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Background: Alternative splicing, particularly through intron retention and exon skipping, is a major layer of
pre-translational regulation in eukaryotes. While intron retention is believed to be the most prevalent mode
across non-animal eukaryotes, animals have unusually high rates of exon skipping. However, when and how
this high prevalence of exon skipping evolved is unknown. Since exon skipping can greatly expand proteomes,
answering these questions sheds light on the evolution of higher organismal complexity in metazoans.

Results: We used RNA-seq data to quantify exon skipping and intron retention frequencies across 65 eukaryotic
species, with particular focus on early branching animals and unicellular holozoans. We found that only bilaterians
have significantly increased their exon skipping frequencies compared to all other eukaryotic groups. Unlike in
other eukaryotes, however, exon skipping in nearly all animals, including non-bilaterians, is strongly enriched for
frame-preserving sequences, suggesting that exon skipping involvement in proteome expansion predated the
increase in frequency. We also identified architectural features consistently associated with higher exon skipping
rates within all studied eukaryotic genomes. Remarkably, these architectures became more prevalent during
animal evolution, indicating co-evolution between genome architectures and exon skipping frequencies.

Conclusion: We suggest that the increase of exon skipping rates in animals followed a two-step process. First,
exon skipping in early animals became enriched for frame-preserving events. Second, bilaterian ancestors
dramatically increased their exon skipping frequencies, likely driven by the interplay between a shift in their
genome architectures towards more exon definition and recruitment of frame-preserving exon skipping
events to functionally diversify their cell-specific proteomes.
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Background

Alternative splicing (AS) is a pre-translational process
that allows the creation of multiple messenger RNA
(mRNA) transcripts from a single gene by differentially
selecting splice sites in multi-exonic sequences [1]. This
phenomenon can contribute to the regulation of gene
expression [2-7], or the creation of multiple protein iso-
forms per gene, increasing the proteomic repertoire of
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eukaryotic genomes [8, 9] and potentially leading to key
evolutionary innovations [10-12].

The main forms of AS among eukaryotes are the
exclusion of specific exons and the retention of introns
in the final transcripts [1, 13], referred to as exon skip-
ping (ES) and intron retention (IR), respectively. These
sources of transcript variation are widespread in eukary-
otes, but initial studies revealed that the prevalence of
each AS mode varied across lineages: animals show
higher rates of ES than other eukaryotes, whereas IR is
frequent across all eukaryotic groups, including animals,
fungi, plants, and various protist lineages [14—17]. This
contrast led to the proposition that ES-rich AS profiles
were a major contributor to the increased phenotypic
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complexity of animals, since richer proteomes can provide
an expanded tool-kit needed to sustain multicellularity [8,
18]. Consistently, and although the extent to which ES
transcripts are translated and functional is still under
debate [19, 20], many ES-derived isoforms have been
found to be physiologically relevant in animals (reviewed
in [8, 21]), for example, by tuning protein—protein inter-
action networks [22-24]. In contrast, IR events have been
linked to down-regulation of gene expression via the
nonsense-mediated decay (NMD) pathway [4-6, 25],
nuclear retention [7] or intron detention [3] in a wide
variety of eukaryotes.

The evolutionary origin of AS can be tracked to the
last eukaryotic common ancestor (LECA), which
already had an intron-dense genome [26, 27] with
heterogeneous splice sites [28-30] and all the essen-
tial splicing machinery (the spliceosome, a complex of
small nuclear RNAs and dozens of assisting protein
factors) [27, 31, 32]. These observations have allowed
inferring that the earliest eukaryotes already exhibited
splicing-rich transcriptomes yielding multiple mRNA
variants per gene, mostly by IR [18, 33, 34]. However,
it remains unclear when and how animal transcrip-
tomes shifted towards higher frequencies of ES and
recruited this mode of AS as a mechanism to expand
their proteomes. First, the sampling of early-branch-
ing species—poriferans, cnidarians, placozoans, and
ctenophores—is scarce. Second, no comprehensive
comparative study using high-throughput RNA se-
quencing (RNA-seq) data has been performed to date.
Third, relative increases in ES frequency have also
been identified in other phylogenetically scattered eu-
karyotes—e.g. in plants, Volvox carteri, or the chlorar-
achniophyte Bigelowiella natans [10, 35-38].
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Here, we address these questions by analyzing RNA-
seq-derived AS profiles for 65 eukaryotic species. Using
this comprehensive dataset of joint transcriptomic and
genomic data, we track the frequency of both main
modes of AS (IR and ES) across all major eukaryotic
lineages (Fig. 1a, Additional file 1: Figure S1), uncovering
the phylogenetic patterns behind AS evolution. Specific-
ally, we investigate the transition towards high ES fre-
quencies in multicellular lineages (animals and plants)
by comparing their AS profiles and genome architec-
tures with their closest unicellular relatives. We find that
the frequency of ES rose mainly in bilaterians, with only
mild increases in non-bilaterians. However, we show
that recruitment of ES for proteome expansion predated
the bilaterian increase in ES and occurred early in
metazoan evolution. Furthermore, we uncover a set of
sequence and architectural features that influence the
frequency of ES and IR in transcripts across eukaryotes,
suggesting the existence of a soft pan-eukaryotic cis-regu-
latory code for AS determination. Using this code and
reconstruction of ancestral intron—exon architectures we
evaluated the step-wise increase of ES along animal
evolution.

Results

ES frequency increased largely in bilaterian ancestors

We quantified the frequencies of ES and IR at the single
exon and intron levels for 65 eukaryotic species (Fig. 1a),
including a wide range of intron—exon architectures
(Fig. 1b, c¢; Additional file 1: Figures S1 and S2). For this
purpose, we compiled a large dataset of available RNA-seq
data (Additional file 1: Figure S1) and performed de novo
RNA-seq for three phylogenetically key species: the pla-
cozoan Trichoplax adhaerens, the holozoan Sphaeroforma
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arctica, and the intron-rich excavate Naegleria gruberi.
For the analysis of ES events (Additional file 1: Figure S3),
we compiled a dataset of exon triplets from 2.93 x 10°
internal exons from 5.08 x 10° multi-exonic genes with
transcriptomic support. Each internal exon was classified as
ES-negative (0-10% exon skipping rate [rgs] and sufficient
read coverage; 89.29% of the dataset), ES-positive (rgs = 10—
90% and sufficient read coverage; 0.74% of the data), or un-
determined (all other cases; Additional file 1: Figure S4).
For the analysis of IR (Additional file 1: Figure S3), an
analogous dataset was built with 1.98 x 10° introns from
3.88 x 10° multi-exonic genes, which were classified as
IR-negative (0-10% inclusion rate [r;z] and sufficient read
coverage; 71.09% of the data), IR-positive (r;z=10-90%,
and sufficient read coverage; 5.27% of the data), or un-
determined (Additional file 1: Figure S4).

Next, we examined the frequency of each AS mode at
the species level by averaging exon- and intron-specific
ES and IR rates across 100 subsets of exons or introns
with normalized RNA-seq coverage (Fgsy, and Frgg,
respectively; see “Methods”; Additional file 1: Figures S3
and S5). This analysis produced three major results.
First, we found evidence of ES and IR in transcriptomes
from all studied eukaryotic lineages—namely, animals,
fungi, opisthokont protists, amoebozoans, Viridiplantae,
the cryptophyte Guillardia theta, SAR, the haptophyte
Emiliania huxleyi, and the excavate Naegleria gruberi
(Fig. 2, Additional file 1: Figures S4 and S6). Second, IR
frequencies exceeded ES in all but one species (Fig. 2b).
This result is in line with previous reports highlighting
the dominance of IR-based AS across eukaryotes, but
challenges initial views of animal transcriptomes as
being dominated by ES. A possible explanation for this
disagreement is the association between high IR rates
and low transcript expression levels (see below), which
hinders the detection of retained introns (particularly in
studies based on EST data [14, 15, 39]).

Third, we found a clear phylogenetic pattern behind ES
frequencies (Fig. 2a): animals, particularly bilaterians, had
the highest frequencies, followed by non-bilaterians, plants,
and a handful of other scattered eukaryotes. The
consistency of our quantifications at the species level was
assessed with replicate transcriptomic datasets for six
selected ES-rich taxa obtained from independent studies
(Additional file 1: Figure S7). Species-level Fgg,, values
were highly consistent between pairs of multi-organ tran-
scriptomic datasets of adult human, frog, and tale cress and
a comparison of developmental time series with various
growth conditions for fruit fly (p >0.01, Wilcoxon
rank-sum test). Mild significant differences were observed
between two multi-organ sets of mouse (p =0.0037,
Wilcoxon rank-sum test) and a comparison of devel-
opmental series of the sea anemone Nematostella
vectensis (p =1.67e - 08, Wilcoxon rank-sum test), but
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in both cases the distributions were within their re-
spective taxonomic ranges. Similarly, although pooled
samples generally had higher ES levels than the indi-
vidual tissues, the latter also fell within the taxonomic
range (Additional file 1: Figure S8). This indicates that our
approach for ES quantification yields robust results
independently of the experimental approaches used in
different RNA-seq experiments.

