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Abstract
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Expression quantitative trait loci (eQTLs) identified using tumor gene expression data could affect gene expression in
cancer cells, tumor-associated normal cells, or both. Here, we have demonstrated a method to identify eQTLs affecting
expression in cancer cells by modeling the statistical interaction between genotype and tumor purity. Only one third of
breast cancer risk variants, identified as eQTLs from a conventional analysis, could be confidently attributed to cancer
cells. The remaining variants could affect cells of the tumor microenvironment, such as immune cells and fibroblasts.
Deconvolution of tumor eQTLs will help determine how inherited polymorphisms influence cancer risk, development,

and treatment response.
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Background

Expression quantitative trait loci (eQTLs) have been
mapped in many tumor types, including high-profile
studies in glioma [1], colon [2], breast [3], and prostate
cancer [4]. These studies measured genome-wide gene
expression in tumors and identified associations between
these gene expression levels and common inherited
(germline) genetic variants (e.g., single nucleotide poly-
morphisms (SNPs)) profiled in the same patients. These
results have been very widely applied: For example, the
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majority of inherited cancer risk variants implicated by
genome-wide association studies (GWASs) [5] are in
non-coding likely regulatory [6, 7] regions of the gen-
ome. Thus, to identify genes regulated by these variants,
eQTLs identified from tumor tissue [2, 3] (and some-
times normal tissue [8]) are typically interrogated—facili-
tating rational functional follow-up studies [9]. Indeed,
inherited genetic variation is associated with the devel-
opment of specific somatic mutation profiles in cancers,
and functional work demonstrated that this can be
caused by germline-mediated changes in gene expression
in cancer cells [10]. Additionally, cancer eQTLs have
been extensively studied in the context of pharmacogen-
omics; for example, inherited variants affect the expres-
sion levels of membrane pump/transporter genes
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modulating chemotherapeutic response [11]. Notably,
inherited variants associated with chemotherapeutic
response in cell lines are also enriched for eQTLs [12].
Putative drug target genes with existing evidence of dis-
ease relevance from genetic association studies are also
more likely to be successful in the drug development
pipeline; however, this is critically dependent on cor-
rectly assigning variants to the genes they regulate [13].
These examples, pertaining to cancer risk, development,
and treatment, include only a small subset of applica-
tions of cancer eQTL profiles.

However, previous cancer eQTL studies quantified
cancer gene expression by extracting RNA from tumor
biopsies, which are not a pure sample of cancer cells; in-
stead, they are a heterogeneous mixture of, for example,
cancer cells, tumor-infiltrating immune cells, supporting
tissue (stroma), and normal epithelial cells from the sur-
rounding tissue. Therefore, the expression profiles ob-
tained reflect both cancer and non-cancer cells. Hence,
eQTLs identified this way could arise from cancer cells,
tumor-associated normal cells, or both.

Recent studies have developed reliable computational
deconvolution methods that use genomic data to estimate
the proportion of different cell types in tumor biopsies
[14, 15], such as those collected by The Cancer Genome
Atlas (TCGA). These methods have been shown to accur-
ately recapitulate cell type proportions in controlled ex-
periments, where cell type mixtures are known [16].
Methods have been developed to generate such estimates
from gene expression, methylation, and copy number
data; these have been compared to estimates from
hematoxylin and eosin (H&E) staining, and it has been ob-
served that all approaches are reasonably concordant,
leading to the development of consensus methods, which
combine estimates from these approaches [15]. Crucially,
these studies have found pervasive differences in tumor
purity, both within and across different types of cancer.
For example, while samples can be admitted into TCGA
with as little as 60% cancer cell content based on H&E
staining, the tumor purity inferred from genomics ap-
proaches is even lower for some TCGA samples [15].
However, no previous cancer eQTL mapping study has
appropriately dealt with the influence of tumor-associated
normal cells. In fact, they have essentially treated bulk
tumor expression as representative of gene expression in
cancer cells. As such, it is plausible that any conclusions
drawn about the eQTL landscape of cancer, for example,
their similarity to their matched tissue of origin [2], could
simply result from eQTLs in the tumor-associated normal
tissue being misattributed to cancer cells.

In this study, we have developed a statistical approach
which, by integrating bulk tumor expression data with
estimates of tumor purity, can identify the eQTLs that
can be confidently attributed to cancer cells. Using
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TCGA breast cancer data as a case study and Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) data as validation, we show that a substan-
tial proportion of reported eQTLs, including known
breast cancer risk variants, show no evidence of an effect
in cancer cells but may in fact affect expression in
tumor-associated normal cells. Thus, the functional role
of these variants must be re-evaluated.

Note that throughout this manuscript we use the
terms “bulk tumor” or “tumor” to refer to the heteroge-
neous mixture of cells found in a solid tumor biopsy; we
use “tumor-associated normal” to refer to all non-cancer
cell types found in solid tumors (e.g., immune cells and
normal epithelial cells), and “cancer” cells to specifically
refer to transformed cells.

Results

A conventional tumor eQTL mapping strategy will recover
eQTLs from both cancer cells and tumor-associated normal
cells in simulated data

To establish whether eQTLs in tumor-associated normal
cells may indeed influence eQTL profiles recovered from
bulk tumor expression data, we first created a simulated
dataset where underlying cancer/normal eQTL profiles
were known a priori. Simulations consisted of expression
levels of 600 genes in pure “cancer” samples and in pure
“normal” tissue samples. These were then combined to
simulate a “bulk tumor” expression dataset, consisting of
1000 samples. Six classes of eQTLs were created, each
represented by 100 genes. These were (1) genes with
eQTLs in cancer and normal cells but with different
effects in the two cell types, (2) genes with eQTLs in can-
cer cells only, (3) genes with eQTLs in normal cells only,
(4) genes with no eQTL in either cell type, (5) genes with
the same eQTL in both cell types, and (6) genes with simi-
lar eQTLs in both cell types. Because the purpose of these
simulations was to study the performance of this model in
real cancer data, the parameters, such as sample size, ex-
pression levels, effect sizes, and proportions of cancer/
normal cells, were chosen to resemble those of the TCGA
breast cancer cohort (see Methods).

