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Abstract

Background: MicroRNAs (miRNAs) are short regulatory RNAs that derive from hairpin precursors. Important for
understanding the functional roles of miRNAs is the ability to predict the messenger RNA (mRNA) targets most
responsive to each miRNA. Progress towards developing quantitative models of miRNA targeting in Drosophila
and other invertebrate species has lagged behind that of mammals due to the paucity of datasets measuring the
effects of miRNAs on mRNA levels.

Results: We acquired datasets suitable for the quantitative study of miRNA targeting in Drosophila. Analyses of
these data expanded the types of regulatory sites known to be effective in flies, expanded the mRNA regions with
detectable targeting to include 5′ untranslated regions, and identified features of site context that correlate with
targeting efficacy in fly cells. Updated evolutionary analyses evaluated the probability of conserved targeting for
each predicted site and indicated that more than a third of the Drosophila genes are preferentially conserved
targets of miRNAs. Based on these results, a quantitative model was developed to predict targeting efficacy in
insects. This model performed better than existing models, and it drives the most recent version, v7, of
TargetScanFly.

Conclusions: Our evolutionary and functional analyses expand the known scope of miRNA targeting in flies and
other insects. The existence of a quantitative model that has been developed and trained using Drosophila data
will provide a valuable resource for placing miRNAs into gene regulatory networks of this important experimental
organism.
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Background
MicroRNAs (miRNAs) are ~ 22-nt regulatory RNAs that
originate from hairpin precursors [1]. In Drosophila,
they associate primarily with the Argonaute1 (dmAgo1)
protein to form a silencing complex [2, 3] within which
the miRNA functions as a sequence-specific guide that
recognizes target messenger RNAs (mRNAs) through
pairing to complementary sites primarily within the 3′
untranslated regions (3′ UTRs) [4–6].
The miRNA pathway found in flies is ancestral to ani-

mals [7], with dozens of miRNA genes conserved broadly
in bilaterian species [8–11]. Small-RNA sequencing has

identified hundreds of miRNAs that are encoded in fly ge-
nomes [8, 11–15], which in aggregate appear to target
thousands of mRNAs [6, 8, 14, 16–20]. Studies of miRNAs
in Drosophila melanogaster have helped define biological
roles of miRNAs, components of the miRNA processing
pathway, and evolutionarily conserved mechanisms of
miRNA action [21–23].
Drosophila miRNAs are expressed in complex spatio-

temporal patterns throughout development [24, 25] and
play a wide diversity of roles. Examples include functions
for bantam miRNA in the regulation of cell proliferation
[26], miR-iab-4/iab-8 in body patterning [27–29] and be-
havior [30], miR-14 in insulin production and metabol-
ism [31], miR-34 in aging and neurodegeneration [32],
and miR-277 in branched-chain amino acid catabolism
[33]. Indeed, a large-scale survey of miRNA knockouts
in the flies reports abnormal knockout phenotypes for
more than 80% of the miRNA genes tested [23].

* Correspondence: dbartel@wi.mit.edu
1Whitehead Institute for Biomedical Research and Howard Hughes Medical
Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
2Department of Biology, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Agarwal et al. Genome Biology  (2018) 19:152 
https://doi.org/10.1186/s13059-018-1504-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-018-1504-3&domain=pdf
mailto:dbartel@wi.mit.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Crucial for understanding the molecular basis of these
phenotypes is the search for, and characterization of,
miRNA targets. Analyses of reporter assays and site con-
servation indicate that the canonical site types identified
in mammals, which include perfect Watson–Crick pairing
to the miRNA seed (miRNA nucleotides 2–7) [34], also
function in flies [6, 8, 16, 17, 19, 20, 35, 36]. However,
knowledge of miRNA targeting in flies has lagged behind
that of mammals, primarily due to the lack of
high-throughput datasets examining the responses of
mRNAs to the perturbation of miRNAs. In mammals,
such datasets have been very useful for both measuring
the relative efficacy of different site types and identifying
additional features that influence site efficacy, such as
those related to the context of the site within the mRNA,
thereby enabling the development of quantitative models
of site efficacy [5]. Although, as in mammals, much of
miRNA targeting in flies is known to be seed-based, the
relative importance of site types and context features
might differ between mammals and flies, calling into ques-
tion the utility for flies of quantitative models developed
using mammalian data. For instance, fly 3′ UTRs are
shorter and have a higher AU content than those of mam-
mals, which would presumably affect the utility of context
features such as distance from a 3′ UTR end or local AU
content, which are known to be predictive of site efficacy
in mammals [37]. Although some attempt to model the ef-
fect of target-site accessibility on miRNA-mediated re-
pression has been applied to Drosophila as well as
mammals [38], the relatively poor performance of this
model when tested in mammalian systems suggests that
in the fly it would have also benefited from the use of large
datasets for training and validation [39].
Despite the lack of high-throughput repression data,

many algorithms have been developed to predict and
rank miRNA targets in Drosophila. Most, including
European Molecular Biology Laboratory (EMBL) predic-
tions [6, 40], EIMMo [41], MinoTar (also available as
TargetScanFly ORF) [19], miRanda-MicroCosm [42],
PicTar [16, 43], and TargetScanFly v6 [8], use a mix of
pairing and evolutionary criteria, with pairing sometimes
evaluated using predicted thermodynamic stability.
Others, including PITA [38], RNA22 [44], and RNAhy-
brid [45], utilize purely thermodynamic information.
Others, such as DIANA-microT-CDS [46], mirSVR [47],
and TargetSpy [48], were trained on mammalian data
using machine-learning strategies and then used to gen-
erate predictions for flies. Finally, ComiR integrates pre-
dictions from miRanda, PITA, TargetScanFly, and
mirSVR, while being trained on the identities of RNAs
that tend to co-purify with dmAgo1 [49].
As with most algorithms applied in mammals, some of

those applied in flies predict many non-canonical target
sites that have one or more mismatches or wobbles to

the miRNA seed. However, others, including DIANA-
microT-CDS, EIMMo, MinoTar, RNAhybrid, and Tar-
getScanFly, require perfect seed pairing in an effort to
enhance the specificity of detecting functional targets,
although it is unclear to what degree this comes at the
price of reduced sensitivity. Whereas most algorithms
limit predictions to sites in 3′ UTRs, DIANA-microT-
CDS and MinoTar also include predictions with sites in
coding regions, which seem to have an even greater sig-
nal for preferential conservation in flies than they do in
mammals [19, 34].
Here, we used RNA sequencing (RNA-seq) to monitor

the effects of introducing specific miRNAs into Dros-
ophila cells. Analyses of these data, together with up-
dated analyses of site conservation in flies and other
insects, provided new and quantitative insights into the
types of target sites that function in flies, the scope of
targeting in flies, and features of site context that influ-
ence site efficacy. With these insights, we generated a
quantitative model that improves the rankings of target
predictions for the fly miRNAs, available at TargetScan-
Fly, v7 (http://www.targetscan.org). We also release an
accompanying suite of computational tools to help
others reproduce our figures and apply our analyses to
future datasets (TargetScanTools; https://github.com/
vagarwal87/TargetScanTools).

Results and discussion
Canonical miRNA target sites function primarily in
Drosophila 3′ UTRs
To acquire datasets suitable for quantitative analysis of
miRNA targeting in fly cells, we monitored the changes in
mRNA levels after co-transfecting S2 cells with one of six
different miRNA duplexes and a green fluorescent protein
(GFP)-encoding plasmid. The six transfected miRNAs
(miR-1, miR-4, miR-92a, miR-124, miR-263a, and miR-994)
were chosen because they (or related miRNAs in the same
seed family) were not endogenously expressed in S2 cells
[8], and they had diverse starting-nucleotide identities, a
range of GC content within their seeds, and a moderate-to-
high range of predicted target-site abundances. After
enriching for transfected, GFP-positive cells by fluorescence-
activated cell sorting (FACS), mRNA-seq was performed,
and mRNA fold changes were calculated for each miRNA
transfection condition relative to a mock transfection, in
which the GFP plasmid was transfected without any miRNA
duplex (Additional file 1: Table S1). We then normalized the
data to reduce batch effects (Additional file 2: Figure
S1A–D), some of which were attributable to modest but
statistically significant de-repression of the predicted tar-
gets of highly expressed endogenous miRNAs, such as
bantam miRNA (Additional file 2: Figure S1E–G) [50, 51].
With this new dataset, we begin investigating the features
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of miRNA target sites that correlate with mRNA repres-
sion in Drosophila cells.
In mammals, the presence of an A opposite the first nu-

cleotide of a miRNA is preferentially conserved and corre-
lates with enhanced repression, regardless of the identity
of the first nucleotide of the miRNA—observations ex-
plained by a pocket within human Argonaute2 (hsAGO2)
that preferentially binds this A [34, 37, 39, 52]. In flies, an
A at this position of the target site is also associated with
enhanced conservation compared to otherwise identical
sites missing this A [20], whereas in nematodes conserva-
tion and efficacy of a site with perfect pairing to miRNA
nucleotides 2–8 followed by a U (8mer-U1 sites) resem-
bles that of 8mer-A1 sites [20, 53, 54]. We therefore ex-
amined the influence of the nucleotide at target position 1
in flies, considering the data from all miRNA transfections
pooled together. Of the mRNAs possessing a single match
to miRNA nucleotides 2–8 in their 3′ UTR, those with an
A opposite miRNA position 1 (i.e., those with the 8mer-
A1 site) tended to be more repressed than those with each
of the other three possibilities opposite miRNA position 1

(8mer-C1, 8mer-G1, and 8mer-U1, respectively), with the
identity of the other three possibilities having little influ-
ence on repression (Fig. 1a). As expected based on the ob-
servation that the first position of the guide RNA is buried
within Argonaute and unavailable for pairing [52, 55, 56],
this observation generally held when considering each
miRNA transfection independently, regardless of whether
the identity of the first nucleotide of the miRNA was a U
(Additional file 2: Figure S2). Thus Drosophila exhibits a
preference for A at target position 1 resembling that of
mammals, implying that this target nucleotide is recog-
nized by a pocket within dmAgo1 resembling that of
hsAGO2. With respect to nomenclature, these results fur-
ther supported consideration of the 8mer-A1 site as the
canonical 8mer site of Drosophila, as was done originally
in mammals [34].
Analogous analyses of mRNA fold-change values in

mammalian systems have demonstrated the function
and relative efficacy of 8mer, 7mer-m8, 7mer-A1, 6mer,
and offset 6mer sites [37, 57]. Accordingly, we examined
the function of these site types in Drosophila, again

