X. On the other hand, the invasive clone had considerably more
amplifications in chromosomes 1 and X, and additional amplifications in chromosomes 5, 7, 8, and 10. ¢ Whole-exome sequencing of the
selected samples from each subclone. The subclonal mutations are labeled in the corresponding color to demonstrate shared and unique
mutations. d In situ clone 1 included DCIS and benign usual ductal hyperplasia, whereas in situ clone 2 included DCIS and ADH. Histopathologic
evaluation of the invasive clone showed that every cell clusters in this subclone were IDC
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pulse. Especially in LMD, thousands of laser pulses were
irradiated around sample for dissection (80 Hz laser
pulse x30 s=2,400 laser pulses). In addition to
UV-induced damage of laser microdissection, high
equipment costs can prevent this technique from being
widely adopted for genome research. Although basic
optic and mechanical components are similar in
PHLI-seq and laser microdissection, replacing UV laser
optics (lenses or mirrors which can withstand UV
damage and correct chromatic aberration) can reduce
manufacturing cost. Therefore, we believe that PHLI-seq
is advantageous both in performance and cost.

Using PHLI-seq, we identified three subclones in the
HR-positive/HER2-positive breast cancer tissue and dis-
covered subclonal CNAs and point mutations. Here, we

found that the majority of CNAs are shared by all
groups, whereas those of SNVs are not. Similar to a
prior report [12], this result indicates that most chromo-
somal rearrangements preceded the generation of point
mutations. Moreover, when only CNAs are considered,
the evolution of the tumor seems to have followed the
model of punctuated evolution with a one-time event,
rather than the model of gradual evolution [16, 18].
However, regarding the SNVs, the evolution cannot be
explained by the model of punctuated evolution with a
one-time event. Because subclones 1 and 3 share many
SNVs, the divergence of subclones 1 and 3 from the an-
cestral population seems to have occurred later than the
evolutionary burst that generated subclone 2 and the an-
cestral population of subclones 1 and 3. Therefore,
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considering both the CNAs and the SNVs, our data can
be explained by the model of punctuated copy number
evolution with two-time events. Overall, we visualized
the three genetic subclones of the HR-positive/HER2--
positive breast cancer in tissue context with their genetic
history of punctuated copy number evolution.

We also applied PHLI-seq to serial breast cancer tissue
sections to construct and visualize a cancer genomic map
in a three-dimensional spatial context (see Additional file 7:
Video S6). From 177 cell clusters in a 7 mm x 6 mm x
5 mm space, we identified three genetic subclones encom-
passing the histopathologically classified benign cancer
cells ADH, DCIS, and IDC. We performed CNA and SNV
analyses by WES to elucidate the evolutionary history of
the cancer cells in relation to the histopathological infor-
mation. In three-dimensional space, the invasive clone
was located throughout the entire tissue, while the in situ
clones were confined to relatively smaller areas. Although
in situ clone 2 clusters were observed in a vicinity in four
consecutive sections, it is interesting that the in situ clone
1 was observed in sections S1 and S4, but not in between
them (Fig. 5a). Despite thorough observation of sections
S2 and S3, we could not detect any benign cells or DCIS
in the histopathological evaluation. Moreover, we could
not detect exact spatial linkage between in situ clones 1
(sections S1 and S4) and 2 (sections S4, S5, S6, and S7).
One explanation could be that the invasiveness of tumor
cells in the invasive clone resulted in the spatial separation
of the in situ clones, especially between the in situ clone 1
cell clusters in sections S1 and S4. This suggests that dif-
ferent tumors show various and complex spatial context,
and PHLI-seq is the only method that allows for corre-
lated analysis of sequencing data and histopathological
spatial features.

This new high-throughput technology can accurately
bridge the histopathological and genomic alteration land-
scape by leveraging the map of genomic alteration at the
single-cell level to spatial positions in a tissue, allowing an
unprecedented better understanding of carcinogenesis.
Additionally, by comparing primary cancers with meta-
static or recurrent cancers by high-precision analysis of
micro-local tissue areas at the single-cell level using
PHLI-seq, one can discover novel important molecular
features concerning the carcinogenic transition between
different tumorigenic stages. In addition, this technology
can provide novel insights at the high-precision single-cell
level of interactions between a tumor cell and its micro-
environment, which has not been clearly elucidated by
previous conventional techniques.

