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Abstract

Background: Previous approaches to defining subtypes of colorectal carcinoma (CRC) and other cancers based on
transcriptomes have assumed the existence of discrete subtypes. We analyze gene expression patterns of colorectal
tumors from a large number of patients to test this assumption and propose an approach to identify potentially a
continuum of subtypes that are present across independent studies and cohorts.

Results: We examine the assumption of discrete CRC subtypes by integrating 18 published gene expression datasets
and > 3700 patients, and contrary to previous reports, find no evidence to support the existence of discrete transcriptional
subtypes. Using a meta-analysis approach to identify co-expression patterns present in multiple datasets, we identify and
define robust, continuously varying subtype scores to represent CRC transcriptomes. The subtype scores are consistent
with established subtypes (including microsatellite instability and previously proposed discrete transcriptome subtypes),
but better represent overall transcriptional activity than do discrete subtypes. The scores are also better predictors of
tumor location, stage, grade, and times of disease-free survival than discrete subtypes. Gene set enrichment
analysis reveals that the subtype scores characterize T-cell function, inflammation response, and cyclin-dependent
kinase regulation of DNA replication.

Conclusions: We find no evidence to support discrete subtypes of the CRC transcriptome and instead propose
two validated scores to better characterize a continuity of CRC transcriptomes.
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Background
Several sub-classification systems of colorectal carcinoma
(CRC) have been developed, defined by genomic or epige-
nomic features (chromosomal instability, microsatellite in-
stability, and CpG island methylator phenotype), alterations
of a single driver gene (such as KRAS, BRAF, etc.), or a
combination thereof [1–4]. Recently, progress has also been

made towards a transcriptome-based CRC classification
system [5–7], as has been well established for breast carcin-
oma [8, 9]. A key advantage of such a system is that it re-
flects the downstream effects of genomic and epigenomic
changes. Most prominent among these efforts, the CRC
Subtyping Consortium in 2015 synthesized findings from
previously published independent CRC classification
studies and reported four concordant CRC subtypes
(the CRC Consensus Molecular Subtypes [CMS1–4])
[10]. Alternatively, in 2017 Isella et al. reported five
CRC “intrinsic” subtypes (CRIS) that are more robust
against stromal confounding in the tumor transcrip-
tome [11]. In all these works, the authors characterized
CRC tumor subtypes with their implications in terms of
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molecular (e.g. microsatellite instability), histopatho-
logical (e.g. tumor stage), and clinical (e.g. survival out-
come) variables. However, given that gene expression
and tumor phenotype are variably influenced by exter-
nal environment and endogenous factors [12], we hy-
pothesized that the biological diversity of CRC may be
better represented by a continuum of reproducible vari-
ations rather than by discrete subtypes.
To test our hypothesis, we conducted a series of meta-

analyses [13] incorporating 18 published CRC transcrip-
tome datasets. We adopted an established quantitative
evaluation framework utilized in previous literature
[14–16] to study the discreteness of previously pub-
lished subtypes in the CRC transcriptome [10, 11]. Spe-
cifically, we applied different clustering strength metrics
[17–19], which quantitatively evaluate whether the tran-
scriptomes of different CRC subtypes form discrete “clus-
ters.” These measures assess the similarity of expression
profiles in the same cluster compared to those in different
clusters [17], compare within-cluster dispersion to a refer-
ence null distribution [18], and assess robustness to
re-training the classifier in new datasets [19]. We applied
these metrics to previously proposed subtype classifiers
[10, 11] and to de novo subtypes [20–22] across numerous
datasets including a stroma-filtered dataset. We found
that a set of continuously variable, reproducible gene ex-
pression patterns agree with and subsume previously pro-
posed discrete subtypes and can be more robustly
replicated in validation studies. The proposed “continuous
subtypes” or scores offer a novel, precise characterization
of CRC tumors that allows for better-powered therapeutic
effect evaluation and individualized treatment assignment.

Results
Discreteness of CRC transcriptional subtypes cannot be
validated
We first examined the robustness of discrete CRC tran-
scriptional subtypes, and in particular the CMS1–4 by
the CRC Subtyping Consortium [10] (hereafter referred
to as the Consortium), on a collection of 18 published
studies (Table 1, Fig. 1). Among all past CRC transcrip-
tome subtyping efforts, we prioritized the Consortium’s
CMS results. This is because they represent concordant
subtypes across multiple independent transcriptional
classification systems and are, to date, still the most
comprehensive, well-powered, and well-validated classifi-
cation study [23, 24]. For the Consortium and other pre-
vious transcriptional subtyping efforts, an important
assumption is that clear distinctions exist in the tran-
scriptomes of the determined CRC subtypes (i.e. they
are separable and “discrete”). We tested the validity of
this hypothesis in each of the 18 published studies via:
(1) supervised validation of separation between the Con-
sortium subtypes with a widely adopted quantitative

framework; and (2) complementary and de novo unsuper-
vised clustering analysis and cluster strength evaluation.
Using an established evaluation framework in cancer