We applied the current standard eQTL mapping strat-
egy to these simulated data, where the expression levels
from bulk tumors were treated as representative of can-
cer itself (henceforth referred to as the “conventional
model”; see Methods). Importantly, the assumption here
is that the goal is to identify eQTLs influencing gene ex-
pression in cancer cells; therefore, true simulated cancer
eQTLs were treated as the ground truth for all statistical
measures of performance reported in this and the next
section. By comparing the results obtained from the
model to the true known cancer eQTLs created as part
of the simulation, this approach achieved reasonable
sensitivity and specificity (79.5% and 80.3% respectively).
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However, there was a clear influence of the simulated
eQTLs in the normal cells on the recovered effects from
bulk tumor expression (Pearson’s correlation (r) =0.9, P
=13 x 10 >® between simulated effect size of eQTLs
with an effect in normal but not cancer cells and their
estimated effect size from the conventional model;
Fig. 1a). Furthermore, while we imposed a false discov-
ery rate (FDR; estimated using the Benjamini and Hoch-
berg approach) of 5%, the true FDR was 11.1%, when the
known simulated set of cancer eQTLs was treated as the
ground truth. Most (37 of 40) of these false discoveries
were falsely attributed associations resulting from eQTLs
in normal cells (Additional file 1: Table S1).

Cancer eQTLs can be accurately identified from bulk tumor
expression data by modeling the interaction of tumor purity
and genotype in simulated data

To recover cancer eQTLs from bulk tumor expression data,
we have built upon (see Methods) a previous study to iden-
tify eQTLs with different effects in human neutrophils and
lymphocytes using whole blood expression data [17]. Like
conventional eQTL mapping, our new approach involves
fitting a linear regression model of gene expression level
against genotype. However, in addition to genotype, the
estimated proportion of tumor-associated normal cells
(tumor purity) is included as a covariate, as well as the
interaction between the estimated tumor purity and geno-
type (henceforth referred to as the “interaction model”; see
Methods). Critically, the estimate of the main effect associ-
ated with this interaction term allows the eQTL to be
assigned to cancer, not the interaction term itself (see
Methods). Intuitively, this works by estimating how the
magnitude of the association between bulk tumor gene ex-
pression and genotype changes as a function of the propor-
tion of cancer/normal cells, then extrapolating the effect
size to 100% cancer cells. Under reasonable assumptions,
we have proved this approach mathematically and demon-
strated how this model should be interpreted (see
Additional file 2: Model derivation).

The interaction model recovered simulated cancer
eQTLs with a sensitivity and specificity of 58.3% and
96.1% respectively. A small drop in power (Additional file 1:
Tables S1 and S2; Additional file 3: Figure S1) was
expected given the extrapolation to a cell type-specific
state and the simulations taking account of the potential
for shared eQTLs between cancer and normal cell types.
However, the true FDR dropped to 3.3%, below the
expected rate of 5%. Only two “normal only” (group 3; see
Methods) eQTLs were misattributed to cancer, and the
influence of normal cells observed for the conventional
model was eliminated (Fig. 1b; Additional file 1: Table S2).
To further illustrate the utility of the model, a normal-
driven eQTL analyzed with a conventional model is
shown in Fig. 1c, along with the capacity of the interaction
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model to extrapolate the correct effect size in cancer cells,
deducing that this signal was driven by samples with large
quantities of tumor-associated normal cells (Fig. 1d).

In cancer eQTL mapping, the assumption has been
implicit that the eQTLs identified from tumor samples
affect gene expression in cancer cells. However, the per-
vasive genomic aberrations and dysregulation of key
master regulators that occur in cancer cells [18] could
obscure or eliminate associations between germline
polymorphisms and gene expression, either by increasing
transcriptional noise or by disrupting the regulatory
landscape. Thus, the inherited genetic influence on gene
expression could be far greater in normal cells than in
cells that have undergone neoplastic transformation. To
assess the plausibility that eQTLs previously discovered
from tumor expression data could be largely driven by
normal cells, we included an additional 500 genes with
“normal only” eQTLs in our simulated dataset. Again,
assuming the objective is to identify eQTLs that affect
gene expression in cancer cells, a conventional model
applied to bulk tumor expression data performs very
poorly. Using an FDR threshold of 5%, we in fact ob-
served a rate of false discovery rising to 46% of signifi-
cant associations (Additional file 1: Table S3). Of the 270
false discoveries, 267 were misattributed eQTLs affecting
gene expression in normal cells only. However, when the
interaction model was used, the rate of false discovery
was again accurately controlled (3% false discoveries at
an imposed FDR threshold of 5%), and only 5 eQTLs in
normal cells (< 1%) were misattributed to cancer. Fur-
thermore, the interaction model could accurately iden-
tify true cancer eQTLs even when tumor purity was
measured with noise similar to levels expected in real
data [19] (Fig. le; see Methods for details). Notably, just
including the proportion of cancer cells as a covariate in
a conventional model had no impact on the perform-
ance, with the observed FDR remaining at 45.9% (at the
imposed 5% threshold; Additional file 1: Table S3). Thus,
tumor purity cannot simply be “accounted for” by in-
cluding it as a model covariate or including surrogate
variables that approximate tumor purity such as princi-
pal components or probabilistic estimation of expression
residuals (PEER) factors—modeling the interaction of
tumor purity and genotype is absolutely critical to correctly
assign eQTLs to cancer cells. Ignoring this can potentially
falsely attribute enormous numbers of eQTLs from
tumor-associated normal cells. Notably, simply restricting
to tumors with higher cancer cell content is also likely not
an optimal solution to this problem; doing so caused a large
drop in sensitivity compared to the interaction model, at a
true FDR < 5% (Additional file 3: Figure S2).