Another new innovative improvement supplied by this
technology is its exploitation of different staining modal-
ities other than H&E, FISH, and IHC, among others. Add-
itionally, PHLI-seq can incorporate machine learning to
integrate histopathological information, three-dimensional
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positions, and genomic alteration landscapes, which will
elucidate the relationship between histopathology and
genomic and molecular features that have remained ob-
scure based on conventional methods alone. PHLI-seq will
make a significant contribution to future subclonal evolu-
tionary analyses of carcinogenesis and the discovery of
novel therapeutic targets at the oncogenic subclonal level.

Previously, several groups have developed computa-
tional analytic methods for H&E-stained images based
on the single nucleus morphology [24, 29], although we
utilized image analysis techniques for a different purpose
than those of Yuan et al. and Beck et al. We developed a
method for image-based grouping of “potential” genetic
subclones of cancer cells by grouping cell clusters in an
H&E section based on their location and morphology.
With the guide of the grouping, we performed PHLI-seq
to discover the genetic heterogeneity of the cancer cells.
For this purpose, cell cluster-based image analysis would
be more suitable than approaches based on single-cell
nucleus morphology (see the “Methods” section). How-
ever, a limitation of our method is that we did not select
the four features based on a large dataset. Yuan et al.
and Beck et al. used hundreds of H&E-stained images to
establish classifiers based on hundreds of features. As
our goal was to develop a technique to reveal subclonal
heterogeneity among cancer cells that may have similar
cellular phenotype traits, we could not build the image
analysis pipeline based on many samples. However, if
such a technique can be applied, PHLI-seq would be
much more effective. We believe that cutting-edge histo-
pathological image analysis and 3D image visualization
techniques can greatly improve the potential and utility
of PHLI-seq in the future.

Recently, Navin’s group published a research about
multi-clonal invasion in breast tumors using topographic
single-cell sequencing, which is an excellent example of
spatially resolved sequencing [30]. From a methodo-
logical point of view, the research group used an
UV-based LCM method and described that UV cutting
parameters affected DNA fragmentation and the rate of
transfer failure. Also, the research group performed
somatic CNA analysis from the dissected single cells,
but not SNV analysis which requires much higher qual-
ity of amplified DNA in general. Therefore, we expect
that the advantage of throughput and IR-based isolation
of PHLI-seq will help researchers in studying
cutting-edge science in cancer biology by spatially
resolved sequencing.

From a clinical perspective, PHLI-seq can be applied
to broader areas. As mentioned earlier, genomic regions
showing copy number amplifications shared by the three
subclones harbor the loci of the oncogenes MYC, ERBB2
(HER2), and AKT. In addition, another oncogenic driver
mutations are present in subclone 1 (PIK3CA and EPHA3),
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subclone 2 (ATR), and subclone 3 (NFI and ESRI). For ex-
ample, for the subclonal tumorigenic heterogeneity status
identified by PHLI-seq in this study, the following insight
for a combined therapeutic drug treatment strategy may be
proposed. First, to inhibit a background tumor from which
the three subclones originated, HER2 inhibitor, MYC in-
hibitor, and AKT inhibitor might be used. Second, to spe-
cifically inhibit subclone 1, PI3K/AKT/mTOR inhibitors
and agonistic anti-EPHA3 mAb IIIA4 might be used, given
the suppression of the background tumorigenic activity.
Third, to prevent subclone 3 specifically, AZD9496 (an oral
estrogen receptor inhibitor) might be used. Finally, small
molecule ATR inhibitors (ATRi) might be used to specific-
ally prevent subclone 2. As some of the abovementioned
drugs are now in nearly final stages of their clinical trials,
they may be in use in upcoming years pending FDA ap-
provals. Although such a combined therapeutic strategy
could not be applied to patients because our major concern
in this study was to develop the novel PHLI-seq approach
and the proper timing for its application in patients was
lost, we propose that PHLI-seq can be applied to a variety
of cancer types in the future to provide insights on subclo-
nal tumorigenic heterogeneity for establishing combined
pharmaceutic and treatment strategies, similar to the
abovementioned example.

Finally, it should be noted that spatial genetic informa-
tion can affect clinical interpretations because cancer
cells evolve through various geographic conditions and
microenvironments in the tissue and can act differently
depending on their tumor location. Thus, the PHLI-seq
platform meets the needs of cutting-edge cancer biology,
which links histopathology to genomics to enable a syn-
ergistic and more precise interpretation of cancer.