transcriptional subtyping [14–16], we quantitatively eval-
uated separation between the Consortium subtypes,
CMS1–4 (assigned in our datasets by the classifier pro-
vided by the authors, see “Methods” for details), using
average silhouette width. Silhouette width is a statistic
commonly adopted to summarize the level of separation
between groups of samples and strength of clustering
structure in the data [17]. This analysis is supervised
in the sense that the class labeled are pre-defined by
the CMS classifier. Average silhouette widths of CMS
subtypes were < 0.25 in all of the 18 datasets (Fig. 2,
Additional file 1: Figure S1), not exceeding the “no
substantial clustering” threshold defined in previous
literature [25], providing evidence that little separation
exists between the CMS subtypes. The strength of sep-
aration decreases even more if we include samples
that cannot be confidently classified into any of the
four CMS subtypes, suggesting such samples form the
“intermediate” group in the continuous distribution of
different subtypes, as also noticed by the Consortium
authors [10]. The lack of separation between CMS sub-
types is visually noticeable in the distribution of top prin-
cipal components (PCs) of each study (Additional file 1:
Figure S2). This is in contrast to breast tumors, where sep-
aration between well-established transcriptional subtypes
is prominent even in only the first two PCs (Additional
file 1: Figure S3). These results suggest that CRC tran-
scriptomes are distributed more as a continuum than
discrete classes. Notably, nine of these 18 datasets were
also used by the Consortium to validate the robustness of
the CMS subtypes.
To rule out the possibility that lack of separation be-

tween subtypes is due only to lack of generalizability of the
CMS classifier applied to new datasets, we performed de
novo unsupervised clustering analysis with different algo-
rithms (k-medoid [20], non-negative matrix factorization
[21], and consensus clustering [22]) in each study. We eval-
uated discreteness of the resulting clusters by gap statistic
[18], prediction strength [19], and average silhouette width
[17]. De novo clusters (subtypes) also showed no evidence
of discreteness or of preference for four clusters (the num-
ber of CMS subtypes), consistently across clustering algo-
rithms and separation strength measures (Additional file 1:
Figure S4). We thus conclude that the absence of discrete-
ness in the CRC transcriptome is consistent, when investi-
gated by a variety of methodologies and datasets.

Continuous subtypes: common patterns of population-level
transcriptional variation reproduced in multiple studies
We identified and validated “continuous subtypes” of the
CRC transcriptome and showed that they are consistent
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with previously proposed discrete subtypes but offer
better representation of tumor-to-tumor transcriptional
variability. The continuous subtypes are characterized

by patterns of variation between CRC patients that are
consistent across multiple studies. They parallel the
common paradigm of discrete molecular subtypes of

Table 1 Clinical characteristics of selected training and validation sets used in this study

Dataset Accession ID Platform Tumor / Normal
samples (n)

Late stage
tumors (%)

Staging
system

Availability of
metastasis info

Training sets

Jorissen and Sieber,
2008b [53]

GSE13294 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

155/0 – – No

Watanabe and
Hashimoto, 2008 [54]

GSE14095 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

189/0 – – No

Jorissen and Sieber, 2008 [55] GSE14333 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

290/0 77.55 TNM/Duke Yes

Smith and Beauchamp,
2009a [56]

GSE17536 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

177/0 80 TNM/Duke Yes

Mori, Mimori,
Yokobori T, 2010 [57]

GSE21815 Agilent-014850 Whole Human
Genome Microarray 4x44K
G4112F (Probe Name version)

131/9 59.54 TNM/Duke Yes

Vilar and Morgan, 2011a [58] GSE26682.GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

176/0 – – No

Vilar and Morgan, 2011b [58] GSE26682.GPL96 [HG-U133A] Affymetrix Human
Genome U133A Array

155/0 – – No

NHS-HPFS [41] GSE32651 Illumina DASL HumanRef-8 v3 718/0 13.83 TNM No

Validation sets

Lips and Morreau, 2008 [59] GSE12225.GPL3676 NKI-CMF Homo sapiens 35 k
oligo array

42/0 28.57 TNM Yes

Staub and Rosenthal,
2009 [60]

GSE12945 [HG-U133A] Affymetrix Human
Genome U133A Array

62/0 41.94 TNM Yes

Jorissen and Sieber,
2008a [53]

GSE13067 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

33/0 – – No

Smith and Beauchamp,
2009b [56]

GSE17538.GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

63/0 88.1 TNM/Duke Yes

expO, IGC, 2005 GSE2109 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

427/0 51.6 TNM/Duke Yes

Tsukamoto and
Sugihara, 2010 [61]

GSE21510 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

123/25 79.57 TNM/Duke Yes

Medema and Tanis,
2011 [62]

GSE33113 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

90/6 – TNM/Duke Yes

Marisa and Boige, 2012 [63] GSE39582 [HG-U133_Plus_2] Affymetrix
Human Genome U133
Plus 2.0 Array

566/0 87.75 TNM/Duke Yes

TCGAa [5] TCGA.COAD Agilent 244 K Custom Gene
Expression G4502A-07-3

122/4 42.4 TNM Yes

TCGAb [5] TCGA.RNASeqV2 [RNASeqV2] Illumina HiSeq
RNA sequencing

181/14 53.09 TNM Yes

The normal samples in these datasets were all from adjacent normal tissues. The percentage of late-stage and high-grade samples were calculated where the
information is available
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cancer transcriptional activity, but an individual is rep-
resented by numerical scores rather than one of several
discrete classes.

