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Abstract

Background: In addition to genetic variation, epigenetic variation plays an important role in determining various
biological processes. The importance of natural genetic variation to crop domestication and improvement has been
widely investigated. However, the contribution of epigenetic variation in crop domestication at population level has
rarely been explored.

Results: To understand the impact of epigenetics on crop domestication, we investigate the variation of DNA
methylation during soybean domestication and improvement by whole-genome bisulfite sequencing of 45
soybean accessions, including wild soybeans, landraces, and cultivars. Through methylomic analysis, we identify
5412 differentially methylated regions (DMRs). These DMRs exhibit characters distinct from those of genetically
selected regions. In particular, they have significantly higher genetic diversity. Association analyses suggest only 22.
54% of DMRs can be explained by local genetic variations. Intriguingly, genes in the DMRs that are not associated
with any genetic variation are enriched in carbohydrate metabolism pathways.

Conclusions: This study provides a valuable map of DNA methylation across diverse accessions and dissects the
relationship between DNA methylation variation and genetic variation during soybean domestication, thus
expanding our understanding of soybean domestication and improvement.
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Background
Agriculture feeds more than seven billion people on this
planet [1]. In the development of agriculture, domestica-
tion is regarded as one of the most important events [2].
To improve the growth and performance of cultivated
species in agricultural environments, humans carried out
artificial selection on wild species during the process of
domestication. The selection changed various traits to
optimize cultivated species, such as higher yield, larger
seeds, reduced seed dispersal, and reduced seed dor-
mancy [3]. Genetically, domestication is a process of
modification of genomic diversity in the cultivated popu-
lations [4]. Identification of the corresponding loci or

genes relevant to domestication will accelerate future
crop improvement [3, 5].
Benefiting from the rapid development of next-generation

sequencing technology, various investigations of artificial
selection at the genome level during plant domestication
have been performed in different species, which identified a
number of domestication sweeps and provided valuable re-
sources for genomics-enabled improvements in crop breed-
ing [6–17]. However, most of these investigations focused on
genetic variation. Besides genetic variation, epigenetic vari-
ation also plays essential roles in diverse biological processes
[18–20]. Epigenetic modifications can create epialleles that
can be inherited independently [21]. Furthermore, compared
with genetic changes, epigenetic variation evolves more
quickly [22, 23]. The inheritance of epigenetic variation may
partially explain the missed heredity in genome-wide associ-
ation studies (GWAS) of genetic variation [24]. Therefore,
epigenetic variation represents an important source of nat-
ural variation that could be used in plant-breeding programs
[20, 22, 25–27].
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DNA methylation is one of the most extensively
studied epigenetic modifications in plants [28, 29]. DNA
methylation can influence transcriptional activity [29–
33], morphological development [34–38], and agronomic
trait formation [37, 39, 40]. In addition, it also plays an
important role in evolution [41, 42]. Population analyses
have demonstrated that DNA methylation varies among
the individuals within a species [43, 44] and that these
variations could lead to extensive phenotypic variations
[31, 45, 46], such as biomass [47], energy use efficiency
[25], disease resistance [48], and environmental adapta-
tion [44, 49, 50]. It has been demonstrated that domesti-
cation may alter DNA methylation profiles [43, 51]. In a
recent study, DNA methylation variation in CON-
STANS-LIKE (COL) genes was found to be responsible
for the loss of photoperiod sensitivity during cotton do-
mestication [52]. These studies suggest that DNA
methylation variation is an important component of arti-
ficial selection in crop domestication beyond genetic
variation, and thus, is crucial in plant breeding and agri-
culture [27].
Soybean (Glycine max [L.] Merr.) is one of the most im-

portant crops and accounts for more than half of global oil-
seed production [53]. Cultivated soybean was domesticated
from wild soybean (G. soja Sieb. & Zucc.) in China 5000 years
ago [53–55]. Compared to wild soybean, cultivated soybean
exhibits significant changes in diverse morphological charac-
teristics [16, 53]. Comprehensive resequencing analyses of
wild soybeans, landraces, and cultivars have clarified the
demographic history and identified the genetic regions that
experienced selective sweeps during soybean domestication
and improvement [7, 16, 56]. Furthermore, the integration of
a GWAS of domestication traits with previous quantitative
trait loci (QTL) analyses revealed that some of these selective
sweeps may be associated with the increase of oil content in
cultivated soybeans [16]. Whole-genome bisulfite sequencing
(WGBS) of 83 soybean recombinant inbred lines (RILs) re-
vealed that the observed DNA methylation variation was
heritable [57]. Thus far, the importance of epialleles in soy-
bean domestication and improvement and its relationship
with genetic selection was largely unknown. Genome-wide
study of epigenetic variants, together with the previous gen-
etic analyses, will enhance our understanding of soybean do-
mestication and improvement.
Here, we generated single-base-resolution methylomes

of 45 soybean accessions, including wild soybeans, land-
races, and cultivars. Through a comprehensive investiga-
tion of methylation variation, we identified 5412
differentially methylated regions (DMRs) during soybean
domestication and improvement. The genetic diversity
between DMRs and selective genetic regions are signifi-
cantly different. Moreover, we discovered that genes re-
lated to carbohydrate metabolism were significantly
enriched in the DMRs that were not associated with any

genetic variation, indicating that the methylation vari-
ation may play an important role independently from
that of genetic selection in soybean domestication.