To further investigate when the shift towards ES-rich
transcriptomes occurred in animal evolution, we next
compared the aggregated ES frequencies of vertebrates,
non-vertebrate bilaterians, non-bilaterians (cnidarians,
poriferans, the ctenophore Mnemiopsis leidyi, and the
placozoan Trichoplax adhaerens), and their closest
unicellular relatives in the Holozoa (choanoflagellates,
Capsaspora owczarzaki, and ichthyosporeans) (Fig. 2c—f;
complete report of statistical comparisons in Additional
file 1: Figure S9).

Taken together, bilaterian animals have significantly
higher Fpg,, than non-bilaterians, unicellular holozo-
ans, and other opisthokonts (Fig. 2c; p<1.0e -76 in
all comparisons, one-sided Kolmogorov-Smirnov test
[0KS]). Furthermore, vertebrates exhibited an enrich-
ment compared to other bilaterians (p =1.0e —03).
The grouping of non-bilaterians did not show signifi-
cantly higher Fgg, than unicellular holozoans (Fig. 2c),
although different patterns were observed when com-
paring against individual groups (Fig. 2d): Fgs,, values
were higher in cnidarians and the ctenophore M. leidyi
and lower in poriferans and T. adhaerens. On the other
hand, the ichthyosporean Sphaeroforma arctica had the
highest Frg,, among unicellular holozoans (Fig. 2e;
p<le-09, oKS), which indicates a clear lineage-spe-
cific departure from the low incidence of ES in other
unicellular holozoans [40, 41]. Importantly, these
patterns were robust to different levels of read depth
downsampling across species (Additional file 1:
Figure S10). Therefore, these data show that (i) bilater-
ians, and vertebrates in particular, have a consistently
higher ES frequency than their close relatives and other
eukaryotes, and (ii) some non-bilaterian animals and
unicellular holozoans have experienced relative increases
in ES frequency as well.

In parallel, multicellular land plants also exhibited higher
ES rates than other ‘bikonts’ (Dipahoratickes and N. gru-
beri), including their colonial and unicellular relatives in
Chlorophyta and Charophyta (Fig. 2f; all p<1.0e - 06,
0KS). However, the colonial chlorophyte Volvox carteri
was a notable exception, with higher Fg, than other algae
(including its close unicellular relative Chlamydomonas
reinhardtii [38]) and most land plants (p < 1le - 13 for all
comparisons, oKS).

Finally, our analysis of Fgg, levels in the chlorarachnio-
phyte Bigelowiella natans showed contradictory results.
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The analysis of two recent transcriptomic datasets
[42, 43] showed significantly lower ES frequencies
than those reported in the original genome paper [36]
(Additional file 1: Figure S7; p <1le-16, Wilcoxon
rank-sum test). The reasons behind these differences
remain elusive. One possible explanation is that they
were caused by differences in environmental condi-
tions, such as abiotic stress, which have been shown
to lead to increased levels of both spurious ES and IR
in other species [44—46].

Enrichment in frame-preserving ES is common to all
animal groups

Next, we examined the potential global impact of AS
events on each species’ proteome by assessing their ef-
fect on the coding capacity of the resulting transcripts.
Following previous studies [47], we divided exons or
introns between those that had lengths divisible by three
(henceforth ‘3n’) and those that did not, under the
assumption that 3n sequences would not normally dis-
rupt the open reading frame (ORF) integrity when
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alternatively spliced, whereas non-3n sequence lengths
would cause frame-shifts, usually resulting in unproduct-
ive transcripts. Indeed, maintenance of the ORF integrity
is strongly associated with functional and conserved ES
events in animals [8, 47, 48].

In the case of IR, virtually no significant biases
towards or against 3n divisibility were observed (Fig. 3a
and Additional file 1: Figure S11). In contrast, we found
that alternatively spliced exons of most animals were
significantly enriched in 3n divisible lengths (Fig. 3b,
Additional file 1: Figure S12; p<0.01, Fisher’s exact
test). This includes all vertebrates, most bilaterians, the
ctenophore M. leidyi, and the cnidarians Aiptasia sp.
and H. magnipapillata (p <0.05). For example, 37.8%
of M. leidyi’s ES-negative exons were 3n divisible, but
this percentage increased up to 76.9% in ES-positive
exons. Overall, the fraction of 3n divisible exons was
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higher in ES-positive exons than in ES-negative ones
for 20 out of 23 animal species, and at least half of the
ES-positive exons were 3n divisible in 15 out of 23
animals (Fig. 3c), suggesting that exon 3n enrichment is
largely an animal feature. This enrichment was also
observed when individual, rather than pooled, tissues
were analyzed (Additional file 1: Figure S13A) and at
different levels of sequencing depth (Additional file 1:
Figure S14). Moreover, this pattern was even stronger
when we restricted the analysis to highly alternative
exons (rgs =30-70%; Fig. 3d). Most animals showed
higher 3n enrichment in this subset, including robust
increases in some non-bilaterians that did not exhibit
significant 3n biases in the whole transcriptome. For
example, the 3n fraction of ES-negative exons of the
sponge Amphimedon queenslandica is 43.2%, but in-
creases to 73.1% in highly alternative ES-positive ones
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exons in ES events (res = 10-90%, grey bar segment) compared to a subset of high-frequency events (rzs = 30-70%), highlighting increases (blue) or
decreases (red) of the 3n fraction. In panels d and e, asterisks indicate significant 3n biases in ES-positive compared to ES-negative exons, as per
Fisher's exact test (p < 0.01; Additional file 1: Figure S9). In all panels, only species with more than ten exons in all categories are included. e Fraction of
3n exons in ES events (grey bar segment) compared to a subset of genes with above-median expression (cCRPKM) and gene length (‘high constraint),
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(p =2.55e - 3, Fisher’s exact test), and a mild increase
also occurs in another sponge, Sycon ciliatum (p =0.022;
Fisher’s exact test; Additional file 1: Figure S12).

On the other hand, lack of positive 3n biases was ob-
served in nearly all other eukaryotes, including unicellular
holozoans and plants, reaching negative enrichments
(S. arctica and the plants Vitis vinifera and Physcomitrella
patens) and/or reducing this enrichment in the highly
alternative subset in some species (Oryza sativa and P.
patens) (Fig. 3b—d). Only the ciliate Tetrahymena thermo-
phila exhibited a 3n bias akin to that of animals (p =
2.18e - 5, Fisher’s exact test). The lack of 3n bias in ES has
been previously reported (e.g., in Creolimax fragrantis-
sima [41] and B. natans [36]), and such ES-caused ORF
disruptions were proposed to be a consequence of noisy
splicing and to produce non-functional isoforms. Consist-
ent with this idea, we found a general robust increase in
the fraction of 3n exons within long genes with high ex-
pression (Fig. 3e)—a subset of ‘high-constraint’ genes that
are expected to be less prone to splicing errors due to the
higher energetic cost of their production [49]. We observed
a 3n exon enrichment increase in high constraint genes in
animals (except in poriferans and 7. adhaerens), plants,
chlorophytes, and the multicellular phaeophyte Ectocarpus
siliculosus. However, even if high-constraint genes in
non-animals showed higher fractions of 3n exons, these
were not significantly biased towards being ES-positive
(Fishers’ exact test, significant if p < 0.01; Additional file 1:
Figure S12).

Overall, the 3n bias in ES events recorded in ani-
mals suggests that the lengths of alternatively spliced
exons are under selective pressure to avoid ORF dis-
ruptions, possibly due to an enrichment in functional
protein isoform-producing ES events. In other eukary-
otes, only high-constraint genes, in which non-3n ES
would be more detrimental, showed enrichments in
3n exon lengths.

Sequence and architectural intron-exon traits influence
ES and IR frequencies
To investigate how increases in ES frequencies may have
taken place during animal evolution, we next studied
intra-species associations between ES and IR frequencies
and different genomic architectural features. Previous
studies have linked the level of ES and IR within a genome
to differences in traits such as the length of exons and
introns, intron density, sequence composition, splicing
site homogeneity, or other cis signals [16, 50-53].
Therefore, these associations suggest that the evolutionary
processes shaping genome architecture could contribute
to the variations in AS frequency across species, including
the increase in ES during animal evolution.