Conclusion

In summary, we developed PHLI-seq method which
enables high-throughput isolation and genome-wide
sequence analysis of a single cell or a small number of
cells. PHLI-seq utilizes ITO-based discharging layer and
IR laser pulse for isolating cells, and we could analyze
both CNA and SNV from the isolated cells. We applied
PHLI-seq to an HR-positive/HER2-positive breast tumor
and a triple-negative breast tumor for discovering genetic
heterogeneity in relation to the 2D or 3D tissue context.
For the two cases, we could identify genetic subclones
based on subclone-specific CNAs and SNVs. Also, we
could identify location, morphology, or phenotype of each
genetic subclone.

PHLI-seq could bridge histopathology and cancer gen-
omics by leveraging the map of genomic alteration to
the histopathological image of a tissue. We believe that
accumulated knowledge in histopathology and advance-
ment of sequencing techniques would converge together
through PHLI-seq and offer new insights on the field of
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cancer research. We envision that PHLI-seq will play a
critical role in studying tumor heterogeneity, precision
oncology, and cancer genomics.

Although we applied PHLI-seq to genome analysis of tu-
mors, it should be emphasized that PHLI-seq is a general
technique for isolating a single cell or a small number cells
from a sample on a slide in a high-throughput manner.
Therefore, most analysis modality could be accompanied
by isolation, including transcriptome and epigenome ana-
lysis. We expect that PHLI-seq will serve as an essential
tool in a broad range of biological science.

Methods

Sample preparation

Human fresh-frozen breast cancer tissues were ob-
tained from the Department of Surgery, Seoul National
University Hospital, and analyzed under the approved
Institutional Review Board (IRB) protocol (IRB No.
1207-119-420). Frozen breast cancer tissues were
stored at -80 °C until they were sliced into
10-pm-thick sections using a Leica CM3050 cryostat
(Leica Microsystems GmbH, Wetzlar, Germany). Tissue
sections were thaw-mounted onto ITO-coated glass
slides. Glass slides were stored at — 20 °C until analysis.
The tissue sections were dried for 15 min at room
temperature and subjected to a modified hematoxylin
and eosin (H&E) staining technique according to the
following protocol: (1) rinse in tap water for 5 min, (2)
stain in Harris hematoxylin solution (Merck, Darm-
stadt, Germany) for 3 min, (3) rinse in tap water (quick
dip), (4) rinse in 1% HCI solution/EtOH (quick dip), (5)
rinse in tap water for 5 min, (6) counterstain with eosin
Y (BBC Biochemical, Mount Vernon, WA) for 3 s, (7)
rinse in water (10 dips), (8) dehydrate in 70% EtOH (10
dips), (9) dehydrate in 90% (10 dips), and (10) dehy-
drate in 100% EtOH (10 dips). Sections were allowed to
dry at room temperature.

The tissue used in the 2D experiment was obtained
from a b57-year-old woman who underwent total
mastectomy with axillary lymph node dissection in
April 2014. The breast cancer was a stage IIIC
(pT2N3MO, AJCC 7th TNM Staging) IDC which was
positive for estrogen receptor (95%), progesterone re-
ceptor (2%), and HER-2 (+++/3) on IHC, as evaluated
according to the American Society of Clinical Oncol-
ogy and College of American Pathologists (ASCO/
CAP) guidelines. The tissue used for 3D mapping was
obtained from a 56-year-old woman who underwent
total mastectomy with axillary lymph node dissection
in September 2015. The breast cancer was a stage IIA
(pT2NOMO, AJCC 7th TNM Staging) IDC which was
negative for estrogen receptor (1%), progesterone
receptor (negative), and HER-2 (-/3) on IHC.
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Whole-slide imaging to produce digital slides

For whole-slide imaging, a slide was removed from the
refrigerator and left at room temperature for 10 min.
After placing the slide on an automated microscope
(Inverted Microscope Eclipse Ti-E, Nikon Instruments
Inc., Melville, NY), we set the scanning region of the
slide. Scanning was performed using a x 20 lens, and
stitching was carried out by an internal algorithm
(NIS-Elements AR Auto Research, Nikon Instruments
Inc., Melville, NY).