Results
Differentially methylated regions (DMRs) during soybean
domestication and improvement
To uncover DNA methylation changes during soybean
domestication and improvement, we performed WGBS
on 45 representative accessions from our previous stud-
ies [16, 58], including nine wild soybeans, 12 landraces,
and 24 cultivars (Fig. 1a; Additional file 1: Table S1). In
total, > 1919 Tb sequences were generated. To exclude
the effects of nucleotide variation across these accessions
in DNA methylation analysis, we performed resequencing
for these accessions on an Illumina HiSeq sequencer with
an average sequencing depth of > 20× (Additional file 2:
Table S2). The resequencing reads were mapped to the
cultivated soybean Williams 82 reference genome.
Single-nucleotide polymorphisms (SNPs) from individual
accession (Additional file 2: Table S2) were used to replace
the corresponding nucleotides in the reference genome to
generate a pseudo-reference genome for each accession,
following the previous method [50] (see “Methods”).
For methylation analysis, after trimming the adapters

and low-quality bases, the remaining WGBS reads were
mapped to the soybean pseudo-reference genome of
each accession (Additional file 3: Figure S1). After re-
moving the duplicated reads, a total of 3720 million
uniquely mapped read pairs, which covered 94.54% of
the cultivated soybean Williams 82 reference genome
with an average depth of 22.41×, were retained (Fig. 1b;
Additional file 4: Table S3). In plants, DNA methylation
occurs in three contexts: CG; CHG; and CHH (H = C,
A, or T) [59]. After removing cytosine sites with sequen-
cing depths < 4 and performing binomial tests using the
unmethylated chloroplast genome as control (Additional
file 3: Figure S1), a total of 16,836,566 methylated CGs
(mCG) (52.7% of all CGs), 16,333,099 mCHGs (41.3% of
all CHGs), and 11,678,796 mCHHs (4.4% of all CHHs)
were identified (Additional file 5: Table S4). These re-
sults represented a similar proportion of methylated cy-
tosines to that was found in a previous report from
soybean RILs [57].
To examine the DNA methylation variation during

soybean domestication (wild soybeans versus landraces)
and improvement (landraces versus cultivars), we identi-
fied DMRs between the different populations according
to a previous method [50, 60, 61]. In total, 4248 DMRs
were identified in the process of soybean domestication
(termed Dos-DMR in this study), including 3358
CG-DMRs, 864 CHG-DMRs, and 26 CHH-DMRs. Com-
pared with domestication, fewer DMRs were identified
in the improvement process (termed Imp-DMR in this
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study), which amounted to 1164 DMRs, including 911
CG-DMRs, 236 CHG-DMRs, and 17 CHH-DMRs
(Fig. 2a; Additional file 6: Table S5).
Compared to the DNA sequence regions under selec-

tion (termed DSRs; Dos-DSR for domestication and
Imp-DSR for improvement in this study) that have pre-
viously been identified [16], DMRs exhibited different
characters. The DMRs were distributed more evenly
across the genome (Fig. 2b) and fewer DMRs than
DSRs were located in transposable element (TE) re-
gions (Fig. 2c). In addition, the average length of
DMRs was significantly shorter than that of DSRs
(ANOVA, p < 2.2e-16) (Fig. 2d). However, no significant
differences in length were found between Dos-DMRs and
Imp-DMRs (ANOVA, p = 1.000) or between Dos-DSRs
and Imp-DSRs (ANOVA, p = 0.058) (Fig. 2d).

DMRs exhibited higher genetic diversity
Generally, genetic diversity is reduced in domesticated
lines because of genetic bottleneck effect during domes-
tication [62]. To investigate the effects of DNA methyla-
tion variation on the genetic diversity of DMRs, we
compared the genetic diversity among DMRs, DSRs, and
non-selected regions (termed NSRs in this study, which
are the genomic regions outside the DMRs and DSRs).