A
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B

Fig. 1 Drosophila miRNAs mediate mRNA repression through the targeting of canonical site types, preferentially in 3′ UTRs. a The increased efficacy in
Drosophila of sites with an A across from miRNA position 1. Shown is the response of mRNAs to the transfection of a miRNA (either miR-1, miR-4, miR-92a,
miR-124, miR-263a, or miR-994). Data were pooled across these six independent experiments. Plotted are cumulative distributions of mRNA fold changes
observed upon miRNA transfection for mRNAs that contained a single site of the indicated type to the transfected miRNA. The site types compared are
8mers that perfectly match miRNA positions 2–7 and have the specified nucleotide (A, C, G, or U) across from position 1 of the miRNA. Also plotted for
comparison is the cumulative distribution of mRNA fold changes for mRNAs that did not contain a canonical 7- or 8-nt site to the transfected RNA in their
3′ UTR (no site). Similarity of site-containing distributions to the no-site distribution was tested with the one-sided Kolmogorov–Smirnov (K–S) test (P
values). Shown in parentheses are the numbers of mRNAs analyzed in each category. b The six canonical site types for which a signal for repression was
detected after transfecting a miRNA into Drosophila cells. c–e The efficacy of the canonical site types observed in Drosophila 3′ UTRs (c), ORFs (d), and 5′
UTRs (e). These panels are as in a, but compare fold-change distributions for mRNAs possessing a single canonical site in the indicated region to those
with no canonical sites in the entirety of the mRNA. See also Additional file 2: Figures S1 and S2
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pooling the data and focusing on mRNAs with a single
site to the cognate miRNA. We also considered a sixth
site type, the 6mer-A1 site, which has implied function
in nematodes [20] and completes the set of all possible
8-, 7-, and 6-nt perfect matches to the 8-nt seed region,
which we refer to as the canonical site types (Fig. 1b;
note the distinction between the 6-nt seed and the 8-nt
seed region). When located in the context of 3′ UTRs,
each canonical site type was associated with repression,
with the magnitude of repression following the hierarchy
of 8mer > 7mer-m8 > 7mer-A1 > 6mer ~ offset 6mer ~
6mer-A1 (Fig. 1c), as indicated from statistical testing of
differences in fold-change distributions (Additional file 3:
Table S2). This hierarchy resembled that of mammals,
except that in mammals the efficacy of the different 6-nt
sites is much more distinct, with 6mer > offset 6mer >
6mer-A1, and with the 6mer-A1 difficult to distinguish
from background [37, 57].
We also examined the efficacy of canonical sites in

mRNA regions outside of the 3′ UTR. Some repression
was observed for mRNAs with a site in their open read-
ing frame (ORF) (and no canonical site elsewhere in the
mRNA), most convincingly for 8mer sites, although the
efficacy of these sites was much less than that observed
in 3′ UTRs (Fig. 1d). These observations are consistent
with those in mammals [37, 58, 59]. In contrast to obser-
vations in mammals, however, repression was also ob-
served for mRNAs with an 8mer site in their 5′ UTR
(Fig. 1e). Taking these findings together, we conclude
that miRNA targeting in flies resembles that of mam-
mals, except that the efficacy of the three 6-nt canonical
sites is more uniform in flies and repression of endogen-
ous mRNAs is more readily detected in fly 5′ UTRs.

Widespread conservation of canonical miRNA target sites
in Drosophila UTRs
A previous evolutionary analysis of mammalian miRNA
target sites provided a framework for estimating the likeli-
hood that predicted miRNA target sites are conserved
across species, while controlling for factors such as differ-
ential species relatedness, differential background conser-
vation in UTRs, and differential rates of dinucleotide
substitutions [57]. Although this approach has also been
applied to Drosophila genomes [20], we improved and ex-
tended it by (1) updating conserved miRNA family classi-
fications and 3′ UTR annotations, (2) using an expanded
evolutionary tree that incorporated additional insect spe-
cies, (3) extending analyses to Drosophila 5′ UTRs, (4)
using a modified evolutionary analysis pipeline [51], and
(5) comparing our evolutionary results to our functional
data. Towards this end, we compiled miRNA annotations
from multiple studies [8, 10, 11, 15] and classified 91
miRNA families as broadly conserved among Drosophila
species, 29 of which have been conserved since the last

bilaterian ancestor (Additional file 4: Table S3). We also
extracted multiple sequence alignments corresponding to
annotated D. melanogaster 5′ UTRs and 3′ UTRs, assign-
ing each UTR to one of five bins based on its background
UTR conservation rates [20]. For each bin, we computed
phylogenetic trees with a fixed species tree topology that
encompassed 27 insect species, allowing for variable
branch lengths to capture slower or faster substitution
rates among the UTRs of the bin (Fig. 2a). These trees
were then used to assign a branch-length score (BLS) [17]
to each motif occurrence in D. melanogaster UTRs, which
quantified the extent of conservation of that occurrence
while controlling for the background conservation rate of
its overall UTR context [57]. For example, a motif occur-
rence detected among all Sophophora species in the 3′
UTR alignment would be assigned a BLS of 4.50, 2.53, or
1.69, depending upon whether the corresponding 3′ UTR
in which it resided was in the first, third, or fifth conserva-
tion bin, respectively (Fig. 2a).
For each site type of each of the 91 broadly conserved

miRNA families, we computed the “signal” as the num-
ber of times that site occurred in D. melanogaster UTRs
and had a BLS that equaled or surpassed a particular
value (i.e., the “branch-length cutoff”). In parallel, we
also computed the “background” as the number of con-
served occurrences expected by chance, based upon the
mean fraction of conserved motif instances for 50
length-matched k-mer controls, each of which was pre-
dicted to have background conservation resembling that
of the miRNA site, as estimated from aggregated di-
nucleotide conservation rates [57]. This allowed us to
compute a signal-to-background ratio at each branch-
length cutoff, which represented the estimated enrich-
ment of preferentially conserved miRNA sites in fly
UTRs (Fig. 2b and c). It also allowed us to compute the
signal above background, which represented the esti-
mated number of miRNA sites that have been preferen-
tially conserved in fly UTRs (Fig. 2d and e).
As expected, the signal-to-background ratios increased

as the evolutionary conservation criteria became more
stringent, with 8mers in 3′ UTRs reaching a ratio of
nearly five conserved sites for every one control site at
the greater branch-length cutoffs (Fig. 2b). For each site
type, the ratios were consistently greater in the 3′ UTRs
than they were in 5′ UTRs (Fig. 2b and c). For example,
in 5′ UTRs the signal-to-background ratio for 8mers did
not surpass 1.6 (Fig. 2c). These results showed that sites
are more likely to be conserved if they reside in 3′
UTRs, presumably because this is where they are also
more effective (Fig. 1). Nonetheless, when comparing
the signal-to-background ratios for different miRNA
families, ratios in 5′ UTRs correlated with those in 3′
UTRs (Fig. 2f; Additional file 4: Table S3). The greatest
ratios tended to be for the fly miRNA families that have
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Fig. 2 (See legend on next page.)
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been conserved since the ancestor of bilaterian animals
(Fig. 2f ), as might be expected for these ancient families
that have had more time to acquire more roles in
gene-regulatory networks.
Although the sequence-conservation signal-to-background

hierarchy of 8mer > 7mer > 6mer observed in both 5′ and 3′
UTRs matched the hierarchy observed for efficacy, some dif-
ferences were observed. Most notably, the conservation sig-
nal for the 6mer site was robustly above background,
whereas those for the offset 6mer and 6mer-A1 sites were
both indistinguishable from background (Fig. 2b), even
though these three 6-nt sites had similar efficacies in our re-
pression data (Fig. 1c). Conversely, the 5′ UTR 7mer-A1 site
exhibited a detectable signal for conservation (Fig. 2b), even
though it had no detectable efficacy in mediating repression
(Fig. 1c).
For sites in both 3′ and 5′ UTRs, the signal above

background peaked near a branch-length cutoff of 1.0
(Fig. 2d). At this and other branch-length cutoffs, the
signal above background was far higher in the 3′ UTR
than in the 5′ UTR (Fig. 2d and e), which can be attrib-
uted to both a higher fraction of the sites preferentially
conserved in 3′ UTRs, as indicated by the higher
signal-to-background ratio in 3′ UTRs, and more sites
residing in 3′ UTRs, mostly a consequence of 3′ UTRs
generally being longer than 5′ UTRs. Including site
types whose lower 5% confidence intervals exceeded
zero, our results provided an estimate of ~ 12,285 sites
conserved above background in 3′ UTRs (2738 ± 31
8mer, 2837 ± 68 7mer-m8, 4062 ± 100 7mer-A1, 2128 ±
221 6mer sites, and 520 ± 244 offset 6mer sites,

calculated at a branch-length cutoff of 1.0 and reported
±90% confidence interval) (Fig. 2d). When added to our
estimate of ~ 840 sites conserved above background in
5′ UTRs (350 ± 18 8mer, 165 ± 46 7mer-m8 sites, and
325 ± 44 7mer-A1 sites) (Fig. 2e), the estimated number
of preferentially conserved UTR sites in Drosophila
UTRs totaled ~ 13,125. Simulations that considered all
of the conserved instances of site types, and then
accounted for those that were estimated to be conserved
by chance in 5′ UTRs and 3′ UTRs, indicated that these
13,125 preferentially conserved sites reside within 5035
± 83 (90% confidence interval) of the 13,550 unique
mRNAs with annotated UTRs of Drosophila, implying
that mRNAs from 37.2% ± 0.6% of the Drosophila genes
are conserved targets of the broadly conserved miRNAs.
Additional comparison of the results from our analyses

of site conservation and site efficacy revealed that, as
observed for mammalian 3′ UTR sites [57], there was a
striking correlation between the fraction of sites
conserved above background for each site type and the
corresponding fraction of sites mediating mRNA
destabilization (Fig. 2g). Slightly deviating from this
trend were 3′ UTR 6mer-A1 sites, which appeared to
mediate some repression despite lacking a signal for
conservation, and 5′UTR 7mer-A1 sites, which had a
modest signal for conservation despite undetectable
efficacy of repression (Fig. 2g).
To estimate the extent to which each instance of each

of the three most effective sites has been preferentially
conserved, we computed the probability of conserved
targeting (PCT) score for each of the 8mer, 7mer-m8,