While no simulated dataset can capture the full com-
plexity of in vivo biology, these analyses suggest that (1)
it is plausible that many, if not most, eQTLs identified
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Fig. 1 The interaction model can accurately attribute eQTLs to cancer using bulk tumor gene expression in simulated data. a Scatterplot of the eQTL
effect size recovered from a conventional analysis of bulk tumor expression data (y-axis) against the known normal eQTL effect size created by
simulation (x-axis) for the 100 eQTLs that were simulated to have an effect in normal cells, but not cancer. Points are colored red if the conventional
model identified them as significant at FDR < 0.05. The eQTL effects recovered by the conventional model (y-axis) are heavily influenced by the eQTL
effects in tumor-associated normal cells. b Scatterplot of the estimated cancer eQTL effect size recovered by the interaction model (y-axis) plotted
against the known normal eQTL effect size created by simulation (x-axis) for the same 100 eQTLs as in (a) that were simulated to have an effect in
normal cells, but not cancer. Points are colored red if the interaction model identified them as significant at FDR < 0.05. The recovered eQTL effects
(y-axis values) are no longer affected by eQTLs in associated normal cells and in general have not been misattributed to cancer. ¢ Strip chart of a
simulated eQTL in tumor expression data, where the effect size in cancer cells was simulated to be 0 (e, no eQTL) and the effect size in tumor-
associated normal cells was simulated to be 0.48. The conventional model misattributed this eQTL to cancer. d The same eQTL as in (c), with the effect
size calculated in five bins (black points), grouped by the proportion of tumor-associated normal cells. The effect size decreases with increasing
proportions of cancer cells. The extrapolated effect size in cancer cells, estimated by the interaction model, is shown in red. The effect size recovered
from the bulk tumor, obtained by the conventional model, is shown in green. Whiskers represent 95% confidence intervals. The interaction model has
not misattributed this eQTL to cancer cells. @ The change in the sensitivity, specificity, and FDR achieved by the interaction model as the level of noise
with which the proportion of cancer cells is measured changes. The Pearson correlation on the x-axis is the correlation between the known simulated
proportions and those “measured” as more noise is added (see Methods). The dashed red line is at 0.05, the rate at which the FDR was controlled for
these tests using the Benjamini and Hochberg method. The FDR is well controlled by the interaction model, even when the correlation between the
real and measured (noise added) proportions approaches 0.5. Note: if the cancer cell proportions are completely randomized, the true FDR is 22%
(at the 5% threshold). Again, when calculating these true FDRs, the known simulated set of cancer eQTLs were treated as the ground truth

from tumor expression data using conventional ap-
proaches actually affect gene expression in normal cells,
not in cancer cells, and (2) using the parameters of the
TCGA breast cancer data, modeling the interaction of
tumor purity and genotype performs well at correctly

attributing true cancer eQTLs. Below, we perform a case
study using an integrative analysis of real data from
TCGA breast cancer, breast cancer GWAS results, and
samples from the Genotype-Tissue Expression (GTEx)

project.
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Case study: mapping cis-eQTLs in breast cancer

To test the utility of the interaction model on real data,
we conducted cis-eQTL mapping in TCGA breast cancer
samples, where both germline genotype and bulk tumor
RNA-seq data were available (1 = 894). We also applied a
conventional model to bulk tumor expression data (see
Methods). We focused on breast cancer, as it has the
largest available sample size and is reasonably representa-
tive of tumor types with high normal cell contamination
(Fig. 2a). We estimated tumor purity using a consensus
approach that combined the estimates from copy number
variation, gene expression, DNA methylation, and H&E
staining [15]. Tumor purity varied substantially in TCGA
breast cancer samples (Fig. 2b) and was significantly cor-
related with the expression of 11,927 of 15,574 genes
(FDR < 0.05; Fig. 2¢), highlighting the obvious potential of
eQTLs in these normal cells to influence eQTL profiles
inferred from bulk tumor expression.

We evaluated 3,602,220 associations between tag SNPs
and the expression levels of genes within 500 kilobases of
each tag SNP. The data were filtered and preprocessed
based on the recent guidelines of GTEX, including steps to
control for population structure, unmeasured confounders,
and expression heterogeneity (see Methods). We identified
57,189 significant cis-eQTL associations (FDR < 0.05;
Fig. 3a) using the conventional model. However, using the
interaction model, just 8833 eQTLs could be confidently at-
tributed to cancer cells (FDR < 0.05; Fig. 3a). Of the 8833

Page 5 of 14

associations attributed to cancer cells, 7542 were also iden-
tified by the conventional model and 751 were novel. Re-
sults were similar when copy number or methylation was
included as an additional covariate (as per Li et al. [3] (Add-
itional file 3: Figure S3)) and when samples were grouped
by subtype (Additional file 1: Tables S4 and S5; see
Methods). When we randomly permuted the tumor purity
estimates, the number of eQTLs that could be attributed to
cancer cells was just 239 (Fig. 3a). We show a specific
example in Fig. 3b-e to illustrate the process of attributing
eQTLs to the affected cell type. In this example, the associ-
ation between SNP rs6458012 and the expression of
MDGALI in breast tumors (P=1.5 x 10~ *% Fig. 3b) could
not be attributed to breast cancer cells (P=0.26; Fig. 3c)
given the loss of an effect as tumor purity increased. In-
deed, this genotype is strongly associated with MDGAI
expression in GTEx transformed fibroblasts and lympho-
blastoid cell lines (LCLs; P=6.3 x 10" and 1.4 x 10™ *° re-
spectively; Fig. 3d and e) with the same directionality as the
conventional model, suggesting that this is a strong candi-
date for a tumor eQTL driven by tumor-associated normal
cell types, not cancer cells.