Previous studies have demonstrated that TEs usually ex-
hibit high genetic variations in a population [63, 64]. In
the soybean genome, the average genetic diversity (rep-
resented by π) in TE regions is higher than that in inter-
genic and genic regions (Additional file 3: Figure S2).
Because the genomic compositions of DMRs and DSRs
are significantly different (Fig. 2c), to eliminate their ef-
fects, we investigated the genetic diversities of DMRs,
DSRs, and NSRs separately in different genetic regions.
The results showed that DSRs exhibited lower genetic
diversity than NSRs in diverse contexts (Fig. 2e). In con-
trast, the genetic diversity in DMRs was higher than that
of NSRs (Fig. 2e). When the genetic diversity was
investigated in individual populations, similar patterns
were observed, particularly for the exon and TE regions
(Additional file 3: Figure S3).
One possible reason for the higher genetic diversity in

DMRs may be directly resulted from the variation of
methylation level, which means that, for a specific re-
gion, the increase/decrease of its methylation level in a
particular population could affect its mutation rate. To
examine this possibility, we divided the DMRs into two
groups: decreased-DMRs (the methylation level in the
selected population is decreased, i.e. landraces compared
to wild soybeans and cultivars compared to landraces)

Wild

Landrace
Cultivar

a

b
Features Statistics

Original reads pair 6,999,881,004

Trimmed reads pair 6,005,020,965

Unique mapped reads pair 4,810,910,110

Deduplication left reads pair 3,720,484,687

Genome coverage 94.54%

Depth 22.41

Fig. 1 Accession information and methylation sequencing. a Geographical distribution and phylogenetic tree of the 45 sequenced accessions. b
Summary of whole-genome bisulfite sequencing. Statistics for reads pairs were the sum of all sequenced accessions, statistics for genome
coverage and depth were the average of all sequenced accessions
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and increased-DMRs (the methylation level in the se-
lected population is increased). If the mutation rate
could be affected by methylation level, we expected to
see a consistent pattern of genetic diversity changes in
individual groups and to see a correlation between gen-
etic diversity change and DMR level. However, a mixture
pattern of increasing/decreasing/unchanging genetic di-
versity was observed in both of the decreased-DMRs and
the increased-DMRs, either from domestication or from
improvement processes (Additional file 3: Figure S4).
Pearson correlation analysis between genetic diversity
variation and DMR level in each category also suggested
that they were inconspicuously correlated (Dos-increase:
r = 0.089, p = 0.003; Dos-decrease: r = 0.062, p = 0.001;
Imp-increase: r = 0.112, p = 0.011; Imp-decrease: r = −
0.015, p = 0.697). Another possible reason for the higher
genetic diversity in DMRs could be associated with the
process of domestication and improvement directly, which

increased the mutation rate of DMR in the selected popu-
lation along with its methylation level variation. In this
case, we would expect to see increased genetic diversity in
the selected populations (i.e. landraces compared to wild
soybeans and cultivars compared to landraces). However,
the landraces exhibited significantly lower genetic diversity
than the wild soybeans and the cultivars exhibited signifi-
cantly lower genetic diversity than the landraces (t-test,
p < 0.001; Additional file 3: Figure S5), suggesting that the
higher genetic diversity in DMRs did not come directly
from the process of domestication and improvement.
To further determine whether methylation changes

were indeed associated with mutation rate, we calculated
the differences of methylation levels between wild soy-
beans and landraces and between landraces and cultivars
in contiguous 500-bp (approximately the average DMR
length) windows across the soybean genome. Meanwhile,
genetic diversity was also investigated in these windows.

a

c d

e f

b

Fig. 2 Differentially methylated region (DMR) detection and comparison to DNA sequence regions under selection (DSRs). a DMRs detected in
soybean domestication and improvement. b Genome-wide distributions of DMRs and DSRs. c Genomic compositions of DMRs and DSRs. TE
regions were defined as regions masked by RepeatMasker using soybean annotated TEs as the library. d Length comparison between DMRs and
DSRs. ***p < 0.001 by ANOVA. e Genetic diversity comparisons between DMRs, DSRs, and non-selected regions (NSRs) from different genomic
regions. ANOVA were performed for each genomic region. Different letters at the top of each column indicate significant differences by ANOVA
(p < 0.001). f Genetic diversity comparisons between high methylation variation windows (MVWs) and low methylation variation windows for
different genomic regions. ***p < 0.001 by t-test
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The windows were divided into two groups: windows
with relatively high methylation variation (> 0.4, same
criterion of DMR) and windows with relatively low
methylation variation (< 0.4, same criterion of DMR).
Then, the average genetic diversity levels of the windows
in each group were compared for the different genomic
regions. We observed that the windows with high
methylation variation exhibited higher genetic diversity
than the windows with low methylation variation
(Fig. 2f ). Taken together, these results indicated that
higher genetic diversity might be an inherent character
of regions with higher methylation variation.