To address this possibility, we analyzed the intron/exon
structure and sequence composition of the genomic
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regions associated with the AS events, and compared the
gene architecture of ES- and IR-positive and negative
exons and introns across our set of 65 eukaryotic species.
In particular, we investigated the effect of global length of
genes and transcripts; the length of the alternatively
spliced exons and its flanking introns (for ES) or vice versa
(for IR); intronic and exonic GC content and the differential
in GC content between introns and exons; the strength of
the 5 and 3’ splice site definition; the intron density
(introns per gene and base pairs of introns per base pairs of
coding sequence [CDS]); the relative position of the AS
event along the gene (from the start codon); and the mean
transcript expression level (using cRPKMs from pooled
RNA-seq experiments). See “Methods” for precise defini-
tions of each trait. Our analysis identified consistent rela-
tionships between ES, IR, and gene architecture across the
eukaryotic tree of life, maintained across genomes from dif-
ferent lineages and robust to tissue pooling and sequencing
depth (Figs. 4 and 5 and Additional file 1: Figures S13 and
S15-S18).

As expected [54, 55], we identified a widespread
relationship between positive cases of ES and IR and
weak 5 and 3’ splice sites (Figs. 4a and 5a; p <0.01,
one-sided Kolmogorov-Smirnov test with complemen-
tary hypotheses). In the case of ES, this association is
significant and consistent for all species with a sufficient
number of ES-positive exons, including animals, unicel-
lular holozoans, plants, chlorophytes, the phaeophyte E.
siliculosus, and B. natans. Thus, in most eukaryotes,
heterogeneity in the splice sites influences ES frequen-
cies at the intra-species level: exons with more poorly
defined intron—exon boundaries are more subject to ES
than those closer to the species consensus.

Another consistent association across eukaryotes was
found between ES and shorter exon lengths (Fig. 4a), as
previously reported for animals [47, 56]. Moreover,
ES-positive exons are widely associated with longer
flanking introns, both upstream and downstream. Exons
with these features are expected to be spliced through
‘exon definition, a model that proposes that the recogni-
tion of the 5" and 3" splice sites occurs across the exonic
sequence (as intron ends are more distant); thus, inter-
rupting this process is more likely to result in ES than in
IR [50, 53]. The general positive relationship between ES
and higher intron-to-exon length ratios also fits this
principle, and shows a good correlation with the overall
gene architecture at the species level, particularly in bila-
terians (Fig. 4c), suggesting that their distinct architec-
tures may have driven their increases in ES frequencies.

Interestingly, we observed similar patterns in the
ichthyosporean S. arctica (with higher ES rates than other
holozoans; Fig. 2e) and the chlorophyte V. carteri (also with
higher ES rates than other chlorophytes; Fig. 2f). Their
ES-positive exons had more heterogeneous splice sites than
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Fig. 4 Relationship between gene structure and sequence composition and ES. a Heatmap representing the distance between distributions of
gene architecture values for ES-positive and ES-negative exons, measured with the D statistic of the one-sided Kolmogorov-Smirnov two-sample
test (significant if p < 0.01; otherwise grey). D values are recorded as positive/negative (blue/red) according to two one-sided Kolmogorov-Smirnov
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ES-negative ones, were shorter, and had higher intron-
to-exon length ratios. Furthermore, the majority of S
arctica and V. carteri introns were longer than their
cognates in their close unicellular holozoan (Fig. 4e) and
chlorophyte relatives [38] (Fig. 4f), respectively, suggesting
recent intron lengthening events. Moreover, both S. arctica
and V. carteri have relatively high intron densities (3.22 and
3.88 introns/CDS kbp; Fig. 1b, ¢ and Additional file 1:
Figure S2) that derive from recent, lineage-specific
intron gain processes at the root of ichthyophonid
Ichthyosporea [27] and Chlorophyceae plus Trebouxio-
phyceae [26] (Table 1). As the median CDS length is
relatively constant across eukaryotes (~ 1400 bp [57])
and is independent of intron content, higher intron
densities at the species level usually imply the presence

of shorter exons (Fig. 1c, Additional file 1: Figure S19).
Thus, V. carteri and S. arctica seem to have independently
acquired ES-conducive genome architectures (higher intron
densities, shorter exons flanked by longer introns) that
contribute to their ES-richer AS profiles when compared to
their closest relatives (Fig. 2e, f). On the other hand, the
most notable exceptions to these patterns were the multi-
cellular phaeophyte E. siliculosus (which exhibited low
ES frequencies despite having unusually long introns;
Fig. 4c), the charophyte Klebsormidium netis, and B.
natans. In these species, ES was associated with short
exons, but, unusually, also with short introns (Fig. 4a).
Regarding IR, the ‘intron definition” splicing model pro-
poses the opposite scenario: impediments to across-intron
recognition of splice sites can lead to IR, and this mode of
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Fig. 5 Relationship between gene structure and sequence composition and ES. a Heatmap representing the distance between distributions of
gene architecture values for IR-positive and IR-negative introns, measured with the D statistic of the one-sided Kolmogorov-Smirnov two-sample
test (significant if p < 0.01; otherwise grey). D values are recorded as positive (blue) or negative (red) according to two one-sided Kolmogorov-
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J

splicing typically happens for short introns flanked by long
exons [50, 53]. Surprisingly, however, our analysis revealed
that the influence of intron and flanking exons’ length on
IR is not homogeneous across eukaryotes (Fig. 5a): retained
introns are indeed shorter than constitutively excluded ones
in chordates (vertebrates and the tunicate Ciona intestinalis),
S. arctica, Vitis vinifera, and unicellular algae (Micromonas
pusilla, Cyanophora paradoxa, Emiliania huxleyi, B. natans,
or Guillardia theta); but not in most other animals, unicel-
lular holozoans, fungi, or other protists that also exhibit
high IR frequencies (Additional file 1: Figure S6). The
ratio of intron-to-exon length has a similarly uneven
relationship with IR. Across most eukaryotes, however,
introns in genes with lower intron densities (introns/
gene) were generally more prone to IR, as expected.
Overall, the dominance of IR in a given genome does
not seem to be determined by a straightforward rela-
tionship between intron length and density. Instead,
positive or negative associations can be found in a
lineage- or species-specific manner.

We also used the GC content of introns (GC;,) and
exons (GC,,) and its differential (AGC;,,_., = GC;, - GC.,,)
to examine the effect of global sequence composition in
AS within each species. It has been proposed that, in
species with extremely long introns (e.g., mammals and
G. gallus), a differential in GC content between exons
(GC-richer) and flanking introns (AT-richer) can act as a
compositional mark to assist the recognition of splice
sites [52]. Considering that GC;, is lower than GC,,
in all but one eukaryote in our dataset (Fig. 4f), GC
differentials in ES-positive exons could be expected to
take negative values (AGC;,., <<0), particularly for
long introns. However, we found that this is far from
being a general rule, as we observed multiple intricate
associations between AGCj, .,, ES frequency, and intron
length that vary across eukaryotes.

First, we found that the overabundance of ES-positive
exons in genic environments where AGC;, ., <<0 (ie.,
GC-rich exons flanked by AT-richer introns) occurs only
in vertebrates and the annelid C. teleta (Fig. 4a). In these
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Table 1 Intron mean lengths and densities in ancestral eukaryotic genomes

Ancestor Ancestral mean intron length (bp)  Introns/CDS kbp  Introns/gene  Source intron densities
LECA - 43 6.11 Cs(ros et al. 2011 [26]
Uropisthokonta 328 5.1 7.25 Cstiros et al. 2011 [26]
Urholozoa 481 552 7.86 Grau-Bové et al. 2017 [27]
Urichthyosporea 263 553 7.86 Grau-Bové et al. 2017 [27]
(Chromosphaera, Creolimax, Sphaeroforma)
Urichthyophonida (Creolimax, Sphaeroforma) 393 6.98 9.92 Grau-Bové et al. 2017 [27]
Urmetazoa (animals) 845 8.8/8.7 125171237 Cstiros et al. 2011 [26)/
Grau-Bové et al. 2017 [27]
Urporifera (sponges) 451 8.63 12.27 Grau-Bové et al. 2017 [27]
Urcnidaria 1016 83 11.80 Cs(ros et al. 2011 [26]
Urbilateria 1342 77177 10.94/10.94 Csdros et al. 2011 [26)/
Grau-Bové et al. 2017 [27]
Urprotostomia 891 74 10.52 CsUiros et al. 2011 [26]
Urecdysozoa 623 74 10.52 CsUros et al. 2011 [26]
Urdeuterostomia 1710 7.7 10.94 Cs(ros et al. 2011 [26]
Urvertebrata 3117 72 10.23 Cs(ros et al. 2011 [26]
Urembryophyta (land plants) 313 6.4 9.10 CsUros et al. 2011 [26]
Urchlorophyta (all unicellular/colonial green algae) 299 34 483 Cstiros et al. 2011 [26]
Trebouxiophyceae + Chlorophyceae - 6.2 882 CsUros et al. 2011 [26]