The interaction model attributes fewer immune cell- and
fibroblast-specific eQTLs to breast cancer cells in the
TCGA cohort

As outlined above, when the interaction model was used,
we found that the majority (49,647; 86.8%) of the eQTLs
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Fig. 2 Estimates of tumor purity in TCGA samples vary substantially within and between cancer types. a Boxplot of tumor purity estimates from
the consensus purity estimation (CPE) [15] method for 21 solid tumor types in TCGA. Breast cancer is highlighted in red. b Histogram (blue) and
density plot (red) of tumor purity for the TCGA breast cancer samples (n = 1063) estimated using CPE. ¢ Histogram of P values for the association
of expression and tumor purity; 76.5% of genes' expression were significantly correlated with tumor purity (FDR < 0.05). Corresponding Pearson’s
correlation values of gene expression and CPE estimates of tumor purity in TCGA breast tumors are shown in the inset. The area outside the red
dashed lines represents significant correlations (FDR < 0.05)
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randomly permuted (orange). Observed P values (y-axis) are plotted against the uniform distribution of P values (x-axis). b Strip chart showing the
association of rs6458012 and the expression MDGAT in TCGA breast cancer tumors, with the association identified by the conventional model shown
as a red line. ¢ Plot deconstructing the association between rs6458012 and MDGAT. Points are effect sizes and whiskers represent 95% confidence
intervals. The association from the conventional model applied to TCGA breast cancer bulk tumors is shown in green (corresponding to b). Shown in
black are the effect sizes and confidence intervals for the association of rs6458012 and MDGAT when TCGA breast samples are divided into five equally
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decreases. The extrapolated effect size in cancer cells, estimated by the interaction model, is shown in red; this association is not statistically significant,
illustrated by the 95% confidence interval overlapping the gray dashed line, which represents an effect size of 0. This suggests the association
recovered by the conventional model did not arise in cancer cells. d Strip chart showing the association of rs6458012 and expression of MDGAT in
fibroblasts from GTEx. These are associated (P=6.3 x 10~ ) with the same directionality as identified in TCGA breast tumors (b). e Strip chart showing
the association of rs6458012 and expression of MDGAT in LCLs from GTEx. These are associated (P= 14 x 10~ '%) with the same directionality as
identified in TCGA breast tumors (b)

identified from bulk tumor expression data could not be  similarity to breast, the tissue from which they developed.
attributed to cancer cells. Indeed, 18,595 of these poten-  These criteria yielded a set of 47,196 eQTLs shared between
tially falsely attributed eQTLs were also eQTLs with GTEx and TCGA that had a higher likelihood of being mis-
concordant directionality in one or more of normal breast  attributed if identified as cancer eQTLs. Of the 57,189 sig-
(8536 eQTLs), LCL (4531 eQTLs), or fibroblast (15,810 nificant associations from the conventional model, 5440
eQTLs) tissues in GTEx. However, cancer eQTL profiles  were among this set defined as likely arising in normal cells.
have never been studied in the absence of normal cells, For 8833 associations from the interaction model, this num-
and germline genotypes are not typically collected from  ber was reduced to 572. This is a significant reduction in the
cell line donors; hence, there is no established gold stand-  proportion of these likely misattributed eQTLs (Fig. 4a and
ard to compare the sensitivity/specificity of the conven- b, P=8.1x 10~* from Fisher’s exact test, odds ratio 1.51).
tional and interaction models in real data. However, we  Thus, consistent with our simulations, there is convincing
can assess whether the interaction model eliminates evidence in real data that the use of the interaction model
associations for likely immune and stromal cell-specific  reduces the misattribution of eQTLs from tumor-associated
eQTLs. To do this, we used GTEx data to define a set of normal cells. Furthermore, we also mapped breast cancer
eQTLs that were likely to be misattributed; i.e., they were ~ eQTLs using only 10% of the TCGA breast cancer samples
more likely to have arisen in immune and stromal cells, ra-  that had the highest estimated cancer cell content (all >
ther than from breast cancer cells. We defined this set as  88.6% purity; median =91.2%, n=289). As expected, the
cis-eQTLs identified in LCLs or transformed fibroblasts in ~ eQTL effects estimated from this high-purity subset were
GTEx (FDR < 0.05), which were not even nominally sig-  (globally) much more similar to those estimated by the inter-
nificant (P > 0.05) in GTEx breast tissue. We reasoned that  action model compared to the conventional model (r=
LCLs and fibroblasts provide a good proxy for tumor-as-  0.447, 95% confidence interval (CI) =0.446—0.448 for the
sociated immune and stromal cells, while the regulatory interaction model; r = 0.299, 95% CI = 0.299-0.3 for the con-
landscape of breast cancer cells is likely to maintain a  ventional model; Additional file 3: Figure S4).
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from normal cells, based on a. ¢ Bar graph of the lowest 8 P values of
3679 GO biological processes tested; P values are for the enrichment of
genes whose eQTL profile changes between TCGA breast cancer
(identified by the interaction model) and normal breast tissue in GTEx

eQTLs that are disrupted following tumorigenesis tend to
affect genes involved in cancer-relevant processes

We also expect that genes whose regulation is disrupted
following tumorigenesis would be more likely to be in-
volved in cancer hallmark processes [20, 21]. Thus, for all
cis-eQTLs represented in GTEx breast tissue and TCGA
breast cancer, we compared the magnitude of the effect of
each eQTL between the two datasets (see Methods). For
3885 of 3,270,829 eQTLs, there was evidence (FDR < 0.05;
Additional file 3: Figure S5; Additional file 1: Table S6) of
a difference between breast cancer and normal breast tis-
sue. Of these, 3068 had a larger effect (comparing absolute
values) in normal breast tissue and 797 in cancer. We
compiled a list of eQTL-associated genes for which there
was evidence of a difference in this germline-mediated
regulation of gene expression between cancer and normal
cells. Then, to determine whether these changes were
biologically meaningful, we assessed these genes for en-
richment of Gene Ontology (GO) biological processes (see
Methods). Indeed, the most strongly enriched processes
included cancer-relevant terms (Fig. 4c; Additional file 1:
Table S7; Additional file 3: Figures S6 and S7). The top
associations included DNA repair and cell cycle, key
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processes influencing breast cancer susceptibility and pro-
gression. Some of this dysregulation may be attributable
to increased expression heterogeneity or different
expression levels among these genes in cancer, and under-
standing the mechanisms by which normal regulation of
these genes is disrupted will represent a starting point for
future mechanistic studies.