(See figure on previous page.)
Fig. 2 Evolutionary conservation of canonical sites in Drosophila 5′ UTRs and 3′ UTRs. a Phylogenetic tree of the 27 species used to examine miRNA site
conservation. Outgroups of the genus Drosophila include Musca domestica (the housefly), Anopheles gambiae (the mosquito), Apis mellifera (the European
honey bee), and Tribolium castaneum (the red flour beetle). D. melanogaster 3′ UTRs were assigned to one of five conservation bins based upon the
median conservation of nucleotides across the entire 3′ UTR. The tree is drawn using the branch lengths and topology reported from genome-wide
alignments in the UCSC Genome Browser. To the left of the tree, are color-coded branch-length scores corresponding to a site conserved among an entire
subgroup of species indicated by a bar of the same color, showing scores for a site within a 3′ UTR in the lowest, middle, and highest conservation bins,
labeled in parentheses as bins 1, 3, or 5, respectively. b, c Signal-to-background ratios for indicated site types at increasing branch-length cutoffs, computed
for sites located in 3′ UTRs (b) or 5′ UTRs (c). Broken lines indicate 5% lower confidence limits (z-test). These panels were modeled after the one originally
shown for the analysis of mammalian 3′ UTR sites [57]. d, e Signal above background for indicated site types at increasing branch-length cutoffs,
computed for sites located in 3′ UTRs (d) or 5′ UTRs (e). Broken lines indicate 5% lower confidence limits (z-test). These panels were modeled after the one
originally shown for the analysis of mammalian 3′ UTR sites [57]. f Signal-to-background ratios for the 8mer sites of 91 conserved miRNA seed families,
calculated at near optimal sensitivity (a branch-length cutoff of 1.0), comparing the ratios observed for sites in 5′ UTRs to those for sites in 3′ UTRs (rs
Spearman correlation). Seed families conserved since the ancestor of bilaterian animals are distinguished from those that emerged more recently (orange
and blue, respectively). Boxplots on the sides show the distributions of ratios for these two sets of families, with statistical significance for differences in
these distributions evaluated using the one-sided Wilcoxon rank-sum test (*P< 0.01). See also Additional file 4: Table S3. g Relationship between site
conservation rate and repression efficacy. The fraction of sites conserved above background was calculated as ([Signal – Background]/Signal) at a
branch-length cutoff of 1.0. The minimal fraction of sites conferring destabilization was determined from the cumulative distributions (e.g., those in
Additional file 2: Figure S2), considering the maximal vertical displacement from the no-site distribution (error bars, standard deviation, n = 6 miRNAs).
Colors and shapes represent the canonical site types and UTR location, respectively. This panel was modeled after the one originally shown for the
analysis of mammalian 3′ UTR sites [57]. h Relationship between site efficacy and site PCT. mRNAs were selected to have either one 7mer-A1, one
7mer-m8, or one 8mer 3′ UTR site to the transfected miRNA and no other canonical 3′ UTR site. mRNAs with sites of each type were grouped into six
equal bins based on the site PCT. For each bin, mean mRNA fold change in the transfection data (error bars, standard error) is plotted with respect to
the mean PCT, with the dashed lines showing the least-squares fit to the data. The slopes for each are negative and significantly different from zero
(P value < 10− 10, linear regression using unbinned data)
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and 7mer-A1 sites residing in D. melanogaster 3′ UTRs.
PCT scores, which range from 0 to 1, summarize the esti-
mated probability that a given site has been evolutionar-
ily conserved because of its pairing to the cognate
miRNA, while controlling for other factors, such as its
length, surrounding genomic context, and dinucleotide
content [57]. These scores provide a valuable resource
for biologists wanting to focus on conserved targeting
interactions. They also can help predict targeting efficacy
[51, 57]. Indeed, sites with greater PCT scores tended to
confer more repression (Fig. 2h), implying that as ex-
pected, conserved sites were more likely to reside within
contexts that favored their efficacy.

Features useful for predicting site efficacy in flies
Before beginning to explore the features of site context
associated with site efficacy, we improved the 3′ UTR
annotations in S2 cells, the cell line in which we had ac-
quired our functional data. We reasoned that more ac-
curate annotation of these UTRs would allow us to
reduce the impact of false-positive sites while appropri-
ately weighting sites by the frequency of their inclusion
within 3′ UTR isoforms [51, 60]. Knowledge of abun-
dant alternative 3′ UTR isoforms for the mRNAs of a
gene would also provide a more informed assessment of
3′ UTR-related features, such as 3′ UTR length and dis-
tance from the closest 3′ UTR end. Accordingly, we
identified and quantified the 3′ UTR isoforms of S2 cells
using poly(A)-position profiling by sequencing (3P-seq)
[20]. Although the majority of the 3P-seq-supported
poly(A) sites corresponded to either 3′ UTR isoforms
that had been previously annotated by FlyBase or a
large-scale study that annotated additional poly(A) sites
[61], nearly 47% of the 3P-seq-supported poly(A) sites
did not correspond to existing annotations, and most of
these novel sites could be linked to a nearby gene with
the support of RNA-seq evidence (Fig. 3a). In cases in
which the longest 3′ UTR isoform for a gene annotated
using 3P-seq differed from that annotated in FlyBase, it
was more often longer, although for nearly 1000 genes
the 3P-seq results implicated the dominant use of a
shorter 3′ UTR isoform in S2 cells (Fig. 3b). Using this
information, we compiled a set of 3826 mRNAs that
passed our expression threshold in S2 cells and for
which ≥ 90% of the 3P-seq tags corresponded to a single
dominant 3′ UTR isoform in these cells, and we used
this set to investigate features of site context associated
with site efficacy.
With this set of mRNAs and repression values in hand,

we examined two of the more complex features of site
context, confirming their effects in Drosophila cells and
developing scoring schemes that best correlated with
their influence in these cells. The first of these two fea-
tures was 3′ supplementary pairing, i.e., pairing to the

target by miRNA nucleotides outside of the seed region.
The strength of this pairing was evaluated as the pre-
dicted thermodynamic energy of pairing between the 3′
region of the miRNA and a corresponding mRNA region
upstream of the seed match. This predicted energy of
pairing was evaluated for mRNAs that possessed a single
7–8-nt 3′ UTR site for the transfected miRNA and then
compared to the repression observed for the mRNAs
upon miRNA transfection by computing a partial correl-
ation between 3′ supplementary pairing energies and
mRNA changes, controlling for site type.
In mammalian cells, 3′ supplementary pairing is most

influential when centered on nucleotides 13–17 [37], but
in flies the pairing possibilities most consequential for re-
pression had not been identified. To systematically exam-
ine these possibilities, we varied three parameters: (1) the
start position of the miRNA region considered, examining
all start possibilities from positions 9 to 19, (2) the length
of the miRNA region considered, examining lengths from
4 to 13 nt, and (3) the length of the target region upstream
of the seed match, examining lengths from 4 to 20 nt. A
grid search over all parameter combinations revealed that
the predicted energy of 3′ supplementary pairing energy
was optimally predictive of repression efficacy when it was
calculated for the pairing that can occur between miRNA
nucleotides 13–17 and a 9-nt region upstream of the seed
match (Fig. 3c).
The second feature we investigated was the influence

of 3′ UTR structure on target-site accessibility. This fea-
ture has been evaluated previously using two ap-
proaches, either evaluating nucleotide composition near
the site, reasoning that sites residing in high local AU
content would be more accessible [37], or attempting to
predict site accessibility using various RNA-folding algo-
rithms [38, 51, 62–65]. With respect to the second ap-
proach, a method originally developed to predict small
interfering RNA (siRNA) target-site accessibility [62] ap-
pears to be one of the more effective methods for pre-
dicting miRNA target-site accessibility in mammals [51].
This method folds the 80-nt region centered on the seed
match and then reports a structural accessibility (SA)
score calculated as the mean unpaired probabilities for a
smaller window in the vicinity of the seed match [51,
62]. To determine the optimal location and width of this
window for scoring SA in flies, we again computed par-
tial correlations, this time between mean pairing prob-
abilities and mRNA changes, varying two parameters: (1)
the position of the center of the window within the tar-
get mRNA, examining each position within 20 nt of the
seed match, and (2) the size of this window, considering
sizes of 1 to 25 nt. A grid search over all parameter com-
binations indicated that a 25-nt window centered on the
nucleotide that pairs to miRNA position 7 was optimal
for calculating SA in flies (Fig. 3d). Although the optimal
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window size fell at the edge of the range, larger windows
were not considered because they were more prone to
extend beyond 3′ UTR boundaries, which reduced the
sample size.

A quantitative model for predicting site efficacy in flies
To identify and evaluate additional features associated
with site efficacy in flies and generate a resource for pla-
cing fly miRNAs into gene regulatory networks, we de-
veloped a quantitative model of miRNA targeting
efficacy for flies, which resembled our models developed
for mammals [37, 51, 66]. The smaller scope of our fly
dataset imposed some limitations on the features we
could examine in flies as well as the strategy used to

train the model. In particular, the number of training ex-
amples was an order of magnitude lower in the fly data-
set relative to the human dataset. This was due to (1)
fewer small-RNA transfection datasets in S2 cells com-
pared to those available in HeLa cells, (2) a smaller
number of genes expressed in S2 cells compared to
those expressed in HeLa cells, and (3) shorter 3′ UTRs
in flies, which further decreased the number of 3′ UTRs
with a site for a miRNA of interest. Thus, we did not
consider features related to the identity of the miRNA
seed, such as estimated target-site abundance within the
transcriptome, predicted seed-pairing stability, and nu-
cleotide identity at the miRNA or target position 8,
which are each informative for predicting targeting

Fig. 3 Refinement of 3′ UTR annotations in S2 cells and development of a regression model that predicts miRNA targeting efficacy in Drosophila. a
Poly(A) sites detected in S2 cells by 3P-seq, classified with respect to their previous annotation status. b Extension and contraction of longest 3′ UTR
isoforms relative to the FlyBase annotations. For each gene with a poly(A) site detected using 3P-seq, the difference between the longest 3′ UTR
isoform annotated using 3P-seq was compared to longest 3′ UTR isoform annotated at FlyBase. These differences were then binned as indicated, and
the number of sites assigned to each bin is plotted. c Optimization of scoring of predicted 3′ supplementary pairing in flies. Predicted thermodynamic
energy scores were computed for the pairing between a 9-nt region upstream of canonical 7–8-nt 3′UTR sites and a variable-length region of the
miRNA with the indicated size (window size) that began at the indicated position of the miRNA. The heatmap displays the partial correlations between
these scores and the repression associated with the corresponding sites, determined while controlling for site type. d Optimization of the scoring of
predicted structural accessibility in flies. Predicted RNA structural accessibility scores were computed as the average pairing probabilities for variable-
length (window size) regions that centered at the indicated mRNA position, shown with respect to the seed match of each canonical 7–8-nt 3′ UTR
site. The heatmap displays the partial correlations between these values and the repression associated with the corresponding sites, determined while
controlling for site type. e The contributions of site type and each of the six features of the context model. For each site type, the coefficients for the
multiple linear regression are plotted for each feature. Because features were each scored on a similar scale, the relative contribution of each feature in
discriminating between more or less effective sites was roughly proportional to the absolute value of its coefficient. Also plotted are the intercepts,
which roughly indicate the discriminatory power of site type. Bars indicate the 95% confidence intervals of each coefficient. See also Additional file 2:
Table S4, Table S5, and Figure S3A
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efficacy in human cells [51, 66]. Moreover, rather than
considering features for each site type independently, we
trained a single, unified regression model that consid-
ered the site type itself as a potential feature of targeting.
In addition to site type, seven other features of the sites
and their surrounding context and nine features of the
target mRNAs were considered as potentially inform-
ative of targeting efficacy, either because they had been
previously shown to correlate with targeting efficacy in
flies or mammals, or because they were related to fea-
tures shown to correlate with efficacy (Table 1).
Starting with these features, we trained models of target-

ing efficacy using a variety of machine-learning algorithms.
To evaluate each algorithm, we partitioned our dataset into
1000 bootstrapped samples to estimate the held-out predic-
tion performance. Each sample included 70% of the
mRNAs with a single 7–8-nt 3′ UTR site from each
miRNA transfection experiment (randomly selected with-
out replacement); we reserved the remaining 30% for test-
ing. Among the different algorithms, a stepwise regression
strategy that maximized the Akaike information criterion