(Chlorella, Volvox, Chlamydomonas)

Mean intron lengths estimated from phylogenetically independent comparisons of descendant species (see “Methods”; Additional file 1: Figure S24). Intron
densities (taken from [26, 27]) are reported as introns/CDS kbp and introns/gene (by multiplying by the average CDS length [1422 kbp] of all organisms in our

dataset; Additional file 1: Figures S1 and S2)

animals, ES-positive exons were also found to be prefer-
entially flanked by long introns (see above). However,
long introns flanking ES-positive exons were only found
to be AT-enriched in mammals and G. gallus (Spearman
rho <0 and p <0.01; Figs. 4b and 6a, b). Second, a
number of other eukaryotes (e.g., S. ciliatum, S. arctica,
or O. sativa) exhibited a similar correlation between long
and AT-rich introns genome-wide (red in Fig. 4b), but not
the concomitant association between strong GC differen-
tials (AGC;,_or <<0) and ES (Figs. 4a and 6e). Third,
ES-positive exons in nearly all non-vertebrate eukaryotes
were surprisingly biased towards regions where introns
and exons have similar GC content (ie., AGC;,_., ~ 0;
Fig. 6b—e). This latter pattern was highly unexpected, as it
matches that described for IR events in human [52], which
we also observed for IR for most (yet not all) eukaryotes
in our dataset (Fig. 5a, d). Altogether, these results reveal
complex lineage-specific interplays among GC content,
intron length, and ES frequency, which cannot be
generalized among eukaryotes (Fig. 6).

We have also examined the effect of whole-transcript
expression levels on AS. In the majority of eukaryotes,
IR-positive introns are preferentially found in lowly
expressed transcripts (Fig. 5a). This result is predicted
by two alternative and non-mutually exclusive hypoth-
eses. On the one hand, IR has been widely associated

with down-regulation of gene expression via NMD [16].
On the other hand, random splicing errors are more
prone to affect lowly expressed genes, given its reduced
fitness cost [49]. A closer inspection of IR-positive
introns alone also recovered a widespread correlation
between high IR rates (r;z ;,;) and lower expression levels
in 28 out 37 species where the relationship was signifi-
cant (Fig. 5¢, Additional file 1: Figure S20; p <0.01 and
rho <0 in Spearman’s rank correlation test). This result
had been previously described in mammalian transcrip-
tomes [16] and can thus be extended to all eukaryotes.
Finally, we investigated the relationship between the
relative expression of core spliceosomal components and
IR and ES frequency genome-wide. Since efficient splicing
depends, in principle, on the sufficient expression of
spliceosomal components [58, 59], we asked whether
low relative expression of core factors correlated with
higher ES and/or IR frequencies at the species level
(Additional file 1: Figure S21A—C). Using a rank-based
score to measure relative spliceosome expression (see
“Methods”), we identified a negative association between
spliceosome expression and IR frequency (Additional file 1:
Figure S21B). This result suggests that species-wide IR
levels, which do not follow a phylogenetic pattern
(Additional file 1: Figure S6), could be at least partly ex-
plained by the competition among unspliced transcripts



Grau-Bové et al. Genome Biology (2018) 19:135

Page 10 of 21

a M. musculus b D. rerio C M. leidyi d S. arctica e V. carteri
= © o o~
g o - - © ] distribution
g, o o o] o -
g 1 0 < ] 7
ERP ~ 4 ~ A
g
£ o o o o o |

Intron GC content

Short introns (Q1)
© Long introns (Q5)

T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10
intron GC content

0.0 02 04 06 08 1.0
intron GC content

00 02 04 06 08 10
intron GC content

T T T T T T T T T T T T
0.0 02 04 06 08 1.0
intron GC content

0.0 02 04 06 08 1.0
intron GC content

1.0

~ | spearman  Spearman

pearma Spearman
1ho<0 p<0.01 rho<0 p<0.01

T Spearman  Spearman
1ho>0 p<0.01

Spearman T
>0.0 1ho>0 p<0.01 rho>0 p<0.01

05

1.0

1.0

Intron GC content in
intron length quantiles (5)
© introns in ES-neg events
O introns in ES-pos events

Spearman Spearman

] Spearman  Spearman
0% pe0.05 <0 peo.0t

rho>0 p<0.01 rho>0 p<0.05

05

, {"}'%-P'H%%’ |bddeddst| © | $ate=is

intron GC content
0.5
!

05

,ﬁ-%#*ﬁ gﬁ'ﬁ’}%@% Speaman oo ot

(o] negatlve rho<0, p<0.01

0.
0.
L
0.0
L

T T T T T T
GC~length  GC~length GC~length ~ GC~length GC~length  GC~length

0.0

© nol p>0.01

0.0

T T T T
GC~length  GC~length GC~length  GC~length

Differential GC content
intron-exon (length>100bp)

ES-neg ES-pos ES-neg ES-pos ES-neg ES-pos ES-neg ES-pos ES-negative ES-pos
N [N o o N
S T ] o o T o T
x 2 ] < ] = ] = ] = ]
5 o ] ] ] ]
L i i i i i
O o ~ o~ o~ ~
g 7] ] ? ] T 7] 7]
1 \ b KS-one 1 ’ T KS-one
<« KS-one <« < KS- < < K
Ch p=0.20 R p=5.58¢-06 R p=5.706-05 = = p=2.10e-04

O AGCj, ., in ES-neg events

O AGC;,_y in ES-pos events
Kolmogorov-Smirnov one-sided, color code:
O ES-pos AGC,_, closer to 0, p<0.01

O ES-pos AGC;, ., not closer to 0

T T T T T T
ES-|
Iong |n(rons long |n|r0ns
Obp  >100 bp

ES-pos
Iong |ntrons Iong |n|rons
00 bp 00 bp

ES-pos
Iong |n(rons Iong |n|r0ns
0 bp bp

T T
ES- 0S

Iong |mrons Iong |n|r0ns
bp

neg ES-pos
Iong |ntrons long |mr0ns
0 bp >100 bp

quantiles, Q1

(i.e, AGC_ o ~

© ~ T|KS-one KS-one ~ «~ 7| KS-one i~ ~ ' ~ 7 Ks-one
® p=0.20 p=5.58e-06 p=5.70e-05 p=2.10e-04
5 i i i i
%o © w w0 w0
g o N S S S
S
g i i i i
R o o 2 2
© T T T © T T T © T T T © T © T T T
-04 -02 00 02 -04 -02 00 02 -04 -02 00 02 04 -02 00 o2 -04 -02 00 02
AGCinox AGCin-ox AGCin-ox AGCirox AGCipox
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0), and thus GC-homogeneous across introns and exons (significant p < 0.01)

for access to the available spliceosomal machinery [58, 59]
in a species- and/or sample-dependent manner. On the
other hand, we found a mild, unexpectedly positive
association of core spliceosomal expression with ES
frequency (Additional file 1: Figure S21C). However,
this result is likely due to the strong correlation found
between relative spliceosomal expression and the total
number of introns (Spearman’s rko =0.612, p =1.28e - 7;
Fig. 5e) and intron density (Additional file 1: Figure
S21D), which were also positively correlated with ES
frequencies (Fig. 4). Thus, relative expression of core
spliceosomal components seems adjusted to the number
of introns to be spliced in each species.

In summary, ES events across eukaryotes were globally
associated with short exons flanked by longer introns,
and with weak 5" and 3’ splice sites. Inasmuch as these
features are more common in animals and plants than
in most eukaryotes, we can expect higher ES frequencies
in these multicellular lineages.

Dating ES transitions in ancestral Holozoa genomes
The relationships between ES and genomic features de-
scribed above were highly consistent among Holozoa

(animals and their closest unicellular relatives), which
suggests that these architectural and sequence effects in-
fluenced ES frequencies not only in extant organisms
but in their extinct ancestors as well. We thus reasoned
that these relationships could be used to predict the inci-
dence of ES in ancestral genomes, provided that their
genome architectures could be approximated.