Validation of TCGA breast cancer findings in the METABRIC
dataset

Next, we sought to replicate our results using an add-
itional 997 breast tumor expression profiles and genotypes
generated by METABRIC [22]. Although this is the most
suitable validation cohort available, there are some limita-
tions to this dataset; for example, the genotypes were gen-
erated from (less reliable) tumor tissue (see Methods), and
expression was estimated using a microarray platform,
which is likely less sensitive than the RNA-seq platform
used by TCGA. Despite this, the results were similar to
those of TCGA. Using a conventional model, 47,354
eQTLs were identified (FDR <0.05) in METABRIC, and
this number dropped to 9235 when the interaction model
was applied, with an overlap of 8142. Thus, similarly to
the TCGA cohort, most tumor eQTLs identified in
METABRIC could not be confidently attributed to cancer
cells. Despite the differences between these datasets, the
overlap of eQTLs identified in TCGA and METABRIC
was much higher than expected by chance for both the
conventional and interaction models. We found that
39.4% of tumor eQTLs identified (FDR < 0.05) by the con-
ventional model in TCGA were also significant (FDR <
0.05) when the conventional model was applied to
METABRIC (57.4% reached P < 0.05), and 31.5% of cancer
eQTLs identified (FDR < 0.05) by the interaction model in
TCGA were also significant (FDR < 0.05) when the inter-
action model was applied to METABRIC (52.4% reached
P<0.05). A slight drop in this replication rate for the
interaction model was expected given the additional chal-
lenge of assigning eQTLs to a specific cell type, rather
than just identifying bulk tissue eQTLs.

Correctly assigning bulk tumor eQTLs can inform the
biological consequences of breast cancer risk variants
identified by GWAS

GWASs have revealed many common genetic variants
associated with cancer, including high-profile studies of
breast cancer risk [6, 23]. eQTL mapping represents an
important early step in characterizing the function of
cancer risk variants, most of which lie outside protein-
coding regions [3, 24, 25]. Thus, we re-analyzed the eQTL
profiles of the variants identified by a recent meta-analysis
of GWAS data for breast cancer risk, which identified
more than 90 loci [6]. Of 565 possible SNP-gene cis-eQTL
pairs, 24 were significant (FDR<0.05) when a
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conventional model was applied to the TCGA breast
tumor expression data (arising from 16 of the 81 risk
SNPs that could be mapped to one or more genes; see
Methods). However, 9 of these eQTLs were not even
nominally significant (P> 0.05) when extrapolated to can-
cer cells using the interaction model, suggesting they are
strong candidates for eQTLs arising from normal cells. In-
deed, all of these 9 associations were significant in at least
one of fibroblast, breast, or LCLs in GTEx, in all cases
with the same directionality as the eQTL effect estimated
from bulk tumor expression using the conventional model
(Fig. 5a and b; Additional file 1: Table S8).

Using the interaction model, another 9 of these 24 SNPs
could be confidently assigned to cancer cells (FDR < 0.05;
Additional file 3: Figure S8). Five of these were strong
cross-tissue eQTLs in GTEx (for ATG10, ATP6APIL, and
RPS23, all associated with rs7707921, and C5orf35 (also
known as SETD9) and rs889312; P<1x 10~ ° in at least
19 tissues with concordant directionality) and maintain
their regulatory capacity in breast cancer cells. Interest-
ingly, 8 of the 9 eQTLs for these GWAS variants, which
could be confidently attributed to breast cancer cells, were
also at least borderline significant in normal breast tissue
in GTEx (1.3x10"*°<P<74x10"% Additional file 3:
Figure S8; Additional file 1: Table S8), suggesting that the
effect of genetic variation on gene expression in the base-
line normal tissue state is generally maintained following
tumorigenesis. However, there is an exception for the SNP
rs204247, which affected the expression of RANBP9 in
breast cancer cells only. RANBP9Y is ubiquitously and
highly expressed in human tissues (Additional file 3:
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Figure S9) and breast cancer cell lines [26] (Add-
itional file 3: Figure S10), but this eQTL is only evident in
esophagus mucosa [27] (P=2x 107 8) and aorta (P=3.9 x
107°) in GTEx (Additional file 3: Figure S11). rs204247
tags the promoter of RANBPY as well as upstream puta-
tive enhancers (in MCF7 breast cancer cells; Add-
itional file 3: Figure S12). The interaction model indicates
that the risk allele (G; per-allele odds ratio = 1.06 (95% CI
=1.03-1.1)) increases the expression of RANBPY in breast
cancer cells (Additional file 3: Figure S13). Consistent with
an oncogenic effect, RANBPY is overexpressed in a similar
proportion of breast cancer patients as ERBB2—an im-
portant driver of breast cancer (13.04% and 14.13% re-
spectively [28]). Amplifications of RANBP9 occur in
breast cancer in vivo (Additional file 3: Figure S14) and
are associated with increased gene expression (Add-
itional file 3: Figure S15), although amplifications are less
common than for ERBB2, suggesting other mechanisms
more typically driving its overexpression. Given that
RANBPY is ubiquitously expressed, this eQTL in cancer
cells cannot be explained by the activation of the gene and
must reflect some change in gene regulation. Thus, the
cancer cell eQTL analysis suggests that RANBP9 may be
an important driver of breast cancer risk and progression,
and the possible oncogenic effects of this gene could rep-
resent an interesting starting point for functional studies.