We developed a meta-analytical adaptation of principal
component analysis (PCA) to identify consistent continu-
ous scores across different studies, in the presence of

Fig. 1 Overview of analyses performed in this study. Shown here are the steps carried out to examine the validity of discrete subtypes, as well as
to identify, validate, and characterize continuously variable subtypes for CRC transcriptomes
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cohort differences and potential study-specific batch ef-
fects (Additional file 1: Figure S5). Briefly summarized, we
performed PCA on eight training datasets (Fig. 1, Table 1,
Additional file 2: Table S1) and constructed a network of
connected top PCs from all eight datasets to find
non-study-specific major transcriptional shifts. PCs of dif-
ferent datasets were considered correlated and connected
in the network if their corresponding loading vectors had
an absolute Pearson correlation of > 0.5; this is interpreted
as the recurrence of similar major transcriptional shifts in
both studies.
In this network, we found four large clusters of

densely interconnected PCs (Fig. 3). PCs from the same
cluster characterize major transcriptional shifts of simi-
lar direction which were robustly observed across mul-
tiple datasets, independent of batch effects [26]. Within
the clusters, PCs of different studies were of different
ranks, reflecting varying levels of study-specific technical
or biological effect. As an example, dataset 8 (NHS/
HPFS, the only study performed on formalin-fixed,
paraffin-embedded specimens) only had its seventh and
eighth PCs correlated with other datasets, suggesting that
its top six major transcriptional shifts did not recur in the
rest of the training datasets and were likely study-specific.
Each PC cluster yielded a different way of assigning

continuous scores to tumors, defined by the average of
the loading vectors of that cluster (Additional file 3:
Table S2, see “Continuous subtype discovery” in the
“Methods” section for details on assigning the scores).
The scores were, by definition, repeatedly observed

across the training studies, because it was highly corre-
lated with all datasets / PCs in the cluster. Once further
validated, this score can be viewed as consistently de-
scribing a major direction of transcriptional variation
and is used instead of discrete classes to characterize dif-
ferent CRC transcriptomes. That is, one can assign sub-
type scores, instead of specific subtypes, to different
tumors. As shown in the validation results, clusters 1
and 2 were best validated in the additional 10 studies
and we focus on these two clusters to provide robust
characterization of CRC.

Validation of subtype scores as major transcriptional
shifts
The major transcriptional shifts identified by our method
are highly reproducible across validation datasets, espe-
cially for clusters 1 and 2 (Additional file 4: Table S3).
Using the same criteria as in the training stage, the average
loading vectors of clusters 1 and 2 were both correlated
(absolute Pearson correlation > 0.5) with top PCs in 9/10
validation datasets. In contrast, they were not correlated
with top PCs of normal tissues-only datasets, and even less
so with randomly selected PCs, or randomized datasets
formed by permuting gene expressions (Additional file 1:
Figure S6). Because of the strong replicability of these two
average loading vectors, we termed the scores assigned by
them PC Cluster Subtype Scores 1 and 2 (PCSS1 and
PCSS2) and used these subsequently in place of discrete
classes to characterize CRC tumors.

Fig. 2 Previously published CRC subtypes do not separate samples’ transcriptional profiles. Average silhouette widths between the previously
reported CMS [10] subtypes provide no evidence for substantial clustering structure. Silhouette widths for separation between CMS subtypes
are calculated within each of the 18 datasets used in our study, either for all samples or only for those confidently labeled by the CMS
classifier as provided in [10]. Distribution of samples’ silhouette widths is represented with box plots, with diamonds marking the average.
Studies are separated according to training and validation sets, and then ranked based on their average silhouette widths. Datasets also used
in the CMS paper are marked in red. The reference levels of clustering (horizontal gray dashed lines) are the same as in [25]. These results are not
sensitive to dissimilarity measures (Additional file 1: Figure S1B)
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Similar to the idea of signature gene lists for discrete
subtypes, from the continuous scores we also generated
“signature” gene subsets with sizes of ~ 200 that can be
used to sufficiently approximate the continuous scores
(Additional file 1: Figure S7). In diagnostic or prognostic
practice, these gene subsets can be used to robustly as-
sign continuous subtype scores in place of the entire
transcriptome.

CRC subtype scores are continuous but still in agreement
with previously established subtypes
We compared subtype scores PCSS1 and PCSS2 first
against microsatellite instability (MSI), a well-established
CRC subtype with distinct carcinogenic pathway [1], then
with the CMS subtypes proposed by the Consortium. With
meta-analyses [13] using fixed effects models, we found
that tumor sample microsatellite instability is consistently
correlated with higher PCSS1 scores (p = 1 × 10−31) and
lower PCSS2 scores (p = 5 × 10−71) (Table 2, Additional file 5:
Table S4). Although tumors are commonly categorized as
microsatellite stable or unstable, the continuity in the distri-
bution of the subtype scores suggests no discrete separation

of MSI patients, as quantitatively evidenced by silhouette
width (Additional file 1: Figure S8). This is consistent with
previous observations that all CRCs show some level of
microsatellite instability [27] and indicates that MSI CRC
can be identified by subtype scores.
For the Consortium subtypes, distribution of the con-

tinuous scores form “quadrants” that correspond to each
one of the four CMS subtypes. Specifically, CMS1 has
high PCSS1 and low PCSS2, CMS2 has low PCSS1 and
high PCSS2, CMS3 has low PCSS1 and PCSS2, and
CMS4 has high PCSS1 and PCSS2 (Fig. 4a, Table 2,
Additional file 5: Table S4). As expected, the “not labeled”
samples, i.e. samples that cannot be confidently assigned
by the Consortium classifier to any of the four subtypes,
are distributed between the classified subtypes in the con-
tinuous score space. This again confirms that such sam-
ples are not transcriptionally distinct from those with
subtype assignment, but simply are the intermediate sam-
ples in the continuous distribution of CRC transcriptomes.
The two continuous scores encompass discrete subtypes,
in the sense that together they capture the difference be-
tween tumors described by discrete subtypes and provide