(AIC) led to the best empirical performance (Add-
itional file 2: Figure S3A). This stepwise regression strategy
was the same algorithm that we had recently used to build
a model of mammalian miRNA targeting efficacy [51].
Relative to a model that considered only site type (the “site
only” model), the stepwise regression model that consid-
ered features of site context was twofold to threefold im-
proved in predicting the mRNA fold-change measurements
(median r2 of 0.08 and 0.19, respectively; P < 0.001, paired
Wilcoxon signed-rank test; Additional file 2: Figure S3A).
At first glance, an r2 of only 0.19 for the best algorithm

might seem to be a concern, as it implies that the
method accounts for only 19% of the variability observed
in our datasets. However, no model of miRNA targeting
can explain variability arising from either experimental
noise or the secondary effects of repressing the primary
targets, which together contribute a large fraction of the
variability observed in miRNA transfection datasets. In-
deed, our analysis of the changes observed for predicted
targets of one miRNA when another miRNA was trans-
fected indicated that experimental noise and secondary

Table 1 The 17 features considered in the models, highlighting the seven robustly selected through stepwise regression (in
boldface text). The feature description does not include the scaling performed (Additional file 2: Table S4) to generate more
comparable regression coefficients

Feature Abbreviation Description Frequency chosen

Site

Site type site type Type of site (8mer, 7mer-m8, or 7mer-A1) [37] 100%

Site position 9 site9 Identity of nucleotide at position 9 of the site 2%

Site position 10 site10 Identity of nucleotide at position 10 of the site 0%

Local AU content local_AU AU content within 30 nucleotides of the site [37] 51%

3′ supplementary pairing 3P_score Supplementary pairing at the miRNA 3′ end [37] 4%

Energy of 3′ supplementary pairing 3P_energy Thermodynamic energy of supplementary pairing
at the miRNA 3′ end (ΔG duplex – ΔG seed duplex)
(Fig. 3c)

94%

Predicted structural accessibility SA log10(Probability that a 25-nt segment centered
on the match to miRNA position 7 is unpaired)
(Fig. 3d)

92%

Probability of conserved targetinga PCT Probability of site conservation, controlling for
dinucleotide evolution and site context [57]

100%

mRNA

5′ UTR length len_5UTR log10(Length of the 5′ UTR) 30%

ORF length len_ORF log10(Length of the ORF) [51] 100%

3′ UTR length len_3UTR log10(Length of the 3′ UTR) [91] 100%

5′ UTR AU content AU_5UTR Fractional AU content in the 5′ UTR 17%

ORF AU content AU_ORF Fractional AU content in the ORF 37%

3′ UTR AU content AU_3UTR Fractional AU content in the 3′ UTR 56%

Distance from stop codon dist_stop log10(Distance of site from stop codon) 4%

Minimum distance min_dist log10(Minimum distance of site from stop codon
or poly(A) cleavage site) [37, 41, 92]

55%

Weak canonical sites in mRNA other_sites Number of 8mer sites in the 5′ UTR and ORF and
offset-6mer, 6mer-A1, and 6mer sites in the 3′ UTR [51]

100%

aOnly relevant for deeply conserved miRNA families
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effects together accounted for nearly half of the variabil-
ity observed in our datasets, implying that a perfect
model of direct targeting could explain at most 52% of
the variability (Additional file 2: Figure S3B). Thus, the
r2 of 0.19, which resembled that obtained in mammalian
analyses [51], implied that the model explained ~ 37% of
the variability attributable to direct targeting.
The features most informative for the stepwise regression

model were presumably those with the greatest impact on
site efficacy in flies. To identify these key features, we quan-
tified the percentage of bootstrapped samples in which each
feature was chosen (Table 1). Seven of the 17 features were
selected in ≥ 90% of the bootstrap samples (Table 1), and
multiple linear regression models trained with only these
seven features performed at least as well as those that con-
sidered all 17 features (median r2 of 0.20; Additional file 2:
Figure S3A). Aside from site type, which has long been
considered in TargetScanFly [8], these robustly selected fea-
tures included three features of the site: energy of 3′ sup-
plementary pairing (3P_energy), SA, and evolutionary
conservation (PCT); and three features of the mRNA: ORF
length (len_ORF), 3′ UTR length (len_3UTR), and the
number of weak sites within the mRNA (other_sites)
(Table 1). Notably, all of these features were previously se-
lected when modeling site efficacy in mammals [51], with
the nuance that in flies 3P_energy outperformed 3P_score,
another method of evaluating 3′ supplementary pairing
which had been optimized on mammalian data [37]. How-
ever, two features strongly associated with site efficacy in
mammals were not consistently selected in the fly analysis.
These included AU composition in the vicinity of the target
site (local_AU) and the minimum distance of a site from 3′
UTR boundaries (min_dist) [37]. Perhaps these features did
not strongly discriminate effective targets from ineffective
ones in flies because compared to mammalian 3′ UTRs, fly
3′ UTRs are constitutively more AU-rich and much
shorter. (The median 3′ UTR length is 661 nt and 202 nt
for human and fly, respectively, considering the longest
UTR annotation per gene after removing genes with the
longest UTR annotations ≤2 nt.)
Using the seven consistently selected features and the

entire dataset of 3′ UTRs containing single 7mer-A1,
7mer-m8, or 8mer sites, we trained independent mul-
tiple linear regression models for each of these three ca-
nonical sites. These three models were then combined
to generate a model for fly miRNA targeting, which we
call the “context model” because it resembled our con-
text models developed for mammalian miRNA targeting
in that it modeled site context in addition to site type.
The sign of each coefficient revealed the relationship of
each feature to repression (Fig. 3e). For example,
mRNAs with longer ORFs or longer 3′ UTRs, and sites
with weaker 3′ supplementary pairing energy were more
refractory to repression (as indicated by a positive

coefficient), whereas target sites that were more struc-
turally accessible or more conserved, and mRNAs with
other weak sites were more prone to repression (as indi-
cated by a negative coefficient). Normalizing the scores
of each feature to a similar scale enabled assessment of
the relative contribution of each feature to the context
model (Fig. 3e). As expected, site type was also a major
predictor of repression in the model, as indicated by the
large magnitude of the intercept term (Fig. 3e). The
signs and relative magnitudes of the features largely par-
alleled those found in the mammals [51], indicating that
the influence of these features might reflect evolutionar-
ily conserved aspects of miRNA targeting in bilaterian
species. One difference was that PCT scores contributed
relatively more to the fly context model than they do to
the analogous mammalian model [51], implying that the
detection and scoring of the molecular features of target
efficacy have more room for improvement in flies, pre-
sumably because less data were available in flies for fea-
ture identification and evaluation.

Comparison to the performance of previous methods
We next compared the performance of the fly context
model to that of previously reported methods, measur-
ing how successfully each method predicted and ranked
the mRNAs that respond to the gain or loss of a miRNA
in Drosophila. For training, our context model had con-
sidered only mRNAs that had a single 7–8-nt site to the
cognate miRNA within their 3′ UTR, but for testing it
needed to be extended to mRNAs that had multiple sites
to the same miRNA within their 3′ UTRs. Accordingly,
for each predicted target, we generated a total context
score, calculated as the sum of the context scores of the
sites to the cognate miRNA [37], and used these total
context scores to rank all of the predicted targets for
each miRNA. The response of the top-ranked targets
was then compared to that of 14 previously reported
methods, chosen because predictions for Drosophila tar-
gets were available online, as was information needed to
rank the predictions. Having already generated the PCT
scores of the Drosophila sites, we also combined the
scores of multiple 7–8-nt canonical sites when present
within the same 3′ UTRs to generate Aggregate PCT
scores, which were also used to rank predictions based
solely on the probability that they were preferentially
conserved targets of the miRNA [57].
We took precautions to perform a fair comparison of

the algorithms. First, for each algorithm, we considered
only predicted targets that corresponded to mRNAs
expressed above the quantification threshold in the rele-
vant test-set sample lacking the miRNA. Second, we
avoided testing the context model on the same transfec-
tion data upon which it was trained. More specifically,
we implemented a cross-validation strategy when testing
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the results of the context model using the transfection
datasets, sequentially holding out each dataset and
retraining the coefficients for the features in our context
model using the five remaining transfection datasets be-
fore generating predictions for the held-out dataset. Fur-
ther reducing the concern of overfitting was the
observation that most top-ranked targets contained two
or more canonical 3′ UTR sites and thus were not used
during the development and training of our model.
Third, for all testing of the context model, we used coef-
ficients retrained on publicly available FlyBase 3′ UTR
annotations, reasoning that training on improved 3′
UTR annotations derived from our 3P-seq data would
have imparted an advantage to our model.
Another key consideration for the fair comparison of pre-

diction performance is the choice of the approach used to
evaluate performance. The use of standard methods for
evaluating a binary classifier, such as a receiver operating
characteristic (ROC) curve, is not appropriate for several
reasons. First, for miRNA target predictions, there is no
suitable set of known true positives or true negatives, be-
cause databases of validated targets miss many of the actual
targets and are strongly biased in favor of the prediction al-
gorithms used to identify the target candidates that are then
validated. In the absence of suitable sets of known positives
and negatives, ROC analyses can be performed using the
molecular effects of perturbing the miRNA, but this ap-
proach requires choosing a threshold to separate mRNAs
that respond from those that do not. Choosing a stringent
threshold misses many of the authentic targets, whereas
choosing a less stringent threshold that has a chance of
capturing most of the authentic targets brings in too many
false positives. The problems with ROC curves compound
when trying to compare the performance of different algo-
rithms, some of which predict 100 times more targets than
others. Picking a high-stringency cutoff does not do justice
to the algorithms that provide many predictions with the
goal of achieving greater prediction sensitivity, whereas
picking a low-stringency cutoff is unfair to the algorithms
that provide relatively few predictions in an effort to
achieve greater prediction specificity. Moreover, the use a
binary threshold obscures how accurately the algorithms
rank their predicted targets. For these reasons, recasting
the quantitative phenomenon of miRNA targeting as a bin-
ary classification problem is not appropriate, and fairly
comparing prediction performance using ROC curves is
not possible.
Recognizing these issues, a new approach has been de-