Discussion

We have demonstrated an improved eQTL mapping strat-
egy for cancer, which uses tumor purity estimates and
bulk tumor gene expression data to identify eQTLs that
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Fig. 5 Conventional model eQTLs for breast cancer risk GWAS significant genetic variants, which cannot be attributed to cancer cells by the
interaction model, are all statistically significant with concordant directionality in GTEx LCLs, breast, or fibroblasts. a Scatterplot of eQTLs identified for
breast cancer risk variants from a meta-analysis of GWAS data [6]. -log;o P values for significant eQTLs (FDR < 0.05) using a conventional model in TCGA
breast cancer tumors are shown on the x-axis. -logs P values from the interaction model for these same eQTLs are shown on the y-axis. Significance
thresholds (P < 0.05) are shown for the interaction model (green and purple dashed lines). 15 of these 24 eQTLs were no longer significant (FDR > 0.05)
when the possibility of these eQTLs arising from tumor-associated normal cells was modeled. b P values and effect sizes for the 9 eQTLs in (a) that
were no longer even nominally significant (P> 0.05) when the interaction model was used. For each eQTL, the effect size is represented by the red-
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can be confidently attributed to cancer cells. In breast can-
cer, the result is that most bulk tumor eQTLs cannot be
confidently attributed to cancer cells, once the possibility
of these eQTLs arising from tumor-associated normal
cells is appropriately modeled.

We demonstrated the implications for the interpret-
ation of genetic variants associated with cancer risk. The
mechanism of action of most cancer GWAS variants re-
mains unknown. However, if these variants affect gene
expression in tumor-associated normal cells, but not
cancer or baseline normal cells, their disease relevance
could lie in modulating how the host—and in particular
the cells of the tumor microenvironment—responds to
the disease rather than reflecting functions intrinsic to
cancer (or precancer) cells themselves. Furthermore, we
also showed that one breast cancer risk variant,
rs204247, is an eQTL for RANBPY in breast cancer cells,
but not tumor-associated normal cells. If rs204247 af-
fects RANBPY expression only in breast cancer cells, and
this is indeed the mechanism by which this SNP predis-
poses individuals to cancer, then some earlier aberration,
for example, the activation of a transcription factor, must
be a prerequisite for rs204247’s pathogenic effect. Such
an aberration might occur in precancer cells, with indi-
viduals carrying the risk allele of rs204247 then mani-
festing the oncogenic effects of increased RANBP9
expression. Interestingly, RANBP9 has been shown to
interact with oncogene c-MET, a key regulator in devel-
opment and cancer stem cells. This interaction has been
shown to stimulate RAS signaling, which is crucial to
cancer-relevant processes such as cell differentiation,
apoptosis, and motility [29], thus offering a possible
oncogenic mechanism of this GWAS risk allele. Notably,
if this hypothesis is correct, rs204247 is likely affecting
druggable pathways. However, this association would not
have been apparent by only interrogating baseline nor-
mal tissue(s).

In the future, one approach to cancer eQTL mapping
will likely be to apply single-cell gene expression methods
to tumors—directly measuring gene expression in cancer
and tumor-associated normal cells. For many cancer types
this should be possible, but currently, single-cell expres-
sion datasets are not on a scale required to map eQTL
profiles. For the foreseeable future, sample sizes available
for gene expression in bulk tumors will remain orders of
magnitude larger than single-cell datasets. Furthermore,
single-cell methods bring additional biases; for example,
isolating single cells can cause marked changes in expres-
sion, and low starting amounts of RNA lead to high levels
of technical variability [30]. These studies have also
encountered difficulty in isolating some cell types from
tumors [18]. Hence, mapping the genetic determinants of
gene expression in cancer cells, using expression data
from bulk tumors, will complement any single-cell studies
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conducted should the technology become sufficiently well
developed and low cost that it becomes feasible on a suit-
ably large scale. Notably, one immediate benefit of single-
cell datasets may be improved signatures to estimate cell
type proportions from bulk tumor data.

Here, we have treated breast tumors as composed of two
broad cell types, cancer and normal. Of course, these cell
types can be further subdivided. The normal component is
composed of endothelial, epithelial, stromal, and immune
cells, which can themselves be subdivided. Cancer cells are
also heterogeneous—including, e.g, the presence of
stem-like cells. However, differentiating between the eQTL
profiles of every cell type would require an interaction term
for each cell type. One would also need to be sufficiently
confident that the cell type proportions were being accur-
ately estimated, which becomes more difficult given more
similar expression profiles in less distinct subtypes.
Single-cell gene expression analyses of breast cancer have
already shown that cancer and normal cells strongly cluster
in principal component analysis [18], meaning breast cancer
cells are transcriptionally much more similar to each other
than they are to tumor-associated normal cells. Thus, our
approach provides a mechanism to identify eQTLs that can
be confidently attributed (wholly or in part) to cancer cells
from tumor expression data. However, future research in the
development of statistical methods for analysis of tumor ex-
pression, or single cell-based analyses, could benefit from
further interrogating these complexities.

Another assumption that our model makes is that the
presence/absence of normal cells does not itself affect
eQTLs in cancer cells, which could result in normal cells
influencing tumor eQTL effect sizes in a non-linear
fashion. While previous studies have shown that this lin-
earity assumption is reasonable for expression data [19],
for genes where this is not true, it may be difficult or im-
possible to separate the eQTL profiles of tumor-resident
cancer and normal cells using any method, including
single-cell RNA-seq.

Additionally, our model, or any such model, cannot
prove a non-association. It is incorrect to conclude that
tumor eQTLs that cannot be attributed to cancer cells
are definitely not eQTLs in cancer cells, or are certainly
eQTLs in tumor-associated normal cells. The correct
interpretation is that there is no statistical evidence for
this eQTL in cancer cells at the current sample size and
given factors such as the accuracy with which the data
were measured. Notably, cancer eQTLs identified by the
interaction model may still be eQTLs in other tumor-as-
sociated normal cell types, and they should not be inter-
preted as exclusively cancer eQTLs.