Fig. 3 Correlated PCs from training datasets form densely connected clusters, characterizing robust major transcriptional shifts. These can then be
used as basis for continuous subtype scores. Each node represents one of the top 20 PCs in one dataset (ds). Edges indicate an absolute Pearson
correlation of at least 0.5 between the corresponding loading vectors (singletons are not included in the figure). Node size is proportional to its
degree (the number of PCs that it is correlated with), and edge width is proportional to Pearson correlation. Clusters were identified based on
the Girvan-Newman algorithm [49], which separated four large clusters, each corresponding to a recurrent “spectrum” of subtype scores (i.e. a pattern of
coordinated gene expression differential across subjects within a dataset and recurring in multiple datasets). For the first seven training datasets, the PCs
present in the four clusters were all top PCs, which means that the strongest signals for these datasets are all true signals. For the NHS/HPFS dataset,
however, PCs 1–6 were missing. This suggests a strong batch effect (noise) in this particular dataset

Ma et al. Genome Biology  (2018) 19:142 Page 6 of 14



additional resolution in differentiating tumors in the form
of numerical scores.

Continuous subtypes correlate with location, stage,
grade, and prognosis better than discrete subtypes
Besides MSI, PCSS1 and PCSS2 correlated with tumor
location, stage, grade, and prognosis when fitting fixed
effects models on all datasets with available informa-
tion (Table 2, Additional file 5: Table S4). Specifically,
right-sided tumor location was correlated with lower
PCSS2 scores (p = 1 × 10−4). Because the correlation is
in the same direction as MSI, they are consistent with pre-
vious observations that right-sided tumors tend to be MSI
[28]. Late tumor stage was found to be significantly
associated with higher PCSS1 and PCSS2 (p = 0.002
and 6 × 10−6, respectively), and high tumor grade with
higher PCSS1 and lower PCSS2 (p = 3 × 10−5 and
7 × 10−5, respectively). High PCSS1 and PCSS2 were
also associated with worse disease-free survival (DFS)
outcome (p = 5 × 10−5 and 0.001, respectively). The above
correlations agree with the subtype-clinical phenotype
correlations reported by the Consortium [10]. For ex-
ample, the CMS4 subtype was reported to have the worst
prognosis, whereas in our study, high PCSS1 and PCSS2
are correlated with both CMS4 and worse DFS.

The continuous scores furthermore provide better
capability in differentiating and explaining samples’ mo-
lecular, histopathological, and clinical characteristics, be-
cause they encompass previously proposed discrete
subtypes. Using DFS again as an example: while the
CMS4 subtype was reported to have the worst DFS out-
come, further differentiating within the subtype using
continuous scores (PCSS1 or PCSS2 greater than the
upper quartile) identifies a subgroup with even higher
risk (Cox proportional hazard regression p = 0.029,
Fig. 4b, Additional file 1: Figure S9), capturing additional
prognosis heterogeneity within the subtype. To statisti-
cally test for this or other binary variables, we performed
likelihood ratio tests (LRT) in each dataset on regression
models with MSI status, location, stage, or grade as the
outcome. Covariates were chosen to be either the con-
tinuous subtype scores or discrete CMS subtypes, or
both combined as a reference full model. LRT was per-
formed between the reference full model and either the
continuous scores only model or the discrete subtypes
only model (see “Methods” for details). For all outcome
variables, the model with only continuous scores has
much larger (less significant) p values in the LRT, and
lower Akaike information criterion (AIC) [29] than the
discrete subtypes-only model (Fig. 4c, Additional file 5:
Table S4). This suggests that continuous scores outper-
form discrete subtypes in characterizing samples’ mo-
lecular, histopathological, and clinical characteristics;
heterogeneity in such variables among CRC tumors is
better explained by continuous scores than by discrete
subtypes.

Continuous subtypes are enriched for inflammation and
T-cell response pathways
We used pre-ranked gene set enrichment analysis to
examine pathways associated with PCSS1 and PCSS2
(Additional file 6: Table S5), providing functional inter-
pretations for the continuous scores. Specifically, we
looked for pathways that were enriched for genes with
large weights in the loadings of PCSS1 and PCSS2. Eight
out of 217 Biocarta pathways are significantly enriched for
important genes of PCSS1 (Bonferroni corrected p < 0.05).
These pathways are associated with either T-cell function-
ality (TCRA, TCYTOTOXIC, THELPER, DC), and/or the
inflammatory response (IL17, LYM, INFLAM, LAIR).
Only the CDK Regulation of DNA Replication pathway is
enriched among heavily weighted genes of PCSS2. PCSS1
and PCSS2 characterize the variation of these pathways.