Grouping cell clusters based on spatial and phenotypic
information
To group the cell clusters based on spatial and pheno-
typic information, we performed the following steps: (1)
whole-slide imaging, (2) cell cluster segmentation, (3)
extraction of spatial and phenotypic information, and (4)
weighted hierarchical clustering. (1) We imaged the
whole slide as described in the “Whole-slide imaging to
produce digital slides” section. (2) Cell cluster segmenta-
tion was carried out using a conditional random field.
The whole-slide image was split into small images of
1024 x 1024 pixels. The learning set was constructed for
50 split images. Then, learning and segmentation were
performed using the conditional random field [31]. After
segmentation, split images were merged into one image
of the original size. (3) We indexed each cell cluster in
the merged image using the connected components.
Then, four features were extracted for each cell cluster:
“position,” “cluster area,” “major axis over minor axis,”
and “angle.” Position is the centroid of the cell cluster.
Cluster area is the number of pixels of the cell cluster.
Major over minor axis is a ratio of the major axis over
the minor axis, which estimates how the ellipse-like
figure fitted to the cell cluster is. Angle is the angle be-
tween the horizontal line and a straight line parallel to a
longer side of the rectangle, which estimates the tilt bias
of the ellipse-like figure from the vertical line. All scripts
were written in C++ and using the OpenCV library for
connected components and other features. (4) We per-
formed weighted hierarchical clustering using the four
features to find the optimal clustered groups. To find
the optimal groups, we maximized a score as follows:

difference between each group/(variance within each
group x neighbor ratio of each group),

where
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Here, u,,, and g;,, represent the mean and the stand-
ard deviation of the i feature in the m™ group, N, and
Nrare the number of groups and features, p is the index
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of a cell cluster and N,, is the number of cell clusters in
the m™ group. NSC,,,, is the number of cell clusters that
are classified into the m™ group among the ten nearest
neighboring cell clusters to the p™ cell cluster of the m™
group. In contrast, NDC,,, is the number of cell clusters
that are not classified into the m” group among the ten
nearest neighboring cell clusters to the p” cell cluster of
the m™ group. We maximized the score by fixing the
weight for ‘position’ as one, sweeping the weight of the
other features from 0.1 to 10 with an increment of 0.25.
All scripts were written in R using the stats library for
hierarchical clustering (see Additional file 1: Figure S8).

Previously, several groups have developed computa-
tional analytic methods of H&E images based on single
nuclear morphology [24, 29]. Unlike these approaches,
which utilize a single-cell nucleus as a base unit for clas-
sifying cell types, we have used the ‘cell cluster’ as the
basis for calculations for several reasons. First, we think
that the cell types (e.g., cancer, stromal, and immune
cells) can be determined based on the single nucleus
morphology because their biological functions and phe-
notypes clearly differ from each other. However, it is
hard to predict ‘genetic’ subclones in cancer cells using
the single nucleus image because they are all cancer cells
and have relatively similar properties (e.g., large and
rounded nuclei) in many cases. Therefore, we focused
on parameters that can reflect the collective functions of
each subclone, such as the growth level, growth direc-
tion, and stromal infiltration, which can differ for each
subclone. These phenomena are reflected in the morph-
ology of the cell cluster rather than the single nuclei.
Second, because a single cell in a tissue section may not
contain an intact nucleus, we needed to isolate a cell
cluster or a small number of cells in a cell cluster to read
the full genomic information. Although we sectioned tis-
sues to a thickness of 10 pum, some cells in the section
may have a partial nucleus. We considered it to be a
poorly controlled approach to isolate and analyze a sin-
gle cell in a tissue section. Therefore, we decided to use
a cell cluster containing a small number of cells for the
sequence analysis. Consequently, we used a cell cluster
for image analysis because it was our base unit of se-
quence analysis. Based on discussions with a pathologist,
we selected four features: position, cluster area, major
axis over minor axis, and angle. The position and cluster
area reflect the relative location of a subclone in a tissue
and its growth level, respectively. The major axis over
the minor axis is associated with invasiveness and stro-
mal infiltration. Finally, the angle represents the growing
direction of a subclone.