Characterization of different DMR contexts
In our analyses, although the number of methylated CG
cytosine sites was equal to that of CHG and approximately
1.5 times higher than that of CHH in the populations

(Additional file 5: Table S4), many more CG-DMRs were
identified than CHG-DMRs, and only a few CHH-DMRs
were detected in soybean domestication and improvement
(Fig. 2a). Further investigation revealed that more than
half of the CHG-DMRs (574 of the 864 Dos_CHG-DMRs
and 177 of the 236 Imp_CHG-DMRs) overlapped with
CG-DMRs. However, few CHH-DMRs were found to
overlap with regions of the other two contexts (Fig. 3a).
Only a small number of DMRs for individual methylation
contexts were shared by the two selection processes,
domestication and improvement (Additional file 3:
Figure S6), which is consistent with the patterns
found in genetic selection sweep analyses [16]. The
CG-DMRs and CHG-DMRs were further classified into
three groups based on their positional relationships:
unique CG-DMRs (termed u-CG-DMRs in this study),
unique CHG-DMRs (termed u-CHG-DMRs in this study),

a

b

c

d

Fig. 3 Characterization of DMRs in different cytosine contexts. a Overlapping DMRs from different methylation contexts in the domestication and
improvement processes. b Genomic compositions of different DMRs types. c Length comparisons between different DMR types. Different letters
at the top of each column indicate significant differences by ANOVA (p < 0.001). d Genetic diversity comparisons among different DMR types
from different genomic regions. Mann–Whitney U-test was performed between NSR and other DMR types for different genomic regions.
***p < 0.001, **p < 0.01
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and overlapping CG-DMRs and CHG-DMRs (termed
o-CG/CHG-DMRs in this study). Interestingly, we found
that the variations in CG and CHG methylation exhibited
the same trends in the o-CG/CHG-DMRs for both the do-
mestication (Additional file 3: Figure S7a) and improve-
ment processes (Additional file 3: Figure S7b).
Furthermore, the correlation between CG and CHG
methylation in o-CG/CHG-DMRs was much higher than
that in u-CG-DMRs and u-CHG-DMRs (Additional file 3:
Figure S7c and d), suggesting that the CG and CHG
methylation in o-CG/CHG-DMRs may evolve together
somehow.
Subsequently, we compared the characters among

DMRs of different contexts and found that CHH-DMRs
were significantly different from CG-DMRs and
CHG-DMRs. A higher proportion of CHH-DMRs was
found in TE regions, while more CG-DMRs occurred in
genic regions (Fig. 3b), consistent with previous observa-
tions in Arabidopsis [44, 50, 65]. In addition, we found
that the average length of the CHH-DMRs was signifi-
cantly shorter than that of DMRs of the other two con-
texts (Fig. 3c). However, the average length of o-CG/
CHG-DMRs was longer than that of u-CG-DMRs and
u-CHG-DMRs (Additional file 3: Figure S8).
DNA methylation in each context (CG, CHG, and

CHH) is linked to specific biological functions and is
primarily established and maintained by distinct DNA
methyltransferase pathways [59, 66, 67]. Generally,
CG-DMRs reflect variable CG gene body methylation
[50]. Given the above analysis suggested that an associ-
ation might exist between genetic diversity variations
and DMRs (Fig. 2e and f), to determine whether this as-
sociation consistently existed in different cytosine con-
texts or was only present in a specific cytosine context,
we investigated the genetic diversity of CG-DMRs,
CHG-DMRs, and CHH-DMRs. Our results demon-
strated that the π value of each cytosine context of
DMRs was significantly higher than those of NSRs and
DSRs, with the highest in CHH-DMRs (Fig. 3d), con-
firming that higher genetic diversity was a common
character for all types of DMRs.

Genetic variations contributing to DMRs
Local genetic variations, including TE insertion/deletion
[59, 68, 69], SNPs [43, 50], and 24 nt small interfering
RNA (siRNA) expression variation [70, 71], could influ-
ence methylation. To identify the local genetic variations
that might be associated with our detected DMRs, we
performed association analyses between methylation
variation and three forms of genetic variation: siRNA ex-
pression variation; TE presence/absence; and local SNPs.
For the siRNA analysis, we performed small RNA se-

quencing (smRNA-seq) using the same samples for WGBS.
A total of 40,575 24 nt siRNAs were identified, among

which 1401 siRNAs were physically overlap with the
DMRs we identified. Then, we performed a correlation
analysis between the methylation variations and siRNA
expression variations for each overlapping siRNA and
DMR pair (see “Methods”). We found that the methylation
changes in 412 DMRs (Fig. 4a) were significantly correlated
with expression variations in their overlapping siRNAs
(Fig. 4b; Additional file 3: Figure S9; Additional file 7:
Table S6).
For the TE analysis, we investigated TE variants at a

genome-wide level, referring to a previous methodology
[72] and using the resequencing data from the 45 acces-
sions. A total of 5663 TE variants were identified in the
population. Then, the association between the methyla-
tion changes of each accession in each individual DMRs
and the presence/absence of its closest TE were ana-
lyzed. The results indicated that the methylation changes
in 208 DMRs were associated with TE variants (Fig. 4a;
Additional file 8: Table S7). Moreover, TE variants at
shorter distances exhibited higher association values
than those at longer distances (Fig. 4c), suggesting that
distance from a TE insertion or deletion influenced the
methylation divergence level. Previous studies have sug-
gested that indels can generate higher mutation rates
[73–75]. Our analyses showed that the genetic diversity
of DMRs associated with TE variants was higher than
that of DMRs without TE variants (Additional file 3:
Figure S10), suggesting that TE variation was one reason
for the higher genetic diversity in DMRs (Fig. 2e). To
identify local SNPs that might contribute to the DMRs,
we performed a local association study based on a previ-
ously reported method [43]. We determined that the
methylation changes of 779 DMRs might be associated
with local SNPs (Fig. 4a; Additional file 9: Table S8).
Taken together, the association analyses of siRNA ex-