veloped for evaluating miRNA target-prediction per-
formance [67], which we first implemented using our six
datasets that each examined mRNA changes after trans-
fecting a miRNA into S2 cells (Fig. 4a). For each algo-
rithm and each transfected miRNA, we computed the
mean mRNA fold change of the top-ranked targets of

the transfected miRNA and then plotted the mean value
for the six different miRNAs at various ranking thresh-
olds, thereby summarizing repression efficacy of the
top-ranked targets at each threshold. This approach of
plotting mean repression over a range of ranking thresh-
olds has several key features that make it suitable for
fairly comparing target-prediction performance: (1) It is
designed to test performance using global molecular
measurements and thus does not require knowledge of
true positives and true negatives, (2) it uses a sliding
threshold and thus allows for simultaneous comparisons
at all stringency cutoffs, (3) its sliding threshold is well
suited for evaluating the ability of algorithms to rank
predicted targets (given by the relationship between
mean repression and stringency threshold).
When applying this analysis of performance, we found

that all algorithms except RNA22 predicted repressed
targets better than expected by chance (Fig. 4a). How-
ever, some, including ComiR, PicTar, MinoTar, RNAhy-
brid, TargetSpy, and mirSVR, performed similarly or
worse than a naïve strategy of selecting all mRNAs that
have at least one 7–8-nt canonical site in their 3′ UTR.
Of the previously reported algorithms, TargetScanFly,
EMBL, and PITA.Top performed the best. Nevertheless,
our context model performed better than all previous
methods, providing predictions that were the most re-
sponsive to transfection of the miRNA at each threshold
tested (Fig. 4a).
Although our cross-validation strategy avoided testing

our model on the same measurements as used for its
training, some concerns regarding testing on the trans-
fection data remained, because these data were used to
optimize scoring of some features of our model. More-
over, transfection introduces high concentrations of
miRNAs into cells in which they normally are not acting,
raising the concern that a model developed and tested
solely on transfection datasets might not accurately pre-
dict the response of miRNAs in their endogenous
physiological contexts. Therefore, we searched for a test
set that had not been used to develop any of the algo-
rithms and that monitored the transcriptome response
to endogenous miRNAs expressed at physiological levels.
Instead of monitoring the new repression observed upon
ectopic addition of a miRNA, such a test set would
examine the de-repression observed upon loss of an en-
dogenous miRNA. Surveying the Drosophila literature,
we identified three miRNA knockout datasets with com-
pelling signals for de-repression. Pooling these datasets,
which monitored mRNA changes after deleting either
miR-14 [31], miR-34 [32], or miR-277 [33], and carrying
out the same type of analysis as we had done for the
transfection datasets (but monitoring de-repression fol-
lowing loss of a miRNA instead of repression following
introduction of a miRNA) revealed performances that
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Fig. 4 (See legend on next page.)
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generally resembled those observed with the transfection
datasets (Fig. 4b). The relative performances of the pre-
vious methods shifted somewhat, with improvement ob-
served for Aggregate PCT, miRanda-MicroCosm, and
PicTar and worsening observed for MinoTar, TargetScan-
Fly, and TargetSpy. Importantly, however, when testing
on these consequences of endogenous miRNA targeting
in flies, the context model again performed better than
all previous models. Results for miR-277 resembled
those for the other two miRNAs (data not shown), even
though miR-277 is unusual in that it primarily resides
within Ago2 rather than Ago1 [2].
Using the mean fold change to evaluate repression (or

de-repression) of top-ranked targets had several potential
limitations. For example, it can exaggerate the influence of
individual outliers or more heavily weight datasets with a
greater variance in their fold-change distributions. None-
theless, examination of plots showing the mean of median
mRNA changes did not substantially change our assess-
ment of the relative performance of each algorithm, which
indicated that we did not arrive at erroneous conclusions
because of outliers (Additional file 2: Figure S4). Another
potential caveat is that our test sets looking at mRNA
changes might miss targets that are repressed only at the
level of translation, without changes in mRNA stability. Al-
though such translation-only repression is widespread in
early fish embryos [68, 69], examination of later embryos
and post-embryonic mammalian cells and tissues has failed
to find a set of targets convincingly regulated at only the
level of translation [69–71], and we have no reason to sus-
pect that such targets exist in the post-embryonic flies. Also
potentially influencing our comparisons was the fact that

for some previous algorithms predictions were missing for
some miRNAs of our test sets. For example, EMBL predic-
tions were not available for miR-263a and miR-994, and be-
cause targets for these two miRNAs happened to undergo
less repression in our transfections, the testing of EMBL on
only the remainder of the transfection datasets presumably
inflated its relative performance.
Target-prediction algorithms have been developed with

divergent priorities regarding prediction accuracy. Out
of concern for prediction specificity, some, including our
context model, consider only predictions with the most
effective types of sites, i.e., 7–8-nt seed-matched sites
within 3′ UTRs. In contrast, other algorithms, out of
concern for prediction sensitivity, do not limit their pre-
dictions to those with these most effective site types, and
some of these include predictions with a vast array of
non-canonical sites that show no evidence of efficacy
when tested using data from mammals and fish [51]. To
begin to explore the tradeoffs of these divergent prior-
ities when predicting miRNA targets in flies, we re-
moved predictions containing 7–8-nt canonical sites to
the cognate miRNA in their 3′ UTRs, and tested the be-
havior of the remaining predictions that lacked these
more effective canonical sites. When testing on the
transfection data, most algorithms that do not strictly
focus on 3′ UTRs with 7–8-nt canonical sites generated
predictions that were repressed more than expected by
chance (Fig. 4c).
Encouraged by these results, we used our context features

to build a model that considered predictions that lacked ca-
nonical 7–8-nt 3′ UTR sites but had at least one offset
6mer, 6mer, or 6mer-A1 site in their 3′ UTR. When using

(See figure on previous page.)
Fig. 4 Performances of different target-prediction algorithms in flies. a The differential ability of algorithms to predict the mRNAs most responsive to
miRNAs transfected into Drosophila cells. Shown for each algorithm in the key are mean mRNA fold changes observed for top-ranked predicted
targets, evaluated over a sliding sensitivity threshold using the six miRNA transfection datasets. Some methods, such as PicTar, which generated
relatively few predictions, could be evaluated at only a few thresholds, whereas others, such as RNA22 and TargetSpy, could be evaluated at many
more. For each algorithm, predictions for each of the six miRNAs were ranked according to their scores, and the mean fold-change values were
plotted at each sensitivity threshold. For example, at a threshold of 16, the 16 top predictions for each miRNA were identified (not considering
predictions for mRNAs expressed too low to be accurately quantified). mRNA fold-change values for these predictions were collected from the
cognate transfections, and the mean fold-change values were computed for each transfection for which the threshold did not exceed the number of
reported predictions. The mean of the available mean values was then plotted. Also plotted are the mean of mean mRNA fold changes for all mRNAs
with at least one cognate canonical 7–8-nt site in their 3′ UTR (dashed line), the mean of mean fold change for all mRNAs with at least one conserved
cognate canonical 7–8-nt site in their 3′ UTR (dotted line) and the 95% confidence interval for the mean fold changes of randomly selected mRNAs,
determined using 1000 resamplings (without replacement) at each cutoff (shading). Sites were considered conserved if their branch-length scores
exceeded a cutoff with a signal:background ratio of 2:1 for the corresponding site type (cutoffs of 1.0, 1.6, and 1.6 for 8mer, 7mer-m8, and 7mer-A1
sites, respectively; Fig. 2b). Thresholds at which the distribution of fold changes for predicted targets of the context model was significantly greater
than that of any other model are indicated (*, one-sided Wilcoxon rank-sum test, P value < 0.05). See also Additional file 2: Figure S4. b The differential
ability of algorithms to predict the mRNAs most responsive to knocking out miRNAs in flies. Shown for each algorithm in the key are mean mRNA fold
changes observed for top-ranked predicted targets, evaluated over a sliding sensitivity threshold using the three knockout datasets. Otherwise, this
panel is as in a. c and d The differential ability of algorithms to predict targets that respond to the miRNA despite lacking a canonical 7–8-nt 3′ UTR
site. These panels are as in a and b, except they plot results for only the predicted targets that lack a canonical 7–8-nt site in their 3′ UTR. Results for
our context model and other algorithms that only predict targets with canonical 7–8-nt 3′ UTR sites are not shown. Instead, results are shown for a
6mer context model, which considers only the additive effects of 6mer, offset 6mer, and 6mer-A1 sites and their corresponding context features. e and
f The difficulty of predicting mRNAs that respond to miRNA transfection or knockout despite lacking canonical 6–8-nt 3′ UTR sites. These panels are as
in c and d, respectively, except they plot results for mRNAs with 3′ UTRs that lack a canonical 6–8-nt site
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either test set and testing only predictions that lacked ca-
nonical 7–8-nt 3′ UTR sites to the cognate miRNA, this
model, which we call the “6mer context” model, performed
better than all existing algorithms, although statistically sig-
nificant improvement was observed at only two thresholds
when testing on de-repression of endogenous targets
(Fig. 4c and d). The other algorithm that yielded predictions
consistently repressed better than background was
DIANA-microT-CDS, which includes predictions with only
canonical ORF sites. Thus, taken together, our analysis indi-
cates that two distinct strategies that focus on only margin-
ally effective sites can be predictive in flies, as judged by
both transfection and knockout results; one approach fo-
cuses on canonical 6-nt sites in 3′ UTRs, and the other fo-
cuses on canonical ORF sites. However, at best, the average
repression of the four to eight top predictions from these
approaches was much less than that of the top targets of
the standard context model and instead resembled that of
the hundreds of mRNAs that contained 7–8-nt canonical
3′ UTR sites (Fig. 4a–d).
The observation that models could be built that success-

fully predicted targets with only marginal canonical sites
was consistent with the demonstrated efficacy of these
marginal sites in Drosophila cells (Fig. 1). A larger chal-
lenge has been to predict effective non-canonical sites,
which lack at least a 6-nt perfect match to the seed region.
Although two types of non-canonical sites, known as the
3′ supplementary sites and centered sites, can mediate re-
pression, these sites are rare—indeed so rare that is diffi-
cult to observe a signal for their action in mammalian
cells without aggregating many datasets [5, 72]. Nonethe-
less, some algorithms yield many predictions that have
only non-canonical sites. Analyses of mammalian datasets
indicate that these predictions are no more repressed than
expected by chance [51], raising the question as to
whether any of the algorithms might successfully predict
non-canonical sites in Drosophila. To answer this ques-
tion, we used our two test sets to measure the response of
predictions that lacked any canonical 6–8-nt site to the
cognate miRNA in their 3′ UTR (Fig. 4e, f ). The only pre-
dictions with a convincing signal above background in ei-
ther test set were those of EMBL, DIANA-microT-CDS,
and MinoTar. Manually examining the top-ranked predic-
tions from EMBL revealed that the signal observed for its
predictions was attributable to canonical sites located in
ORFs and 3′ UTRs of alternative last exons, whereas
the signal for the predictions of DIANA-microT-CDS
and MinoTar was attributable to canonical ORF sites.
We conclude that in flies, as in mammals [51],
non-canonical sites only rarely mediate repression, al-
though we cannot exclude the formal possibility that ef-
fective non-canonical sites are abundant yet for some
reason not predicted above background by any of the
existing algorithms.