Conclusion
We have elucidated a major shortcoming of current
eQTL mapping strategies in cancer, in that eQTLs
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identified from tumor expression data could arise from
either cancer or tumor-associated normal cells. We have
also proposed a solution which allows us to recover
eQTL profiles for constituent cell types using expression
data collected in a mixture of cell types. We have applied
this solution to breast cancer, where we showed that
most eQTLs discovered in tumors cannot be confidently
attributed to cancer cells once the possibility of these
signals arising in tumor-associated normal cells is appro-
priately modeled. Overall, this work will improve the
understanding of gene regulation in cancer, including
studying inherited cancer risk variants, disease develop-
ment, and drug response. This study also provides im-
proved theoretical groundwork for deconvolution of
eQTL effects in other mixtures of cell types, including
normal human tissues.

Methods

Simulating bulk tumor expression data as a product of
underlying “cancer” and “normal” expression data

We simulated cancer and normal gene expression data-
sets for 600 genes in 1000 samples—the approximate
number of patients in the TCGA breast cancer dataset.
Cancer and normal expression datasets were then com-
bined to create a bulk tumor expression dataset, with
each gene combined using a weighted mean based on
purity estimates for the sample. Combining expression
datasets in this way assumes a linear relationship be-
tween expression levels in the pure and mixed samples,
which has previously been shown to be reasonable [19].
For all simulated SNPs, the two alleles were simulated as
occurring at an equal frequency (i.e.,, 500 homozygotes
and 250 of each heterozygous group, one of which was
arbitrarily designated the minor allele). Simulated eQTL
effect sizes (the fold change in gene expression with each
copy of the minor allele) were drawn from a uniform
distribution, which ranged from -0.5 to 0.5, in steps of
0.01; this range was chosen as it covers the approximate
range of the effect sizes observed in TCGA breast cancer
data. Before adding eQTL effects, the expression level of
each allele was randomly sampled from a normal distri-
bution of mean 1 and standard deviation 1 (TCGA ex-
pression data were also mapped to a normal distribution
of standard deviation 1 (see below)). The 600 simulated
genes were split into 6 groups of 100, each of which was
treated differently, to represent the likely different types
of scenarios that may arise in vivo: In group 1, eQTL ef-
fects were introduced in both cancer and normal expres-
sion datasets, but the effects were randomly shuffled
across genes, representing a scenario where there is an
independent eQTL effect on each gene in both cancer
and normal tissue. In group 2, eQTL effects were only
introduced in the cancer expression data. In group 3,
eQTL effects were only introduced in the normal
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expression data. In group 4, eQTL effects were not in-
troduced in either. For genes in group 5, the same eQTL
effect was introduced in both expression datasets. In
group 6, eQTL effects were simulated to be similar in
cancer and normal tissues, by simulating identical
eQTLs then adding randomly generated noise in the
normal expression data.

Simulated purity estimates were derived from 1000
randomly chosen consensus purity estimation (CPE) es-
timates [15] in real TCGA breast cancer samples. When
recovering the cancer eQTLs using the interaction
model, noise was added to the purity estimates, to simu-
late the fact that in real data these estimates will be im-
precise. For each sample, noise was added by randomly
sampling a normal distribution with mean 0 and stand-
ard deviation 0.1; the resulting values were then quantile
normalized to the original purity estimates, thus preserv-
ing the distribution of the data precisely (Additional file 3:
Figure S16). For Fig. le, the standard deviation of the
noise generating normal distribution was varied from
0.01 to 1.5 in steps of 0.025, thus simulating the effects
of varying levels of error in the tumor purity estimates;
the resulting vector was quantile normalized to the ori-
ginal vector, and the Pearson’s correlations shown on the
x-axis of Fig. 1e were calculated between this noise-added
vector and the original vector. All simulations were per-
formed in R.

Data processing and eQTL mapping in TCGA breast
cancer samples

Gene expression and genotype data were preprocessed
and filtered primarily using the guidelines of GTEx: Ex-
pression data were quantile normalized. The expression of
each gene was then mapped to a standard normal distri-
bution, with mean 0 and standard deviation of 1. Genes
not expressed in at least 75% of samples were removed.
SNPs with a minor allele frequency (MAF) of less than 5%
were removed. Males, as well as Y chromosome SNPs and
genes, were removed. We estimated population structure
using the first three principal components of the genotype
matrix. To account for expression heterogeneity and un-
measured confounders, we also estimated 35 PEER factors
[31]. The filtering steps yielded 15,574 genes and 701,700
SNPs in 894 patients with breast cancer. For cis-eQTL
mapping, SNPs were mapped to all genes within 500 kilo-
bases. We tested 3,602,220 possible cis-eQTL associations
using the conventional approach of regressing gene ex-
pression level against genotype, using the following linear
regression model (fit for each SNP-gene pair):

y = BotBix+By-a+pB;-bte (1)

where y is the gene expression value; x is the genotype
encoded as 0, 1, or 2; a is the 3 genotype principal
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components used to estimate population structure; b is
the 35 PEER factors; and ¢ is the residual error term. For
each model, a P value for the eQTL was calculated by a
t test on the f5; term.

Identifying cancer eQTLs using a linear model with an
interaction term (the interaction model)

The model to identify cancer eQTLs is similar to the
model described above but also includes tumor purity,
calculated by the CPE [15] method, as a covariate and a
term for the interaction of tumor purity and genotype.
The model, which is derived in Additional file 2, is as
follows:

y=PBotBx+By-a+PBs-b+Pp+PBspxx)+e

(2)