CRC subtype discreteness is not sensitive to tumor
microenvironment heterogeneity
Tumor stromal content has been noted as a source of
transcriptional variability that might affect CRC classifi-
cation [30, 31]. Isella et al. [11] published new CRIS that

Table 2 Estimated overall effect size and p values for continuous
scores on molecular, histopathological, and clinical variables from
fixed effects model

Variable Continuous score Effect size p value

CMS1 subtype PCSS1 0.82 3E-55

PCSS2 − 2.55 1E-129

CMS2 subtype PCSS1 − 2.00 2E-156

PCSS2 0.76 7E-60

CMS3 subtype PCSS1 − 0.57 2E-28

PCSS2 − 0.75 6E-56

CMS4 subtype PCSS1 1.72 2E-130

PCSS2 1.75 4E-106

MSI PCSS1 0.76 1E-31

PCSS2 − 1.68 5E-71

Right location PCSS1 0.087 0.09

PCSS2 − 0.23 1E-04

Late stage PCSS1 0.16 0.002

PCSS2 0.24 6E-06

High grade PCSS1 0.33 3E-05

PCSS2 − 0.30 7E-05

Disease recurrence
or death

PCSS1 0.23 5E-05

PCSS2 0.19 0.001

The effect size statistic is log hazard ratio for disease recurrence or death and
log odds ratio for all other variables. These estimates are not sensitive to fixed
vs random effects modeling (Additional file 5: Table S4). Statistics for individual
datasets, including I2 statistics, are also provided in Additional file 5: Table S4

Ma et al. Genome Biology  (2018) 19:142 Page 7 of 14



are trained on xenograft tissues (GSE76402). Because
they are derived exclusively on epithelial cells, they are
reported to be better conserved across different tumor
stromal content than the consensus CMS subtypes. Other
evidence, however, shows that CMS subtypes are also
well-conserved independently of stromal contribution
[24]. We performed additional analysis to: (1) investigate
the confounding effect of stroma contribution in the dis-
creteness of CRC transcriptional subtypes; and (2) com-
pare the proposed continuous scores to the stroma-free
CRIS subtypes.
First, we find that there is also no evidence for discrete-

ness of the CRIS subtypes, and specifically in stroma-fil-
tered CRC transcriptomes. We assessed the discreteness
of the intrinsic CRIS subtypes using only the gene set fil-
tered for stromal signal as provided in [11], in the xeno-
graft study GSE76402 where they are derived, in an
independent CRC cell line dataset (GSE59857 [32]), and
in all 18 bulk tissue studies. We applied the same

supervised and unsupervised frameworks used to evaluate
the CMS subtypes. As we show in Additional file 1:
Figures S1 and S4, the discreteness measures provide no
evidence for discreteness in a stroma-filtered transcrip-
tome, including the xenograft and cell line datasets.
Second, PCSS1 and PCSS2 have consistent correl-

ation with CRC CRIS subtypes in both regular cancer
tissues and stroma-free samples, but better characterize
the distribution of clinical, histopathological, and mo-
lecular variables. We performed linear regression between
CRIS subtypes and PCSS1/PCSS2; the correlations are
consistent not only in the 18 CRC bulk tissue studies, but
also, importantly, in the GSE76402 xenograft and the
GSE59857 cell line study (Additional file 1: Figure S10,
Additional file 7: Table S6). Furthermore, we find that the
continuous scores represent the distribution of cancer
stage, grade, location, and MSI status better than CRIS
subtypes, using the same likelihood ratio testing frame-
work as applied to the CMS subtypes (Additional file 1:

A B

C

Fig. 4 Continuous subtype scores consistently reproduce CMS subtypes, but provide additional information in characterizing molecular/histopathological/
clinical correlates. a Subtype- and study-specific mean PCSS1 and PCSS2 scores indicate “quadrants” in the distribution of the continuous scores that
correspond to CMS1–4 subtypes, with unlabeled samples clustered at the origin. Each point indicates the average PCSS1 and PCSS2 value of samples
classified as a particular CMS subtype in one dataset, with error bars representing standard deviation. b CMS4 subtype has the worst DFS outcome in all
samples where survival information is available, agreeing with results in [10], but stratification of CMS4 samples with respect to continuous scores reveals
an even more highly at-risk subgroup at the extreme end of PCSS1/PCSS2 distributions. Individual hazard ratios for each study are included in Additional
file 1: Figure S9C). Continuous scores are more closely associated with molecular and clinical/pathological variables than discrete subtypes.
Molecular, histopathological, and clinical variables were regressed on subtypes and scores as covariates. LRTs were used to compare the full
model, containing both subtype and score as predictors, to a simplified model containing only subtype (left) or score (right) as predictor. Test
results for different datasets (p values) are represented by points in the box plots. A p value near 1 (−log-10 p value near 0) suggests that no additional
information is provided by the full model, whereas a small p value suggests that the full model provides additional information for predicting
molecular/clinical variables. The more significant p values for models using only discrete subtypes (left) vs continuous scores (right) suggest that
discrete subtypes alone lack information provided by the full model; conversely, log-10 p values near zero for scores (right) suggest that continuous
scores outperform discrete subtypes in characterizing the molecular and clinical/pathological variables
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Figure S11). We thus conclude that lack of discreteness of
the CRC transcriptome cannot be explained by stromal
contamination.