TargetScanFly (v7)
Having found that the context model performed better
than the models that have been providing target predic-
tions to the Drosophila research community (Fig. 4a, b),
we overhauled TargetScanFly (available at targetscan.org)
to display these improved predictions. Because of the
diminishing returns of predicting targets with only mar-
ginal sites (Fig. 4c–f ), we continued to limit TargetScan-
Fly to predictions with 7–8-nt canonical 3′ UTR sites,
with ranks driven by a version of the context model that
was trained on the entire transfection dataset.
For simplicity, we had developed the context model using

mRNAs without abundant alternative 3′ UTR isoforms
(Fig. 3), and to make fair comparisons with the output of
previous models, we had tested the context model using only
the longest FlyBase-annotated isoform (Fig. 4). Nevertheless,
because considering the usage of alternative 3′ UTR iso-
forms significantly improves the performance of miRNA tar-
geting models [51, 60], our overhaul of the TargetScanFly
predictions incorporated both the context scores and current
isoform information when ranking mRNAs with canonical
7–8-nt miRNA sites in their 3′ UTRs.
Because the main gene-annotation databases (e.g.,

Ensembl/FlyBase) were still in the process of incorporat-
ing the information available on 3′ UTR isoforms, the first
step in the overhaul was to compile a set of reference 3′
UTRs that represented the longest 3′ UTR isoforms for
representative ORFs of the fly. These representative ORFs
were chosen among the set of transcript annotations shar-
ing the same stop codon, with alternative last exons gener-
ating multiple representative ORFs per gene. To compile
this set of fly 3′ UTRs, we started with FlyBase annota-
tions [73] for which 3′ UTRs were extended, when pos-
sible, using recently identified long 3′ UTR isoforms [74]
and 3′-end reads marking additional distal cleavage and
polyadenylation sites. The extension of these 3′ UTRs led
to a substantial increase in the number of predicted regu-
latory interactions, with the median number of targets for
conserved miRNAs increasing by 78% over the previous
version of TargetScanFly (Additional file 2: Figure S5).
For each of these reference 3′ UTR isoforms, 3′-end

datasets were used to quantify the relative abundance of
tandem isoforms, thereby generating the isoform profiles
needed to score features that vary with 3′ UTR length
(len_3UTR and other_sites) and assign a weight to the
context score of each site, which accounted for the frac-
tion of 3′ UTR molecules containing the site [60]. Our
3P-seq data from S2 cells were combined with 3′-seq
data from a range of developmental stages of the fly [74]
to generate a meta 3′ UTR isoform profile for each rep-
resentative ORF, as illustrated for Ultrabithorax (Ubx)
(Fig. 5), which is known to undergo alternative cleavage
and polyadenylation [75]. Although this meta approach
is not expected to be as accurate as using individual
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Fig. 5 An example of a TargetScanFly page, which displays the predicted sites of conserved miRNAs within the Ubx 3′ UTR. At the top is the 3′ UTR profile,
showing the relative expression of tandem 3′ UTR isoforms, as measured using 3′-seq [74] as well as our 3P-seq data. Shown on this profile is the end of
the longest FlyBase annotation (blue vertical line) and the number of 3′-end reads (525) used to generate the profile (labeled on the y-axis). Below the
profile are conserved and poorly conserved sites for miRNAs broadly conserved among insects (colored according to the key), with options to also display
sites for poorly conserved miRNAs and other miRBase annotations. Boxed are the predicted miR-iab-8 sites, with the site selected by the user indicated
with a darker box. The multiple sequence alignment shows the species in which an orthologous site can be detected (white highlighting) among 27 insect
species. Below the alignment is the predicted consequential pairing between the selected miRNA and its conserved and poorly conserved sites, showing
also for each site its position, site type, context score, context score percentile, weighted context score, branch-length score, and PCT score
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datasets to generate isoform profiles and predictions tai-
lored for an individual stage or cell type [61, 75–77], it
simplifies the summary ranking of predicted targets for
each miRNA and still outperforms the previous ap-
proach of not considering isoform abundance at all, pre-
sumably because isoform profiles for many genes are
highly correlated in diverse cell types [60].
For each 7–8-nt canonical site, we used the corre-

sponding 3′ UTR profile to compute the context score
and to weight this score based on the relative abundance
of tandem 3′ UTR isoforms that contained the site [60].
Scores for multiple sites to the same miRNA family were
also combined to generate cumulative weighted context
scores for the 3′ UTR profile of each representative
ORF, which provided the default approach for ranking
predicted targets with at least one 7–8-nt site to that
miRNA family [51]. As an option, the user can instead
request that predicted targets of broadly conserved miR-
NAs be ranked based on their aggregate PCT scores [57],
as updated in this study. The user can also obtain pre-
dictions from the perspective of each protein-coding
gene, viewed either as the mapping of 7–8-nt sites
shown beneath the 3′ UTR profile and above the 3′
UTR sequence alignment (Fig. 5), or as a table of miR-
NAs ranked by either cumulative weighted context score
or aggregate PCT score.

Conclusions
At least 37% of Drosophila mRNAs are conserved
miRNA targets. Thus, the scope of conserved targeting
in flies is somewhat less than that of mammals but
nonetheless a sizable fraction of the transcriptome. Al-
though largely similar, miRNA targeting in flies and
mammals has also diverged in important respects, which
has led to more widespread efficacy of sites in Drosoph-
ila 5′ UTRs and altered features of site context that cor-
relate with Drosophila site efficacy. A quantitative model
of miRNA targeting in flies, which incorporates these in-
sights and was uniquely developed and trained on
high-throughput analysis of miRNA effects occurring in
Drosophila cells, performs better than previous models.
This model drives the latest version of TargetScanFly,
which provides biologists with an interest in either a
miRNA or a potential miRNA target convenient access
to the predictions, with an option of downloading code
or bulk output suitable for more global analyses. The ac-
companying TargetScanTools (https://github.com/vagar-
wal87/TargetScanTools) are also provided to help others
reproduce and extend these analyses. These new insights
and resources are anticipated to enhance the productiv-
ity of miRNA research in flies and thereby accelerate the
understanding of this intriguing class of regulatory
RNAs.

Methods
Cell culture
Drosophila Schneider 2 (S2) cells were grown in Express
Five serum-free media (GIBCO) supplemented with glu-
tamine to 16 mM. Upon reaching confluency (about
every 3–5 days), cells were passaged following mechan-
ical resuspension with a scraper (Corning). Prior to re-
suspension, the media and any unattached cells were
removed and replaced with an equal volume of fresh
media in order to select for attached cells.

MicroRNA transfection, FACS, and mRNA isolation
Prior to transfection, cells were seeded into 6-well plates
(Corning) at 2.5 × 106 cells and 2 ml media per well.
After 24 h, each well was co-transfected with 2.5 μg
plasmid (25% p2032-GFP, 75% pUC19) plus 25 nM
miRNA duplex (or for mock transfections, with plasmid
only) using 5 μl DharmaFECT Duo (Dharmacon, Lafa-
yette, CO, USA). Equal volumes of nucleic acid and
DharmaFECT Duo diluted in 1× phosphate-buffered sa-
line (PBS) were combined and incubated at room
temperature for 20 min to form transfection complexes
that were then added dropwise to the cells (500 μl/well).
Twenty-four hours after transfection, cells were har-
vested, resuspended in 1× PBS, passed through a 70-μm
filter, and stained with 5 μg/ml propidium iodide (PI). For
each transfection, 3–5 × 106 GFP-positive and PI-negative
cells were isolated by FACS and lysed in 1 ml TRI Reagent
(Ambion). Following extraction from the lysate, total RNA
was cleaned up using the RNeasy Mini Kit (Qiagen, Hil-
den, Germany) and subjected to poly(A) selection using
oligo(dT) Dynabeads (Invitrogen) to isolate mRNA.

Preparation of sequencing libraries
Strand-specific mRNA-seq libraries for Illumina sequen-
cing were prepared as described [71], with differences
noted below. Briefly, poly(A)-selected RNA was hydro-
lyzed in alkaline buffer, resulting in fragments bearing
5′-hydroxyl and 3′-phosphate groups. Fragments between
36 and 55 nt were size selected, and end-specific adapters
were sequentially ligated onto each terminus; prior to each
ligation step, the appropriate 3′ or 5′ end chemistry was
generated through dephosphorylation or phosphorylation,
respectively. Adapter-flanked fragments were reverse tran-
scribed and the resulting complementary DNA (cDNA)
polymerase chain reaction (PCR)-amplified using primers
complementary to each adapter. The PCR products were
purified on a denaturing formamide gel and submitted for
deep sequencing. 3P-seq libraries were prepared from
RNA isolated from S2 cells as described [20].

RNA-seq analysis
RNA-seq reads were analyzed using the quantification pipe-
line previously described [78, 79]. A genome index was built

Agarwal et al. Genome Biology  (2018) 19:152 Page 16 of 23

https://github.com/vagarwal87/TargetScanTools
https://github.com/vagarwal87/TargetScanTools


for the latest build of the D. melanogaster genome (dm6)
using Spliced Transcripts Alignment to a Reference (STAR)
v2.4 (options --runMode genomeGenerate --genomeFasta-
Files dm6.fa --sjdbGTFfile dmel-all-r6.07.gff --sjdbOverhang
40 --sjdbGTFtagExonParentTranscript Parent) [80], with
“dmel-all-r6.07.gff” referring to fly transcript models anno-
tated in FlyBase release 6.07 [73], processed to have a single
“Parent ID/exon” combination per line. Raw reads were
aligned to the index with STAR (options --outFilterType
BySJout --outFilterMultimapScoreRange 0 --readMatesLeng
thsIn Equal --outFilterIntronMotifs RemoveNoncanonica-
lUnannotated --clip3pAdapterSeq TCGTATGCCGTCTT
CTGCTTG --outSAMstrandField intronMotif --outStd
SAM). Considering all replicates of a particular sample,
mRNA fold changes were computed between the miRNA
transfection library of interest and the three mock-transfec-
tion biological replicates, using cuffdiff v2.2.1 (options
--library-type fr-secondstrand -b dm6.fa -u --max-bun-
dle-frags 100,000,000) [81], using protein-coding gene
models from FlyBase release 6.07 [73].