pression, TE variants, and local SNPs could explain the
methylation variations of 1370 DMRs (22.54% of the
total DMRs). The majority of these DMRs that were as-
sociated with genetic variations were CG-DMRs and
CHG-DMRs (Fig. 4d). Consistent with the similar vari-
ation pattern between CG and CHG methylation in
o-CG/CHG-DMRs (Additional file 3: Figure S7), we
found that for those CG-DMRs and CHG-DMRs pairs
in o-CG/CHG-DMRs that could detect association fac-
tors, a large proportion of them (189 of 263 pairs in do-
mestication and 60 of 79 pairs in improvement) shared
the same association genetic factors (Additional file 3:
Figure S11). Beside these o-CG/CHG-DMRs, most of
other DMRs were associated with distinct and independ-
ent genetic variations. Approximately 13.45% of DMRs
were found to be affected by multiple factors and 1.07%
were even simultaneously associated with siRNAs, TEs,
and SNPs (Fig. 4d). For instance, the methylation levels
of different accessions in the DMR located on
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chromosome 14 were significantly associated with
siRNA expression, TE, and SNP variations (Fig. 4e).

Genes from “pure DMRs” enriched in carbohydrate
metabolism pathways
A primary goal of DMR analysis is to identify “pure
epialleles” that are independent of genetic variation [29].

Such “pure epialleles” are an important source of pheno-
typic variation [21, 42]. In our analysis, 22.54% of DMRs
were found to associate with local genetic variations;
however, 77.46% of DMRs remained unexplained by
these genetic variations (Fig. 4d). The DMRs that did
not associate with any genetic variation were considered
as “pure DMRs.”

a

b c

d e

Fig. 4 Local association study between DMRs and genetic variations. a Summary of the associations between DMRs and local siRNA expression
variation, TE variation and SNPs. b Plot of methylation levels (x-axis) and siRNA expression values (y-axis). Methylation level and siRNA RPM were
mean-centered and normalized. c Correlation between DMR methylation and TE variant state at different distances. The DMR/TE variation pairs
were divided into five groups according to the distance between DMR and TE variant. Different letters at the top of each column indicate
significant differences by ANOVA (p < 0.001). d The proportion of DMRs associated and not associated with local genetic variations (top) and the
proportion of different DMR types (bottom left) and different genetic variation combinations (bottom right) for locally associated DMRs. e An
example (Dos_CHG-DMR, Chr14:45,221,203–45,222,398) DMR that was simultaneously associated with local siRNA expression, TE variant, and SNP
sites. Rectangles in the TE variant panel indicate reads supporting the TE variant and rectangles in the SNP panel indicate SNP sites
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Subsequently, we turned to investigate the genes that
were located at these “pure DMRs.” Following the above
classification, we also divided these “pure CG-DMRs” and
“pure CHG-DMRs” into “pure u-CG-DMRs,” “pure
o-CG/CHG-DMRs,” and “pure u-CHG-DMRs.” The
genes overlapping with each of these “pure DMR” con-
texts were subjected to Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses (Additional file 10: Table S9). We found that
enriched categories were identified only in the genes from
pure Dos-DMRs, not from the pure Imp-DMRs. In
addition, for the pure Dos-DMRs, enrichments were only
identified in the genes located in “pure u-CG-DMRs” and
“pure o-CG/CHG-DMRs.” The biological process categor-
ies for these enriched genes were mainly macromolecule
modification, protein modification process, and cellular
process and the molecular function categories mainly in-
clude nucleotide binding, kinase activity, catalytic activity,
transferase activity, and hydrolase activity (Additional
file 3: Figure S12).
The KEGG analysis indicated that the genes over-

lapped with “pure CG-DMRs” in domestication were
enriched in 17 pathways (Fig. 5a). Interestingly, 13 of
these 17 pathways were related to metabolism. More-
over, six pathways belonged to carbohydrate metabolism,
including starch and sucrose metabolism, pentose phosphate
pathway, fructose and mannose metabolism, amino sugar
and nucleotide sugar metabolism, glycolysis/gluconeogenesis,
and pyruvate metabolism (Fig. 5a). Further investigation
demonstrated that 62 “pure Dos_CG-DMR” overlapping
genes were distributed throughout these carbohydrate me-
tabolism processes (Fig. 5b; Additional file 11: Table S10). Six
enzymes, including hexokinase, phosphofructokinase, glu
cose-6-phosphate 1-dehydrogenase, pyruvate kinase, pyru-
vate dehydrogenase E1 component beta subunit, and
acetyl-CoA carboxylase, have been reported to play key roles
in the glycolysis/gluconeogenesis, pentose phosphate path-
way, and pyruvate metabolism, which are central pathways
of carbohydrate metabolism [76–79]. The genes encoding
these six enzymes were all found in “pure Dos_CG-DMRs”
and four of them (phosphofructokinase, pyruvate kinase,
glucose-6-phosphate 1-dehydrogenase, and acetyl-CoA carb-
oxylase) were enriched (Fig. 5c).