For this purpose, we first trained a binomial logistic
regression model (see “Methods”) that classifies arbi-
trary exons as either ES-positive or -negative accord-
ing to their overall gene architecture, assigning them
an ES-positive probability (pgs). We used data from a
selection of 24 eukaryotes with multiple animals and
holozoans (Additional file 1: Figures S22 and S23) and
ascertained their sensitivity and specificity by calculat-
ing the ROC curve of the classifier (Fig. 7a) and the
area underneath (AU-ROC = 0.752, 95% CI = 0.743-0.762).
This AU-ROC value indicates a clearly better-than-random
classifier and compares with similar AS predictors previ-
ously developed for more taxonomically restricted contexts,
such as IR in mammals (AU-ROC =0.79) [16] and ES in
vertebrates (AU-ROC =0.79-0.87 in individual species)
[51]. In addition, it shows that gene architecture is a
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consistent predictor of ES events. The highest combined
sensitivity and specificity were attained when the
ES-positive probability threshold (pgs) was set at 0.522
(Fig. 7b).

Next, we used this classifier to compare ES levels from an-
cestral genomes, using a topographic map of the predicted
ES incidence based on genomic architectural traits (Fig. 7)
from 1600 genomes simulated by combining initial assump-
tions of mean intron density (range 0.5-15 introns/gene)
and mean intron length (range 10-8000 bp). For each simu-
lation, we generated 10,000 internal exons with their corre-
sponding gene architectures (see “Methods” for details) that
were analyzed with the classifier to assign them an
ES-positive probability (pgs). Then, we approximated the in-
cidence of ES in each simulated genome by calculating the
fraction of exons with pgs over the optimal threshold
(pes >0.522; henceforth Igg). An examination of ES
incidences across the spectrum of simulated ancestral
genomes revealed that genomes with higher intron densities
and lengths have higher Irs values (Fig. 7c, d), as expected
from transcriptomic analyses of extant species (Fig. 4a, b).
To assess the accuracy of our simulated genomes, we

compared their Irg values with those obtained from the
most similar real genome in our dataset (in terms of intron
density and mean length), finding a linear correlation (linear
fit R* = 0.996, slope p = 1.25¢ - 76; Fig. 7e).

Then, we used this predictive framework to analyze ES
transitions in animals by comparing the incidence of ES
in reconstructed premetazoan and postmetazoan
ancestors (Fig. 7c). To do so, we used previously pub-
lished estimates of intron density in ancestral genomes
obtained by comparative genomic analyses [26, 27],
which reported an increase in intron density from 7.85
to 12.37 introns/gene between the origin of Holozoa
(Urholozoa) and animals (Urmetazoa) (Table 1). As a
proxy for ancestral intron lengths, we used means
obtained from extant species’ phylogenetically inde-
pendent contrasts [60] (see “Methods”; Additional
file 1: Figure S24). Under these assumptions, the
Urmetazoa (12.37 introns/gene of ~ 850 bp mean
length) would have an Iz ~ 0.30 (Fig. 7c). Conversely,
the intron-poorer Urholozoa would reach Irg ~ 0.30
only if it had an average intron of >1000 bp, which
exceeds by an order of magnitude the average intron
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lengths of extant unicellular holozoans (120-571 bp;
Additional file 1: Figure S2) [27] and our ancestral
estimation (~481 bp). Therefore, under reasonable
assumptions for ancestral genome architecture, the
unicellular ancestors of animals likely had lower ES
levels than the Urmetazoa (Fig. 7c, d).

This same line of reasoning can be applied within animals.
Since the Urmetazoa (12.36 introns/gene, ~ 850 bp), intron
loss processes occurred in the ancestral cnidarians, porifer-
ans, bilaterians, and vertebrates (Table 1) [26, 27]. Therefore,
to sustain an increase in ES levels relative to the Urme-
tazoan, these lineages should have undergone intron length-
ening processes. This was probably the case already in early
bilaterians (Igs ~ 0.40 if mean intron length ~ 1300 bp) and,
with higher certainty, in vertebrates (lgs ~0.60 if mean
intron length ~ 3100 bp; Fig. 7¢, d). On the other hand, our
results do not support bilaterian-like ES enrichments in the
early branching animal ancestors Urcnidaria and Urporifera:
although they had high intron densities, they likely had
shorter introns compared to the Urbilaterian (Table 1), thus
yielding lower Irg values (Fig. 7c, d).

Therefore, we hypothesize that the moderately high ES
in certain non-bilaterian eukaryotes appear concomitantly
with recent, species-specific changes in their gene archi-
tecture. One possible example is H. magnipapillata, which
has undergone a recent, intra-genus genome size expan-
sion [61, 62] that could help explain its enlarged introns
(Fig. 1b). Similarly, ichthyosporeans attained high intron
densities independently of animals [27] (Table 1), and the
longer introns found in species like S. arctica appear to
have been recently acquired too (Fig. 4d). Altogether, pre-
diction of ES incidences from ancestral reconstructions
and comparison with extant species are consistent with
the increase in ES frequency observed in metazoans,
particularly from bilaterian ancestors.

Discussion

We performed a comparative survey of AS frequencies
in 65 eukaryotes to understand the evolutionary dynam-
ics of this layer of gene regulation. Our analysis revealed
that ES and IR events can be found, at varying frequen-
cies, in transcriptomes from all major eukaryotic groups
(Opisthokonta, Amoebozoa, Virdiplantae and Crypto-
phyta, SAR and Haptophyta, and Excavata). This result
thus provides further support for an early emergence of
dual AS—i.e., involving both ES and IR—in eukaryotes
[18, 33, 34]. Given the generally higher prevalence of IR
in all eukaryotic super-groups (Fig. 2a, b, Additional file 1:
Figure S6), LECA likely exhibited an IR-dominated AS
profile as well.

Since its early origin in LECA, the incidence of ES has
varied between different eukaryotic groups. Our analysis
of ES frequencies across multiple species revealed higher
ES frequencies in multicellular animals (particularly
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vertebrates and other bilaterians) and, to a lesser extent,
plants. While most other eukaryotes maintain lower
ES levels, a number of punctual exceptions have
surfaced—e.g., the ichthyosporean S. arctica or the
colonial chlorophyte V. carteri [38] (Fig. 2). Con-
versely, other major lineages like fungi or amoebozo-
ans exhibit comparatively low ES levels.

In most ES-rich eukaryotes, we identified a set of gene
architectural features that influence the frequency of AS
at the gene level: the heterogeneity of 5" and 3’ splice
sites, the length of exons and their flanking introns, and
its correlate regarding intron density. These architectural
traits were globally coherent across eukaryotic lineages,
especially in animals and plants (Fig. 4a). In particular,
the mode of splicing by ‘exon definition, which posits
that short exons flanked by long introns are enriched in
ES events [50, 53], is relevant in most eukaryotic
transcriptomes with sufficient ES levels analyzed here,
except for E. siliculosus and B. natans. These properties
are more common in intron-rich organisms with hetero-
geneous splice sites [18, 34]. Overall, this result suggests
a non-deterministic ‘soft code’ that influences ES rates
across eukaryotic lineages.

The existence of a pan-eukaryotic ES ‘soft code’
implies that inter-specific changes in ES levels can be as-
sociated with the evolutionary histories of their under-
lying genomic traits. Since the origin of intron-rich
genomes in LECA, the evolutionary lineages leading up
to ES-rich animals and plants always maintained high
intron densities, and later underwent secondary intron
gain processes [26, 27, 63] concomitant with ES transi-
tions (Fig. 2). Such intron gain episodes had a direct
effect on exon length: given that the mean CDS length is
relatively constant across eukaryotes [57] and that intron
content is independent of CDS length (Additional file 1:
Figure S24), genomes affected by long-term intron gain
processes have shorter exons (Fig. 1c, Additional file 1:
Figure S24). This is likely a direct consequence of the
most common mechanisms of de novo intron creation,
which involve the insertion of new intronic sequences
splitting pre-existing exons [64—68]. Furthermore, most
extant intron-bearing eukaryotic genomes maintain
heterogeneous splice sites [18, 34], a conserved core spli-
ceosomal machinery [31] (Additional file 1: Figure S21),
and a diverse complement of splicing factors [27, 32], all
of which were already present in LECA. Globally, the
evolutionary dynamics of these genomic traits are con-
sistent with our results: the early origin of the genetic
machinery (core spliceosome) and structure (intron-rich
genomes with diverse splice sites) fits the ancestral
emergence of ES in LECA and its widespread incidence,
and subsequent lineage-specific changes in genome ar-
chitectures would have paved the way for the evolution
of higher ES frequencies.
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Furthermore, if the effect of gene architecture on ES is
widespread and coherent across eukaryotes, we can infer
that it was also relevant in their ancestors. Thus, we
took advantage of the pan-eukaryotic ‘soft code’ of ES
determination to investigate the timing of ES transitions
in animals and their unicellular ancestry. Specifically, we
quantified the relationship between gene architecture and
ES on extant eukaryotes and projected these effects into
the past with a predictive framework (Fig. 7c, d). We
propose an early ES enrichment in the Urmetazoa
concomitant with the origin of multicellularity, followed
by further enrichment in bilaterians and vertebrates. The
ES transition in early animals would come as a conse-
quence of changes in genome architecture, as large ge-
nomes with high intron densities and long intronic
segments became more common in animals [26, 27, 69]
than in their unicellular holozoan relatives [27, 57, 70-72].