PHLI-seq instrument
The PHLI-seq instrument comprises two motorized
stages, a CCD camera, light source, laser source, pulse
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slit, objective lenses, and fluorescence modules (see
Additional file 1: Figure S1). The two motorized stages
(ACS Motion Control, Migdal, Israel) can be controlled
automatically by communicating with a computer. One
is for loading sample slides, and the other is for loading
tubes to receive isolated cells. The CCD camera (Jenop-
tik, Jena, Germany) is installed to observe where the
laser pulse will be applied through the objective lenses.
An Nd:YAG nanosecond laser was purchased from Con-
tinuum (Minilite™ Series ML II; Continuum, San Jose,
CA). A slit is located in the light path between the laser
source and the objective lens to control the region to be
isolated. The slit is controlled either manually or auto-
matically to adjust the size of the laser pulse. Objective
lenses with various magnifications were purchased from
Mitutoyo. The long working distance allows more space
between the lens and the sample for user convenience.

Software to automate the PHLI-seq procedure

We designed two different pieces of software, which
were written in Python scripts (see Additional file 8:
Supplementary scripts). The source codes are available
at Github (https://github.com/BiNEL-SNU/PHLI-seq)
and https://zenodo.org with DOI https://doi.org/
10.5281/zenodo.1342126. The first was built for the user
(a pathologist in our case) to select the cells to be iso-
lated. We shared the whole slide image with the user
through a server, and the user ran the software to select
the cells of interest while navigating the tissue image
through the graphical user interface. After selection, the
program produces two files: a text file with locational in-
formation about the region of interest, and the image file
with the selected targets overlaid with transparent blue
on the original image. Both files are required for the
automated isolation of the target cells. The second
software enables the automatic control of the PHLI-seq
instrument. With this software, the users are able to
control the slits, change the objective lenses, and move
the motorized stages. It also enables automatic target
isolation when two files from the first software are
loaded. All tissue samples were isolated using an
automatic function, while the cell line experiments were
performed manually.

Cell isolation and whole-genome amplification

Cells were isolated from tissue sections, cell lines, or
blood smears that were spread on the ITO glass (Fine
Chemicals Industry, Seoul, Korea), where ITO was
coated on a glass by sputter deposition. An infrared laser
was applied to the target area, vaporizing the ITO layer
and discharging the target cells in the region. We used
glass slides with a 100-nm-thick ITO layer. We tried
coatings of 100-nm, 150-nm, and 300-nm ITO layers for
the experiments. However, there was no detectable
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difference between them. Cancer cells could be isolated
from 4- to 10-pm-thick tissue sections at all thicknesses.
The thickness of the ITO layer can affect the maximum
tissue thickness at which the cells can be detached,
although we did not undertake a thorough assessment.
To separate thicker or harder tissues than in the present
study, it may be better to use a thicker ITO layer, al-
though we had no problem separating the cells from the
bone tissue when using a 100-nm-thick ITO layer. Using
an infrared laser in conjunction with the ITO dischar-
ging layer, we could accomplish cell isolation without
damaging the cell (see Additional file 1: Figure S9 and
Figure S10). The eight-strip PCR tube caps for the
retrieval of cells were pre-exposed under O, plasma for
30 s. The cells were lysed using proteinase K (cat no.
P4850-1ML, Sigma Aldrich) according to the manufac-
turer’s directions after the PCR tubes were centrifuged.
For whole-genome amplification by multiple displace-
ment amplification, we used GE’s Illustra Genomiphi V2
DNA amplification kit (cat no. 25-6600-30). We added
0.2 ul of SYBR green I (Life Technologies) into the reac-
tion solution for real-time monitoring of the amplifica-
tion. All amplified products were purified using
Beckman Coulter’s Agencourt AMPure XP kit (cat no.
A63880) immediately following the amplification reac-
tion. To validate that the samples were thoroughly amp-
lified, we used real-time whole-genome amplification
monitoring and PCR validation with in-house designed
16-region primer panels (see Additional file 1: Table S1).
To discard poorly amplified samples, we used an MDA
product that exhibited an observable amplification level
within 40 min after the start of the reaction. Most of the
amplified products yielded more than 1 pg, and 800 ng
was used for Illumina library construction. To prevent
carry-over contamination, the pipette tip, PCR tube, and
cap for the reaction were stored in a clean bench
equipped with UV light and treated with O, plasma for
30 s before use. Additionally, we monitored the
real-time amplification of non-template controls to en-
sure that no contaminants were transferred.