Discussion
DNA methylation is universally distributed across the
genomes of most species [80]. Previous studies have
indicated that DNA methylation can be responsive to
climate change [22] and plays an important role in
certain developmental processes [18]. Epigenetic di-
versity represents an essential source of natural vari-
ation that should be considered in plant-breeding
programs [20, 22, 27]. However, the contribution of

natural epigenetic variation to phenotypic variation
remains enigmatic due to the relative lack of charac-
terized natural epialleles [81–83].
Studies have demonstrated that, as genetic variation,

epigenetic variation is heritable [57]. Mounting evidence
indicates that a significant degree of variation in DNA
methylation is genetically controlled [29]. However, the
association degree between DNA methylation and gen-
etic variation may vary in different species or in analyses
of different populations [84]. For instance, an analysis of
a large collection of Swedish Arabidopsis revealed that
approximately 18% of DMRs were associated with gen-
etic variants [61], whereas an early study of 152 methy-
lomes in Arabidopsis from throughout the Northern
Hemisphere suggested that the variation in 35% of
DMRs could be explained by genetic variation [44]. In
our analysis, we determined that approximately 22% of
DMRs were associated with genetic variation (Fig. 4d).
This number is much lower than that of a previous
study using soybean RILs [57]. Most probably, the low
association proportion in our study than that from RILs
might be resulted from the more divergent natural
population we used, including wild soybeans, landraces,
and cultivars. A population with closer genetic relation-
ships might show a higher correlation between genetic
and epigenetic variations. This was in agreement with
the study of North American Arabidopsis accessions that
with close genetic relationships (more like RILs) revealed
approximately 90% genotype–epigenotype associations
[85], which is much higher than that in the natural
population [44, 61]. Similarly, an analysis of maize RILs
revealed that more than half of DMRs were associated
with local genetic variants [43]. The variation in associ-
ation degree between genetic variation and epigenetic
variation from natural and closely genetically related
populations of the same species may provide a clue that
epigenetic variation is heritable independent from gen-
etic variation.
Previous studies have suggested that epigenetic

polymorphisms evolve faster than that of DNA se-
quences in the genome [23, 74, 86, 87]. Interestingly,
our results demonstrated that DNA sequence diversity
in DMRs was higher than that in other regions
(Fig. 3d). Moreover, the regions with higher methyla-
tion variation among the population had higher gen-
etic diversity than those with lower methylation
variation (Fig. 2f ). Although we could not fully ex-
plain how a high mutation rate was associated with
high methylation variation, our analysis revealed that
one reason might come from TE polymorphisms
(Additional file 3: Figure S10), indicating that struc-
tural variations or indels may play important roles
not only in the genome sequence mutation rate [73–75]
but also in that of DNA methylation.
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Plant domestication has been performed for thousands
of years; this process has shaped plants for better growth
and performance [3]. A comprehensive understanding of
the mechanisms underlying agronomic traits is essential
for generating better crop and breeding methodologies
[19]. As a heritable genomic resource [80] that plays im-
portant roles in diverse developmental processes [18, 22],
DNA methylation should also have undergone artificial

selection during crop breeding. An interesting experi-
ment by Haubena et al. [25] indicated the important
role of epigenetic selection in the improvement of can-
ola (Brassica napus). They performed recursive selec-
tion for respiration intensity and energy use efficiency
(factors directly related to yield) on an isogenic doubled
haploid line and found that three to five rounds of selec-
tion were sufficient to generate lines with distinct yield.

a

b

c

Fig. 5 KEGG enrichment analysis of “pure Dos_CG-DMR” overlapping genes. a The pathways significantly enriched for “pure Dos_CG-DMR”
overlapping genes. Pathways that contained > 5 overlapping genes with enrichment q-values < 0.05 were considered significantly enriched. b An
integrated carbohydrate metabolism pathway composed of pathways enriched in “pure Dos_CG-DMR” overlapping genes. c Genome enrichment
of six key enzymes in carbohydrate metabolism pathways. The background for “pure Dos_CG-DMR” overlapping genes was 1503 and that for
genome annotation genes was 55,583; enrichment was analyzed by Fisher’s exact test
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However, these lines were found to be genetically
identical but carried global epigenetic differences. Fur-
thermore, both the agronomic traits and the DNA
methylation patterns of the selected lines were herit-
able. A recent study in cotton also suggested that DNA
methylation variations in several key genes were respon-
sible for the loss of photoperiod sensitivity during cotton
domestication [52].
Interestingly, our analysis demonstrated that genes re-