Remarkably, most animals showed high fractions of 3n
exons among their ES events, but this was not observed
in plants or other eukaryotes (Fig. 3b, c). Thus, the pres-
sure to maintain ORFs in the event of ES seems an
animal-specific trait. Interestingly, even animals with
lower ES frequencies (such as non-bilaterians) or that
have secondarily simplified intron—exon architectures
(e.g., C. elegans and D. melanogaster) often have strong
3n biases in their ES profiles. Thus, it is conceivable that
a protein isoform-enabling 3n bias already existed in the
Urmetazoa, before the major increase in ES frequency
occurred in bilaterians (Figs. 2 and 7). If so, these
increases were likely more easily recruited to function-
ally diversify their proteomes, perhaps contributing to
the selection of more ES-prone genome architectures,
establishing a positive feedback loop. Moreover, it is
possible that other regulatory features that are charac-
teristic of bilaterians, such as the high prevalence of
long-range enhancer—promoter interactions [73], may
have also contributed to longer intron sequences and
thus to more ES-prone genome architectures.

On the other hand, neither unicellular holozoans
(Fig. 2) nor the unicellular ancestors of animals (Fig. 7)
seem to have had ES-rich transcriptomes with 3n exon
biases. Therefore, AS-mediated isoform production was
a largely irrelevant phenomenon during the unicellular
ancestry of animals (since the Urholozoa to the origin of
multicellularity), an evolutionary period that was other-
wise fecund in other sources of gene innovation [27].

Conclusions

We find that the influence of gene architectural traits in
the frequencies of IR and ES is globally conserved across
all eukaryotic lineages. Thus, gene architecture (i.e. the
lengths of introns and exons, splice site definition, intron
density, etc) is the basis of a ‘soft’ pan-eukaryotic
cis-regulatory code for AS determination that affects

Page 13 of 21

both extant and ancestral genomes. This result em-
phasizes the effect of long-term genome evolutionary
patterns in shaping AS, a fast-changing transcriptome
regulatory layer. In that regard, we identify multiple
ES transitions coinciding with the evolution of
ES-favourable genome architectures — e.g. in animals
and plants, but also in more restricted taxonomic
contexts such as the ichthyosporean S. arctica.

Our taxon-rich analysis confirms that animal tran-
scriptomes have a unique AS profile. Quantitatively, ex-
tant animals exhibit the highest ES frequencies among
eukaryotes as a consequence of cumulative ES enrich-
ments in the Urmetazoa and, above all, the Urbilateria.
Furthermore, from a qualitative perspective, the earliest
animals became enriched in frame-preserving ES events,
which is essential for widespread isoform-mediated
proteome diversification. Thus, our observations suggest
that the unparalleled increase in ES frequencies of mod-
ern bilaterians (including vertebrates) is a consequence
of the interplay between the complexification of animal
genome architectures, on one hand, and the co-option
of ES events for regulated proteome expansion, on the
other.

Methods
Sources of genome and transcriptome data
We assembled a dataset consisting of genome assemblies
and annotations from 65 eukaryotic species for which
high-coverage Illumina RNA-seq data were already
available or for which we generated de novo data
(Additional file 1: Figure S1 and below). We retrieved
the genomic coordinates of genes, transcripts, and
exon sequences for each genome from associated GFF
annotation files. If more than one isoform per gene
was annotated, the longest CDS was considered to be
the canonical transcript (a proxy with ~90% corres-
pondence with proteomics-driven main isoform selec-
tion [74]). In order to homogenize the experimental
procedures used to build each RNA-seq library, we
used (i) poly(A)-selected libraries only, (ii) either
single-end or the forward reads of paired-end data,
and (iii) trimmed reads to a length of 50 bp if they
were longer (using FASTX Toolkit [75]). In species
where RNA-seq experiments included more than one
sample (replicates, time series, growth conditions,
etc.), all reads were pooled into a single FASTQ file.
In the case of N. gruberi, S. arctica, and T. adhaerens,
new RNA-seq datasets were produced and deposited in
the European Nucleotide Archive (ENA) under the acces-
sion codes PRJEB23822, PRJEB23831, and PRJEB23829,
respectively. RNA extractions were performed from con-
fluent axenic cultures of mixed cells (N. gruberi, ATCC
1034 medium, modified PYNFH at 30 °C; S. arctica,
marine broth medium Difco 2216 at 12 °C) or whole
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organisms (7. adhaerens, artificial sea water at 25 °C).
RNA was extracted using Trizol reagent (Life Technolo-
gies, Carlsbad, CA, USA) with a further step of Dnase I
(Roche) to avoid contamination by genomic DNA, then
purified using RNeasy columns (Qiagen). We sequenced
paired-end libraries of 50 (N. gruberi, 276,095,412 reads; S.
arctica, 218,701,756 reads) or 125 bp (T. adhaerens,
84,583,746 reads) with an insert size of 250 bp. Libraries
were constructed using the Trueseq Sequencing Kit v4
(Nlumina, San Diego, CA, USA). The libraries were se-
quenced in one lane of Illumina HiSeq 2000 (N. gruberi,
T. adhaerens) or 2500 (S. arctica) at the CRG genomics fa-
cility (Barcelona).

Detection and quantification of exon skipping and intron
retention events

We adapted and expanded the computational framework
previously developed [36, 51] to detect and quantify ES
and IR (graphical summary in Additional file 1: Figure S3),
as follows.

Exon skipping detection

For each group of three consecutive exons in the genome
(exon triplet), we built a composite of exonic junctions
consisting of (i) 42 bp from the 5" end of the first exon
and 42 bp from the 3’ end of the second exon (E1-E2
junction); (ii) 42-bp fragments from the 5" end of the first
exon and the 3" end of the third exon (E1-E3); and (iii)
42-bp fragments from the 5" end of the second exon and
the 3" end of the third exon (E2—E3). Hence, each triplet
consisted of two inclusion junctions (E1-E2 and E2-E3)
and one that skipped the middle exon (E1-E3). If any
exon was shorter than 42 bp, the entire length of the exon
was used, and the resulting junction sequence would be
shorter than 84 bp.

Then, we computed the effective mappability of each
junction in order to exclude exon—exon boundaries
where RNA-seq mapping would be unreliable [76]. Spe-
cifically, we (i) built an artificial RNA-seq library consist-
ing of all the possible reads derived from each junction
in a 50-bp sliding window; (ii) mapped these reads to
the original junctions using bowtie v1.1.2, allowing a
maximum of two mismatches (-v 2) and no multiple
alignments (-m 1) [77]; and (iii) removed all junction
triplets for which at least one triplet had <20 effectively
mappable positions (maximum is 35 for 50 bp reads,
and > 8 positions mapped from each exon). Then, we
aligned the pooled RNA-seq libraries to the remaining
exon triplets with bowtie and the same parameters as
above. We corrected the number of mapped reads by
dividing the read counts by the ratio obtained from div-
iding the mappable positions of that junction (20-35 bp)
and the maximum theoretical mappability (35 bp).
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The ES rate of each middle exon (rgs) was then com-
puted as follows:
ME1E3

(mE1E2 + ME2Es) /2 + MEiEs

Tes =

where m denotes the mappability-corrected number of
reads mapping in the E1-E2, E2-E3, and E1-E3 junc-
tions. We classified exon junctions into three categories:
(i) ES-positive if mg;ps + meaps + meipz > 10, meips > 2,
Meaps >2, Meips > 1, and rgg >210% but <90%; (ii)
ES-negative if mg;po + Mpops + MEgez > 10, mppy >2,
Meops  >2, Mgz =20 but  rgg<10%; and (i)
non-classifiable if any condition was not fulfilled.