Discussion
We propose continuous scores that reflect the molecular
epidemiology and population heterogeneity of colorectal
cancer better than previously proposed discrete sub-
types. These continuous scores were identified and vali-
dated across multiple independent datasets using a novel
approach to unsupervised subtyping that does not as-
sume the existence of discrete subtypes. In molecular
classification of cancer subtype, discreteness tends to be
assumed a priori (for example, ovarian [33] and cutane-
ous [34] carcinomas), despite having been questioned for
both CRC and other types of tumor [35, 36]. We argue
that in the case of colorectal cancer continuous subtype
scores provide a more consistent description of tran-
scriptional variation in CRC. Given the notion that each
cancer is different [37, 38], we suggest that in future
analysis either strong biological insight or careful valid-
ation be provided to justify the use of discrete subtypes.
Our proposed continuous scores for CRC, PCSS1 and

PCSS2, are consistent with previously published discrete
subtypes [10], generalize their expression patterns and as-
sociations to location, stage, grade, and DFS, and are ob-
served consistently in validation datasets. The consistency
with discrete subtypes is notable because the proposed
continuous scores were trained on different datasets using
different methodology. It is also worth noting that our ap-
proach did not assume that the subtypes in CRC tran-
scriptome are necessarily continuous. The existence of
strong, discrete subtypes is not supported by unsupervised
clustering strength metrics (Additional file 1: Figure S4)
or by visual and quantitative inspection of the proposed
continuous scores, which do not show evidence of
multimodal distribution (Additional file 1: Figure S12).
In supervised investigation of published discrete sub-
types, we also found little evidence of subtype discrete-
ness in validation datasets through PCA visualization
and quantitative silhouette width evaluation (Fig. 2,
Additional file 1: Figure S1).
The most well-defined CRC molecular subtypes are

chromosomal instability (CIN), MSI, and the CpG island
methylator phenotype (CIMP) [1]. The transcriptome-
based continuous subtype scores proposed here are
strongly correlated to MSI: tumors with average PCSS1/2
can be either MSI or MSS, but MSI tumors only rarely
having a distinctly MSS-like continuous subtype score.
Functionally, MSI tumors involve a unique carcinogenic
process that encompasses mutations in the coding mono-
nucleotide repeats in tumor suppressor genes [1]. The dis-
tinction becomes less obvious in terms of gene expression
phenotypes, however: as is observable from the continuity

in the subtype scores despite their strong correlation with
MSI and varying degree of MSI prevalence in CRC [27].
The association of continuous scores with CIN or CIMP
subtypes in these data could not be tested here due to
metadata availability but can be deduced based on the
strong correlation between the scores and the Consortium
subtypes, and the reported CIN and CIMP characteristic
of each CMS subtype [10].
Continuous scores can be applied in practice as ef-

fectively as discrete subtypes and may be more appro-
priate for treatment targeting, risk assessment, and
underlying molecular biology. For example, high PCSS1
and high PCSS2 are both associated with worse DFS
(Table 2), suggesting that patients with such character-
istics could be specifically targeted for more aggressive
therapeutic regimens. Continuous variability in mo-
lecular phenotypes can easily be incorporated as fea-
tures in survival or risk models, providing a stronger
predictor of disease prognosis or outcome (Fig. 4b,
Additional file 1: Figure S9). The scores could be ob-
tained using a smaller set of representative genes, with
a continuous tradeoff between reducing the number of
genes measured and maintenance of the score obtained
from a whole-transcriptome assay (Additional file 1:
Figure S7). Employing improved models of tumor tran-
scriptional activity that more closely reflect the under-
lying biological variability of the disease, such as those
presented in this paper, should help improve the trans-
lation of genomic features into clinical practice.

Conclusions
We examined subtype discreteness in the CRC tran-
scriptome, a common but unvalidated assumption,
and found consistent evidence suggesting lack of such
patterns. We instead propose a novel method for iden-
tifying continuous subtype scores that are consistent
across numerous independent datasets, which we ap-
plied to identify two PCA-based scores (PCSS1 and
PCSS2) and to provide a gene signature that can be used
in practice to obtain the proposed subtype scores. These
are consistent with previous discrete subtypes in associa-
tions with clinical variables, including DFS, but better rep-
resent tumor-to-tumor CRC transcriptional variation and
enable improved characterization of other molecular,
histopathological, and clinical variables. These results are
confirmed in stroma-filtered CRC cells. Continuous scores
thus have the potential to differentiate patient subgroups,
such as those with poor DFS, with greater personalization
and precision than discrete subtypes.

Methods
Publicly available datasets
We based our analyses primarily on a collection of
publicly available transcriptional studies on colorectal
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cancer (Fig. 1), as available in the curatedCRCData pack-
age [39] in Bioconductor. The package provides a total of
33 uniformly prepared gene expression data on CRC with
documented and curated clinical metadata. Known tech-
nical replicates within the same study were merged as part
of the curatedCRCData pipeline by taking the average,
whereas unknown replicates across studies were identified
with the doppelgangR package [40] and removed. We then
selected seven training and 10 validation sets from the
remaining samples of the 33 datasets (Table 1), based on
the following inclusion criteria:
Inclusion criteria for training sets:

1. Only contains primary tumor samples
2. Sample size > 100
3. Affymetrix platform
4. Study was published after 2007

Inclusion criteria for validation sets:

1. Contains either primary tumors or primary
tumors / normal control samples

2. Sample size > 60
3. Genes overlap with at least 90% of the

common genes in the training sets.