lated to metabolism exhibited significant DNA methyla-
tion level variation during soybean domestication,
particularly genes related to carbohydrate metabolism
(Fig. 5). Compared with their wild forms, cultivated soy-
beans exhibit significantly higher biomass, yield [3], and
oil content [16]. Carbohydrate metabolism is an indis-
pensable basis of yield and is also known to be related to
fatty acid biosynthesis. Therefore, the significant DNA
methylation level variation of metabolism-related genes
during soybean domestication may be related to biomass
and yield improvement or to high oil content. For in-
stance, acetyl-CoA carboxylase catalyzes acetyl-CoA to
form malonyl-CoA and malonyl-CoA is the basis for
fatty acid biosynthesis [79]. In addition, the genes encod-
ing three enzymes in fatty acid biosynthesis (malonyl--
CoA-acyl carrier protein transacylase-like, long chain
acyl-CoA synthetase, and 3-ketoacyl-CoA synthase) were
all located in the DMRs, indicating that DNA methyla-
tion variation during domestication may be related to oil
content.
The relationship between gene expression level and

DNA methylation is complex. Previous studies have sug-
gested that DNA methylation can influence transcrip-
tional activity [29–33]. However, analyses at the
genome-wide level in maize revealed that only approxi-
mately 20% of genes with qualitative (on-off ) transcrip-
tional differences were associated with DMRs; little
association was identified between the expression of
genes with quantitative transcriptional differences and
DMRs [88]. Similarly, a recent study of > 1000 Arabidop-
sis accessions also suggested that gene body methylation
does not have a major role in shaping transcriptional
variation [50]. To determine whether methylation vari-
ation affected gene expression in these “pure DMRs,” we
performed RNA-seq using the same samples used for
WGBS. The transcriptional profiling analysis indicated
no clear correlation between methylation changes and
the transcriptional variation of the genes in these “pure
DMRs” (Additional file 3: Figure S13). Therefore, the
variation of DNA methylation at these enriched genes
may not relate to changes in their expression.
The GO and KEGG enriched genes in our study all

came from CG-DMRs involved in the domestication
process. No significant enrichment was identified in the
improvement process or in other methylation contexts.

This result may have arisen because GO and KEGG anno-
tations are confined to genes and more Dos_CG-DMRs
were found in the genic regions than in other DMR con-
texts. Interestingly, in addition to the genic regions, a large
proportion of DMRs were located in the intergenic re-
gions (Fig. 2b). Long intergenic non-coding RNAs (lincR-
NAs) are found to play important roles in essential
biological processes and a large number of lincRNAs exist
in the intergenic regions of plant genomes [89]. The
higher ratio of DMRs in the intergenic regions provides a
clue that DNA methylation variation of the lincRNAs in
these regions may be important, a hypothesis that should
be further dissected. However, due to the limited
characterization of lincRNAs in soybean, we could not
perform further functional prediction of these elements.
With the progress in the plant ENCODE (Encyclopedia of
DNA Elements) project [90], we may be able to examine
more clearly the role of epigenetic variation in crop do-
mestication and improvement.

Conclusions
Epigenetic variations play important roles in certain bio-
logical processes. Investigation of the contribution of
epigenetic variation to plant domestication clarifies our
understanding of domestication and will facilitate future
crop breeding. Through a methylomic analysis of 45 soy-
bean accessions, we found that DMRs exhibited charac-
ters distinct from those of genetic selection and that
CG-DMRs that did not associate with genetic variations
during soybean domestication could be correlated with
carbohydrate metabolism. This study provides a valuable
map of DNA methylation variation during soybean do-
mestication and improvement.

Methods
Plant materials
All 45 soybean accessions were grown during the grow-
ing season of 2015 at the Beijing experimental station of
the Institute of Genetics and Developmental Biology,
Chinese Academy of Sciences. For each accession, the
apical buds from 30 independent lines were collected at
the stage of full true leaf expansion. The samples from
each accession were mixed together for DNA and RNA
extraction. DNA and RNA were isolated using a DNA/
RNA isolation kit (Tiangen, Beijing, China) according to
the manufacturer’s protocol.

Library construction and sequencing
WGBS libraries were prepared according to the protocol
described in a previous report [91]. The libraries for
DNA-seq, RNA-seq, and small RNA-seq were prepared
following the manufacturer’s instructions (Illumina Inc.,
San Diego, CA, USA). WGBS and DNA-seq libraries
were sequenced on the Illumina HiSeq 2500 (125 bp
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paired-end reads) and Illumina HiSeq X10 (150 bp
paired-end reads) platforms. The RNA-seq and small
RNA-seq libraries were sequenced on the Illumina HiSeq
2500 platform. For the WGBS libraries, the sequence reads
were mapped to the naturally unmethylated chloroplast
genome of soybean using Bismark (ver. 0.14.5) [92] to
evaluate the bisulfite non-conversion rate. The libraries
with non-conversion rates < 1% were retained for further
analysis.