Intron retention detection

For each intron of the genome, we built three junction
sequences consisting of (i) 42 bp from the 5" end of the
first exon and 42 bp from the 3’ end of adjoining intron
(E-I junction); (ii) 42-bp fragments from the 5" end of
the first exon and the 3 end of the second exon (E-E);
and (iii) 42 bp fragments from the 5 end of the intron
and the 3’ end of the second exon (I-E). Hence, each
intron triplet had one spliced junction (E-E) and two
retention junctions that spanned the intron ends (E-I
and I-E), all of them 84 bp long (or less, if any exon or
intron was shorter than 42 bp).

The mappability of each exon—intron junction was
computed as specified above for ES junctions, also
discarding cases with < 20 effectively mappable positions.
We then aligned the same pooled RNA-seq data to the
remaining exon—intron junctions using bowtie, and cor-
rected the number of mapped reads.

The IR rate of each intron (r;z) was computed as
follows:

- (mpe + mgp) /2
R =
mge + (me + mgp) /2

where m denotes the mappability-corrected number of
reads mapping in the I-E, E-I, and E-E junctions.
Finally, we classified intron junctions in three categories:
(i) IR-positive if m + mg + mgg > 10, mg > 1, mgr > 1,
mge >2, and rr =2 10% but <90%; (i) IR-negative if
mpp + mgr + mee > 10, myp 20, mg 20, mge >2, and
rrin < 10%; and (iii) non-classifiable if any condition was
not fulfilled.

ES and IR detection pipeline quality control

With the aim of identifying biases in our computational
pipeline, we assessed the fraction of all potential exon—exon
and exon—intron junctions that passed the mappability
filters and were used in the ES and IR detection procedures
(Additional file 1: Figure S25). Putative systematic biases
derived from species-specific genome architectural traits
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(paralogy, exon/intron lengths, repetitive genomes) could
affect RNA-seq mapping in certain species and thus bias
downstream analyses.

We analyzed the fraction of junctions with > 20 effective
mappable positions (mappability filter, Additional file 1:
Figure S25A, B), finding no evidence of taxonomic biases
in any particular eukaryotic group. A few phylogenetically
unrelated species exhibited low survival rates (e.g.,
Selaginella moellendorffi and E. huxleyi). This general
mappability filter was then decomposed in its different
components. First, we assessed the fraction of exons and
introns from each genome that had the minimal required
length to survive the mappability filter (i.e., > 27 bp), find-
ing no bias in any species (Additional file 1: Figure S25C,
D). Next, we examined which mapping filters (i.e., bowtie
multiple mapping [-m 1] or excess of mismatches [-v 2])
caused ES or IR junction removal in each species
(Additional file 1: Figure S25E, F), finding that peaks in
S. moellendorffi and E. huxleyi were mostly due to
multiple mapping. Multiple mapping is likely caused by
abundant recent gene duplications in these two species.
Indeed, both S. moellendorffi and E. huxleyi had a high
fraction of intron-bearing genes with recent paralogous
sequences (>99% or > 95% amino acid sequence identity,
and >90% reciprocal alignment coverage, calculated
with diamond [78]; Additional file 1: Figure S25G, H).
Finally, we found that some species also had a rela-
tively high number of uncalled bases (N) in their
exon—exon or intron—exon junctions (most notably O.
sativa but also S. moellendorffi; Additional file 1:
Figure S25I, J), which can partly explain the lower
survival rates in these species after the mappability filter
(Additional file 1: Figure S25A, B).

Overall, these quality control analyses show that the
compounded effect of genome architectural traits
(recent duplication, uncalled bases, and repetitive se-
quences hindering RNA-seq mapping) only affected
individual species and did not systematically affect ES or
IR detection in any large group of eukaryotes.

Transcriptome-wide quantification of AS levels

In order to measure the average frequency of ES at the
species level, we divided each species’ set of classifiable
exon triplets into 100 bins of 100 triplets, and calculated
the per-triplet frequency of ES from 10,000 randomly
chosen reads for each bin (selected among those mapping
to the in bin’s exon—exon junctions, or a mean sequencing
depth of ~20x). The average ES rate of each bin i (rgs,)
was recorded to obtain a species-level distribution of ES
frequencies (Fgs,,). An analogous measurement was used
to calculate the distribution of species-level IR frequencies
(Fir,sp) from 100 bins, 100 triplets, and 10,000 reads per
bin (mean sequencing depth ~ 20x). This process is
summarized in Additional file 1: Figure S3C. It should be
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noted that comparisons among Fig,, are more susceptible
to technical variability derived from library preparation
than those among Frg,, since differences in the efficiency
in poly(A)+ selection are only expected to significantly
affect Fjp, estimates.

Statistical comparisons of poolings of species-level
Frs,, distributions (Fig. 2c—f) were done using
one-sided Kolmogorov-Smirnov tests. Differences between
intra-species replicates (Additional file 1: Figure S7)
were assessed with Wilcoxon rank-sum tests. All statistical
contrasts were done with R stats [79].

ES frequency analysis was re-assessed by using (i) down-
sampled RNA-seq experiments (to 2x, 5x, 10x, and 15x
sequencing depths, by random read selection; Additional
file 1: Figure S10); and (ii) individual tissue-level samples
from selected animal (H. sapiens, 2x M. musculus, M.
domestica, O. anatinus, G. gallus, X. tropicalis, D. rerio, S.
ciliatum) and plant species (A. thaliana and M. polymor-
pha) (Additional file 1: Figure S13A). Original sequencing
depths in the ES and IR triplets junctions are available in
Additional file 1: Figure S25K, L.

Analysis of gene features: architecture, splice sites and
expression levels

For each exon or intron analyzed, we recorded sequence
and architectural parameters at the gene and AS event
levels. At the gene level, we studied the following parame-
ters: gene length, CDS length (all exons), total number of
introns in the gene (intron density), position of the exon/
intron within the gene sequence (base pairs from starting
codon), and total length of all introns with respect to
exons (ratio). At the AS event level, we recorded the
length of the individual exon and flanking introns (for ES)
or intron and flanking exons (for IR), and the ratio be-
tween them (intron/exon lengths); the GC content of
exons and flanking introns (for ES) or introns and
flanking exons (for IR), and the differential between them
(AGC;,_.. = GC;, —GC,,), and a boolean variable describ-
ing whether the length of the alternative exon/intron was
divisible by three (1 = true, 0 = false). These features were
derived from the GFF annotation and genome sequence
(data sources in Additional file 1: Figure S1).

In addition, we analyzed the conservation degree of 5’
and 3’ splice sites when compared to species-specific
consensus. For each species, we built position-weighted
matrices (PWM) from the alignments of all 3" (23 bp, 20
from the intron and 3 from the exon) and 5’ (9 bp, 3
from the exon and 6 from the intron) splice sites using
the consensus matrix function in the Biostrings R library
[80]. Then, for each individual splice site in the genome,
the distance from the PWM consensus was calculated.
Splice sites were delimited as in [81].

Finally, we evaluated transcript expression levels using
the mappability-corrected RPKM metric (cRPKM),
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aligning the pooled RNA-seq data for each species to the
genome-predicted transcript sets using bowtie (longest
transcript per gene only, see above) and calculating
transcript-specific effective mappabilities as detailed
above [76].

Statistical analysis of AS frequency and gene features

For each species and for each of the quantitative se-
quence and architectural features listed above, signifi-
cant differences between the values taken by the IR-/
ES-positive triplets and the IR-/ES-negative triplets
were evaluated using two independent one-sided
Kolmogorov-Smirnov two-sample tests with comple-
mentary alternative hypotheses: first, we tested whether
the empirical cumulative distribution of the IR-/ES-po-
sitive events lied above the IR-/ES-negative events’
values (signaling a positive relationship between IR/ES
and the given feature); second, we tested whether it lied
below (i.e., for a negative relationship). We used the
Kolmogorov-Smirnov distance (D statistic) to measure
the distance between distributions. D was recorded as
positive if p <0.01 in the first test, negative if p <0.01 in
the second one, or as NA if it was not significant in any
test or contradictorily significant. The resulting matrix
was plotted using the heatmap.2 function in the R
gplots v3.0.1 library [82].

To further investigate the relationship between gene
expresion levels and IR, we also tested the significance
of monotonic correlations between cRPKMs and AS
rates using Spearman’s rank correlation coefficient
(rho, significant for p <0.01).

Finally, we tested if the frequency of 3n divisible
lengths in IR-/ES-positive events significantly differed
from that of IR-/ES-negative (i.e., constitutive) events
using Fisher’s exact test (significant for p < 0.01, except if
otherwise stated). All statistical analyses were done with
R stats library [79].