The NHS/HPFS dataset [41] met our inclusion criteria
for publicly available training datasets, except that it was
assayed using the DASL microarray platform for FFPE
specimens. The eight training datasets (including NHS/
HPFS) have a total of 9336 overlapping genes. These
genes form the basis of our analyses.

Gene expression processing in curatedCRCData
curatedCRCData acquires and processes expression and
clinical data from GEO [42] and The Cancer Genome
Atlas [5] using the same pipeline as described for curate-
dOvarianData [43]. Briefly, raw data from Affymetrix
platforms, if available, were pre-processed by either fro-
zen Robust Multi-array Analysis [44] (U133a or U133
Plus 2.0 platforms U133a or U133 Plus 2.0 platforms) or
Robust Multi-array Average [45] (others); otherwise pre-
processed data as provided by the authors were used.
Up-to-date maps from probe set identifiers to gene sym-
bols were obtained, in order and according to availabil-
ity, from BioMart [46], by BLAST of probeset identifiers,
or from annotation files originally provided with the
study submission. Genes with multiple probe sets were
represented by the probe set with the highest mean
across all.

Evaluation of previously published discrete CRC subtypes
We used the “single subtype” classifiers provided by the
Consortium (CMS) authors [10] and intrinsic subtype

(CRIS) authors [11] to assign tumors in our 18 tran-
scriptome datasets to the four CMS subtypes and the
five CRIS subtypes, respectively. Expression values were
per-gene median-centered first within each study before
subjected to class assignment. For CMS, samples with
posterior probability < 0.5 for all four subtypes are
marked as “not labeled,” consistent as in [10]. We per-
formed PCA [47] on the classifier genes in each dataset
and used the first two PCs to visualize the major tran-
scriptome shifts within the dataset. Similarly, silhouette
widths based on different dissimilarity measures of the
assignments in each dataset were calculated based solely
on the expression of the classifier genes.
Silhouette width is a widely adopted clustering strength

evaluation metric [17], aimed to quantify the level of
“separateness” between a given class assignment within a
dataset. For a given dataset with per-subject class assign-
ments and a corresponding between-subject dissimilarity
matrix, the silhouette width for subject i, s(i), is defined as
follows. Let a(i) be the average dissimilarity between i and
all other subjects assigned to the same class, and let b(i)
be the maximal dissimilarity between i and any subject
assigned to a different class, then

s ið Þ ¼ b ið Þ−a ið Þ
max a ið Þ; b ið Þf g

The average of this index across samples can be the
used as a quantitative metric for the level of separation
between classes, with established and accepted thresh-
olds [48]. In our analysis, i.e. for Fig. 2 and Additional
file 1: Figure S1, the dissimilarity measure is calculated
based on the signature genes used to define the CMS
and CRIS subtypes (693 genes for CMS, 565 for CRIS).
This is motivated by the notion that if CRC transcrip-
tome is discrete, such discreteness should be observable
at least on the genes used as signatures for such sub-
types. Our selected dissimilarity measures include both
parametric (Euclidean, Manhattan, 1 – Pearson correl-
ation) and non-parametric (1 – Spearman correlation)
measures.
In addition to classification validation, we also per-

formed unsupervised clustering with k-medoids algorithm
(paired with Euclidean distance) [20], non-negative matrix
factorization [21], or consensus hierarchical clustering
(paired with 1 – Pearson dissimilarity) [22] on the top
3000 genes with the highest variance (accounting for me-
dian 75% variability), or the CRIS signature genes (filtering
for stromal contribution) in these datasets (Additional
file 1: Figure S4). Clustering strength was evaluated with
silhouette width, gap statistic [18], and prediction strength
[19], to make sure results are not sensitive to any specific
measurement. The unsupervised clustering analysis was to
show that the observed lack of separation was an intrinsic
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feature of CRC transcriptome and not because we were
applying the classifier trained from one dataset to poten-
tially different studies.

Continuous subtype discovery
We aimed to identify subtypes in CRC gene expression
levels that were consistently present across different
studies, without the a priori assumption that populations
of different subtypes would be distinctly separable from
each other. We approached this by performing PCA on
the training datasets and constructing a network of cor-
related PCs. The procedure entails the following steps:

1. We performed PCA on each of the eight training
datasets. Expressions are centered and scaled on a
per-gene level first, per usual PCA standard. For
each set, the loading vectors for the top 20 PCs
were recorded. The number of PCs per dataset re-
corded and used in the following network analysis
is large enough so that they are representative of
the variability in each study (median percentage of
total variability represented 59.08%, Additional file 2:
Table S1).

2. For each pair of PCs from two different datasets, we
calculated the Pearson correlation, denoted by r, of
their corresponding loading vectors. That is, a total
of (20� 20� 8�7

2 ) Pearson correlations were
calculated. Only common genes between the two
datasets were used when calculating the
correlations. We defined the PCs to be correlated to
each other if |r| > 0.5. Related PCs were viewed as
realizations of the same set of subtypes based on
the PC scores. Note that PCs from the same
datasets would never be related, since their loading
vectors are orthogonal to each other (have a
Pearson correlation of 0).

3. A network was constructed by placing edges
between correlated PCs. We adopted a fast, greedy
Girvan-Newman algorithm [49] as implemented
in Cytoscape [50] to identify clusters of nodes
(i.e. loadings) that are densely connected together
by edges, and thus similar to each other, in this
network.