Cell isolation by LMD and LPC techniques

We used Leica LMD6500 (Leica Microsystems, Wetzlar,
Germany) to perform LMD and LPC for cell isolation
(see Additional file 4: Video S3, Additional file 5: Video
S4). The experiment was supported by an expert from
the supplier of the instrument. We used nuclease and
human nucleic acid-free PET-membrane FrameSlide
(Leica Microsystems) to prepare samples. To minimize
UV damage to cells, laser power was adjusted down to a
minimum level (40~45 in the operating software for
LMD6500). For LPC, the aperture in the instrument was
opened to maximum and the laser was out-focused.
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Other experimental were same with

PHLI-seq.

procedures

Sequencing of the amplified genome

The whole-genome-amplified products or genomic DNA
extracts were fragmented using an  EpiSonic
Multi-Functional Bioprocessor 1100 (Epigentek) to gener-
ate a 150~250-bp fragment distribution. The fragmented
products underwent Illumina library preparation for end
repair, 3'dA-tailing, adaptor ligation, and PCR amplifica-
tion according to the manufacturers’ instructions. We
used the Celemics NGS Library Preparation Kit (LI1096,
Celemics, Seoul, Korea) for the whole-genome sequencing
library preparation, SureSelectXT (Agilent, CA, USA) for
whole-exome sequencing, and the Celemics Customized
Target Enrichment Kit (SICT96, Celemics, Seoul, Korea)
for targeted sequencing. DNA purification was performed
by TOPRXSEP MagBead (XB6050, Celemics, Seoul, Korea),
and DNA libraries were amplified using the KAPA Library
Amplification Kit (KAPA Biosystems, KK2602). Finally,
the products were quantified by TapeStation 2200 (Agi-
lent, CA, USA). We used a HiSeq 2500 50SE (Illumina) to
generate 0.16 Gb/sample for whole-genome sequencing
and a HiSeq 2500 150PE (Illumina) to generate 5 G/sam-
ple and 0.88G/sample for whole-exome and targeted
sequencing, respectively.

Targeted sequencing panel

We chose 121 genes for the SNUH BCC (Seoul National
University Hospital Breast Care Center Panel) based on
the following criteria.

In our previous study, we performed whole-exome se-
quencing and RNA-Seq of 200 pairs of matched clinical
breast cancer and normal samples from Korean breast
cancer patients. In addition, we analyzed the mutations,
CNAs, and gene expression results of approximately
3000 clinical breast cancer samples in the TCGA and
METABRIC databases. Based on these study results, we
chose the genes that showed a high frequency and recur-
rent mutations, genomic copy number amplifications
and deletions, and expression changes in breast cancer
samples, which could be oncogenes, tumor suppressor
genes, or breast cancer-associated genes. Among the 121
genes that we chose based on such criteria were previ-
ously known oncogenes, tumor suppressor genes, and
breast cancer-associated genes, including genes involved
in DNA repair pathways.

However, our SNUH BCC panel is unique compared
with other cancer panels based on NGS because it in-
cludes a certain portion of novel breast cancer-associated
genes that have not been included in other recent popular
and conventional cancer panels. In this regard, our SNUH
BCC panel is not only targeted to worldwide breast cancer
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patients but is also ethnically directed to Korean breast
cancer patients for diagnosis and therapeutic prognostic
prediction.

Sequence alignment and preprocessing

The NGS sequence reads were mapped to the GRCh37
human reference genome using BWA-MEM [32] (ver-
sion 0.7.8) with default parameters. The resulting SAM
files are sorted by chromosome coordinates, followed by
PCR duplication marking using Picard (version 1.115)
(http://broadinstitute.github.io/picard/). Reads with a
mapping quality score less than 30 or that have a supple-
mentary alignment were removed from the BAM file be-
fore the subsequent analysis.

Detecting copy number alterations

We used low-depth whole-genome sequencing data and
the variable-size binning method [33] to estimate the
CNAs of the samples. Briefly, the whole genome was di-
vided into 10,000 variable-sized bins (median genomic
length of bin =276 kbp) in the case of breast cancer tis-
sue samples and 7,000 bins (median =396 kbp) in the
case of cell line samples, in which each bin had an equal
expected number of uniquely mapped reads. Then, each
NGS sequence read was assigned to each bin followed
by Lowess GC normalization to obtain the read depth of
each bin. The copy number was estimated by normaliz-
ing the read depth of each bin by the median read depth
of the reference DNA.