Selection of mRNAs for computational analysis
To avoid noisy mRNA fold-change measurements of poorly
expressed genes, we used only genes whose expression
values (measured in fragments per kilobase per million
mapped reads, FPKM) exceeded 5.0 in the mock condition
for all subsequent analyses. This threshold was chosen
based upon visual inspection of plots evaluating the rela-
tionship between mean expression level and fold change
(commonly known as “MA plots” in the context of micro-
arrays), attempting to balance the tradeoff between sample
size and noise reduction. To select gene annotations for site
efficacy, data normalization, and evolutionary analyses (i.e.,
for Fig. 1, Additional file 2: Figure S1, and Fig. 2, respect-
ively), we selected one representative transcript isoform per
gene, choosing the transcript isoform with the longest ORF,
and if tied, the one with the longest 3′ UTR, and if still tied,
the one with the longest 5′ UTR. This representative tran-
script was supplemented with the longest 3′ UTR among
the subset of transcripts that shared the same stop codon.
To select gene annotations for feature optimization

and regression modeling (i.e., for Fig. 3 and Add-
itional file 2: Figure S3A), we analyzed 3P-seq data to
quantify the relative abundance of 3′ UTR isoforms re-
lated to each representative transcript. We then selected
the subset of mRNAs for which ≥ 90% of the 3P-seq tags
corresponded to a single dominant 3′ UTR isoform and
used this dominant 3′ UTR isoform as the annotation
for the corresponding gene. These steps followed the
training framework previously described [51].
To select gene annotations for evaluation of model per-

formance (i.e., for Fig. 4 and Additional file 2: Figure S4),
we identified the longest and shortest 3′ UTR isoforms, as
annotated by FlyBase, corresponding to each representative

transcript. Context scores and aggregate P CT scores were
generated for the longest and shortest 3′ UTR isoform
groups separately, and then, for each gene and miRNA
combination, the scores were averaged between the longest
and shortest isoforms. To filter out targets with a predicted
target site (i.e., for Fig. 4b/d and Additional file 2: Figure
S4), we removed those that contained the relevant site types
in the 3′ UTR of their representative transcript.

Dataset normalization
mRNA changes correlated among the six transfection
experiments, indicating the presence of batch effects and
other biases (Additional file 2: Figure S1A). To remove
biases in the mRNA fold-change measurements, we im-
plemented our previously described normalization strat-
egy [51], which uses partial least-squares regression
(PLSR) to remove sources of variation that are common
to multiple independent miRNA transfections. This led
to a modest improvement in our ability to detect signa-
tures of miRNA-mediated target repression (Add-
itional file 2: Figure S1B–D). However, 5′ UTR length,
ORF length, 3′ UTR length, 5′ UTR AU content, ORF
AU content, 3′ UTR AU content, and mock-transfection
gene expression level still correlated with fold changes
for mRNAs with no predicted miRNA target site. The
magnitude of these correlations varied significantly when
comparing the results of different miRNA transfection
experiments. Thus, for each of the six miRNA transfec-
tion experiments, we fit a multiple linear regression
model between the mRNA fold changes (i.e., which had
already been normalized by the PLSR model) and the
seven aforementioned features, using log-transformed
values for the expression level feature. Although only
mRNAs with no predicted canonical miRNA target site
were used for this fit, the resulting linear model was
used to predict mRNA fold changes for all mRNAs (in-
cluding those with a predicted site), and for each gene,
the residual value (the difference between the mRNA fold
change and predicted mRNA fold change) was designated
as its final normalized mRNA fold change (Additional file
1: Table S1). Applying this second normalization to data
from each transfection experiment led to enhanced detec-
tion of target repression, as indicated by a shift towards
more significant P values, especially for mRNAs with 3′
UTRs that contained weaker site types (Additional file 2:
Figure S1D).
Each miRNA transfection exhibited a variable level of

global target repression (Additional file 2: Figure S2). Rea-
sons for this variability presumably included variability in
transfection efficiency and differences in either the target
abundance (TA) or the predicted seed pairing stability
(SPS) of the miRNAs tested [51, 66]. Because we did not
have the power in sample size to accurately model the ef-
fects of either SPS or TA, as was possible in mammals [51,
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66], we normalized the transfections to the same scale prior
to training and testing the model. To do so, for each trans-
fection dataset D, we computed the upper and lower quar-
tiles of the mRNA log fold changes (UQD and LQD,
respectively) as well as the corresponding quartiles for the
fold changes among all datasets pooled together (UQP

and LQP). We then updated each fold change x as

follows: x̂ ¼ ½ x−LQD
ðUQD−LQDÞ ðUQP−LQPÞ þ LQP� . By centering

on quartiles, this procedure normalized the fold-change
distributions in a way that was less susceptible to the in-
fluence of outliers.

Refining 3′ UTR isoform annotations
3P-seq data were processed as previously described [82]
but with adjustment of some of the parameters to better
fit the characteristics of the fly 3′ UTRs. Transcript
models were identified using Cufflinks and the ModEN-
CODE S2 RNA-seq data (Sequence Read Archive (SRA)
accession SRR070279) [83] with default parameters and
minimum intron length set to 10. 3P-seq reads were
processed and aligned to the dm3 genome assembly as
described [20], and the resulting tag positions were lifted
over to the dm6 assembly using the University of Cali-
fornia, Santa Cruz (UCSC) liftOver tool. In the first step
of 3′ UTR annotation, clusters of 3P-seq tags were gen-
erated as described [82]. Briefly, positions were sorted in
descending order based on read count, and the list was
traversed such that, for the position with the highest
read count (or the first encountered read, in the case of
a tie), all the tags within 30 nt were grouped and re-
moved from the list as a cluster. Each cluster repre-
sented by a position with at least three total reads and at
least two unique reads was considered a poly(A) site and
was assigned the representative position supported by
the most reads. RNA-seq data were then used to test if
the poly(A) site connected with transcript models, as de-
scribed previously [82]. Connectivity to gene models was
established based on the Cufflinks gene models, allowing
for gaps of up to 200 nt. 3′ UTRs ending within 30 nt of
each other were grouped together and assigned with
their combined read count. The longest 3′ UTR of a
gene was one with the maximal exonic length and which
accounted for at least 1% of the 3P-seq reads. Other pa-
rameters were as described before [82]. A poly(A) site
was considered to be “known” if it mapped within 20 nt
of a FlyBase poly(A) site. 3p-seq tags mapped to the
dm6 genome, processed into clusters, and annotated can
be found as BED files associated with Fig. 3 at https://
github.com/vagarwal87/TargetScanTools.

MicroRNA sets
All mature fly miRNAs were downloaded from miRBase
release 21 [15]. Those that matched a conserved miRNA

at nucleotides 2–8 were considered part of that miRNA
family. When partitioning miRNA families according to
their conservation level, we compared the previously de-
fined set of conserved families available in TargetScanFly
v6 [8] with a more recent annotation of conserved
“pan-Drosophilid” miRNA families [10]. For each differ-
ence between the two sets, we compared whether nucle-
otides 2–8 of each miRNA were conserved among most
Drosopholids beyond the Sophophoran clade, as deter-
mined from the 27-way multiz alignments of each ma-
ture miRNA from the UCSC Genome Browser [84, 85].
This filter led to the removal of several miRNAs from
being considered broadly conserved (e.g., mir-307b,
mir-973, mir-975, mir-1014, mir-4977, and mir-4987)
and the choice of a set of 91 conserved miRNA families
(Additional file 4: Table S3). From these 91, the set of 28
families conserved since the ancestor of bilaterian ani-
mals was identified, starting with a previous annotation
of bilaterian miRNA families [11], but separating related
bilaterian families with different seed sequences and re-
quiring that for each family the ancestral seed sequence
has been conserved to Drosophila without a substitution
or a shift in register (Additional file 4: Table S3).
A few conserved Drosophila primary microRNAs

(pri-miRNAs) give rise to two abundant miRNA iso-
forms that have different seeds, either because both
strands of the miRNA duplex load into Argonaute with
near-equal efficiencies or because processing heterogen-
eity gives rise to alternative 5′ termini [8, 35]. To anno-
tate these abundant isoforms, we identified all isoforms
expressed with at least 33% of reads mapping to the
same start position relative to the most abundantly
mapped start position on the precursor hairpin, and if
the sequences of these isoforms were conserved, the iso-
forms were included in the set of conserved miRNAs.
Adhering to the miRNA naming convention, if two iso-
forms mapped to the 5′ and 3′ arms of the hairpin, they
were named “–5p” and “–3p”, respectively, and if two
isoforms were processed from the same arm, they were
named “.1” and “.2” in decreasing order of their abun-
dance, as detected in D. melanogaster (Additional file 4:
Table S3). All miRNAs annotated in miRBase but not
meeting our criteria for conservation were also grouped
into families based on the identity of nucleotides 2–8
and were classified as either poorly conserved miRNAs
or “other miRBase annotations” (which included many
small RNAs misclassified as miRNAs). These miRNA
seed families and their classifications are available for
download at TargetScanFly (targetscan.org).

Evolutionary analyses and calculation of PCT scores
Fly PCT scores were computed using the following data-
sets: (1) 5′ UTRs or 3′ UTRs, derived from 13,454 fly
protein-coding genes annotated in FlyBase 6.07 [73], and
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(2) regions of multiple sequence alignments corresponding
to these 5′ or 3′ UTRs, derived from the 27-way multiz
alignments of the insect clade in the UCSC Genome
Browser, which used the D. melanogaster genome release
dm6 as its reference species [84, 85]. We partitioned 5′
UTRs and 3′ UTRs into five conservation bins based upon
the median branch-length score (BLS) of the
reference-species nucleotides, following the strategy previ-
ously described [20, 57]. BLSs were computed using the
BranchLengthScoring.py script from MotifMap [86]. We
used an updated computational pipeline for evolutionary
analysis described previously [51] to estimate branch
lengths of the phylogenetic trees for each bin, to compute
the rates of k-mer conservation for canonical sites and con-
trol k-mers, and to calculate PCT parameters and scores. All
phylogenetic trees and PCT parameters are available for
download at our TargetScanTools GitHub page (https://
github.com/vagarwal87/TargetScanTools).