For each large cluster in this network, the loading vec-
tors of PCs within that cluster are similar to each other.
The consensus of these loading vectors, defined through
the average was used to assign scores based on each sam-
ple’s transcriptional profile (Additional file 3: Table S2).
Specifically, the signs of each loading vector within a clus-
ter was corrected for before taking the average, so that all
of the loading vectors had positive correlations. The scores
assigned by these consensus loadings were used as con-
tinuous subtype scores for CRC tumor characterization.

See Additional file 1: Figure S5 for a detailed pipeline
of the steps carried out for the identification of subtype
scores.

Validation of continuous subtype scores
To examine the external validity of the average loading
vectors, we performed PCA on the 10 validation data-
sets and recorded the top eight loading vectors of each
study. An average loading vector was considered as ob-
served in, or correlated with, a validation dataset if it
correlates with at least one of the eight top PC loadings
with |r| > 0.5, the same standard as in the training
process since the lowest ranking PC in the four clusters
was PC8. With this definition we considered an average
loading vector as validated if it was observed in at least
9/10 validation datasets.
The two particularly well-validated average loading

vectors, those of clusters 1 and 2, were also examined
against top PC loadings from normal tissue datasets,
PCs randomly selected from the top 20 PCs of all eight
training datasets, and permuted datasets, as negative
controls. The normal tissue datasets were formed by
limiting samples to three datasets with at least nine adja-
cent normal tissues available (GSE21510, GSE21815,
TCGA.RNASeqV2) and only to those samples. The
permuted datasets were formed by independently per-
muting the expressions for each gene in GSE13294.
Since the permutation is random the selection of data-
set does not affect our results; GSE13294 was chosen
here because it had the median sample size across all
18 datasets.

Calculation of continuous scores using average loading
vectors
We used each average loading derived from the previous
step to assign continuous scores to tumors based on
their entire transcriptional profile. Suppose xj denotes
the gene expressions of the j-th tumor and wk is the
average loading vector of the k-th cluster, the score
assigned for cluster k is then

sjk ¼ ~w0
ks j

where ~wk consists of the entries of wk that correspond to
genes present both in wk and in sample j. ~wk is scaled so
that k~wkk2 ¼ 1, just as with regular loading vectors. This
essentially ensured that the assigned scores were on
similar scales. Four such scores could be assigned, each
from one of the identified four clusters. We name the
two best-validated continuous scores as PCSS1 and
PCSS2. Once calculated, the scores are further centered
and scaled to mean zero and standard error one per study
so that they are more comparable in a meta-analysis
setting.
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For assignment of continuous scores in the xenograft
study GSE76402 and the CRC cell line dataset GSE59857,
only the subset of 565 stroma-filtered genes from [11]
were used.

Generation of “signature” gene subsets for continuous
scores
For PCSS1 and PCSS2, we calculated “pseudo-scores,”
using only the genes with the largest absolute average
loadings. Varying the number of top genes included, we
compared the pseudo-scores with the original scores,
and found that the pseudo scores reached Pearson corre-
lations of > 0.9 with the original scores, even when only
the top 200 genes were used (Additional file 1: Figure S7).
In Additional file 3: Table S2, these are the top 200 genes
ranked by absolute value of PCSS1 and PCSS2, respect-
ively. In practice, any size of signature gene subset can be
chosen by setting an ideal correlation cutoff.

Fixed effects model on correlations between continuous
scores and clinical metadata
Individual univariate logistic regressions were fitted for
the binary variables (individual subtypes, MSI, location,
stage, grade) on each dataset. That is, the clinical vari-
ables were used as outcomes and continuous scores pre-
dictors. Firth’s penalized likelihood [51] was used in
cases where perfect separation or single-level outcomes
occurred to obtain estimates convergence. Log odds ra-
tios from different studies were then pooled together
with fixed effects models [13] to give estimates for over-
all effects and p values. For survival analyses, Cox pro-
portional hazard models on DFS were fitted for each
dataset before the log hazard ratios were pooled together
with the fixed effects model.

Comparison between continuous scores and CMS/CRIS
subtypes in characterizing molecular, histopathological,
and clinical variables
We fit logistic and Cox regression models with MSI sta-
tus, location, stage, grade, or DFS as the outcome vari-
able. For each outcome variable, three different sets of
covariates were used: (1) PCSS1 and PCSS2 scores; (2)
CMS subtypes; and (3) both the continuous scores and
discrete subtypes. LRTs were performed comparing
models 1 vs. 3 and 2 vs. 3. The AIC from fitting each
model and p values from LRT are used to assess the cap-
ability of continuous scores and discrete subtypes in
characterizing outcome variables. Significant p values
from LRT would indicate that the reduced (i.e. with con-
tinuous scores or discrete subtypes only) model is not
sufficient in replacing the full (i.e. with scores and
discrete subtypes) model. Similarly, a model with higher
AIC indicates it is performing worse in fitting the data.
Our results suggest that the continuous scores are

preferable than discrete subtypes for characterizing out-
come variables by both criteria.

Gene set enrichment analysis
Ranked gene set enrichment analyses were performed
on both scores to find pathways that hit the top genes
more often. Pathway gene sets are obtained from Bio-
Carta. Mean-rank gene set enrichment analysis [52] was
performed, which test for the whether the pathway gene
sets are more highly ranked in terms of the continuous
score loadings compared to randomly chosen genes.
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