Resequencing analysis
Resequencing read mapping and SNP calling were per-
formed as described previously [16] with the soybean
reference genome v275 [93]. In brief, the SNPs were first
called with GATK (ver. 3.1.1) [94] and SAMtools (ver.
0.1.19) [95] independently; then, the common sites identi-
fied by both methods were retained for pseudo-reference
genome production. The phylogenetic tree was con-
structed by SNPhylo (ver. 20,160,204) [96]. The SNPs
were filtered with linkage disequilibrium (LD) setting to
0.25 and the remaining SNPs were used to produce the
maximum likelihood tree. The genetic diversity (π value)
for each SNP was calculated using the formula introduced
by Nei and Li [97].

WGBS analysis
Adapters and low-quality bases in the WGBS reads were
first trimmed by Trimmomatic (ver. 0.36) [98] using the
following parameters: adapter.fa:2:40:15; LEADING:30;
HEADCROP:6; TRAILING:30; SLIDINGWINDOW:4:15;
AVGQUAL:30; and MINLEN:100. Subsequently, the
trimmed reads were unique mapped to each corrected
pseudo-reference genome by Bismark (ver. 0.14.5) [92].
After filtering the duplicate reads, the methylation infor-
mation for each cytosine site was extracted. Methylation
states were evaluated based on the binomial test followed
by Benjamini–Hochberg false discovery rate (FDR < 0.01)
correction, as described previously [99]. In the binomial
test, the non-conversion rate was used as the expected
probability. Only sites that covered more than four
mapped reads were considered. The weighted methylation
level was computed following the previously reported
method [100].

DMR detection
DMRs were identified using Metilene (ver. 0.2–6) [60].
For the domestication process, we compared methylome
data between the wild soybean and landrace populations.
For the improvement process, we compared methylome
data between the landrace and cultivar populations. The
accessions from each population were considered as re-
peats. A DMR was required to contain at least eight
cytosine sites with < 300 bp in distance between adjacent
cytosine sites. CG-DMR candidate regions, CHG-DMR

candidate regions, and CHH-DMR candidate regions
were required to have average methylation level differ-
ences of > 0.4, >0.4, and >0.2 between the corresponding
populations. Finally, the regions with Bonferroni correc-
tion q-value < 0.01 were determined as DMRs.

DSR resources
All the original DSRs were downloaded from the previ-
ous study [16]. Soybean reference genome v189 was
used in that study and the new reference genome v275
was used in this study. To reconcile the genomic posi-
tions, we converted the DSRs from v189 to v275 refer-
ence using Blast+ [101] and Mummer (ver. 3.0) [102].

siRNA cluster identification
The small RNA-seq reads were quality controlled by
FastQC [103] and reads from different accessions were
combined for siRNA cluster analysis using the Short-
Stack pipeline (ver. 3.8.4) [104]. The mincov parameter
was set as 450. The expression levels of the 24 nt siR-
NAs (reads per million, RPM) for each accession were
calculated as follows: number of reads mapped to the
siRNA cluster divided by total read number for the
accession.

TE variant detection
Soybean TE annotations were downloaded from Soy-
TEdb [105] for the v108 reference genome; these TEs
were converted to the v275 reference genome by Blast+
[101]. TE variants were detected using TEPID, as de-
scribed previously [72]. The average insert size was set
to 280; all the other parameters were set as default.

Local association study
We performed a local association study for DMRs using
the methylation variation of each accession with the cor-
responding siRNA expression, TE presence/absence, and
SNPs in this region. To associate the overlapping DMR/
siRNA pairs and the nearest DMR/TE-var pairs, Pearson
correlation was applied. To test the significance of each
pairwise correlation, bootstrap correlation coefficient es-
timates were collected based on 1000 permutations of
the accession names. DMR/siRNA and DMR/TE-var as-
sociations were deemed significant if they had a correl-
ation coefficient higher than those of all 1000
permutations (p < 1/1000). The local association between
DMRs and their nearby SNPs were analyzed as Eichten
et al. described previously [43].

Gene expression and functional analysis
After removing the reads with low quality and clipping
the adapter sequences by Trimmomatic (ver. 0.36) [98],
the raw RNA sequence data for each accession were
mapped to the corresponding pseudo-reference genome
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using HISAT2 (ver. 2.0.4) [106]. Gene expression was es-
timated using StringTie (ver. 1.3.1) [107] and normalized
using the numbers of reads per kilobase of exon se-
quence in a gene per million mapped reads (FPKM). GO
analysis was performed using agriGO (ver. 2.0) [108] and
KEGG pathway analysis was performed using KOBAS 3.0
[109]. GO terms and pathways that contained > 5 analysis
genes with enrichment q-values < 0.05 were considered
significantly enriched.
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