Estimating the number of genes with preferentially
conserved sites
A simulation was performed to estimate the number of
genes containing a conserved site after accounting for
the background of conserved sites. Towards this goal,
we first identified for each conserved miRNA all unique
target sites with BLS ≥ 1.0, yielding a total of 8743 5′
UTR sites (considering 8mer, 7mer-m8, and 7mer-A1
sites) and 86,872 3′ UTR sites (considering 8mer,
7mer-m8, 7mer-A1, 6mer sites, and offset 6mer sites)
that surpassed this cutoff. Among these, we estimated
that 840 ± 40 5′ UTR sites and 12,285 ± 214 3′ UTR
sites (mean ± standard deviation) were conserved above
background. To estimate the distribution of genes with
conserved sites, we performed 1000 samplings with the
following procedure. (1) An integer was randomly se-
lected from each of the two normal distributions of total
sites above background. (2) Using each of these two inte-
gers, a corresponding number of conserved sites was
randomly sampled (without replacement) from the re-
spective 5′ UTRs or 3′ UTRs. (3) The number of unique
genes containing the selected sites was recorded. After
1000 samplings, the distribution of values obtained for
our estimate of genes with conserved sites had a mean
of 5035 and a 90% confidence interval of ±83.

Regression models
3P_energy was scored as described in the text. Other
features were scored as described [51], except that SA
was scored using the parameters optimized for Drosoph-
ila. For each feature of the final context model, scores
were scaled (Additional file 2: Table S4) before being
multiplied by their corresponding coefficients (Add-
itional file 2: Table S5).

To evaluate performance, we generated 1000 bootstrap
samples in which we used, for each site type and transfection
experiment, 70% of data to train the models and the
remaining data as a test set. To choose a model, we evalu-
ated the performance of a variety of machine-learning strat-
egies, including (1) “all subsets regression”, maximizing the
Bayesian information criterion (BIC) as implemented in the
regsubsets function of the “leaps” R package (parameters
“nvmax=15, nbest=1, method=‘forward’, really.big=T”), (2)
stepwise regression, maximizing the BIC or Akaike informa-
tion criterion (AIC) as implemented in the stepAIC function
from the “MASS” R package [87], (3) Lasso regression using
the cv.glmnet function (parameters “nfolds = 10, alpha = 1”)
in the “glmnet” R package, (4) multivariate adaptive regres-
sion splines (MARS) as implemented in the “earth” R pack-
age (parameters “degree = 1, trace = 0, nk = 500”), and (5)
random forest regression using the “randomForest” R pack-
age, (6) principal component regression (PCR) or PLSR using
the pcr and plsr functions as implemented in the “pls” R
package (parameter “ncomp = 5” during prediction). As for
our model of mammalian targeting [51], we ultimately uti-
lized stepwise regression, with AIC to select features.
For the model driving TargetScanFly v7, we fit a mul-

tiple linear regression model for each site type using the
selected group of features, training with all of the genes
that were expressed above the threshold in our transfec-
tion datasets and had single 3′ UTR sites and 90% UTR
homogeneity. As for mammalian predictions [51], scores
for 8mer, 7mer-m8, and 7mer-A1 sites were bounded to
be no greater than − 0.03, − 0.02, and − 0.01, respectively,
thereby creating a piecewise linear function for each site
type. For each 3′ UTR with at least one 7–8-nt site to the
miRNA, the context scores of the sites were weighted
based on the UTR profile, and multiple weighted scores
for the same miRNA were combined to generate a cumu-
lative weighted context score, which was used to rank the
predicted target gene.

Performance comparisons
To compare predictions from different miRNA target-pre-
diction tools, we collected the following downloadable pre-
dictions: ComiR (October 2015) [49], DIANA-microT-CDS
(September 2013) [46], EIMMo v5 (January 2011) [41],
EMBL (2005 predictions) [6, 40], miRanda-MicroCosm v5
[42], mirSVR (August 2010) [47], PicTar (from the doRina
web resource; sets conserved among D. melanogaster, D.
yakuba, D. ananassae, D. pseudoobscura, D. mojavensis,
and D. virilis) [16, 43], PITA Catalog v6 (3/15 flank for ei-
ther “All” or “Top” predictions, August 2008) [38], RNA22
(May 2011) [44], RNAhybrid [45], TargetSpy (all predic-
tions) [48], MinoTar (downloaded from TargetScanFly ORF
v6.2, June 2012) [19], and TargetScanFly v6.2 (June 2012)
[8]. For algorithms providing site-level predictions (i.e.,
ElMMo, mirSVR, PITA, and RNA22), scores were summed
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within genes or transcripts (if available) to calculate an ag-
gregate score. For algorithms providing multiple
transcript-level predictions (i.e., DIANA-microT-CDS,
miRanda-MicroCosm, and TargetSpy), the transcript with
the best score was selected as the representative transcript
isoform. In all cases, predictions with gene symbol or
RefSeq ID formats were translated into FlyBase format. To
avoid testing and training our context model on the same
data, we generated cross-validated predictions for the con-
text model. To do so, we held out each transfection dataset,
fit a linear regression model using the data from the
remaining five datasets, and generated predictions on the
held-out data.

Microarray processing
We downloaded raw Affymetrix data measuring the ef-
fects of a miR-14 knockout (GEO accession GSE20202)
[31], a miR-34 knockout (day 20, GEO accession
“GSE25008”) [32], and a miR-277 knockout (ArrayEx-
press accession “E-MEXP-3785”) [33] and processed the
data as previously described [51], with the exception that
the drosophila2FLYBASE function in the “drosophi-
la2.db” R Bioconductor package was used to map Affy-
metrix probe IDs to FlyBase IDs.

3′ UTR profiles for TargetScanFly (v7) predictions
In addition to our 3P-seq data from S2 cells, we down-
loaded D. melanogaster 3′-seq data for the following tis-
sues and cells: carcass female, carcass male, embryo 0–
45 min, embryo 1.5–6 h, embryo 6–12 h, embryo 12–
18 h, embryo 18–24 h, female head, ovary, S2R+, testis,
whole body male 2–5 days (d), and whole body female
2–5 d [74]. The dataset for embryo 45–90 min was ex-
cluded due to poor library quality. To process the
3P-seq and 3′-seq reads, Illumina adapters were
trimmed from all sequences using Trimmomatic. All ter-
minal adenosines were then trimmed from the
remaining sequence, and the subset of reads that were at
least 20 nt long after trimming and had possessed at
least two terminal adenosines was carried forward.
These reads were mapped to the dm6 genome and proc-
essed as previously described [20].
To build fly 3′ UTR profiles, we began with the set of

protein-coding gene models deposited in FlyBase 6.19
[73]. For each unique stop codon in each set of gene
models, we selected the transcript with the longest 3′
UTR as the transcript with the reference 3′ UTR. For
the 3′ UTR associated with the most distal stop codon,
we extended it if a longer tandem isoform was supported
by RNA-seq and 3′-seq evidence (Additional File 7 of
Sanfilippo et al. [74]). For any 3′ UTR associated with a
stop codon whose exon overlapped the exon harboring
the most distal stop codon, we extended the 3′ UTR to
the end of the longest 3′ UTR isoform associated with

the most distal stop codon. Finally, for a 3′ UTR associ-
ated with a stop codon located in an upstream alterna-
tive last exon, we used 3′-end tags to further extend 3′
UTRs when possible, searching within the intronic re-
gion downstream of the stop codon for a cleavage and
polyadenylation site supported by at least ten 3′-end
reads (pooling read counts across all samples), prohibit-
ing the search to extend beyond the start position of any
annotated downstream exon. For each reference 3′
UTR, 3′-end reads from both 3P-seq and 3′-seq were
normalized for sequencing depth across cell lines/tissues
and used to quantify the relative levels of alternative tan-
dem isoforms, thereby generating a 3′ UTR profile [51].

TargetScanFly predictions
TargetScanFly (v7) provides the option of ranking pre-
dicted targets of mammalian miRNAs according to ei-
ther cumulative weighted context score, which ranks
based upon the predicted repression, or aggregate PCT
score of the longest 3′ UTR isoform, which ranks based
upon the confidence that targeting is evolutionarily con-
served. For each predicted target, the cumulative
weighted context score estimated the total repression ex-
pected from all of the sites to the same miRNA family.
This score was calculated starting with the context score
of each site to a miRNA family, calculated using the
model trained on all of the transfection data (Add-
itional file 2: Table S5) and using the 3′ UTR profile to
weight the predicted effect of the most proximal site and
the marginal effects of any additional sites [51]. When
scoring features that can vary with 3′ UTR length
(Len_3UTR and Other_sites), a weighted score was used
that accounted for the abundance of each 3′ UTR tan-
dem isoform in which the site existed, as estimated from
the 3′ UTR profile. When calculating PCT scores, if al-
ternative 3′ UTRs were annotated for the same gene,
the most conserved 3′ UTR isoform was used to deter-
mine the conservation bin to which the 3′ UTR
belonged. Sites corresponding to poorly conserved
miRNA seed families or sites overlapping annotated
ORF regions were assigned PCT scores of zero.
Predictions were generated for the transcript associ-

ated with each UTR profile. For genes with multiple
UTR profiles, each associated with an alternative tran-
script with a unique stop codon, we chose a single tran-
script to represent that gene in the default predictions
and target rankings. This representative transcript was
chosen as the alternative with the longest ORF that had
at least 60% of the maximum number of normalize
3′-end tags for any transcript of that gene, unless its
UTR overlapped another UTR of the same gene, in
which case, we chose the transcript with the longest
UTR. Users interested in predictions for alternative tran-
scripts not chosen as the representative transcript can
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access those predictions by starting a search based on
their gene of interest.
All predictions for representative transcripts and input

and output annotation files as well as associated scripts
are available for download at TargetScanFly (targetsca-
n.org) or our TargetScanTools Github page (https://
github.com/vagarwal87/TargetScanTools). All PCT pa-
rameters and parameters for tree branch lengths and re-
gression models, along with pre-computed context
scores, are also available (targetscan.org).

Additional files

Additional file 1: Table S1. Processed mRNA abundances (measured in
fragments per kilobase per million mapped reads (FPKM)) and mRNA fold
changes corresponding to each of the six miRNA transfection datasets.
(XLSX 4739 kb)

Additional file 2: Supplementary figures, Table S4, and Table S5.
(PDF 3961 kb)

Additional file 3: Table S2. P values reporting the significance of the
differences in fold-change distributions observed between site types for
each of the three mRNA regions (3′ UTR, ORF, and 5′ UTR). (XLSX 12 kb)

Additional file 4: Table S3. The 91 seed families broadly conserved in
Drosophila species, listing for each family the miRNA names, seed
sequence, and signal-to-background ratios for 5′ UTR and 3′ UTR sites.
These ratios are plotted in Fig. 2f. Families conserved since the ancestor
of bilaterian animals are also indicated. (XLSX 14 kb)
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