The relationships between gene architectural traits and
ES and IR events were re-assessed by using (i) down-
sampled RNA-seq experiments (to 2x, 5x, 10x and 15x
sequencing depths, by random read selection; Additional
file 1: Figures S17 and S18); and (ii) individual tissue-level
samples from selected animal (H. sapiens, M. musculus,
M. domestica, O. anatinus, G. gallus, X. tropicalis, D.
rerio, S. ciliatum) and plant species (A. thaliana and M.
polymorpha) (Additional file 1: Figure S13B, C). Original
sequencing depths in the ES and IR triplets junctions are
available in Additional file 1: Figure S25K, L.

Prediction of ES incidence using gene architectural
features

Using our binary classification of positive/negative ES
events, we created a binomial logistic regression model
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for a selection of representative eukaryotes with high ES
frequencies. First, we selected 18,678 events with known
gene architecture (devised to include an equal number
of positive and negative events) from 24 representative
eukaryotic species (Additional file 1: Figure S22). We
used (i) 12,452 positive and negative ES events
(two-thirds of the dataset) as the binary-dependent vari-
able, and (ii) 11 quantitative gene traits and a Boolean
factor indicating 3n divisibility as independent predictors
(Additional file 1: Figure S22). The binomial logistic re-
gression was built using the generalized linear model
function from R stats library [79]. The predictive per-
formance of each model was estimated with the area
under its corresponding ROC curve (AU-ROC), calcu-
lated using an independent test subset (6226 events,
one-third of the dataset) with the pROC R library [83].
An optimal probability threshold was selected by
maximizing the sum of specificity and sensitivity
(PEs,optimar =0.522). We assessed the significance of
the model’s coefficients with the Z-statistic signifi-
cance according to the Wald test and its correspond-
ing ANOVA deviance table with sequential Chi-square
tests (Additional file 1: Figure S22).

The predictive model of ES was applied to a set of
1600 simulated genomes with varying intron densities
(0.5-15 introns/gene range, 40 regular intervals) and
mean intron sizes (10-8000 bp range, 40 intervals at
cubic distances). Each simulated genome contained
20,000 genes of which at least 10,000 were multi-exonic
(depending on its input intron density).

For each simulated genome, gene architectures were
drawn from the empirical distributions derived from
10,000 randomly selected genes from each of the 30 repre-
sentative eukaryotes. Specifically, we used log-normal dis-
tributions for the lengths of CDS (mean=1422 bp), 5’
and 3’ introns (mean = input mean intron length), genes
(mean = CDS length + input mean intron length x input
mean intron density), and exons (mean=CDS length/
number of introns per gene); and normal distributions of
5" splice site (mean =empirical) and 3’ splice site
(mean = empirical) scores. For all normal or log-nor-
mal distributions, the standard deviations were
obtained from the empirical distributions. See
Additional file 1: Figure S23 for a complete report of
means and standard deviations for each distribution
and a list of species employed. All variables were esti-
mated using maximum-likelihood fitting of univariate
distributions as implemented in the fitdistr utility of
the R MASS library [84], and each set of simulated
gene architectures was built using the normal or
log-normal distributions implemented in R stats [79].

Then, from each simulated genome, we selected up to
10,000 random internal exons (using R mosaic library
[85]) without replacement and analyzed them with the
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binomial logistic regression model to obtain exon-wise
ES-positive probabilities (pgs). In simulated genomes
with low intron densities, the number of internal exons
(i.e., with two flanking introns) was sometimes less than
10,000 (for the lower bound of 0.5 introns/gene, 7864
internal exons were retrieved on average).

To estimate the incidence of ES across the spectrum
of simulated genomes, we calculated the fraction of
exons in each simulation with pgs >0.522 (the optimal
probability threshold according to the ROC curve with
real test data), or Irs. The relationship between Irs, mean
intron size, and intron density was investigated using a
contour map and its corresponding 3D projection, pro-
duced with the R graphics [79] and akima libraries [86],
respectively.

Then, we overlaid the resulting contour map with esti-
mations of ancestral genomes’ intron density and length
distributions. Ancestral intron densities were obtained
from [26, 27] (Table 1). Ancestral intron length distribu-
tions were estimated using phylogenetically independent
contrasts (PIC) [60, 87] as implemented in the R ape
library [88]. Specifically, we calculated mean, median,
and first and third quartiles of the ancestral intron
length distributions, using PIC analysis of the descend-
ant nodes (e.g., Urcnidaria median value corresponds to
the phylogeny-controlled medians of the three extant
cnidarians in our dataset; available as Additional file 1:
Figure S24). In order to account for the phylogenetic
relationships as required in PIC analysis [60, 87], we
built a phylogenetic tree of the 65 eukaryotes in our
dataset with 429 single-copy pan-eukaryotic orthologs
from the BUSCO database [89] with IQ-TREE v1.5.1
[90]. For each of the 429 BUSCO orthologs and 65
organisms, we searched the best-matching protein in
each predicted proteome with hmmsearch [91], which
were aligned with MAFFT v7.245 (L-INS-i algorithm
with up to 1000 refinement iterations) [92] and trimmed
with the trimAL automated algorithm [93]. Then, we
concatenated all 429 trimmed alignments in a multi-gene
alignment (149,809 amino acid positions) that was
analyzed with IQ-TREE using the LG + G4 model and a
constrained phylogenetic tree as a reference (manually
built from previous phylogenomic analyses [27, 94-97];
see Additional file 1: Figure S24).

Length distribution of homologous introns in holozoans
and chlorophytes

To test whether S. arctica and V. carteri have length-
ened or shortened their introns, we compared the
length distributions of one-to-one homologous introns
between them and their close relatives. First, we built
two databases of orthologous genes: for unicellular
holozoans (using predicted proteins of S. arctica and
C. fragrantissima plus C. owczarzaki as outgroup) and
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chlorophytes (using V. carteri and C. reinhardtii, plus
Chlorella variabilis as outgroup), using in both cases
Orthofinder v2.1.2 [98] with MCL inflation = 2.1 [99].
Please note that, although C. perkinsii (ichthyospor-
ean) is a closer outgroup for the holozoan analysis
than C. owczarzaki (filasterean), the former species’
intron contents are heavily reduced, whereas the latter
shows a remarkable level of intron site conservation
despite the high phylogenetic distance with ichthyos-
poreans [27].

For each database of orthologous genes, we retrieved
the transcript sequences of all single-copy orthologs
present in the three species, onto which we mapped the
in-transcript coordinates of all annotated introns and
their length (bp). For each three-gene group, we re-
trieved 40-bp-long transcript segments around each
intron site (20 bp upstream + 20 bp downstream) using
Bedtools v2.24.0 [100], and aligned them locally with
blastn [101] to identify introns inserted in homologous
transcript regions (using -task blastn-short). We consid-
ered as homologous introns those alignments that
fulfilled these conditions: (i) alignment length>8 bp;
and (ii) alignment spanned at least 4 ungapped bp up/
downstream the intron insertion (20th position). Then,
we analyzed the intron length distribution of homolo-
gous introns in pairwise species comparisons.

Conservation and expression of the core splicecosomal
components

We surveyed the translated proteomes of each eukaryotic
species in our dataset to identify bona-fide orthologs of 82
core spliceosomal components. Specifically, we annotated
the KEGG orthologous groups [102] of each species using
eggNOG mapper [103, 104] and identified the KEGG
orthologs (KO) corresponding to the spliceosomal snRNPs,
Ul, U2, U4/U6-U5 complexes, and the Prpl9 complex
(Additional file 1: Figure S21). The resulting matrix of KO
presence/absence per species was plotted using the heat-
map.2 function of the R gplots v3.0.1 library [82], using the
eggNOG annotation bitscore values (normalized to the 0-1
range within each KO) as a visual reference of sequence
conservation. Then, we analyzed the relative level of expres-
sion of the spliceosomal components in each species. Spe-
cifically, we used a rank-based score that reflected whether
the spliceosomal components were more or less expressed
relative to other genes in that species’ RNA-seq sam-
ple. The species-level relative rank expression of the
spliceosome was calculated as follows: (i) we selected
500 random subsets of 199 genes (sampling with re-
placement); (ii) we sequentially added each of the 82
spliceosomal genes to the subset (totaling 200 genes
per subset); (iii) each gene was assigned a rank score
ranging from 1 (lowly expressed within the subset) to
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200 (highly expressed); (iv) we recorded the rank score of
the 82 spliceosomal genes within each random gene
subset; and (v) calculated the relative rank of spliceosome
expression per species by averaging the ranks of its 82
components (or those present) across all 500 random gene
subsets.

Additional files

Additional file 1: Figures S1-25. Data sources, methods overview,
complete reporting of statistical analyses, and replicate/technical analyses.
(PDF 2453 kb)
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