The terms are as in Eq. 1, but with the addition of p,
which represents the CPE estimate of tumor purity (0 <p
<1) and p x x, the interaction of tumor purity and geno-
type. Critically, tumor purity is encoded such that O repre-
sents 100% cancer cells and 1 represents 100% normal
cells, meaning that the f; term will have extrapolated an
effect size at 100% cancer cells. As above, the P value for
each eQTL was calculated by a ¢ test on the §; term. A
similar model to Eq. 2 was proposed by Westra et al. [17],
who successfully used it to test for eQTLs mediated by cell
type proportions by testing an interaction term (f55 in Eq.
2). Our application to cancer relies on the following meth-
odological innovations: In Westra et al. principal compo-
nent 1 (PC1) of their gene expression data was used as a
proxy for cell type proportion (term p in Eq. 2, but not
bounded by 0 and 1); here, we use actual estimates of the
cell type proportion, bounded by 0 and 1—in this case the
proportion of tumor-associated normal cells. The conse-
quence of this is that the main effect 5; now represents an
extrapolated estimate of the eQTL effect size at 0%
tumor-associated normal cells, equivalent to 100% cancer
cells. Thus, we recover cancer eQTLs by testing this main
effect, rather than the interaction term, which is actually a
measure of how the magnitude of an eQTL differs be-
tween the two cell types (as previously described in Wes-
tra et al). We also fit these models with gene copy
number and methylation status included as a covariate
(Additional file 3: Figure S3 and Additional file 1: Tables
S4 and S5). Equation 2 bold typeface represents vectors,
and the 35 PEER factors were re-estimated accounting for
the tumor purity covariate not included in Eq. 1.

Comparing eQTL profiles between breast cancer cells
(TCGA) and normal breast tissue (GTEx)

GTEx V6 summary data, including effect sizes and asso-
ciated standard errors for each SNP-gene pair, were ob-
tained from the GTEx Portal. Cancer eQTL effects (3,

Page 11 of 14

in Eq. 2) were compared for a given SNP-gene pair be-
tween TCGA and GTEx using the effect size and associ-
ated standard error in each dataset. A Z-score for the
difference between these effects was calculated as fol-
lows [32, 33]:

/))TCGA _ﬂGTEx (3)

Zgiff = - B
V/SErcan® + SEGrTEx

The SE terms refer to the standard error estimates as-
sociated with the eQTL effect (Stcga and Sgrey) in
TCGA and GTEx respectively. P values were calculated
from these Z-scores using the probability density func-
tion for a normal distribution.

Gene set analysis of differential eQTLs between TCGA and
GTEx using GOseq

Gene set analysis, which was used to identify differen-
tially enriched biological processes between GTEx and
TCGA eQTLs, was performed using the GOseq [34]
package in R. We considered a gene differentially regu-
lated if it had at least one associated eQTL that was sig-
nificantly different (calculated using Eq. 3, FDR < 0.05)
between TCGA breast cancer and GTEx breast tissue.
All genes expressed in both TCGA breast cancer and
GTEx normal breast tissue were used as the background
list. The GOseq approach allowed us to use a six-knot
monotonic spline function to control for the increased
probability of a gene appearing in the foreground list
(ie., differentially regulated), given an increased number
of associated SNPs. GOseq has previously been applied
to control for similar confounders in RNA-seq [34] and
methylation [35] analysis.

Imputation of TCGA SNP data

We used the Michigan Imputation Server v1.0.0 [36] to
impute genotypes for TCGA patients for the breast can-
cer GWAS risk variants that were not directly genotyped
on the Affymetrix SNP 6.0 array used by TCGA. We
used the Haplotype Reference Consortium (HRC version
rl.1 2016) [37] reference panel. In addition to initial
genotype calling and quality control (QC) done by
TCGA, we performed QC of germline genotypes further
by removing SNPs with MAF < 0.05, SNPs with missing
genotype call rate > 0.02, patients with missing call rate >
0.02, and Hardy-Weinberg equilibrium (HWE) P<1 x
10~ using Plink [38]. We performed further validation
and QC of the input data using the server, followed by
prephasing with Eagle v2.3 [37] and imputation with
Minimac3 [39].

METABRIC breast cancer data
We called genotypes from raw Affymetrix Genome-Wide
Human SNP Array 6.0 CEL files using the Birdseed v2
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algorithm under the default configuration implemented in
the Affymetrix Genotyping Console. Notably, these data
were measured from tumor tissue and are thus less reli-
able than genotypes called from blood (as in TCGA); how-
ever, the METABRIC authors have previously used these
genotypes for eQTL mapping and demonstrated that the
results were reasonably consistent with those obtained
from genotypes generated from matched normal tissue
[22]. We filtered SNPs with >0.05 missing genotypes,
MAF <0.05 and only retained SNPs also included in the
final TCGA analysis. For METABRIC expression data, we
retained genes also included in the TCGA analysis and
mapped each gene to a normal distribution with mean 0
and standard deviation 1. Covariates for expression het-
erogeneity and population structure were estimated and
SNPs were mapped to genes as in the TCGA analysis
above. Note that the PEER algorithm did not converge on
our METABRIC expression dataset; thus, we estimated
expression heterogeneity using principal component ana-
lysis, applied to an expression dataset where other model
covariates (population structure, purity) had been
regressed out. CPE tumor purity estimates cannot be
created in METABRIC, as the required data types are not
all available in this cohort; thus, we approximated CPE
tumor purity in METABRIC by fitting a Lasso regression
model to CPE tumor purity estimates and gene expression
in the TCGA cohort and then applied this model to
METABRIC expression data. For consistency we also
mapped these estimates to the same quantiles of the
TCGA CPE data. Similarly to TCGA, eQTLs were then
mapped using the “conventional” and “interaction”
models in Eq. 1 and Eq. 2.

Figures and data analysis

All data analysis was performed using R. Figures were cre-
ated using the base plotting functions or the ggplot2 pack-
age. Because of the non-standard eQTL mapping pipeline,
conventional eQTL mapping tools were not used; thus,
the models were fit using the /m() function in R. All false
discovery rates were estimated using the Benjamini and
Hochberg method. Most of the data analysis was per-
formed using the Bionimbus Protected Data Cloud [40].
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reproduce the results in this paper can be obtained from GitHub at https://
github.com/paulgeeleher/cancerEqtls [46] and Open Science Framework at
https://osf.io/z7uyp/ [47] (DOI https://doi.org/10.17605/OSF.10/Z7UYP).
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