Clustering samples based on the CNA dataset

After the CNA detection followed by MergeLevels [34],
the data underwent multi-sample segmentation with
gamma = 20. Given the multi-sample segmentation, the
event vector was constructed for each cell by providing
a value of 0 for the segments with a median copy num-
ber of reference DNA, 1 for segments with a gain, and
-1 for segments with a loss. Finally, a correlation matrix
was constructed, and hierarchical clustering was
performed. To evaluate the accuracy of the clustering, a
multiscale bootstrapping resampling method was used
to approximately calculate the unbiased p value [35].
The approximately unbiased (AU) p value indicated the
strength of the cluster supported by bootstrapping.
Bootstrap samples were generated, and clustering
analysis was applied to them repeatedly. The AU p value
of a cluster was related to the frequency that appeared
in the bootstrap replicates, and the method was imple-
mented by the R package Pvclust [36].

Single nucleotide variant detection

Before SNV detection, GATK (v3.5-0) IndelRealigner
and BaseRecalibrator were used to locally realign reads
around the Indel and recalibrate the base quality score
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of BAM files [37]. We then used three different variant
callers (GATK UnifedGenotyper, Varscan, and MuTect)
and combined the results to avoid false-positive variant
detection [38]. First, GATK UnifiedGenotyper was used
with default parameters followed by GATK VariantRecali-
brator to obtain filtered variants [37]. Tumor bulk sample
and PHLI-seq sorted sample data were processed together
to produce a single vcf file. The training data used for
variant recalibration included dbSNP build 137, hapmap
3.3, Omni 2.5, and 1000G phasel, and QD, MQ, FS, Read-
PosRankSum, and MQRankSum annotations were used
for the training. Variants detected in the paired blood
sample of the cancer patient were removed to produce the
final list of GATK called variants. Varscan2 [39] (ver 2.3.7)
and Mutect [40] (ver 1.1.4) were used with default param-
eters to produce the lists of Varscan and MuTect called
variants, respectively. Here, paired blood read data was
also used to separately call germline mutations.

Among the variants detected in the samples by the
three variant callers, variants called by at least two cal-
lers were collected to obtain intra-sample double called
sites. By considering only these variants for subsequent
analysis, we could reduce false-positive variant detection
derived from NGS errors [38]. Among the intra-sample
double called sites, variants found in at least two sam-
ples were collected to remove WGA (whole-genome
amplification) errors, and the genomic loci with the re-
sultant variants were considered confident sites. Finally,
a variant in the confident sites was considered to be true
if one of the three variant callers detected the variant at
the locus and the allele count of the variant was signifi-
cantly larger than that of the other non-reference bases
(Fisher’s exact test, p < 10e-4).

Single-molecule deep sequencing to validate detected
SNVs

We carried out single-molecule deep sequencing [41] to
validate the SNVs detected from the tumor bulk
genomic DNA extract. We randomly selected a portion
of mutations detected by PHLI-seq and generated a
sequencing library for the targeted sites by tagging
unique molecular barcodes to each DNA molecule. The
difference from the referred paper is that we generated a
targeted library using PCR with minimal cycles before
tagging the molecular barcodes. This would lose the
ability to call duplex consensus sequences (DCSs), but it
is still possible to call single-strand consensus sequences
(SSCSs). We performed 3-plex PCR using 50 ng of
genomic DNA with a 2X KAPA2G Fast Multiplex kit
(KAPA Biosystems, KK5802). The amplified products
underwent gel electrophoresis, gel purification, and
quantification by a Qubit high-sensitivity dsDNA quanti-
fication kit (Invitrogen), and normalization for pooling.
The pooled library was end-repaired and dA-tailed
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(NEB, NEBNext® End Repair Module, E6050S). Then,
the duplex tags were ligated, and DNA molecules with a
length of 200 to 1000 bp were purified to remove di-
mers. Finally, the molar concentration of the tag-ligated
libraries was quantified (see Additional file 1: Figure
S11). The constructed library was sequenced by MiSeq
250 PE (Illumina) to generate a 18,182X (median)
single-molecule sequencing depth. After generating the
SSCSs, the targeted loci (where SNV had been detected)
and background loci (where no SNV had been detected)
were split. Given the allele frequency distribution from
the background group, we prepared the true positive call
set from the targeted loci (Benjamini-Hochberg false
discovery rate < 0.05).

Defining cancer genes

After the CNA and SNV detection, potential driver alter-
ations were annotated for cancer-related genes. The gene
list consists of 682 genes, which were compiled from The
Cancer Gene Census [42] and The Cancer Gene Atlas
(TCGA) Project [27, 43].
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